/* * Copyright (C) 1996-2018 The Squid Software Foundation and contributors * * Squid software is distributed under GPLv2+ license and includes * contributions from numerous individuals and organizations. * Please see the COPYING and CONTRIBUTORS files for details. */ /* DEBUG: section 20 Memory Cache */ #include "squid.h" #include "base/RunnersRegistry.h" #include "CollapsedForwarding.h" #include "HttpReply.h" #include "ipc/mem/Page.h" #include "ipc/mem/Pages.h" #include "MemObject.h" #include "MemStore.h" #include "mime_header.h" #include "SquidConfig.h" #include "SquidMath.h" #include "StoreStats.h" #include "tools.h" /// shared memory segment path to use for MemStore maps static const SBuf MapLabel("cache_mem_map"); /// shared memory segment path to use for the free slices index static const char *SpaceLabel = "cache_mem_space"; /// shared memory segment path to use for IDs of shared pages with slice data static const char *ExtrasLabel = "cache_mem_ex"; // TODO: sync with Rock::SwapDir::*Path() // We store free slot IDs (i.e., "space") as Page objects so that we can use // Ipc::Mem::PageStack. Pages require pool IDs. The value here is not really // used except for a positivity test. A unique value is handy for debugging. static const uint32_t SpacePoolId = 510716; MemStore::MemStore(): map(NULL), lastWritingSlice(-1) { } MemStore::~MemStore() { delete map; } void MemStore::init() { const int64_t entryLimit = EntryLimit(); if (entryLimit <= 0) return; // no memory cache configured or a misconfiguration // check compatibility with the disk cache, if any if (Config.cacheSwap.n_configured > 0) { const int64_t diskMaxSize = Store::Root().maxObjectSize(); const int64_t memMaxSize = maxObjectSize(); if (diskMaxSize == -1) { debugs(20, DBG_IMPORTANT, "WARNING: disk-cache maximum object size " "is unlimited but mem-cache maximum object size is " << memMaxSize / 1024.0 << " KB"); } else if (diskMaxSize > memMaxSize) { debugs(20, DBG_IMPORTANT, "WARNING: disk-cache maximum object size " "is too large for mem-cache: " << diskMaxSize / 1024.0 << " KB > " << memMaxSize / 1024.0 << " KB"); } } freeSlots = shm_old(Ipc::Mem::PageStack)(SpaceLabel); extras = shm_old(Extras)(ExtrasLabel); Must(!map); map = new MemStoreMap(MapLabel); map->cleaner = this; } void MemStore::getStats(StoreInfoStats &stats) const { const size_t pageSize = Ipc::Mem::PageSize(); stats.mem.shared = true; stats.mem.capacity = Ipc::Mem::PageLimit(Ipc::Mem::PageId::cachePage) * pageSize; stats.mem.size = Ipc::Mem::PageLevel(Ipc::Mem::PageId::cachePage) * pageSize; stats.mem.count = currentCount(); } void MemStore::stat(StoreEntry &e) const { storeAppendPrintf(&e, "\n\nShared Memory Cache\n"); storeAppendPrintf(&e, "Maximum Size: %.0f KB\n", maxSize()/1024.0); storeAppendPrintf(&e, "Current Size: %.2f KB %.2f%%\n", currentSize() / 1024.0, Math::doublePercent(currentSize(), maxSize())); if (map) { const int entryLimit = map->entryLimit(); const int slotLimit = map->sliceLimit(); storeAppendPrintf(&e, "Maximum entries: %9d\n", entryLimit); if (entryLimit > 0) { storeAppendPrintf(&e, "Current entries: %" PRId64 " %.2f%%\n", currentCount(), (100.0 * currentCount() / entryLimit)); } storeAppendPrintf(&e, "Maximum slots: %9d\n", slotLimit); if (slotLimit > 0) { const unsigned int slotsFree = Ipc::Mem::PagesAvailable(Ipc::Mem::PageId::cachePage); if (slotsFree <= static_cast(slotLimit)) { const int usedSlots = slotLimit - static_cast(slotsFree); storeAppendPrintf(&e, "Used slots: %9d %.2f%%\n", usedSlots, (100.0 * usedSlots / slotLimit)); } if (slotLimit < 100) { // XXX: otherwise too expensive to count Ipc::ReadWriteLockStats stats; map->updateStats(stats); stats.dump(e); } } } } void MemStore::maintain() { } uint64_t MemStore::minSize() const { return 0; // XXX: irrelevant, but Store parent forces us to implement this } uint64_t MemStore::maxSize() const { return Config.memMaxSize; } uint64_t MemStore::currentSize() const { return Ipc::Mem::PageLevel(Ipc::Mem::PageId::cachePage) * Ipc::Mem::PageSize(); } uint64_t MemStore::currentCount() const { return map ? map->entryCount() : 0; } int64_t MemStore::maxObjectSize() const { return min(Config.Store.maxInMemObjSize, Config.memMaxSize); } void MemStore::reference(StoreEntry &) { } bool MemStore::dereference(StoreEntry &, bool) { // no need to keep e in the global store_table for us; we have our own map return false; } int MemStore::callback() { return 0; } StoreSearch * MemStore::search(String const, HttpRequest *) { fatal("not implemented"); return NULL; } StoreEntry * MemStore::get(const cache_key *key) { if (!map) return NULL; sfileno index; const Ipc::StoreMapAnchor *const slot = map->openForReading(key, index); if (!slot) return NULL; // create a brand new store entry and initialize it with stored info StoreEntry *e = new StoreEntry(); // XXX: We do not know the URLs yet, only the key, but we need to parse and // store the response for the Root().get() callers to be happy because they // expect IN_MEMORY entries to already have the response headers and body. e->makeMemObject(); anchorEntry(*e, index, *slot); const bool copied = copyFromShm(*e, index, *slot); if (copied) { e->hashInsert(key); return e; } debugs(20, 3, HERE << "mem-loading failed; freeing " << index); map->freeEntry(index); // do not let others into the same trap return NULL; } void MemStore::get(String const key, STOREGETCLIENT aCallback, void *aCallbackData) { // XXX: not needed but Store parent forces us to implement this fatal("MemStore::get(key,callback,data) should not be called"); } bool MemStore::anchorCollapsed(StoreEntry &collapsed, bool &inSync) { if (!map) return false; sfileno index; const Ipc::StoreMapAnchor *const slot = map->openForReading( reinterpret_cast(collapsed.key), index); if (!slot) return false; anchorEntry(collapsed, index, *slot); inSync = updateCollapsedWith(collapsed, index, *slot); return true; // even if inSync is false } bool MemStore::updateCollapsed(StoreEntry &collapsed) { assert(collapsed.mem_obj); const sfileno index = collapsed.mem_obj->memCache.index; // already disconnected from the cache, no need to update if (index < 0) return true; if (!map) return false; const Ipc::StoreMapAnchor &anchor = map->readableEntry(index); return updateCollapsedWith(collapsed, index, anchor); } /// updates collapsed entry after its anchor has been located bool MemStore::updateCollapsedWith(StoreEntry &collapsed, const sfileno index, const Ipc::StoreMapAnchor &anchor) { collapsed.swap_file_sz = anchor.basics.swap_file_sz; const bool copied = copyFromShm(collapsed, index, anchor); return copied; } /// anchors StoreEntry to an already locked map entry void MemStore::anchorEntry(StoreEntry &e, const sfileno index, const Ipc::StoreMapAnchor &anchor) { const Ipc::StoreMapAnchor::Basics &basics = anchor.basics; e.swap_file_sz = basics.swap_file_sz; e.lastref = basics.lastref; e.timestamp = basics.timestamp; e.expires = basics.expires; e.lastModified(basics.lastmod); e.refcount = basics.refcount; e.flags = basics.flags; assert(e.mem_obj); if (anchor.complete()) { e.store_status = STORE_OK; e.mem_obj->object_sz = e.swap_file_sz; e.setMemStatus(IN_MEMORY); } else { e.store_status = STORE_PENDING; assert(e.mem_obj->object_sz < 0); e.setMemStatus(NOT_IN_MEMORY); } assert(e.swap_status == SWAPOUT_NONE); // set in StoreEntry constructor e.ping_status = PING_NONE; EBIT_CLR(e.flags, RELEASE_REQUEST); e.clearPrivate(); EBIT_SET(e.flags, ENTRY_VALIDATED); MemObject::MemCache &mc = e.mem_obj->memCache; mc.index = index; mc.io = MemObject::ioReading; } /// copies the entire entry from shared to local memory bool MemStore::copyFromShm(StoreEntry &e, const sfileno index, const Ipc::StoreMapAnchor &anchor) { debugs(20, 7, "mem-loading entry " << index << " from " << anchor.start); assert(e.mem_obj); // emulate the usual Store code but w/o inapplicable checks and callbacks: Ipc::StoreMapSliceId sid = anchor.start; // optimize: remember the last sid bool wasEof = anchor.complete() && sid < 0; int64_t sliceOffset = 0; while (sid >= 0) { const Ipc::StoreMapSlice &slice = map->readableSlice(index, sid); // slice state may change during copying; take snapshots now wasEof = anchor.complete() && slice.next < 0; const Ipc::StoreMapSlice::Size wasSize = slice.size; debugs(20, 9, "entry " << index << " slice " << sid << " eof " << wasEof << " wasSize " << wasSize << " <= " << anchor.basics.swap_file_sz << " sliceOffset " << sliceOffset << " mem.endOffset " << e.mem_obj->endOffset()); if (e.mem_obj->endOffset() < sliceOffset + wasSize) { // size of the slice data that we already copied const size_t prefixSize = e.mem_obj->endOffset() - sliceOffset; assert(prefixSize <= wasSize); const MemStoreMapExtras::Item &extra = extras->items[sid]; char *page = static_cast(PagePointer(extra.page)); const StoreIOBuffer sliceBuf(wasSize - prefixSize, e.mem_obj->endOffset(), page + prefixSize); if (!copyFromShmSlice(e, sliceBuf, wasEof)) return false; debugs(20, 9, "entry " << index << " copied slice " << sid << " from " << extra.page << '+' << prefixSize); } // else skip a [possibly incomplete] slice that we copied earlier // careful: the slice may have grown _and_ gotten the next slice ID! if (slice.next >= 0) { assert(!wasEof); // here we know that slice.size may not change any more if (wasSize >= slice.size) { // did not grow since we started copying sliceOffset += wasSize; sid = slice.next; } } else if (wasSize >= slice.size) { // did not grow break; } } if (!wasEof) { debugs(20, 7, "mem-loaded " << e.mem_obj->endOffset() << '/' << anchor.basics.swap_file_sz << " bytes of " << e); return true; } debugs(20, 7, "mem-loaded all " << e.mem_obj->object_sz << '/' << anchor.basics.swap_file_sz << " bytes of " << e); // from StoreEntry::complete() e.mem_obj->object_sz = e.mem_obj->endOffset(); e.store_status = STORE_OK; e.setMemStatus(IN_MEMORY); assert(e.mem_obj->object_sz >= 0); assert(static_cast(e.mem_obj->object_sz) == anchor.basics.swap_file_sz); // would be nice to call validLength() here, but it needs e.key // we read the entire response into the local memory; no more need to lock disconnect(e); return true; } /// imports one shared memory slice into local memory bool MemStore::copyFromShmSlice(StoreEntry &e, const StoreIOBuffer &buf, bool eof) { debugs(20, 7, "buf: " << buf.offset << " + " << buf.length); // from store_client::readBody() // parse headers if needed; they might span multiple slices! HttpReply *rep = (HttpReply *)e.getReply(); if (rep->pstate < psParsed) { // XXX: have to copy because httpMsgParseStep() requires 0-termination MemBuf mb; mb.init(buf.length+1, buf.length+1); mb.append(buf.data, buf.length); mb.terminate(); const int result = rep->httpMsgParseStep(mb.buf, buf.length, eof); if (result > 0) { assert(rep->pstate == psParsed); EBIT_CLR(e.flags, ENTRY_FWD_HDR_WAIT); } else if (result < 0) { debugs(20, DBG_IMPORTANT, "Corrupted mem-cached headers: " << e); return false; } else { // more slices are needed assert(!eof); } } debugs(20, 7, "rep pstate: " << rep->pstate); // local memory stores both headers and body so copy regardless of pstate const int64_t offBefore = e.mem_obj->endOffset(); assert(e.mem_obj->data_hdr.write(buf)); // from MemObject::write() const int64_t offAfter = e.mem_obj->endOffset(); // expect to write the entire buf because StoreEntry::write() never fails assert(offAfter >= 0 && offBefore <= offAfter && static_cast(offAfter - offBefore) == buf.length); return true; } /// whether we should cache the entry bool MemStore::shouldCache(StoreEntry &e) const { if (e.mem_status == IN_MEMORY) { debugs(20, 5, "already loaded from mem-cache: " << e); return false; } if (e.mem_obj && e.mem_obj->memCache.offset > 0) { debugs(20, 5, "already written to mem-cache: " << e); return false; } if (!e.memoryCachable()) { debugs(20, 7, HERE << "Not memory cachable: " << e); return false; // will not cache due to entry state or properties } assert(e.mem_obj); if (!e.mem_obj->vary_headers.isEmpty()) { // XXX: We must store/load SerialisedMetaData to cache Vary in RAM debugs(20, 5, "Vary not yet supported: " << e.mem_obj->vary_headers); return false; } const int64_t expectedSize = e.mem_obj->expectedReplySize(); // may be < 0 // objects of unknown size are not allowed into memory cache, for now if (expectedSize < 0) { debugs(20, 5, "Unknown expected size: " << e); return false; } const int64_t loadedSize = e.mem_obj->endOffset(); const int64_t ramSize = max(loadedSize, expectedSize); if (ramSize > maxObjectSize()) { debugs(20, 5, HERE << "Too big max(" << loadedSize << ", " << expectedSize << "): " << e); return false; // will not cache due to cachable entry size limits } if (!e.mem_obj->isContiguous()) { debugs(20, 5, "not contiguous"); return false; } if (!map) { debugs(20, 5, HERE << "No map to mem-cache " << e); return false; } if (EBIT_TEST(e.flags, ENTRY_SPECIAL)) { debugs(20, 5, "Not mem-caching ENTRY_SPECIAL " << e); return false; } return true; } /// locks map anchor and preps to store the entry in shared memory bool MemStore::startCaching(StoreEntry &e) { sfileno index = 0; Ipc::StoreMapAnchor *slot = map->openForWriting(reinterpret_cast(e.key), index); if (!slot) { debugs(20, 5, HERE << "No room in mem-cache map to index " << e); return false; } assert(e.mem_obj); e.mem_obj->memCache.index = index; e.mem_obj->memCache.io = MemObject::ioWriting; slot->set(e); map->startAppending(index); e.memOutDecision(true); return true; } /// copies all local data to shared memory void MemStore::copyToShm(StoreEntry &e) { // prevents remote readers from getting ENTRY_FWD_HDR_WAIT entries and // not knowing when the wait is over if (EBIT_TEST(e.flags, ENTRY_FWD_HDR_WAIT)) { debugs(20, 5, "postponing copying " << e << " for ENTRY_FWD_HDR_WAIT"); return; } assert(map); assert(e.mem_obj); const int32_t index = e.mem_obj->memCache.index; assert(index >= 0); Ipc::StoreMapAnchor &anchor = map->writeableEntry(index); const int64_t eSize = e.mem_obj->endOffset(); if (e.mem_obj->memCache.offset >= eSize) { debugs(20, 5, "postponing copying " << e << " for lack of news: " << e.mem_obj->memCache.offset << " >= " << eSize); return; // nothing to do (yet) } if (anchor.start < 0) { // must allocate the very first slot for e Ipc::Mem::PageId page; anchor.start = reserveSapForWriting(page); // throws extras->items[anchor.start].page = page; } lastWritingSlice = anchor.start; const size_t sliceCapacity = Ipc::Mem::PageSize(); // fill, skip slices that are already full // Optimize: remember lastWritingSlice in e.mem_obj while (e.mem_obj->memCache.offset < eSize) { Ipc::StoreMap::Slice &slice = map->writeableSlice(e.mem_obj->memCache.index, lastWritingSlice); if (slice.size >= sliceCapacity) { if (slice.next >= 0) { lastWritingSlice = slice.next; continue; } Ipc::Mem::PageId page; slice.next = lastWritingSlice = reserveSapForWriting(page); extras->items[lastWritingSlice].page = page; debugs(20, 7, "entry " << index << " new slice: " << lastWritingSlice); } copyToShmSlice(e, anchor); } debugs(20, 7, "mem-cached available " << eSize << " bytes of " << e); } /// copies at most one slice worth of local memory to shared memory void MemStore::copyToShmSlice(StoreEntry &e, Ipc::StoreMapAnchor &anchor) { Ipc::StoreMap::Slice &slice = map->writeableSlice(e.mem_obj->memCache.index, lastWritingSlice); Ipc::Mem::PageId page = extras->items[lastWritingSlice].page; assert(lastWritingSlice >= 0 && page); debugs(20, 7, "entry " << e << " slice " << lastWritingSlice << " has " << page); const int64_t bufSize = Ipc::Mem::PageSize(); const int64_t sliceOffset = e.mem_obj->memCache.offset % bufSize; StoreIOBuffer sharedSpace(bufSize - sliceOffset, e.mem_obj->memCache.offset, static_cast(PagePointer(page)) + sliceOffset); // check that we kept everything or purge incomplete/sparse cached entry const ssize_t copied = e.mem_obj->data_hdr.copy(sharedSpace); if (copied <= 0) { debugs(20, 2, "Failed to mem-cache " << (bufSize - sliceOffset) << " bytes of " << e << " from " << e.mem_obj->memCache.offset << " in " << page); throw TexcHere("data_hdr.copy failure"); } debugs(20, 7, "mem-cached " << copied << " bytes of " << e << " from " << e.mem_obj->memCache.offset << " in " << page); slice.size += copied; e.mem_obj->memCache.offset += copied; anchor.basics.swap_file_sz = e.mem_obj->memCache.offset; } /// finds a slot and a free page to fill or throws sfileno MemStore::reserveSapForWriting(Ipc::Mem::PageId &page) { Ipc::Mem::PageId slot; if (freeSlots->pop(slot)) { debugs(20, 5, "got a previously free slot: " << slot); if (Ipc::Mem::GetPage(Ipc::Mem::PageId::cachePage, page)) { debugs(20, 5, "and got a previously free page: " << page); return slot.number - 1; } else { debugs(20, 3, "but there is no free page, returning " << slot); freeSlots->push(slot); } } // catch free slots delivered to noteFreeMapSlice() assert(!waitingFor); waitingFor.slot = &slot; waitingFor.page = &page; if (map->purgeOne()) { assert(!waitingFor); // noteFreeMapSlice() should have cleared it assert(slot.set()); assert(page.set()); debugs(20, 5, "got previously busy " << slot << " and " << page); return slot.number - 1; } assert(waitingFor.slot == &slot && waitingFor.page == &page); waitingFor.slot = NULL; waitingFor.page = NULL; debugs(47, 3, "cannot get a slice; entries: " << map->entryCount()); throw TexcHere("ran out of mem-cache slots"); } void MemStore::noteFreeMapSlice(const Ipc::StoreMapSliceId sliceId) { Ipc::Mem::PageId &pageId = extras->items[sliceId].page; debugs(20, 9, "slice " << sliceId << " freed " << pageId); assert(pageId); Ipc::Mem::PageId slotId; slotId.pool = SpacePoolId; slotId.number = sliceId + 1; if (!waitingFor) { // must zero pageId before we give slice (and pageId extras!) to others Ipc::Mem::PutPage(pageId); freeSlots->push(slotId); } else { *waitingFor.slot = slotId; *waitingFor.page = pageId; waitingFor.slot = NULL; waitingFor.page = NULL; pageId = Ipc::Mem::PageId(); } } void MemStore::write(StoreEntry &e) { assert(e.mem_obj); debugs(20, 7, "entry " << e); switch (e.mem_obj->memCache.io) { case MemObject::ioUndecided: if (!shouldCache(e) || !startCaching(e)) { e.mem_obj->memCache.io = MemObject::ioDone; e.memOutDecision(false); return; } break; case MemObject::ioDone: case MemObject::ioReading: return; // we should not write in all of the above cases case MemObject::ioWriting: break; // already decided to write and still writing } try { copyToShm(e); if (e.store_status == STORE_OK) // done receiving new content completeWriting(e); else CollapsedForwarding::Broadcast(e); return; } catch (const std::exception &x) { // TODO: should we catch ... as well? debugs(20, 2, "mem-caching error writing entry " << e << ": " << x.what()); // fall through to the error handling code } disconnect(e); } void MemStore::completeWriting(StoreEntry &e) { assert(e.mem_obj); const int32_t index = e.mem_obj->memCache.index; assert(index >= 0); assert(map); debugs(20, 5, "mem-cached all " << e.mem_obj->memCache.offset << " bytes of " << e); e.mem_obj->memCache.index = -1; e.mem_obj->memCache.io = MemObject::ioDone; map->closeForWriting(index, false); CollapsedForwarding::Broadcast(e); // before we close our transient entry! Store::Root().transientsCompleteWriting(e); } void MemStore::markForUnlink(StoreEntry &e) { assert(e.mem_obj); if (e.mem_obj->memCache.index >= 0) map->freeEntry(e.mem_obj->memCache.index); } void MemStore::unlink(StoreEntry &e) { if (e.mem_obj && e.mem_obj->memCache.index >= 0) { map->freeEntry(e.mem_obj->memCache.index); disconnect(e); } else if (map) { // the entry may have been loaded and then disconnected from the cache map->freeEntryByKey(reinterpret_cast(e.key)); } e.destroyMemObject(); // XXX: but it may contain useful info such as a client list. The old code used to do that though, right? } void MemStore::disconnect(StoreEntry &e) { assert(e.mem_obj); MemObject &mem_obj = *e.mem_obj; if (mem_obj.memCache.index >= 0) { if (mem_obj.memCache.io == MemObject::ioWriting) { map->abortWriting(mem_obj.memCache.index); mem_obj.memCache.index = -1; mem_obj.memCache.io = MemObject::ioDone; Store::Root().transientsAbandon(e); // broadcasts after the change } else { assert(mem_obj.memCache.io == MemObject::ioReading); map->closeForReading(mem_obj.memCache.index); mem_obj.memCache.index = -1; mem_obj.memCache.io = MemObject::ioDone; } } } /// calculates maximum number of entries we need to store and map int64_t MemStore::EntryLimit() { if (!Config.memShared || !Config.memMaxSize) return 0; // no memory cache configured const int64_t minEntrySize = Ipc::Mem::PageSize(); const int64_t entryLimit = Config.memMaxSize / minEntrySize; return entryLimit; } /// reports our needs for shared memory pages to Ipc::Mem::Pages; /// decides whether to use a shared memory cache or checks its configuration; /// and initializes shared memory segments used by MemStore class MemStoreRr: public Ipc::Mem::RegisteredRunner { public: /* RegisteredRunner API */ MemStoreRr(): spaceOwner(NULL), mapOwner(NULL), extrasOwner(NULL) {} virtual void finalizeConfig(); virtual void claimMemoryNeeds(); virtual void useConfig(); virtual ~MemStoreRr(); protected: /* Ipc::Mem::RegisteredRunner API */ virtual void create(); private: Ipc::Mem::Owner *spaceOwner; ///< free slices Owner MemStoreMap::Owner *mapOwner; ///< primary map Owner Ipc::Mem::Owner *extrasOwner; ///< PageIds Owner }; RunnerRegistrationEntry(MemStoreRr); void MemStoreRr::claimMemoryNeeds() { Ipc::Mem::NotePageNeed(Ipc::Mem::PageId::cachePage, MemStore::EntryLimit()); } void MemStoreRr::finalizeConfig() { // decide whether to use a shared memory cache if the user did not specify if (!Config.memShared.configured()) { Config.memShared.configure(Ipc::Atomic::Enabled() && Ipc::Mem::Segment::Enabled() && UsingSmp() && Config.memMaxSize > 0); } else if (Config.memShared && !Ipc::Atomic::Enabled()) { // bail if the user wants shared memory cache but we cannot support it fatal("memory_cache_shared is on, but no support for atomic operations detected"); } else if (Config.memShared && !Ipc::Mem::Segment::Enabled()) { fatal("memory_cache_shared is on, but no support for shared memory detected"); } else if (Config.memShared && !UsingSmp()) { debugs(20, DBG_IMPORTANT, "WARNING: memory_cache_shared is on, but only" " a single worker is running"); } } void MemStoreRr::useConfig() { assert(Config.memShared.configured()); Ipc::Mem::RegisteredRunner::useConfig(); } void MemStoreRr::create() { if (!Config.memShared) return; const int64_t entryLimit = MemStore::EntryLimit(); if (entryLimit <= 0) { if (Config.memMaxSize > 0) { debugs(20, DBG_IMPORTANT, "WARNING: mem-cache size is too small (" << (Config.memMaxSize / 1024.0) << " KB), should be >= " << (Ipc::Mem::PageSize() / 1024.0) << " KB"); } return; // no memory cache configured or a misconfiguration } Must(!spaceOwner); spaceOwner = shm_new(Ipc::Mem::PageStack)(SpaceLabel, SpacePoolId, entryLimit, 0); Must(!mapOwner); mapOwner = MemStoreMap::Init(MapLabel, entryLimit); Must(!extrasOwner); extrasOwner = shm_new(MemStoreMapExtras)(ExtrasLabel, entryLimit); } MemStoreRr::~MemStoreRr() { delete extrasOwner; delete mapOwner; delete spaceOwner; }