.*server

A Functional Approach
to Web Publishing

Martin Elsman

Niels Hallenberg

SMLserver

A Functional Approach
to Web Publishing

Martin Elsman (mael@dina.kvl.dk)
Royal Veterinary and Agricultural University of Denmark
IT University of Copenhagen

Niels Hallenberg (nh@it.edu)
IT University of Copenhagen

February 2, 2002

Copyright (©) 2002 by Martin Elsman and Niels Hallenberg

Contents

Preface

‘1 Introduction

1.1

Web Scripting

2 Getting Started

2.1

Requirements‘

2.9
2.3

Installing RPMs
Starting AOLserver o v v

2.4

Compiling the Sample Web Project‘

Interfacing to an RDBMS‘

2.5
2.6 Interfacing to Postgresql
2.7 Automating Startup of the Web Server
2.8

So You Want to Write Your Own Project

2.9

Rebuilding The RPMs

‘3 Presenting Pages to Users

3.1

The HyperText Transfer Protocol

3.2

Timeofday

3.3

A Multiplication Table

3.4 How SMLserver Serves Pages
‘3.5 Project Files
3.6 Compilation
3.7 Loading and Serving Pages
3.8 Logging Messages, Warnings, and Errors
3.9 Uncaught Exceptions and Aborting Execution

il

vil

v

3.10 Accessing Setup Information

Obtaining Data from Users

4.1 Temperature Conversion
4.2 Quotations for HTML Embedding
4.3 A Dynamic Recipe

Emulating State Using Hidden Form Variables

Extracting Data from Foreign Web Sites

Connecting to an RDBMS

7.1 What to Expect from an RDBMS
7.2 The ACID Test
7.3 Data Modeling
7.4 Data ManiDulation‘
7.5 Three Steps to Success
7.6 Transactions as Web Scripts
‘7.7 Best Wines Web Site

8

Checking Form Variables

AuthenticationJ

9.1 Feeding Cookies to Clients
9.2 Obtaining Cookies from Clients
9.3 Cookie Example
9.4 Storing User Information

5.1 Counting Up and Down‘
5.2 Guess a Number

6.1 Grabbinga Page
6.2 Regular Expressions
6.3 The Structure RegExp
6.4 Currency Service—Continued
6.5 Caching Support
6.6 The Cache Interface

6.7 Caching Version of Currency Service

8.1 The Structure FormVar
8.2 Presenting Multiple Form Errors.
8.3 Implementation

CONTENTS

CONTENTS

9.5

The Authentication Mechanism‘

9.6

Caching Passwords for Efficiency

9.7

Applying the Authentication Mechanisni

10 Summary

A A Sample Web Server Configuration File

B SMLserver and MySQL

B.1

Auto Incrementation

B2

Sequence Simulation

C Securing Your Site with SSL

D HTML Reference

D.1

Elements Supported Inside Body Element
D.1.1 Text Elements

D.1.2 Uniform Resource Locators . . .
D.1.3 Anchors and Hyperlinks

D.14 Headers

D.1.5 Logical Styles

D.1.6 Physical Styles

D.1.7 Definition Lists
D.1.8 Unordered Lists

D.1.9 Ordered Lists

D.1.10 Characters

D.2

HTML Forms

D.2.1 Imput Fields

D.2.2 Select Elements

D.2.3 Select Element Options‘
D.24 Text Areas.

D.3

Miscellaneous

E The

Ns Structure ‘

BE.1

The NS_SET Signature

E.2
BE.3

The NS_INFO Signature
The NS_CACHE Signature

B4

The NS_CONN Signature

E.5

The NS_MAIL Signature

101
104
105

111

115

119
120
121

123

vi

CONTENTS

E.6 The NS_COOKIE Signature 145
E.7 The NS_DB_HANDLE Signature 147
E.8 The NS_DB Signature 151
E.9 The NS Signature 156

Preface

The ideas behind the SMLserver project came alive in 1999 when the first
author was attending a talk by Philip Greenspun, the author of the book
“Philip and Alex’s Guide to Web Publishing” [Gre99]. Philip and his friends
had been writing an astonishing 250,000 lines of dynamically typed TCL code
to implement a community system that they planned to maintain, extend,
and even customize for different Web sites. Although Philip and his friends
were very successful with their community system, the dynamic typing of
TCL makes such a large system difficult to maintain and extend, not to
mention customize.

The SMLserver project was initialized in the end of 2000 by the construc-
tion of an embeddable runtime system and a bytecode backend for the ML
Kit [TBET01], an Open Source Standard ML compiler. Once the bytecode
backend and the embeddable runtime system, also called the Kit Abstract
Machine (KAM), was in place, the KAM was embedded in an AOLserver
moduld! in such a way that requests for files ending in .sml and .msp (also
called scripts) cause the corresponding compiled bytecode files to be loaded
and executed. In April 2001, the basic system was running, but more work
was necessary to support caching of loaded code, multi-threaded execution,
and many of the other interesting AOLserver features, such as database in-
teroperability. Although the cost of using Standard ML for Web applications
is a more tedious development cycle due to the compilation phase of Stan-
dard ML, its static type system causes many bugs to be found before a Web
site is launched.

In the following, we assume that the reader is familiar with the program-
ming language Standard ML and with functional programming in general.
There are several good introductory Standard ML text books available, in-
cluding [Pau96, HR99]. The present book is not meant to be a complete

LAOLserver is a multi-threaded Web server provided by America Online (AOL).

vii

viii CONTENTS

user’s manual for SMLserver. Instead, the book is meant to give a broad
overview of the possibilities of using SMLserver for Web development. The
choice of content and the examples presented in the book are inspired from
more than two years of experience with developing and teaching the course
“Web Publishing with Databases” at the I'T University of Copenhagen.

We would like to thank Lars Birkedal, Ken Friis Larsen, and Peter Ses-
toft for their many helpful comments on the project. Peter developed the
concept of ML Server Pages and we are happy that much of the code that
Peter wrote for his Moscow ML implementation of ML Server Pages is reused
in the SMLserver project (in particular, the Msp structure is written entirely
by Peter). We would also like to thank Mads Tofte for his continued encour-
agement on working on this project. Mads is a brilliant programmer and has
developed several Web sites with SMLserver, including an alumni system for
the I'T University of Copenhagen.

SMLserver is Open Source and distributed under the GNU General Public
License (GPL). More information about the SMLserver project can be found
at the SMLserver Web site:

http://www.smlserver.org

Martin Elsman
Niels Hallenberg

Copenhagen, Denmark
February, 2002

http://www.smlserver.org

Chapter 1

Introduction

SMLserver is a module for AOLserver, an Open Source multi-threaded Web
server provided by America Online (AOL). SMLserver comes with a com-
piler for compiling Web applications written in Standard ML [MTHM97]
into bytecode to be interpreted by the SMLserver module. AOLserver has
an extensive Application Programmer Interface (API), including interfaces to
most Relational Database Management Systems (RDBMSs) on the market.
Although AOLserver scales to work well for very large sites such as the AOL
Web site, dynamic Web sites based on AOLserver must be constructed using
either a C programming interface or a TCL programming interface. Whereas
C provides for very fast execution of compiled code, the TCL programming
interface provides programmers with a quick development cycle through the
embedded interpreter for the TCL language.

SMLserver, then, extends AOLserver by providing the possibility of pro-
gramming dynamic Web pages in Standard ML using its rich language fea-
tures including datatypes, pattern matching, higher-order functions, para-
metric polymorphism, and a Modules language. SMLserver provides a Stan-
dard ML interface to the AOLserver API, thereby giving the Standard ML
programmer access to all the great features of AOLserver, including the fol-
lowing:

e Different RDBMSs, including Oracle, Postgresql, and MySQL, may be
accessed through a generic database interface.

e SMLserver provides easy access to HT'TP header information, including
form content and cookie information.

2 CHAPTER 1. INTRODUCTION

e Efficient caching support makes it possible to decrease the load caused
by frequently run database queries, such as the querying of passwords
for user authentication.

e SMLserver has a simple interface for Web applications to send emails.

e Secure Socket Layer support (SSL) allows for encrypted communication
between the Web server and its clients.

1.1 Web Scripting

The Common Gateway Interface (CGI) is a standard for interfacing external
applications with a Web server that communicates with clients using the
HyperText Transfer Protocol (HTTP). The situation is pictured as follows:

Thelnternet

External cal /
Web Server '

Application

The external application, which is also called a CGI program, may be written
in any language that allows the program to be executed on the system. It
is even possible to write Standard ML CGlI-scripts with your favorite Stan-
dard ML compiler using the Mosmlcgi library provided with the Moscow ML
distribution.

Unfortunately, the traditional CGI approach has a serious drawback: It
is slow. Every time a client requests a page from the Web server, the server
must fork a new process and load the external application into memory before
the application is executed. Moreover, after execution, the operating system
must reclaim resources used by the process. One way of increasing availability
and to speed up response times is to embed an interpreter within a Web server
as follows:

1.2. WHY STANDARD ML 3

Thelnternet

Web Server
HTTP Web
m% Script Interpreter / Browser

Cache

Notice that in this setting, scripts are cached in the Web server, which further
increases the efficiency of script execution. This is the approach taken by
SMLserver.

1.2 Why Standard ML

Standard ML (SML) is a high-level statically typed functional programming
language.

It is a high-level programming language in the sense that it uses auto-
matic memory management. In contrast to a low-level programming lan-
guage, such as C, the programmer need not be concerned with the allocation
and deallocation of memory. Standard ML supports many other high-level
programming language features as well, including pattern-matching and ex-
ceptions. It even has an advanced Modules language, which enhances the
possibilities of program composition.

In contrast to Web systems built with dynamically typed languages such
as TCL, Perl, PHP, or so, systems built with statically typed languages are
often more reliable and more robust. When a change is made to some part
of the program, a static type system enforces (at compile time, that is) the
change to integrate well with the entire program; in a dynamically typed
setting, no errors are caught this early in the development cycle.

Standard ML is a functional language in that it supports higher-order
functions, that is, functions may take functions as arguments and return
functions as a result. Although it is a functional language, Standard ML
also has support for imperative features such as mutable data structures like
arrays and references.

1.3 Outline

Chapter 2 provides instructions for getting started with SMLserver. Chap-
ter [3 presents two simple examples, which illustrate the basic mechanism

4 CHAPTER 1. INTRODUCTION

for writing dynamic Web pages with SMLserver. Chapter 4 describes how
SMLserver Web scripts may use data obtained from users. Chapter 5/ de-
scribes how state in Web scripts may be emulated using so-called hidden
form variables. The concept of regular expressions and the idea of fetching
data from foreign Web sites are covered in Chapter 6. The general interface
for connecting to a Relational Database Management System (RDBMS) is
described in Chapter 7. A mechanism for checking that form variables con-
tain values of the right type is presented in Chapter 8. Finally, Chapter 9
presents a user authentication mechanism based on information stored in a
database and cookie information provided by the client browser. A summary
is given in Chapter 10.

All concepts are illustrated using a series of examples, which are all in-
cluded in the SMLserver distribution.

Chapter 2

Getting Started

This chapter describes how to install and setup SMLserver on an Intel Redhat
Linux box using the Redhat Package Manager (RPM). To install SMLserver
on a Linux box that do not support RPMs, see the file README_SMLSERVER
in the source distribution, which is available from the SMLserver home page
(http://www.smlserver.org).

2.1 Requirements

If your Redhat Linux box does not accept the RPMs, it may be necessary to
rebuild the RPMs as described in Section 2.9. Moreover, if your version of
Redhat Linux is 6.2 or earlier, you need to install RPM version 4.0.2 or later;
see http://www.redhat.com/support/errata/RHSA-2001-016.html. Re-
building the SMLserver RPM or compiling SMLserver from the source dis-
tribution requires GCC version 2.96 (or later).

2.2 Installing RPMs

To install the necessary RPMs, run the following two commands on your
Redhat Linux box:

rpm -Uvh \
http://www.smlserver.org/dist/aolserver-3.4-1.1i386.rpm
rpm -Uvh \

http://www.smlserver.org/dist/smlserver-4.1.0-1.1i386.rpm

5

http://www.smlserver.org
http://www.redhat.com/support/errata/RHSA-2001-016.html

6 CHAPTER 2. GETTING STARTED

The two commands cause AOLserver and SMLserver to be installed in the di-
rectories /usr/share/aolserver and /usr/share/smlserver, respectively.

2.3 Starting AOLserver

Before you start the AOLserver Web server, a few customizations are neces-
sary:
1. Copy the directory /usr/share/smlserver/smlserver_demo to some-
where in your home directory:

cp -a /usr/share/smlserver/smlserver_demo ~/web/

2. Copy the AOLserver configuration file ~/web/nsd.demo.tcl to a file
~/web/nsd.user.tcl, where user is your user name. Modify the first

two or three lines of the file “/web/nsd.user.tcl to suit your needs
(see Appendix/A).

Your directory structure should now look as follows:

/home/user/web/
nsd.demo.tcl
nsd.user.tcl
www/

demo/
demo . pm

demo_lib/
1ib/
log/

AOLserver can now be started by executing the command—again substi-
tute user with your user name:

/usr/share/aolserver/bin/nsd -t ~/web/nsd.user.tcl -u user
By executing the command
ps --cols=200 guax | grep nsd

you should see that AOLserver is running five or six processes. AOLserver
writes information into the file “/web/log/server.log. By looking at the
log, you should see a notice that AOLserver has loaded the module nssml. so.

2.4. COMPILING THE SAMPLE WEB PROJECT 7

2.4 Compiling the Sample Web Project

Before you can request sml-files and msp-files from port 8080 on your Linux
box (the settings can be altered by editing the file ~/web/nsd.user.tcl),
you need to compile a project file, which mentions the files and libraries that
SMLserver should know about. To compile the sample project demo.pm,
enter the following commands on your system:

cd “/web/www
1n -s demo.pm sources.pm
smlserverc sources.pm

Now, try to request the script http://localhost:8080/demo/index.sml
from a Web browser.

2.5 Interfacing to an RDBMS

To get access to an RDBMS from within your SMLserver scripts, an RDBMS
supported by AOLserver must be be installed on your system. One supported
RDBMS is Postgresql (http://www.postgresql.org); RPMs for Redhat
Linux are available from the Postgresql Web site. Other options include
Oracle 8i, for which a driver for AOLserver is made available by ArsDigita
(http://www.arsdigita.com), and MySQL (http://www.mysql.com), for
which a driver is made available by the consulting company Panoptic Com-
puter Network (http://www.panoptic.com/nsmysql/).

Information on how to interface to Oracle 81 and MySQL is available from
the SMLserver home page. The next section describes how to interface to
the Open Source RDBMS Postgresql.

2.6 Interfacing to Postgresql

This section describes how to set up a database with Postgresql for the
purpose of using it with SMLserver. We assume that Postgresql is already
installed on the system. We also assume that the sample Web project is
compiled as described in Section 2.4.

1. Install the Postgresql driver for AOLserver by executing the following
command on your Linux box:

http://localhost:8080/demo/index.sml
http://www.postgresql.org
http://www.arsdigita.com
http://www.mysql.com
http://www.panoptic.com/nsmysql/

CHAPTER 2. GETTING STARTED

rpm -Uvh \
http://www.smlserver.org/dist/pgdriver-2.0-1.1386.rpm

If the RPM does not install on your system, see Section 2.9 for how to
rebuild the package.

. Start the Postgresql daemon process by executing (as root) the follow-
ing command:

$ /etc/rc.d/init.d/postgresql start

. Create a database user with the same name as your user name on the
Linux box:

$ su - postgres
createuser -P user

Invent a new password for the database user. Answer yes to both ques-
tions asked by createuser. Insert the password for the new database
user in the AOLserver configuration file “/web/nsd.user.tcl (instead
of XXXX).

. As user, create a database (also called user) as follows:

createdb user
You can now use the command psql to control your database and
submit SQL queries and commands to your database. Install the data

models for the demonstration programs by executing the commands

cd “/web/demo_lib/pgsql
psql -c¢ "\i all.sql"

. Restart AOLserver by first killing it using the command
killall nsd

and then starting AOLserver again as shown above.

2.7. AUTOMATING STARTUP OF THE WEB SERVER 9

6. Edit the file "/web/1ib/Db.sml. Make sure that the structure Db is
bound to the structure Ns.DbPg. The lines defining the Oracle structure
and the MySQL structure should be commented out:

(* For The PgSQL User *)
structure Db : NS_DB = Ns.DbPg
val _ = Db.Handle.initPools ["pg_main","pg_sub"]

7. Go start your Web browser and visit the database examples available
from http://localhost:8080/demo/index.sml.

2.7 Automating Startup of the Web Server

There are basically two reasons why you would want the operating system
to control the startup of your Web server:

1. When your machine is rebooted, you may want the Web server to
restart once the machine has come back up.

2. If your Web server terminates due to some internal error in the server,
you may want the operating system to restart the Web server.

These features are obtained by adding the following line (replace user with
your actual user name) to the file /etc/inittab on your Linux box—you

must be root to do this:

al:5:respawn:/usr/share/aolserver/bin/nsd -i \
-t “user/web/nsd.user.tcl -u user -g user

Then, as root, to have Linux reread the file /etc/inittab, execute the com-
mand

$ /sbin/telinit q
Now, if you want to restart your Web server, simply execute—also as root

$ killall nsd

http://localhost:8080/demo/index.sml

10 CHAPTER 2. GETTING STARTED

2.8 So You Want to Write Your Own Project

To write your own project, create a new file yourproject.pm and make this
project the current project:

cd “/web
rm -f sources.pm
1ln -s yourproject.pm sources.pm

You can have only one project associated with each Web server that you run.
Use the compiler smlserverc (located in the directory /usr/bin) to compile
your project into bytecode. Once your project is compiled, the Web server
answers requests of the files listed in the [...] part of your project file (see
Section 3.5).

Library code to be shared between scripts may be stored anywhere on
the system and mentioned in the local part in the project file—look in the
sample project file demo.pm for examples.

2.9 Rebuilding The RPMs

To rebuild the RPMs for a Redhat Linux box, as root, execute the commands:

$ rpm --rebuild \
http://www.smlserver.org/dist/aolserver-3.4-1.src.rpm

$ rpm --rebuild \
http://www.smlserver.org/dist/smlserver-4.1.0-1.src.rpm

After doing so, the newly created packages can be installed by—also as root—
executing the commands:

$ rpm -Uvh \
/usr/src/redhat/RPMS/i386/aolserver-3.4-1.1386.rpm
$ rpm -Uvh \

/usr/src/redhat/RPMS/1386/smlserver-4.1.0-1.1386.rpm

Similarly, to rebuild the RPM for the Postgresql driver, as root, execute the
command:

$ rpm --rebuild \
http://www.smlserver.org/dist/pgdriver-2.0.src.rpm

2.9. REBUILDING THE RPMS 11

When rebuilt, the driver is installed by executing the command:

$ rpm -Uvh /usr/src/redhat/RPMS/i386/pgdriver-2.0-1.1386.rpm

12

CHAPTER 2. GETTING STARTED

Chapter 3

Presenting Pages to Users

In this chapter we show two examples of dynamic Web pages (also called
Web scripts) written with SMLserver. The first example, which shows the
time of day, takes the form of a regular Standard ML program. It uses the
function Ns.Conn.return to return the appropriate HIML code to the user
requesting the page.

The second example, which shows a simple multiplication table, uses the
possibility of writing ML Server Pages (MSP) with SMLserver.

3.1 The HyperText Transfer Protocol

Before we dive into the details of particular dynamic Web pages, we briefly
describe the protocol that is the basis for the World Wide Web, namely the
HyperText Transfer Protocol (HTTP). It is this protocol, which dictates how
Web browsers (such as Microsoft’s Internet Explorer or Netscape Navigator)
make requests to Web servers and how a Web server communicates a response
back to the particular browser.

HTTP is a text-based protocol. When a Uniform Resource Locator
(URL), such as http://www.amazon.com, is entered into a Web browser’s
location field, the browser converts the user’s request into a HT'TP GET re-
quest. Web browsers usually request Web pages with method GET. When a
user follows a link from a Web page or when a user submits a form with no
method specified, the request is a GET request. Another often used request
method is POST, which supports an unlimited number of form variables with
form data of non-restricted size. Other possible methods include DELETE

13

http://www.amazon.com

14 CHAPTER 3. PRESENTING PAGES TO USERS

and PUT. When writing SMLserver applications, however, you need not know
about methods other than GET and POST.

As an example of HT'TP in action, consider the case where a user enters
the URL http://www.google.com/search?q=SMLserver into the location
field of a Web browser. The URL specifies a form variable q (read: query)
with associated form data SMLserver. As a result, the Web browser sends
the following GET request to port 80 on the machine www.google. com:

GET /search?g=SMLserver HTTP/1.1

The machine www.google . com may answer the request by sending the follow-
ing HT'TP response back to the client—the HTML content between <html>
and </html> is left out:

HTTP/1.1 200 OK

Date: Mon, 23 Jul 2001 11:43:32 GMT

Server: GWS/1.11

Set-Cookie: PREF=ID=49cdd72654784880:TM=995888612:LM=995888612;
domain=.google.com;
path=/;
expires=Sun, 17-Jan-2038 19:14:07 GMT

Content-Type: text/html

Transfer-Encoding: chunked

54d
<html>

</html>
The HTTP response is divided into a status line followed by a series of
response header lines and some content. Each response header takes the
form key: value, where key is a response header key and value is the associated
response header value. The status line specifies that the HTTP protocol in
use is version 1.1 and that the status code for the request is 200, which says
that some content follows after the response headers. Figure 3.1 lists the

most commonly used status codes and Figure 3.2 lists some commonly used
response headers.ﬂ

'HTTP 1.1 supported status codes and response headers are listed in RFC 2616. See
http://www.ietf.org.

http://www.ietf.org

3.1. THE HYPERTEXT TRANSFER PROTOCOL 15

Status Code Description

200 (OK) Indicates that everything is fine. The docu-
ment follows the response headers.

301 (Moved Permanently) The requested document has moved and the
URL for the new location is in the Location
response header. Because the document is
moved permanently, the browser may update
bookmarks accordingly.

302 (Found) The requested document has moved tem-
porarily. This status code is very useful be-
cause it makes a client request the URL in
the Location header automatically.

400 (Bad Request) Bad syntax in the client request.

401 (Unauthorized) The client tries to access a password pro-
tected page without specifying proper infor-
mation in the Authorization header.

404 (Not Found) The “no such page” response.

500 (Internal Server Error) The “server is buggy” response.

(

405 (Method Not Allowed) Request method is not allowed.
(
(

503 (Service Unavailable) Server is being maintained or is overloaded.

Figure 3.1: The most commonly used HTTP status codes

16 CHAPTER 3. PRESENTING PAGES TO USERS
Header Description
Allow Specifies the request methods (GET, POST, etc.)

that a server allows. Required for responses with
status code 405 (Method Not Allowed).

Cache-Control

Tells client what caching strategy may be used.
Usable values include:

public: document may be cached
private: document may be cached by user
no-cache: document should not be cached

no-store: document should not be cached and
not stored on disk

Content-Encoding

May be used for compressing documents (e.g., with
gzip).

Content-Language

Specifies the document language such as en-us
and da. See RFC 1766 for details.

Content-Length

Specifies the number of bytes in the document. A
persistent HTTP connection is used only if this
header is present.

Content-Type

Specifies the MIME (Multipurpose Internet Mail
Extension) type for the document. Examples in-
clude text/html and image/png.

Date

Specifies the current date (Greenwich Mean Time).

Expires

Specifies when content should be considered out-
of-date.

Last-Modified

Indicates the last change of the document.

Location All responses with a status code in the range 300—
399 should contain this header.

Refresh Indicates an interval (in seconds) at end of which
the browser should automatically request the page
again.

Set-Cookie Specifies a cookie associated with the page. Mul-

tiple Set-Cookie headers may appear.

Figure 3.2: Some commonly used response headers

3.2. TIME OF DAY 17

We have more to say about HTTP requests in Chapter 4 where we show
how information typed into HTML forms turns into form data submitted
with the HT'TP request.

3.2 Time of day

We shall now see how to create a small Web service for presenting the time-
of-day to a user. The example uses the Time.now function from the Standard
ML Basis Library to obtain the present time of day. HI'ML code to send to
the users browser is constructed using Standard ML string primitives. If you
are new to HTML, a short reference is provided in Appendix D on page127.

val time_of_day =
Date.fmt "%H.%M.%S" (Date.fromTimelLocal (Time.now()))

val _ = Ns.Conn.return
("<html> \
\ <head><title>Time of day</title></head> \
\ <body bgcolor=white> \
\ <h2>Time of day</h2> \
\ The time of day is " ~ time_of_day ~ ". \
\ <hr> <i>Served by \
\ SMLserver \
\ </i> \
\ </body> \
\</html>")

Figure 3.3/ shows the result of a user requesting the file time_of_day.sml
from the Web server.

The example uses the Ns structure, which gives access to the Web server
API; to get an overview of what functions are available in the Ns structure,
consult Appendix |[E, which lists the Standard ML signature for the struc-
ture. The function Ns.Conn.return takes a string as argument and sends an
HTTP response with status code 200 (Found) and content-type text/html
to the browser along with HTML code passed in the argument string.

In Section 4.2 on page [30 we show how support for quotations may be
used to embed HTML code in Standard ML Web applications somewhat
more elegantly than using Standard ML string literals.

18 CHAPTER 3. PRESENTING PAGES TO USERS

B atlda =) (8] |x]
Fike Edit View Go Communicator Help

i‘ wf * Bookmarks A Location: fattp: //daffy. it-c. dk:8080/demo /tine_of_day. sml /j &1 what's Related

Time of day

The time of day is 03.24.40.

Served by SALsenear

& [900% [Document Dane. 4w oo @ 2

-

Figure 3.3: The result of requesting the file time_of_day.sml us-
ing the Netscape browser. The HTTP request causes the compiled
time_of_day.sml program to be executed on the Web server and the re-
sponse is sent (via the HTTP protocol) to the Web browser.

In the next section we explore SMLserver’s support for ML Server Pages
(MSP).

3.3 A Multiplication Table

SMLserver supports the execution of dynamic Web pages written using ML
Server Pages (MSP). In this section we show how a dynamic Web page for
displaying a multiplication table is written as an ML Server Page. ML Server
Pages are stored in files with extension .msp and are listed in project files
along with .sml-files (Section 3.5 on page 21/has more to say about projects.)

I%ere is how the ML Server Page for displaying a multiplication table looks
like:?

<?MSP
local open Msp infix &&

fun iter f n = if n = 0 then $""
else iter f (n-1) && f n
fun col r ¢ =
$"<td width=5% align=center>"

3File smlserver_demo/www/demo/mul .msp.

3.4. HOW SMLSERVER SERVES PAGES 19

&& $(Int.toString (r * c))
&& $"</td>"
fun row sz r = $"<tr>" && iter (col r) sz && $"</tr>"
in
fun tab sz = iter (row sz) sz
end
7>

<html>
<body bgcolor=white>
<h2>Multiplication Table</h2>
<table border=1> <?MSP$ tab 10 7> </table>
<hr><i>Served by SMLserver</i>

</body>

</html>

Figure 3.4 shows the result of a user requesting the file mul.msp from the Web
server. An .msp-file contains HTML code with the possibility of embedding
Standard ML code into the file, using tags <?MSP ... ?>and <?MSP$... 7>.
The former type of tag makes it possible to embed Standard ML declarations
into the HTML code whereas the latter type of tag makes it possible to em-
bed Standard ML expressions into the HTML code. The Msp structure,
which the .msp-file makes use of, provides functionality for constructing and
concatenating HTML code efficiently, by means of constructors $ and &&,
respectively. The functions col, row, and tab construct the HTML multipli-
cation table. The functions use the function iter, which constructs HTML
code by concatenating the results of repeatedly applying the anonymous func-
tion given as the first argument; the second argument controls the number
of times the anonymous function is called.

3.4 How SMlLserver Serves Pages

Before we proceed with more examples of SMLserver Web applications, we
describe how SMLserver Web applications are compiled and loaded and, fi-
nally, how SMLserver scripts (i.e., .sml-files and .msp-files) are executed
when requested by a client.

20 CHAPTER 3. PRESENTING PAGES TO USERS

Teteape

" Bookmarks b Location: http. //daffy it-c. di-B080/demo/mul msp
Multiplication Table

BEAEREREALRER L
6 s oz 1ale
TR TETR
2iwe 20iza i 32
505120 (25 150 155 (40
B 12 18 .24 3036 42 48

28 (35 (42 (49 %6 |
% e

54 7z

60 70 (80 |

Figure 3.4: The result of requesting the file mul.msp using the Netscape
browser. The HTTP request causes the compiled mul.msp program to be
executed on the Web server and the response is sent (via the HT'TP protocol)
to the Web browser.

3.5. PROJECT FILES 21

AOLserver supports dynamic loading of modules when the server is started.
Modules that may be loaded in this way include drivers for a variety of
database vendors, a module that enables support for CGI scripts, and a
module that enables encryption support, using Secure Socket Layer (SSL).
Which modules are loaded when AOLserver starts is configured in a config-
uration file; a sample AOLserver configuration file is listed in Appendix A.

SMLserver is implemented as a module nssml.so, which is loaded into
AOLserver—along with other modules—when AOLserver starts. When the
nssml.so module is loaded into AOLserver, future requests for files with
extension .sml and .msp are served by interpreting the bytecode file that is
the result of compiling the requested .sml-file or .msp-file. Compilation of
.sml-files and .msp-files into bytecode files is done by explicitly invoking the
SMLserver compiler smlserverc.

3.5 Project Files

The SMLserver compiler smlserverc takes as argument a project file, which
lists the .sml-files and .msp-files that a client may request along with Stan-
dard ML library code to be used by the client-accessible .sml-files and .msp-
files. By invoking smlserverc without arguments, a simple text-based menu-
system appears, which supports efficient recompilation of a project upon
modification of .sml-files and .msp-files.

Be aware that the project file name must correspond to the string asso-
ciated with the entry prjid in the AOLserver configuration file, which by
default is sources.pm.

An example project file is listed in Figure [3.5. The project file specifies
that the two scripts time_of_day.sml and mul.msp be made available for
clients by SMLserver. Assuming the project file name corresponds to the
file name mentioned in the AOLserver configuration file, upon successful
compilation of the project, a user may request the files time_of_day.sml
and mul.msp.

The two example scripts time_of_day.sml and mul.msp may refer to
identifiers declared in the files mentioned in the local-part of the project file
(i.e., between the keywords local and in) as well as to identifiers declared by
the Standard ML Basis LibrarﬂZ and the project ../1ib/1ib.pm. Moreover,

4To see what parts of the Standard ML Basis Library that SMLserver supports, consult
the file /usr/share/smlserver/basislib/basislib.pm on your system.

22 CHAPTER 3. PRESENTING PAGES TO USERS

import ../lib/lib.pm
in
local
../demo_lib/Page.sml
../demo_lib/FormVar.sml

in
(* Leaf files; may refer to identifiers declared in
* library files, but cannot refer to identifiers
* in other leaf files. *)
[time_of_day.sml

mul .msp]
end
end

Figure 3.5: A project file for the two examples in this chapter.

in the local-part of the project file, it is allowed for an .sml-file to refer to
identifiers declared by previously mentioned .sml-files. However, an .sml-
file or an .msp-file mentioned in the square-bracket part of a project file may
not refer to identifiers declared by other files mentioned in the square-bracket
part of the project file. Thus, in the example project file, mul.msp may not
refer to identifiers declared in time_of_day.sml.

3.6 Compilation

As mentioned, a project is compiled with the SMLserver compiler smlserverc
with the name of the project file (sources.pm is the default name to use)
given as argument:

smlserverc sources. pm

The bytecode files resulting from compilation of a project are stored in a
directory named PM, located in the same directory as the project file. To
work efficiently with SMLserver, you need not know anything about the
content of the PM directories. In particular, you should not alter the content
of these directories.

3.7. LOADING AND SERVING PAGES 23

3.7 Loading and Serving Pages

The first time SMLserver serves an .sml-file or an .msp-file, SMLserver loads
the bytecode for the Standard ML Basis Library along with user libraries
mentioned in the project file before the bytecode for the .sml-file or .msp-
file is loaded. Upon subsequent requests for an .sml-file or an .msp-file,
SMLserver reuses the bytecode already loaded.

After bytecode for a request is loaded, SMLserver executes initialization
code for each library file before the bytecode associated with the request
is executed. Because SMLserver initiates execution in an empty heap each
time a request is served, it is not possible to maintain state implicitly in Web
applications using Standard ML references or arrays. Instead, state must
be maintained explicitly using a Relational Database Management System
(RDBMS) or the cache primitives supported by SMLserver (see the NS sig-
nature in Appendix [E). Another possibility is to emulate state behavior by
capturing state in form variables or cookies.

At first, this limitation may seem like a major drawback. However, the
limitation has several important advantages:

e Good memory reuse. When a request has been served, memory used
for serving the request may be reused for serving other requests.

e Support for a threaded execution model. Requests may be served si-
multaneously by interpreters running in different threads without the
need for maintaining complex locks.

e Good scalability properties. For high volume Web sites, the serving of
requests may be distributed to several different machines that commu-
nicate with a single database server. Making the RDBMS deal with
the many simultaneous requests from multiple clients is exactly what
an RDBMS is good at.

e Good durability properties. Upon Web server and hardware failures,
data stored in Web server memory is lost, whereas, data stored in an
RDBMS may be restored using the durability features of the RDBMS.

We have more to say about emulating state using form variables in Chapter /5.
Programming with cookies is covered in Chapter |9.

24 CHAPTER 3. PRESENTING PAGES TO USERS

3.8 Logging Messages, Warnings, and Errors

When AOLserver starts (see Chapter 2), initialization information is written
to a server log file. The location and name of the server log file is configured
in the AOLserver configuration file (see Appendix [A). The default name of
the server log file is server.log.

In addition to initialization information being written to the server log
file, the database drivers and other AOLserver modules may also write in-
formation to the server log file when AOLserver is running. It is also pos-
sible for your SMLserver scripts to write messages to the server log file us-
ing the function Ns.log. The function Ns.log has type Ns.LogSeverity *
string -> unit. The structure Ns declares the following values of the type
Ns.LogSeverity:

Value Description (intended use)
Notice Something interesting occurred.
Warning Maybe something bad occurred.

Error Something bad occurred.

Fatal Something extremely bad occurred. The server
will shut down after logging this message.

Bug Something occurred that implies there is a bug in
your code.

Debug If the server is in Debug mode, specified by a flag in
the [ns/parameters] section of the configuration
file, the message is printed. If the server is not in
debug mode, the message is not printed.

Allowing SMLserver scripts to write messages to the server log file turns out
to be handy for debugging scripts.

3.9 Uncaught Exceptions and Aborting Exe-
cution

We still have to explain what happens when a script raises an exception that
is not handled (i.e., caught) by the script itself. SMLserver deals with such
uncaught exceptions by writing a warning in the server log file explaining
what exception is raised by what file:

3.10. ACCESSING SETUP INFORMATION 25

[20/Jul/2001:20:50:02] [833.4101] [-conn0-]
Warning: /home/mael/web/www/demo/temp.sml raised Overflow

There is one exception to this scheme. If the exception raised is the
predefined top-level exception Interrupt, no warning is written to the server
log file. In this way, raising the Interrupt exception may be used to silently
terminate the execution of a script, perhaps after serving the client an error
page. The function Ns.exit, which has type unit -> ty, for any type ty,
exits by raising the exception Interrupt.

An important aspect of using the function Ns.exit to abort execution of
a script is that, with the use of exception handlers, resources such as database
connections (see Chapter [7) may be freed appropriately upon exiting.

It is important that SMLserver scripts do not abort execution by calling
the function 0S.Process.exit provided in the Standard ML Basis Library.
The reason is that the function 0S.Process.exit has the unfortunate effect
of terminating the Web server main process.ﬂ

3.10 Accessing Setup Information

The structure Ns.Info provides an interface to accessing information about
the AOLserver setup, including the possibility of accessing the Web server
configuration file settings. Consult Appendix |E to see the signature of the
Ns.Info structure.

SRecall that each script executes in a separate thread.

26

CHAPTER 3. PRESENTING PAGES TO USERS

Chapter 4

Obtaining Data from Users

One of the fundamental reasons for the success of dynamic Web applications
is that Web applications can depend on user input. In this chapter we present
two small examples of SMLserver applications that query data from users.

The two examples that we present are both based on two files, an HTML
file for presenting a form to the user and an .sml-file that accesses the sub-
mitted data and computes—and returns to the user—HTML code based on
the user input. HTML forms provide for many different input types, includ-
ing text fields, selection boxes, radio buttons, and drop-down menus. If you
are new to HTML forms, a quick reference is provided in Appendix D.2 on
page [131.

4.1 Temperature Conversion

This section presents a Web application for converting temperatures in de-
grees Celsius to temperatures in degrees Fahrenheit. The Web application is
made up of one file temp.html containing an HTML form for querying a tem-
perature from the user and a script temp.sml for calculating the temperature
in degrees Fahrenheit based on the temperature in degrees Celsius.

The Temperature Form

The file temp.html reads as follows:!

'File smlserver_demo/www/demo/temp.html.

27

28 CHAPTER 4. OBTAINING DATA FROM USERS

[] . IO

File Edit View Go Communicator Help
] wf * Bookmarks & Location: thttp: //daffy it-c.dk:3080/deno /temp. htnl ;’ &7 what's Related
oy

Temperature Conversion

Enter a temperature in degrees Celcius:

20 ‘ Compute Fahrenheit Temperature |

Served by SMisaner

@[Wk | d % a@ @ 2

Figure 4.1: The result of displaying the file temp.html using the Netscape
browser.

<html>
<body bgcolor=white>
<h2>Temperature Conversion</h2>
Enter a temperature in degrees Celcius:
<form method=get action=temp.sml>
<input type=text name=temp_c>
<input type=submit value="Compute Fahrenheit Temperature">
</form> <hr><i>Served by SMLserver
</i></body>
</html>

The result of displaying the above HTML code in a Web browser is shown in
Figurel4.1. The action of the HTML form is the script temp.sml. When the
user of the HTML form enters a temperature in the text field (20 say) and
hits the “Compute Temperature in Fahrenheit” button, the script temp.sml
is requested from the Web server with the form data temp_c = 20.

4.1. TEMPERATURE CONVERSION 29

Calculating the Temperature in Degrees Fahrenheit

Here is the script temp. sml:H

fun calculate ¢ = concat
["<html> <body bgcolor=white> ",
"<h2>Temperature Conversion</h2> ",
Int.toString c, " degrees Celcius equals ",
Int.toString (9 * c div 5 + 32),
" degrees Fahrenheit. <p> Go ",
"calculate a new temperature.",
"<hr> <i>Served by ",
"SMLserver</i> </body></html>"]

val _ = Ns.Conn.return
(case FormVar.wrapOpt FormVar.getIntErr "temp_c"
of NONE => "Go back and enter an integer!"
| SOME i => calculate i)

The structure FormVar provides an interface for accessing form variables of
different types.ﬁ

The expression FormVar.wrapOpt FormVar.getIntErr results in a func-
tion, which has type string -> int option. The function takes the name
of a form variable as argument and returns SOME(7), where ¢ is an integer
obtained from the string value associated with the form variable. If the form
variable does not occur in the query data, is not a well-formed integer, or its
value does not fit in 32 bits, the function returns NONE. We have more to say
about the FormVar structure in Chapter 8

In the case that the form variable temp_c is associated with a well-formed
integer that fits in 32 bits, an HTML page is constructed, which presents
the submitted temperature in degrees Celsius, a calculated temperature in
degrees Fahrenheit, and a link back to the temp.html form. The result of a
user converting a temperature in degrees Celsius to a temperature in degrees
Fahrenheit is shown in Figure [4.2.

2File smlserver_demo/www/demo/temp.sml.
3File smlserver_demo/demo_lib/FormVar.sml.

30 CHAPTER 4. OBTAINING DATA FROM USERS

B - =l=oix]
Fike Edit View Go Communicator Help

J wf ~ Bookmarks A Location: http: //daffy. it-c. dk:8080 /demo/temp. sml?tenp_c=20 ,r‘ & what's Related
o

TR 1

Temperature Conversion

20 degrees Celcius equals 68 degrees Fahrenheit.

Go calculate a new temperature.

Served by SALsanar

™

| 48w op @ 2

Figure 4.2: The result of a user converting a temperature in degrees Celsius
to a temperature in degrees Fahrenheit.

4.2 Quotations for HTML Embedding

As we have seen in the previous example, embedding HTML code in Stan-
dard ML programs using strings does not look nice; many characters must
be escaped and splitting of a string across lines takes several additional char-
acters per line. This limitation of Standard ML strings makes it difficult to
read and maintain HTML code embedded in Standard ML, Web applications.

Fortunately, many Standard ML implementations support quotations,
which makes for an elegant way of embedding another language within a
Standard ML program. Here is a small quotation example that demonstrates
the basics of quotations:

val text = "love"
val ulist : string frag list =
‘
<1i> I “text Web programming
¢

The program declares a variable text of type string, a variable ulist of
type string frag list, and indirectly makes use of the constructors of this
predeclared datatype:

datatype ’a frag = QUOTE of string
| ANTIQUOTE of ’a

4.3. A DYNAMIC RECIPE 31

What happens is that the quotation bound to ulist evaluates to the list:

[QUOTE "\n <1i> I ",
ANTIQUOTE "love",
QUOTE " Web programming\n"]

Using the Quot.flatten function, which has type string frag list ->
string, the value bound to ulist may be turned into a string (which can
then be sent to a browser.)

To be precise, a quotation is a particular kind of expression that consists
of a non-empty sequence of (possibly empty) fragments surrounded by back-
quotes:

exp = ‘frags‘ quotation
frags charseq character sequence
charseq ~id frags anti-quotation variable

charseq ~ (Cexp) frags anti-quotation expression

A character sequence, written charseq, is a possibly empty sequence of print-
able characters or spaces or tabs or newlines, with the exception that the
characters ~ and ¢ must be escaped using the notation =~ and ~ ¢, respec-
tively.

A quotation evaluates to a value of type ty frag list, where ty is
the type of all anti-quotation variables and anti-quotation expressions in
the quotation. A character sequence fragment charseq evaluates to QUOTE
"charseq". An anti-quotation fragment ~id or ~ (exp) evaluates to ANTIQUOTE
value, where wvalue is the value of the variable id or the expression exp,
respectively.

Quotations are used extensively in the sections and chapters that follow.
In fact, to ease programming with quotations, the type constructor quot
is declared at top-level as an abbreviation for the type string frag list.
Moreover, the symbolic identifier =~ is declared as an infix identifier with
type quot * quot -> quot and associativity similar to @. More operations
on quotations are available in the Quot structure.@

~

4.3 A Dynamic Recipe

This section provides another example of using quotations to embed HTML
code in your Standard ML Web applications. Similarly to the temperature

1File smlserver_demo/lib/Quot.sml lists the signature for the Quot structure.

32 CHAPTER 4. OBTAINING DATA FROM USERS

conversion example, this example is made up by two files, a file recipe.html
that provides the user with a form for entering the number of persons to
serve apple pie and a script recipe.sml that computes the ingredients and
serves a recipe to the user.

The Recipe Form
The file recipe.html contains the following HTML code®

<html>

<body bgcolor=white>

<h2>Dynamic Recipe: Apple Pie</h2>

Enter the number of people you’re inviting for apple pie:

<form method=post action=recipe.sml>

<input type=text name=persons>

<input type=submit value="Compute Recipe">

</form> <hr> <i>Served by

SMLserver</i>

</body>
</html>

The result of requesting the page recipe.html using Netscape Navigator is
shown in Figure 4.3.

Computing the Recipe

The script recipe.sml, which computes the apple pie recipe and returns a
page to the user reads as follows:®

fun error s =
(Page.return ("Error: " ~ s)
‘An error occurred while generating a recipe for
you; use your browser’s back-button to backup
and enter a number in the form. ¢
; Ns.exit())

val persons =

SFile smlserver_demo/www/demo/recipe.html.
File smlserver_demo/www/demo/recipe.sml.

4.3. A DYNAMIC RECIPE 33

B = EEE

File Edit View Go Communicatar Help
] wf " Bookmarks i Location: hetp //daffy it-c dk 8080/demosrecipe htnl 4 @517 What's Related
oy

Dynamic Recipe: Apple Pie

Enter the number of people you're inviting for apple pie:

4 | Compute Recipe
Served by SMIsanar
o [FAG0I ocument Done s 9P @ 2

Figure 4.3: The result of requesting the file recipe.html using the Netscape
browser.

case FormVar.wrapOpt FormVar.getNatErr "persons"
of SOME n => real n

| NONE => error "You must type a number"

fun pr_num s r =
if Real.== (r,1.0) then "one " ~ s
else
if Real.==(real(round r),r) then
Int.toString (round r) =~ " " =~ s = "g"
else Real.toString r =~ " " = s = "s"

val _ = Page.return "Apple Pie Recipe"
‘To make an Apple pie for ~(pr_num "person" persons), you
need the following ingredients:

<1i> ~(pr_num "cup" (persons / 16.0)) butter
<1i> “(pr_num "cup" (persons / 4.0)) sugar
<1i> “(pr_num "egg" (persons / 4.0))
<1i> “(pr_num "teaspoon" (persons / 16.0)) salt

34 CHAPTER 4. OBTAINING DATA FROM USERS

<1li> “(pr_num "teaspoon" (persons / 4.0)) cinnamon

<1li> “(pr_num "teaspoon" (persons / 4.0)) baking soda
<1i> “(pr_num "cup" (persons / 4.0)) flour

<1i> “(pr_num "cup" (2.5 * persons / 4.0)) diced apples
<1i> “(pr_num "teaspoon" (persons / 4.0)) vanilla

 “(pr_num "tablespoon" (persons / 2.0)) hot water

Combine ingredients in order given. Bake in greased 9-inch
pie pans for 45 minutes at 350F. Serve warm with whipped
cream or ice cream. <p>

Make another recipe.‘

When a user enters a number (say 4) in the form shown in Figure [4.3/and
hits the button “Compute Recipe”, a recipe is computed by the recipe.sml
program and HTML code is sent to the user’s browser, which layouts the
HTML code as shown in Figure 4.4. The expression FormVar.wrapOpt
FormVar.getNatErr results in a function with type string -> int option.
This function takes the name of a form variable as argument and returns
SOME(n), if a representable natural number n is associated with the form
variable. If on the other hand the form variable does not occur in the query
data or the value associated with the form variable is not a well-formed in-
teger greater than or equal to zero or the integer does not fit in 32 bits, the
function returns NONE.

Besides the FormVar structure, the recipe program also makes use of a
library function Page.return, which takes a heading and a page body as
argument and returns a page to the client:7

fun return head body = Ns.return
(‘<html>

<head><title>"head</title>
</head>
<body bgcolor=white>
<h2>"head</h2> ¢ ~°

body ~~

‘<hr><i>Served by

"File smlserver_demo/demo_lib/Page.sml.

4.3. A DYNAMIC RECIPE 35

Apple Pie Recipe
To make an Apple pie for 4 persons, you need the following ingredients:

0.25 cups butter

one cup sugar

one egg

0.25 teaspoons salt

one teaspoon cinnamaon
one teaspoon baking soda
ane cup flour

2.5 cups diced apples
one teaspoan vanilla

Z tablespoons hot water

Combine ingredients in order given. Bake in greased 3-inch pie pans for 45 minutes at 350F. Serve
warm with whipped cream or ice cream.

hake another recipe.

Figure 4.4: The result of computing a recipe for a four-person apple pie.

36

CHAPTER 4. OBTAINING DATA FROM USERS

SMLserver</i>
</body>
</html>*)

Chapter 5

Emulating State Using Hidden
Form Variables

We have mentioned earlier how state in SMLserver Web applications may
be implemented using a Relational Database Management System. In Chap-
ter |7, we shall follow this idea thoroughly. In this chapter, on the other hand,
we present some examples that show how state in Web applications may be
emulated using so called “hidden form variables”. The main idea is that no
state is maintained by the Web server itself; instead, all the state information
is sent back and forth between the client and the Web server for each request
and response.

The first example we present implements a simple counter with buttons
for counting up and down. The second example implements the “Guess a
Number” game.

5.1 Counting Up and Down

The implementation of the simple counter consists of one .sml-file named
counter.sml, which uses the FormVar functionality (described on page 29
in Section [4.1) to get access to the form variable counter, if present. If
the form variable counter is not present, a value of 0 (zero) is used for
the value of counter. The implementation also makes use of the function
Ns.Conn.formvar on which the FormVar structure is built (see Section 8.3
on page 91). The script counter.sml takes the following form:!

IFile smlserver_demo/www/demo/counter.sml.

37

38 USING HIDDEN FORM VARIABLES

l - =] (=] [x]
File Edit View Go Communicaor Help

'J wf " Bookmarks & Location: [tvp . //daffy. it-c.di:3030/demo /counter sulicounter=6shutton=up /| @5l" What's Related I

Count: 7

Served by SAILsenar

= 45 9 99 @ 2

Figure 5.1: The counter rendered by Netscape Navigator after a few clicks
on the “Up” button.

val counter = Int.toString
(case FormVar.wrapOpt FormVar.getIntErr "counter"
of SOME c => (case Ns.Conn.formvar "button"
of SOME "Up" => c + 1
| SOME "Down" => c¢ - 1
| _=>¢)
| NONE => 0)

val _ = Page.return ("Count: " ~ counter)
‘<form action=counter.sml>
<input type=hidden name=counter value="counter>
<input type=submit name=button value=Up>
<input type=submit name=button value=Down>
</form>‘

Figure presents the counter as it is rendered by Netscape Navigator.
Notice that because a request method is not specified, the request method
GET is used for the form, which shows in the location field where the form
variable key-value pairs are appended to the URL for the file counter. sml.
In the next example, we shall see that by using the request method POST,
the key-value pairs of form variables do not turn up in the location field.

5.2. GUESS A NUMBER 39

5.2 Guess a Number

We now demonstrate how to write a small game using SMLserver. As for the
previous example, the “Guess a Number” Web game is made up of one . sml-
file guess.sml. The Web game uses the FormVar functionality explained on
page (34 in Section 4.3 to get access to the form variables n and guess, if
present. Here is the script guess. sml:ﬁ

fun returnPage title pic body = Ns.return

‘<html>
<head><title>"title</title></head>
<body bgcolor=white> <center>
<h2>"title</h2> <p>

" (Quot.toString body) <p> <i>Served by SMLserver

</i> </center> </body>

</html>‘

fun mk_form (n:int) =
‘<form action=guess.sml method=post>
<input type=hidden name=n value="(Int.toString n)>
<input type=text name=guess>
<input type=submit value=Guess>

</form>°
val _ =
case FormVar.wrapOpt FormVar.getNatErr "n"
of NONE =>

returnPage "Guess a number between O and 100"
"bill_guess. jpg"
(mk_form (Random.range(0,100) (Random.newgen())))

| SOME n =>
case FormVar.wrapOpt FormVar.getNatErr "guess"
of NONE =>

returnPage "You must type a number - try again"
"bill_guess. jpg" (mk_form n)

2File smlserver_demo/www/demo/guess.sml.

40 USING HIDDEN FORM VARIABLES

| SOME g =>
if g > n then
returnPage "Your guess is too big - try again"
"bill_large. jpg" (mk_form n)
else if g < n then
returnPage "Your guess is too small - try again"
"bill_small. jpg" (mk_form n)
else
returnPage "Congratulations!" "bill_yes. jpg"
‘You guessed the number ~(Int.toString n) <p>
Play again?‘

In the case that no form variable n exists, a new random number is generated
and the game is started by presenting an introduction line to the player along
with a form for entering the first guess. The Web game then proceeds by
returning different pages to the user dependent on whether the user’s guess
is greater than, smaller than, or equal to the random number n.

Notice that the game uses the POST request method, so that the random
number that the user is to guess is not shown in the browser’s location field.
Although in theory, it may take up to 7 guesses for a user to guess the random
number, in practice—with some help from the Web browser—it is possible
to “guess” the random number using only one guess; it is left as an exercise
to the reader to find out how!

Figure 5.2 shows four different pages served by the “Guess a Number”
game.

5.2. GUESS A NUMBER 41
1 iid o | |l | , . & i = | | B
Fik Edi View Go Communicaior Help File Edi View Go Communicator Help

Guess a number between 0 and 100

[6d

[

Your guess is too big - try again

| Guess)|

Sanved by SMLserver Served by SMLserver
= | o o o (3 _(ﬁ|!| P | | ok Mo 2@ @ _.rﬁ|"
. ; 3 L (=)=} x Con - (=] m]
File Edit WView Go Communicalor Help File Edit Wview Go Communicator Help
Your guess is too small - try again Congratulations!
You guessed the number 25
[24 | Guess|
Play again?
Senved by SMLserver Sarved by SMiserver
| s W a9 @ N2 | o N o9 @ 2]

Figure 5.2: Four different pages served by the “Guess a Number” game.

42

USING HIDDEN FORM VARIABLES

Chapter 6

Extracting Data from Foreign
Web Sites

The Internet hosts a large set of Web services, readily available for use by
your Web site! Examples of such available services include real-time popu-
lation clocks (e.g., http://www.census.gov/cgi-bin/popclock), currency
rate services (e.g., http://se.finance.yahoo.com), and stock quote ser-
vices (e.g., http://quotes.nasdaq.com). In this chapter, we shall see how
to extract data from another Web site and use the data for content on your
own Web site, using so-called regular expressions.

6.1 Grabbing a Page

The SMLserver API has a built-in function Ns.fetchUrl, with type string
-> string option, for fetching a page from the Internet and return the page
as a string. Upon calling Ns.fetchUrl, SMLserver connects to the HTTP
Web server, specified by the argument URL, which must be fully qualified.
The function does not handle redirects or requests for protocols other than
HTTP. If the function fails, for instance by trying to fetch a page from a
server that is not reachable, the function returns NONE.

Say we want to build a simple currency service that allows a user to type
in an amount in some currency and request the value of this amount in some
other currency.

First we must find a site that provides currency rates; one such site is
Yahoo Finance: http://se.finance.yahoo.com. By browsing the site we

43

http://www.census.gov/cgi-bin/popclock
http://se.finance.yahoo.com
http://quotes.nasdaq.com
http://se.finance.yahoo.com

44 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

see how to obtain currency rates. For instance, if we want to exchange one
American Dollar into Danish Kroner then we use the URL

http://se.finance.yahoo.com/m57s=USD&t=DKK.

This URL specifies two form variables, source currency (s), and target cur-
rency (t). The currencies that we shall use in our service are abbreviated
according to the following table:

Currency Abbreviation
American Dollar USD
Australian Dollar AUD
Bermuda Dollar BMD
Danish Kroner DKK
EURO EUR
Norwegian Kroner NOK
Swedish Kroner SEK

The service that we shall build is based on two files, a simple HTML file
currency_form.html that queries the user for the amount and currencies
involved (see Figure 16.1). The other file, the script currency.sml, is the
target of the HTML form; the first part of the script currency.sml takes
the following form:

val getReal = FormVar.wrapFail FormVar.getRealErr
val getString = FormVar.wrapFail FormVar.getStringErr

val a = getReal ("a", "amount")
val s = getString ("s", "source currency")
val t = getString ("t", "target currency")

val url =
"http://se.finance.yahoo.com/mb7s=" "
Ns.encodeUrl s = "&t=" =~ Ns.encodeUrl t

fun errPage () =
(Page.return "Currency Service Error"
‘The service is currently not available, probably
because we have trouble getting information from

http://se.finance.yahoo.com/m5?s=USD&t=DKK

6.1. GRABBING A PAGE 45

L] - S =)= x]

File Edit View Go Communicator Help
} wf ~ Bookmarks & Location: ‘http://daffy. it-c. di:8080/demo/currency_form ht ;1 &" what's Related I
A

Currency Exchange Service

This service obtains currency rates from Yaahoo Finance.

Exchange | 2000 American Dollar | to Danish Kroner .JI Cl.h.llh]

Another interesting example of obtaining data from foreign sites is the Bill Gates Personal YWealth Clock.

Served by SMLsenver

& [o % 99 @ 2]

Figure 6.1: The Currency Service entry form, currency_form.html.

the data source: url.°
; Ns.exit())

val pg = case Ns.fetchUrl url
of NONE => errPage()
| SOME pg => pg

(* code that extracts the currency rate from ‘pg’
* and presents calculations for the user ... *)

The code constructs the URL by use of the form variables provided by the
user. Notice the use of the function Ns.encodeUrl for building the URL; the
function Ns.encodeUrl encodes characters, such as & and ?, that otherwise
are invalid or have special meaning in URLs. The returned page pg contains
HTML code with the currency information that we are interested in.

Before we continue the description of the currency example, we shall
spend the next section on the concept of regular expressions. Later, regular
expressions are used to extract the interesting currency information from the
page obtained from Yahoo Finance.

46 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

6.2 Regular Expressions

In this section we introduce a language of reqular expressions for classifying
strings. A relation called matching defines the class of strings specified by
a particular regular expression (also called a pattern). By means of the
definition of matching, one may ask if a pattern p matches a string s. In
the context of building Web sites, there are at least two important uses of
regular expressions:

1. Checking form data by ensuring that data entered in forms follow the
expected syntax. If a number is expected in an HTML form, the server
program must check that it is actually a number that has been entered.
This particular use of regular expressions is covered in Chapter 8. Reg-
ular expressions can only check syntax; that is, given a date, a regular
expression cannot easily be used to check the validity of the date (e.g.,
that the date is not February 30). However, a regular expression may
be used to check that the date has the ISO-format YYYY-MM-DD.

2. Extracting data from foreign Web sites, as in the Currency Service
above.

In the following we shall often use the term “pattern” instead of the longer
“regular expression”. The syntax of regular expressions is defined according
to the description in Figure 6.2.

A character class class is a set of ASCII characters defined according to
Figure 6.3.

Potential use of regular expressions is best illustrated with a series of
examples:

e [A-Za-z] : matches all characters in the english alphabet.

e [0-9] [0-9] : matches numbers containing two digits, where both digits
may be zero.

e (cow|pig)s? : matches the four strings cow, cows, pig, and pigs.

e ((alb)a)* : matches aa, ba, aaaa, baaa,

e (0|1)+: matches the binary numbers (i.e., 0, 1,01, 11,011101010,...).

e .. : matches two arbitrary characters.

6.2. REGULAR EXPRESSIONS

A7

Definition

\\&

Pip2

p*

(p)

p+

p1lp2

[class]

[~ class]

matches all characters

matches the character ¢

matches the escaped character ¢, where ¢ is one of
L+ 72, (), 1,8 .,\,t,n, v, f,r

matches a string s if p; matches a prefix of s and
po matches the remainder of s (e.g., the string abc
is matched by the pattern a.c)

matches 0, 1, or more instances of the pattern p
(e.g., the strings abbbbbba and aa are matched by
the pattern abxa)

matches the strings that match p (e.g., the string
cababcc is matched by the pattern c(ab)*cc
matches 1 or more instances of the pattern p (e.g.,
the pattern ca+b matches the string caaab but not
the string cb)

matches strings that match either p; or ps (e.g.,
the pattern (pigl|cow) matches the strings pig and
cow)

matches a character in class; the notion of charac-
ter class is defined below. The pattern [abc1-4]%*
matches sequences of the characters a, b, c, 1, 2,
3, 4; the order is insignificant.

matches a character not in class. The pattern
[Cabc1-4]* matches sequences of all the charac-
ters except a, b, c, 1, 2, 3, 4.

matches the empty string

matches 0 or 1 instances of the pattern p (e.g., the
strings aa and aba matches the pattern ab?a, but
the string abba does not match the pattern ab?a).

Figure 6.2: The syntax of regular expressions (patterns). The letter p is
used to range over regular expressions. The word class is used to range over
classes, see Figure 6.3.

48 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

class Definition

c class containing the specific character ¢

\\& class containing the escaped character ¢, where c
isoneof |, * + 7, (), [L1,$.,\,t,n v, f, r

Cc1=Co class containing ASCII characters in the range ¢;

to ¢y (defined by the characters” ASCII value)
the empty class
classiclassy class composed of characters in class; and class,

Figure 6.3: The syntax of character classes. Character classes are ranged
over by class.

e ([1-9][0-9]+)/([1-9]1[0-9]+) : matches positive fractions of whole
numbers (e.g., 1/8, 32/5645, and 45/6). Notice that the pattern does
not match the fraction 012/54, nor 1/0.

e <html>.*</html>: matches HTML pages (and text that is not HTML).

o www\.(((it-clitu)\.dk) | (it\.edu)) : matches the Web addresses
www.itu.dk, www.it-c.dk, and www.it.edu.

e http://hug.it.edu:8034/ps2/(.*)\.sml : matches all URLs denot-
ing .sml files on the machine hug.it.edu in directory ps2 for the
service that runs on port number 8034.

In the next section, we turn to see how regular expressions may be used
with SMLserver.

6.3 The Structure RegExp

SMLserver contains a simple interface for the use of regular expressions:

structure RegExp :
sig
type regexp
val fromString : string -> regexp
val match : regexp —> string -> bool

6.3. THE STRUCTURE REGEXP 49

val extract ! regexp —> string -> string list option
end

The function RegExp.fromString takes a textual representation of a reg-
ular expression (pattern) and turns the textual representation into an in-
ternal representation of the pattern, which may then be used for match-
ing and extraction. The function RegExp.fromString raises the exception
General.Fail (msg) in case the argument is not a regular expression accord-
ing to the syntax presented in the previous section.

The application RegExp.match p s returns true if the pattern p matches
the string s; otherwise false is returned. The following table illustrates the
use of the RegExp.match function:

Expression Evaluates to
match (fromString "[0-9]+") "99" true
match (fromString "[0-9]+") "aa99AA" false
match (fromString "[0-9]+.%") "99AA" true
match (fromString "[0-9]+") "99AA" false
match (fromString "[0-9]+") "aa99" false

The second expression evaluates to false because the pattern [0-9]+ does
not match the strings aa and AA. Additional examples are available in the
file smlserver_demo/www/demo/regexp.sml.

The application RegExp.extract r s returns NONE if the regular expres-
sion r does not match the string s. It returns SOME (/) if the regular expression
r matches the string s; the list [is a list of all substrings in s matched by
some regular expression appearing in parentheses in r. Strings in [appear in
the same order as they appear in s. Nested parentheses are supported, but
empty substrings of s that are matched by a regular expression appearing in
a parenthesis in r are not listed in [.

For a group that takes part in the match repeatedly, such as the group
(b+) in pattern (a(b+))+ when matched against the string abbabbb, all
matching substrings are included in the result list: ["bb", "abb", "bbb",
"abbb"].

For a group that does not take part in the match, such as (ab) in the
pattern (ab) | (cd) when matched against the string cd, a list of only one
match is returned, a match for (cd): ["cd"].

Again, the use of regular expressions for string extraction is best illus-
trated with a series of examples:

50 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

e Name and telephone. The application

extract "Name: ([a-zA-Z]+);T1f: ([0-9 J+)"
"Name: Hans Hansen;T1lf: 55 55 55 55"

evaluates to

SOME ["Hans Hansen", "55 55 55 55"]

e Email. The application

extract "([a-zA-Z] [0-9a-zA-Z\._]1*)@([0-9a-zA-Z\._]+)"
"name@company.com"

evaluates to SOME ['"name","company.com"]. The application

extract "([a-zA-Z] [0-9a-zA-Z\._]*)@([0-9a-zA-Z\._]+)"
"name@company@com"

evaluates to NONE.

e Login and Email. The application

extract "(([a-zA-Z][0-9a-zA-Z._]1%)Q@[0-9a-zA-Z._]+,?)*"
"joe@it.edu,sue@id.edu,pat@it.edu")

evaluates to

SOME ["joe", "joe@it.edu,", "sue", "sue@id.edu,",
"pat", "pat@it.edu"l}.

For more examples, consult the file regexp.sml in the demonstration
directory smlserver_demo/www/demo/.

6.4. CURRENCY SERVICE—CONTINUED 51

6.4 Currency Service—Continued

We are now ready to continue the development of the Currency Service ini-
tiated in Section [6.1. Recall that we have arranged for a page containing
currency information to be fetched from the Yahoo Finance Web site. What
we need to do now is to arrange for the currency information to be extracted
from the fetched page, which is available as a string in a variable pg. By
inspection, we learn that at one time pg contains the following HTML code:

<table>

AUDSEK=X</td><td>200.0</td><td>23:18</td>
<td>5.468220</td><td>1,093.64</td></tr>
</table>

The pattern .+AUDSEK.+<td>([0-9]+) . ([0-9]+)</td>.+" may be used
to extract the rate 5.468220. With this pattern, it is not the value 200.0 that
is extracted, because with regular expressions, it is always the longest match
that is returned.

Here is the remaining part of the script currency.sml—continued from

page 45:

val pattern = RegExp.fromString
(".+" 7 s Tt 7 "o4<td>([0-9]4) . ([0-9]+)</td>.+")

fun getdate() =
Date.fmt "%Y-%m-%d" (Date.fromTimeLocal (Time.now()))

fun round r =
Real.fmt (StringCvt.FIX(SOME 2)) r

val _ =
case RegExp.extract pattern pg
of SOME [ratel, rate2] =>
(let
val rate = Option.valOf
(Real.fromString (ratel”™"."“rate2))
in
Page.return ("Currency Service - " ~ getdate())

52 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

‘~(Real.toString a) ("s) gives you

“((round (axrate))) ("t).<p> The rate used

is “(round rate) and is obtained from

"url.<p>

New Calculation?‘
end handle _ => errPage())

| _ => errPage()

The function RegExp.extract returns the empty string if there is no match,
which is likely to happen when Yahoo Finance changes the layout of the

page.

6.5 Caching Support

It can happen that small easy-to-write services become tremendously popu-
lar. One example of such a Web service is Bill Gates Personal Wealth Clock
(http://db.photo.net/WealthClockIntl), which estimates your personal
contribution to Bill Gates’ wealth, using stock quotes from either NASDAQ
(http://quotes.nasdaq.com) or Security APL (http://qs.secapl.com),
public information about the world population from the U.S. Census Bureau
(http://www.census.gov/cgi-bin/ipc/popclockw), and the estimated hold-
ing of Microsoft shares owned by Bill Gates. The Web site provides a precise
description of the math involved. As of January 24, 2002, the Web site esti-
mates that each and every person in the world has contributed $11.7642 to
Bill Gates.

This service got popular around the summer 1996 with a hit rate of two
requests per second. Such a hit rate is extreme for a service that obtains data
from two external sites; not only is it bad netiquette to put an extreme load
on external sites for querying the same information again and again, but it
almost certainly causes the Web site to break down, which of course lowers
the popularity of the site.

There is a simple solution; have your Web server cache the results ob-
tained from the foreign services for a limited amount of time. The wealth
clock does not depend on having up-to-the-minute information (e.g., updates
every 10 minutes are probably accurate enough). The SMLserver API has
a simple caching interface that can be used to cache data so that requests
may share the same information. Another use of the cache mechanism is for
authentication, which is covered in Chapter 9.

http://db.photo.net/WealthClockIntl
http://quotes.nasdaq.com
http://qs.secapl.com
http://www.census.gov/cgi-bin/ipc/popclockw

6.6. THE CACHE INTERFACE 23

6.6 The Cache Interface

A cache in SMLserver has type cache. Caches may be created, flushed (i.e.,
emptied), items may be added, and items may be deleted. (Other operations
on caches are possible as well.) A cache maps a unique key k to a value v; k
and v must be of type string.’ The signature is shown below:

structure Cache :
sig
type cache
val createTm : string * int -> cache
val createSz : string * int -> cache
val find : string -> cache option
val findTm : string * int -> cache
val findSz : string * int -> cache
val flush : cache -> unit
val set : cache * string * string -> bool
val get : cache * string -> string option
val cacheForAwhile :
(string -> string) * string * int -> string -> string
val cacheWhileUsed :
(string -> string) * string * int -> string -> string
end

Caches are created using either createTm, createSz, findTm or findSz.
With createTm and findTm a timeout ¢ in seconds is specified and an item
added to the cache lives until it has not been accessed for approximately ¢
seconds. With createSz and findSz a cache size is specified and the oldest
items are deleted when items are added to a full cache. The find functions do
not create a new cache if one with the same name already exists. Flushing a
cache deletes all entries, but the cache still exists. A cache cannot be deleted.
Items may be retrieved from a cache with the functions set and get.

The cacheForAwhile and cacheWhileUsed functions adds caching func-
tionality (“memorization”) to a function f of type string->string. For
instance, the expression cacheForAwhile f name sec returns a function f.
The function f’ caches the results of evaluating f. Succeeding calls to f’ with

Tt is unsound to have the cache type and the primitives support caching of values of
arbitrary types.

54 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

the same argument results in cached results, except when a cached result no
longer lives in the cache. When that is the case, f is evaluated again. With
cacheForAwhile a result lives for sec seconds after it was added to the cache.
With cacheWhileUsed a result lives for sec seconds after the last use.

Thus, to cache HTML pages obtained from foreign sites, a Web site should
use the function cacheForAwhile, which guarantees that the cache is up-
dated with fresh information even if the cache is accessed constantly. In
Section[6.7, we shall see how the Currency Service of Sections 6.1/and 6.4 is
extended to cache currency information obtained from a foreign site.

However, when caching password information to evaluate login on every
page request (see Chapter [9), a Web site should use the cacheWhileUsed
function, which makes the password information live in the cache for as long
as the user accesses the site.

In the remainder of this section, we present a small caching demon-
stration, which implements caching of names based on associated email ad-
dresses.? Figure[6.4 shows the entry form.

The function findTm is used to find (or create) a cache with a timeout
value of 20 seconds. The script cache_add.sml processes the data entered
in the form; here is the content of the ﬁkxﬁ

val cache = Ns.Cache.findTm ("people", 20)
val new_p = (* new_p true if new value added *)
case (Ns.Conn.formvar "email", Ns.Conn.formvar "name"
of (SOME email, SOME name) =>
Ns.Cache.set(cache,email ,name)
| _ => false

val head = if new_p then "New Value added"
else "Key already in Cache"

val _ = Page.return "Caching Demonstration"
‘“head <p>
Go back to Cache Demo Home Page.‘

The code to lookup a name in the cache is in the script cache_lookup.sml.
Again, the function findTm is used to get access to the cache and the function

2File smlserver_demo/www/demo/cache.sml.
3File smlserver_demo/www/demo/cache_add.sml.

6.6. THE CACHE INTERFACE 95

Het=Cape: Taching Demonsiralion

A Bittp://daéty. it-c. dk:8080/deno/cache. sl
Caching Demonstration

Cache entries map email addresses to names. Entries live in the cache in approximately 20 seconds.

Lookup Entry Add Entry

Emﬁ'lgit“@nicwft_mﬂ Email |

Name I

Lookup

Add to Clu:h:l

Figure 6.4: The example uses a cache to store pairs of email addresses and
names. Cached values are accessible 20 seconds after the last use.

56 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

get is used to find a name associated with an email address in the cache.
The function get returns NONE if the email address is not in the cache:*

val cache = Ns.Cache.findTm ("people", 20)

fun returnPage s = Page.return "Caching Demonstration"
‘"s <p>
Go back to Cache Demo Home Page.‘

val _ = (* new_p is true if new value added *)
case Ns.Conn.formvar "email"
of NONE => Ns.returnRedirect "cache.sml"
| SOME email =>

returnPage
(case Ns.Cache.get(cache,email)
of SOME n => "Name for " ~ email = " is: " " n

| NONE => "No name in cache for " ~ email)

6.7 Caching Version of Currency Service

In this section we demonstrate the caching function cacheForAwhile in the
context of the Currency Service of Sections 6.1 and 6.4. Similarly to the Bill
Gates Personal Wealth Clock, our Currency Service should not access Yahoo
Finance on each and every access. Instead, the currency rates obtained from
Yahoo are cached in 300 seconds (five minutes).

Notice the distinction between the function cacheForAwhile and the
function cacheWhileUsed; the service should not make use of the func-
tion cacheWhileUsed because rates must be updated every 300 seconds—
irrespectively of whether the service is accessed every minute. Here is the
script currency_cache.smlﬁ}mdnch implements the cached version of the
Currency Service:

val getReal = FormVar.wrapFail FormVar.getRealErr
val getString = FormVar.wrapFail FormVar.getStringErr

val a = getReal ("a", "amount")

4File smlserver_demo/www/demo/cache_lookup.sml.
®File smlserver_demo/www/demo/currency_cache.sml.

6.7. CACHING VERSION OF CURRENCY SERVICE

val s = getString ("s", "source currency")
val t = getString ("t", "target currency")
val url = "http://se.finance.yahoo.com/mb?s=" ~

Ns.encodeUrl s = "&t=" "~ Ns.encodeUrl t

fun errPage () =
(Page.return "Currency Service Error"
‘The service is currently not available, probably
because we have trouble getting information from
the data source: "url.°‘
; Ns.exit())

fun getdate () =
Date.fmt "%Y-%m-%d" (Date.fromTimeLocal (Time.now()))

fun round r = Real.fmt (StringCvt.FIX(SOME 2)) r

val pattern = RegExp.fromString
("' T s Tt 7 M +<ted>([0-9]4) . ([0-9]+)</td>.+")

val fetch Ns.Cache.cacheForAwhile
(fn url => case Ns.fetchUrl url
of NONE => ""
| SOME pg =>
(case RegExp.extract pattern pg
of SOME [r1,r2] =>r1 =~ "." = r2
| _ =),

"currency", 5%60)

val _ =
case fetch url of
"" => errPage ()

| rate_str =>

o7

let val rate = Option.valOf (Real.fromString rate_str)

in Page.return
("Currency Exchange Service, " ~ getdate())

‘~(Real.toString a) “s gives “(round (a*rate)) ~t.<p>

58 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

The exchange rate is obtained by fetching<p>

"url<p>

New Calculation¢
end

The anonymous function passed to the function Ns.Cache.cacheForAwhile
tries to fetch a page from Yahoo Finance and extract the currency rate for
the currencies encoded in the argument URL. Now, when passed to the func-
tion Ns.Cache.cacheForAwhile, the fetching function is executed only if
no currency rate is associated with the argument URL in the cache named
currency. Notice that only currency rates are stored in the cache, not the
entire fetched pages.

Chapter 7

Connecting to a Relational
Database Management System

Until now, the Web applications that we have looked at have been in the
category of “Web sites that are programs.” In this chapter, we exploit the
possibility of implementing Web applications that fall into the category “Web
sites that are databases.” The ability of a Web application accessing and
manipulating information stored in some sort of database drastically widens
the kind of Web applications that one can build.

There are many possible ways in which a Web application may keep track
of data between sessions. One possibility is to use the file system on the ma-
chine on which the Web server runs for storing and reading data. Another
possibility is to use some sort of Web server support for maintaining state
between sessions to create and manipulate task-specific data structures. Yet
another possibility is to use some proprietary relational database manage-
ment system for storing and accessing data.

What we argue in the following is that, unless you have some very good
reasons, you want data on the server to be maintained exclusively by a Rela-
tional Database Management System (RDBMS), perhaps with the addition
of some simple caching support.

Let us assume for a moment that you have constructed a Web based
system that uses the local file system for storing and accessing data. By
request from the management department, you have constructed a Web based
system for managing employee data such as office location, home addresses,
and so on. The system that you came up with even has a feature that
allows an employee to maintain a “What am I doing now” field. You have

29

60 CHAPTER 7. CONNECTING TO AN RDBMS

spent weeks developing the system. Much of the time was spent designing
the layout of the data file and for writing functions for parsing and writing
employee data. You have tested the system with a few employees added to
the data file and you have even been careful using locks to prevent one Web
script from writing into the data file while some other Web script is reading
it, and vice versa. The system is launched and the employees are asked to
update the “What am I doing now” field whenever they go to a meeting
or such. For the three managers and the 20 employees in the management
department, the system works great; after two weeks, the success of your Web
based employee system has spread to other departments in the organization.
Gradually, more departments start using your system, but at some point
people start complaining about slow response times, especially around lunch-
time where everyone of the 300 employees that now use the system wants to
update the “What am I doing now” field.

After a few days of complaints, you get the idea that you can read the
data file into an efficient data structure in the Web server’s memory, thereby
getting quicker response and update times, as long as you write log files to
disk that say how the data file should be updated so as to create a valid
data file. After a few more weeks of development—and only a little sleep—
the system finally performs well. You know that there are issues that you
have not dealt with. For example, what happens if somebody shuts down
the machine while a log file is written to disk? Is the system then left in an
inconsistent state?

You start realizing that what you have been doing the last month is what
some companies have been doing successfully for decades; you have developed
a small database management system, although tailored specifically to your
problem at hand and very fragile to changes in your program. You decide
to modify your Web application to use a database management system in-
stead of your home-tailored file-based system. But there are many database
management systems to choose from! The next sections tell you something
about what properties you want from a database management system.

7.1 What to Expect from an RDBMS

Decades of research and development in the area of database management
systems have resulted in easily adaptable systems, which efficiently solve the
problem of serving more than one user at the same time. In some systems,

7.2. THE ACID TEST 61

such as the Oracle RDBMS, readers need not even wait for writers to finish!
Here is a list of some of the features that an RDBMS may provide:

e Methods for query optimizations. An RDBMS supports known meth-
ods for optimizing queries, such as index creation for improving query
performance.

Data abstraction. Through the use of SQL, an RDBMS may help
programmers abstract from details of data layout.

Support for simultaneous users. RDBMS vendors have solved the prob-
lems of serving simultaneous users, which make RDBMSs ideal for Web
purposes.

System integration. The use of standardized SQL eases system inte-
gration and inter-system communication.

Failure recovering. A good RDBMS comes with support for recovering
from system failures and provides methods for backing up data while
the system is running.

7.2 The ACID Test

If you want to sleep well at night while your Web site is serving user requests,
you want your RDBMS of choice to support transactions. Basically, what
this means is that you want your RDBMS to pass the ACID test [Gre99]:

e Atomicity. A transaction is either fully performed or not performed.
Example: When money is transferred from one bank account to an-
other, then either both accounts are updated or none of the accounts
is updated.

e Consistency. A transaction sends a database from one consistent state
to another consistent state. Transactions that would send the database
into an inconsistent state are not performed. Example: A bank may
specify, using consistency constraints, that for some kinds of bank ac-
counts, the account balance must be positive. Transaction specifying
a transfer or a withdrawal causing the balance on such an account to
be negative are not performed.

62 CHAPTER 7. CONNECTING TO AN RDBMS

e [solation. A transaction is invisible to other transactions until the
transaction is fully performed. Example: If a bank transaction transfers
an amount of money from one account to another account while at the
same time another transaction computes the total bank balance, the
amount transferred is counted only once in the bank balance.

e Durability. A complete transaction survives future crashes. Example:
When a customer in a bank has successfully transferred money from
one account to another, a future system crash (such as power failure)
has no influence on the effect of the transaction.

Two RDBMSs that pass the ACID test are the proprietary Oracle RDBMS
and the Open Source RDBMS Postgresql, both of which are supported by
SMLserver.

The language used to communicate with the RDBMS is the standardized
Structured Query Language (SQL), although each RDBMS has its own ex-
tensions to the language. SQL is divided into two parts, a Data Definition
Language (DDL) and a Data Manipulation Language (DML).

Although this book is not meant to be an SQL reference, in the next two
sections, we discuss the two parts of the SQL language in turns.

7.3 Data Modeling

The term “data modeling” covers the task of defining data entities (tables)
and relations between entities. The SQL data definition language contains
three commands for creating, dropping and altering tables, namely create
table, drop table, and alter table.

create table

The SQL command create table takes as argument a name for the table
to create and information about the table columns in terms of a name and a
data type for each column. The following create table command specifies
that the table employee be created with five columns email, name, passwd,
note, and last_modified.

!SMLserver also supports the popular MySQL database server. However, because
MySQL does not implement transaction (in the sense of the ACID test), we do not rec-
ommend using MySQL for building Web sites that manipulate important data.

7.3. DATA MODELING 63

create table employee (

email varchar (200) primary key not null,
name varchar(200) not null,

passwd varchar (200) not null,

note varchar (2000) ,

last_modified date
);

There are a variety of column data types to choose from and each RDBMS
has its own extensions to SQL, also in this respect. The column data type
varchar (200) specifies that the column field can contain at most 200 char-
acters, but that shorter strings use less memory. The column data type date
is used for storing dates.

The command also specifies some consistency constraints on the data,
namely that the columns email, name, and passwd must be non-empty—
specified using the not null constraint. The primary key constraint on the
email column has two purposes. First, it specifies that no two rows in the
table may have the same email address. Second, the constraint specifies that
the RDBMS should maintain an index on the email addresses in the table,
so as to make lookup of email addresses in the table efficient.

alter table

The alter table command is used to modify already existing tables, even
when data appears in the table. The alter table command takes several
forms. The simplest form makes it possible to drop a column from a table:H

alter table employee drop last_modified;

Here the column last_modified is eliminated from the table. A second form
makes it possible to add a column to a table:

alter table employee add salary integer;

In this example, a column named salary of type integer is added to the
employee table. The update command may be used to initialize the new
column as follows:

update employee set salary = O where salary = NULL;

2This form is not supported by the Postgresql 7.2 RDBMS.

64 CHAPTER 7. CONNECTING TO AN RDBMS

drop table

The drop table command is used to remove a table from a database. As
an example, the command

drop table employee;

removes the table employee from the database.

7.4 Data Manipulation

The four most useful SQL data manipulation commands are insert, select,
delete, and update. In this section, we give a brief overview of these com-
mands.

insert

Each insert command corresponds to inserting one row in a table. An
example insert command takes the following form:

insert into employee (name, email, passwd)
values (’Martin Elsman’, ’mael@it.edu’, ’don’’tforget’);

There are several things to notice from this insert command. First, values
to insert in the table appears in the order column names are specified in the
command. In this way, the order in which column names appeared when
the table was created has no significance for the insert command. Second,
not all columns need be specified; only those columns for which a not null
constraint is specified in the create table command must be mentioned in
the insert command—for the remaining columns, null values are inserted.
Third, string values are written in quotes (’...”). For a quote to appear
within a string, the quote is escaped by using two quotes (’’). Here is
another example insert command:

insert into employee (email, name, passwd, note)
values (’nh@it.edu’, ’Niels Hallenberg’, ’hi’, ’meeting’);

7.4. DATA MANIPULATION 65

select

The select command is used for querying data from tables. Here is an
example querying all data from the employee table:

select * from employee;

The result includes the two rows in the employee table:

email name passwd note
mael@it.edu Martin Elsman don’tforget null
nh@it.edu Niels Hallenberg hi meeting

Notice that only one quote appears in the passwd string “don’tforget”.

The select command allows us to narrow the result both horizontally
and vertically. By explicitly mentioning the columns of interest, only the
mentioned columns appear in the result. Similarly, the select command
may be combined with where clauses, which narrows what rows are included
in the result. Consider the following select command:

select name, passwd
from employee
where email = ’mael@it.edu’;

The result of this query contains only one row with two columns:

name passwd
Martin Elsman don’tforget

Because the column email is primary key in the employee table, the
RDBMS maintains an index that makes lookup based on email addresses in
the table efficient; thus, the data model we have chosen for employees scales
to work well even for millions of employees.

The select command may be used in many other ways than shown here;
in the sections to follow, we shall see how the select command can be used to
select data from more than one table simultaneously, through what is called
a join, and how the group by clause may be used to compute a summary of
the content of a table.

66 CHAPTER 7. CONNECTING TO AN RDBMS

update

As the name suggests, the update command may be used to update a number
of rows in a table. The following example update command uses a where
clause to update the content of the note column for any employee with email-
address nh@it.edu—of which there can be at most one, because email is a
key:

update employee
set note = ’back in office’
where email = ’nh@it.edu’;

Here is an example that updates more than one column at the same time:

update employee

set note = ’going to lunch’,
set passwd = ’back’
where email = ’mael@it.edu’;

After the two update commands, the employee table looks as follows:

email name passwd note

mael@it.edu Martin Elsman back going to lunch

nh@it.edu Niels Hallenberg hi back in office
delete

The delete command is used to delete rows from a table. As for the select
and update command, one must be careful to constrain the rows that are
effected using where clauses. An example delete command that deletes one
row in the employee table looks as follows:

delete from table employee
where email = ’mael@it.edu’;
7.5 Three Steps to Success

When developing Web sites backed by a database, we shall often commit to
the following three steps:

7.5. THREE STEPS TO SUCCESS 67

1. Development of a data model that supports all necessary transactions.
This is the hard part.

2. Design of a Web site diagram that specifies names of scripts and how
scripts link to each other. Do not underestimate the importance of this
part.

3. Implementation of scripts, including the implementation of database
transactions using the SQL data manipulation language. This is the
easy part!

We emphasize that the easy part of developing a Web site backed by a
database is the third part, the implementation of scripts for supporting the
appropriate transactions. Not surprisingly, the more time spent on the first
two parts, the better are the chances for a satisfactory result.

In general, the construction of a data model results in the creation of a
file containing SQL data definition language commands for defining tables
and perhaps data manipulation commands for inserting initial data in the
tables.

The construction of a data model for the employee example results in a
file employee. sq]ﬁ containing only a few data definition language commands
and two insert commands for inserting example data in the table:

drop table employee;
create table employee (

email varchar(200) primary key not null,
name varchar (200) not null,
passwd varchar (200) not null,
note varchar (2000) ,
last_modified date
)
insert into employee (name, email, passwd)

values (’Martin Elsman’, ’mael@it.edu’, ’don’’tforget’);
insert into employee (email, name, passwd, note)
values (’nh@it.edu’, ’Niels Hallenberg’, ’hi’, ’meeting’);

Notice that the employee.sql file contains a drop table command; this
command turns out to be useful when the employee.sql file is reloaded
upon changes in the data model.

3File smlserver_demo/demo_lib/pgsql/employee.sql.

68 CHAPTER 7. CONNECTING TO AN RDBMS

i ndex. htm search. sm
Found: Martin El
Search Employee oun artin =1sman
Email: mael @t . edu | — | passud: %
- New search?

Figure 7.1: Web site diagram for the employee example. Administrator pages
for adding and deleting employees are not shown.

To load the data model in a running Postgresql RDBMS, run the program
psql with the file employee.sql as argument:

% psql -f employee.sql
DROP
psql:employee.sql:9: \
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit \
index ’employee_pkey’ for table ’employee’
CREATE
INSERT 167792 1
INSERT 167793 1

For larger data models, it is important to give the data model more
thought, perhaps by constructing an Entity-Relation diagram (E-R diagram)
for the model; we shall see an example of such an E-R diagram in Section 7.7.

A simple Web site diagram for the employee example is shown in Fig-
ure|7.1. The boxes in the diagram represents the different HTML pages that
the employee Web application may send to the user. An edge in the diagram
represents either a link or a form action. A labeled edge represents an update
transaction on the database.

The entry page to the employee example may be implemented as a simple
HTML form with action search.sml:*

<html>
<head><title>Search the Employee Database</title></head>

4File smlserver_demo/www/demo/employee/index.sml.

7.6. TRANSACTIONS AS WEB SCRIPTS 69

<body bgcolor=white>
<center> <h2>Search the Employee Database</h2> <p>
<form action=search.sml method=post>
Email: <input type=text name=email>
<input type=submit value=Search>
</form>
</center>
</body>
</html>

Because the result of submitting the form is dependant on the content of
the employee table, HTML code for the result page must be computed dy-
namically, which is what the file search.sml does (see the next section).
Moreover, if a user with a valid password chooses to update the note for a
given user, we arrange for the employee table to be updated by executing
an SQL update command from within the update.sml script. When the
transaction is finished executing, the script sends an HTTP redirect to the
client, saying that the client browser should request the file search.sml.

7.6 Transactions as Web Scripts

SMLserver scripts may access and manipulate data in an RDBMS through
the use of a structure that matches the NS_DB signature.ﬁ Because SMLserver
supports the Oracle RDBMS, the Postgresql RDBMS, and MySQL, there are
three structures in the Ns structure that matches the NS_DB signature, namely
Ns.DbOra, Ns.DbPg, and Ns.DbMySQL. The example Web server project file
includes a file Db.sml, which binds a top-level structure Db to the structure
Ns.DbPg; thus, in what follows, we shall use the structure Db to access the
Postgresql RDBMS. Figure 7.2 lists the part of the RDBMS interface that
we use in the following.

To access or manipulate data in an RDBMS, SMLserver scripts need not
explicitly open a connection to the RDBMS. Instead, the opening of connec-
tions is done at the time the Web server (i.e., AOLserver) is started, which
avoids the overhead of opening connections every time a script is executed.

A database handle identifies a connection to an RDBMS and a pool is a
set of database handles. When the Web server is started, one or more pools

5See the file smlserver_demo/1ib/NS_DB.sml.

70 CHAPTER 7. CONNECTING TO AN RDBMS

signature NS_DB =
sig
val dml : quot -> unit
val fold : ((string->string)*’a->’a) -> ’a -> quot —-> ’a

val oneField : quot —> string
val oneRow : quot -> string list

val zeroOrOneRow : quot -> string list option

val seqNextvalExp : string -> string

val qq : string -> string
val qqq : string -> string
end

Figure 7.2: Parts of the NS_DB signature.

are created. At any particular time, a database handle is owned by at most
one script. Moreover, the database handles owned by a script at any one time
belong to different pools. The functions shown in Figure|7.2 request database
handles from the initialized pools and release the database handles again in
such a way that deadlocks are avoided; a simple form of deadlock is caused
by one thread holding on to a resource A when attempting to gain access to a
resource B, while another thread holds on to resource B when attempting to
gain access to resource A. An example AOLserver configuration file, which
also specifies the initialization of pools and opening of database connections,
is shown in Appendix A.

The NS_DB function dml with type quot->unit is used to execute a data
manipulation language command, specified with the argument string, in the
RDBMS. On error, the function raises the exception General.Fail (msg),
where msg holds an error message. Data manipulation language commands
that may be invoked using the dml function include the insert and update
statements.

The four functions fold, oneField, oneRow, and zeroOrOneRow may be
used to access data in the database. In all cases a select statement is
passed as an argument to the function. The function fold requires some

7.6. TRANSACTIONS AS WEB SCRIPTS 71

explanation. An application fold f b sql executes the SQL statement given
by the quotation sql and folds over the result set. The function f is the
function used in the folding with base b. The first argument to f is a function
that maps column names into values for the row. The function raises the
exception General.Fail(msg), where msg is an error message, on error.
See the script wine.sml listed on page 79| for an example that uses the fold
function.

Because the number of database handles owned by a script at any one
time is limited to the number of initialized pools, nesting of other database
access functions with the fold function is limited by the number of initialized
pools.

The function qq, which has type string->string, returns the argument
string in which every occurrence of a quote (’) is replaced with a double
occurrence (’?). Thus, the result of evaluating qq("don’tforget") is the
string "don’ ’tforget". The function qqq is similar to the qq function with
the extra functionality that the result is encapsulated in quotes (*...7).

The script search.sml, which implements the employee search function-
ality, looks as follows:®

fun returnPage title body = Ns.return
(‘<html>
<head><title>"title</title></head>
<body bgcolor=white>
<center><h2>"title</h2><p>‘ ~°~ body "~
‘</center>
</body>
</html>*)

val email = FormVar.wrapFail
FormVar.getStringErr ("email","email")

val sql = ‘select name, note
from employee
where email = ~(Db.qqq email)‘

val =

case Db.zeroOrOneRow sql of

6File smlserver_demo/www/demo/employee/search.sml.

72 CHAPTER 7. CONNECTING TO AN RDBMS

SOME [name, note] =>
returnPage "Employee Search Success"
‘<form action=update.sml method=post>
<input type=hidden name=email value=""email">
<table align=center border=2>
<tr><th>Name:</th>
<td>"name</td></tr>
<tr><th>Email:</th>
<td>"email</td></tr>
<tr><th>Note:</th>
<td><input name=note type=text value=""note">
</td></tr>
<tr><th>Password:</th>
<td><input name=passwd type=password>
<input type=submit value="Change Note">
</td></tr>
</table>
</form><p>
Try a new search?‘
_ =
returnPage "Employee Search Failure"
‘Use the back-button in your Web browser
to go back and enter another email address®

The expression FormVar .wrapFail FormVar.getStringErr (var,name) re-
turns an error page to the user in case form variable var is not available or
in case it contains the empty string. The argument name is used for error
reporting. Searching for an employee with email nh@it.edu results in the
Web page shown in Figure|7.3. The script update.sml looks as follows:m

val getString = FormVar.wrapFail FormVar.getStringErr

val email = getString ("email","email")
val passwd = getString ("passwd","passwd")
val note getString ("note", "note")

val update ‘update employee

"File smlserver_demo/www/demo/employee/update. sml.

7.6. TRANSACTIONS AS WEB SCRIPTS 73

Wi i i isiiniiisbiniiinasdilillon B
File Edit View Go Communicator Help

'; _§ " Bookmarks .& Go Ta: ‘imttp:ffdaffy..::.t—c. c’k:BDBU;"deno,-"en;:loyufsoarch. sml 4@' What's Related

Employee Search Success

© Name: [Niels Hallenberg
 Emall: nh@itedu

Note: | lunch meeting
éPasswo-rd: xaxa] | Change Mote
Try anew search?
Served by SMLsanar
P L 9P @ 2

Figure 7.3: The result of searching for an employee with email nh@it.edu

set note = “(Db.qqq note)
where email = “(Db.qqq email)
and passwd = ~(Db.qqq passwd) ¢

val _ =
(Db.dml update;
Ns.returnRedirect ("search.sml?email="
" Ns.encodeUrl email))
handle _ =>
Page.return "Employee Database" ‘Update failed®

The function Ns.returnRedirect returns a redirect, which causes the
browser to request the script search.sml from the server. The email address
is sent along to the search.sml script as a form variable. The value is URL
encoded to support characters other than letters and digits in the email
address.

74 CHAPTER 7. CONNECTING TO AN RDBMS

7.7 Best Wines Web Site

We now present a somewhat larger example. The example constitutes a wine
rating Web site, which we call Best Wines. The Best Wines Web site allows
users to rate and comment on wines and to see the average rating for a wine
in addition to other user’s comments.

Recall the three steps to the successful construction of a Web site backed
by a database:

1. Development of a data model that supports all necessary transactions

2. Design of a Web site diagram that specifies names of scripts and how
scripts link

3. Implementation of scripts, including the implementation of database
transactions using the SQL data manipulation language

The next three sections cover these steps for the Best Wines Web site.

Data Model and Transactions

The data modeling process attempts to answer questions that focus on ap-
plication data. What are the primary data objects that are processed by
the system? What attributes describe each object? What are the relation-
ships between objects? What are the processes that access and manipulate
objects?

As the first part of developing a data model for the Best Wines Web site,
we construct an Entity-Relationship diagram (E-R diagram) for the Web
site, which leads to the construction of SQL data modeling commands for
the data model. The second part of the data modeling process focuses on
developing the appropriate transactions for accessing and manipulate data.

An entity-relationship diagram is composed of three types of components:

1. Entities, which are drawn as rectangular boxes
2. Attributes, which are drawn as ellipses

3. Relationships, which connects entities

7.7. BEST WINES WEB SITE 5

wine rating

Figure 7.4: E-R diagram for the Best Wine Web site. The fork in the diagram
specifies that the relation between the wine-entity and the rating-entity is a
one-to-many relation; to every one wine there may be many ratings.

When an E-R diagram is constructed for a Web site, it is a straightforward
task to develop the corresponding SQL data modeling commands. In fact,
entities in the E-R diagram map directly to table names and attributes map
to column names in the associated tables. Before we say what relationships
map to, consider the E-R diagram for the Best Wine Web site in Figure [7.4.

The E-R diagram contains two entities, wine and rating. Attributes
associated with the wine entity include a name and a year (vintage) for the
wine. Attributes associated with the rating entity include a user’s comments,
the user’s fullname and email, and a rating. Notice that the diagram does
not say anything about the data types for the attributes.

The relationship between the entities wine and rating is a one-to-many
relationship, that is, to every one wine there may be many ratings. This
type of relationship is pictured in the diagram as a fork. In general, there
are other types of relationships besides one-to-many relationships, including
one-to-one relationships and many-to-many relationships. Before an E-R
diagram can be mapped to SQL data modeling commands, many-to-many
relationships are broken up by introducing intermediate entities.

SQL data modeling commands corresponding to the E-R diagram in Fig-
ure 7.4 look as follows:?

create sequence wid_sequence;

create table wine (
wid integer primary key,
name varchar(100) not null,

8File smlserver_demo/demo_lib/pgsql/rating.sql.

76 CHAPTER 7. CONNECTING TO AN RDBMS

year integer,
check (1 <= year and year <= 3000),
unique (name, year)
);
create table rating (
wid integer references wine,
comments varchar(1000),
fullname varchar(100),
email varchar (100),
rating integer,
check (0 <= rating and rating <= 6)
);

The first command creates an SQL sequence, with name wid_sequence,
which we shall use to create fresh identifiers for identifying wines.

The two entities wine and rating are transformed into create table
commands with columns corresponding to attributes in Figure 7.4. Data
types for the columns are chosen appropriately. The relationship between
the two tables is encoded by introducing an additional column wid (with
data type integer) in each table. Whereas the column wid in the wine
table is declared to be primary (i.e., no two rows have the same wid value
and an index is constructed for the table, making lookup based on the wid
value efficient), a referential integrity constraint on the wid column in the
rating table, ensures that a row in the rating table is at all times associated
with a row in the wine table. Additional consistency constraints guarantee
the following properties:

e The year column is an integer between one and 3000

e No two rows in the wine table is associated with the same name and
the same year

e A rating in the rating table is an integer between zero and six

A list of possible transactions and associated SQL data-manipulation
commands are given here:

Wine insertion:

insert into wine (wid, name, year)
values (1, ’Margaux - Chateau de Lamouroux’, 1988);

7.7. BEST WINES WEB SITE 7

Rating insertion:

insert into rating
(wid, fullname, email, comments, rating)
values
(1, ’Martin Elsman’, ’mael@it.edu’, ’Great wine’, 5);

Wine comments:

select comments, fullname, email, rating
from rating where wid = 1;

Wine index:

select wine.wid, name, year,
avg(rating) as average, count(*) as ratings
from wine, rating
where wine.wid = rating.wid
group by wine.wid, name, year
order by average desc, name, year,

The difficult transaction is the wine index transaction, which is used in
the construction of the main page of the Best Wine Web site (see Figure[7.8).
The select command computes the average ratings for each wine in the wine
table. The transaction makes use of the group by feature of the select com-
mand to group rows with the same wid, name, and year columns. For each
of the resulting rows, the average rating for the grouped rows is computed
as well as the number of rows that are grouped in each group.

Web Site Diagram

A Web site diagram for the Best Wines Web site is shown in Figure[7.5. The
Web site is made up of four scripts, three of which construct pages that are
returned to users. The fourth script add0.sml implements the rating-insert
transaction for inserting a rating in the rating table.

The next section describes the implementation of each of the SMLserver
scripts.

78 CHAPTER 7. CONNECTING TO AN RDBMS

i ndex. smi
Best Wines
Pomerol — ***** rateit. <—\
Margaux = **** rateit dd0. s
Ratenew: [1[]
wi ne. sni y/ / add. sni
Pomerol, 1997 Comment:

M. Elsman =#+2% - Great Name []
Halenberg **** Good .

Email: L 1

Back to Best Wines Rating: L]

Figure 7.5: Web site diagram for the Best Wine Web site.

Implementation of SMLserver Scripts

The cripts index.sml, wine.sml, add.sml, and add0.sml make use of func-
tionality provided in a structure RatingUtil. We shall not present the struc-
ture RatingUtil here, but only show its signature:p

signature RATING_UTIL =
sig
(* [returnPage title body] returns page to browser. *)
val returnPage : string -> string frag list -> Ns.status

(* [returnPageWithTitle title body] returns page
* to browser with title as hl-header. *)
val returnPageWithTitle :

string -> string frag list -> Ns.status

(* [bottleImgs n] returns html code for
* n bottle images. *)
val bottleImgs : int -> string

9File smlserver_demo/demo_lib/RatingUtil.sml.

7.7. BEST WINES WEB SITE 79

(* [mailto email name] returns mailto anchor. *)
val mailto : string -> string -> string
end

The SMLserver scripts also make use of the structure FormVar presented in

Chapter

The script wine.sml

The script wine.sml lists user comments for a specific wine. The script
assumes a form variable wid that denotes the wine. The script uses the
Db.fold function (see page 70)) to construct a page with the comments as-
sociated with the specific wine. The page is returned to the user using the
RatingUtil.returnPageWithTitle function. Here is the listing of the script
Wine.smlﬂg

(* Present comments and ratings for a specific wine *)
val wid = FormVar.wrapFail FormVar.getNatErr
("wid","internal number")

val query =
‘select comments, fullname, email, rating
from rating
where wid = “(Int.toString wid)‘

val lines = Db.fold
(fn (g,r) =>
let val rating =
case Int.fromString (g "rating") of
SOME i => 1
| NONE => raise Fail "Rating not integer"
in
‘<tr><th> ~(RatingUtil.bottleImgs rating)
<td> ~(g "comments")
<td> “(RatingUtil.mailto (g "email") (g "fullname"))

¢

end "7 1) query

10File smlserver_demo/www/demo/rating/wine.sml.

80 CHAPTER 7. CONNECTING TO AN RDBMS

B : S itit . =)=l

File Edit View Go Communicator Help
'} § " Bookmarks .&. Location: }Attp:,f‘,s"daffy. it-c. dk: 8080 /demo /rating /wine. sul J’lﬁ‘ What's Related

Ratings - Chateauneuf du Pape - Cellier des Princes

Comment | Rater

I -
717 Y Sy

Back to Best Wines

Sanved by SMiserver

Figure 7.6: The Best Wines comment page.

val body =
‘<table width=95%, bgcolor="#dddddd" border=1>
<tr><th>Rating<th>Comment<th>Rater‘ ~~ lines ~~
‘</table>
<p>Back to Best Wines‘

val name = Db.oneField
‘select name from wine
where wid = ~(Int.toString wid)‘

val _ = RatingUtil.returnPageWithTitle
("Ratings - " ~ name) body

The result of a user requesting the script wine.sml with the form variable
wid set to 1 is shown in Figure 7.6, The function RatingUtil.mailto is
used to present the name of the raters as mailto-anchors.

7.7. BEST WINES WEB SITE 81

The script add.sml

The script add.sml assumes either (1) the presence of a form variable wid
or (2) the presence of form variables name and year. In case of (1), the name
and year of the wine are obtained using simple select commands. In case
of (2), it is checked, also using a select command, whether a wine with
the given name and year is present in the wine table already; if not, a new
wine is inserted in the wine table. Thus, before a rating form is returned to
the user, the wine to be rated will be present in the wine table. Here is the
listing of the script add. sm11!

structure FV = FormVar
val (wid, name, year) =
case FV.wrapOpt FV.getNatErr "wid" of
SOME wid => (* get name and year)
let val wid = Int.toString wid
val query =
‘select name, year from wine
where wid = “wid‘
in case Db.oneRow query of
[name,year] => (wid, name, year)
| _ => raise Fail "add.sml"
end
| NONE =>
let val name = FV.wrapFail
FV.getStringErr ("name","name of wine")
val year = FV.wrapFail
(FV.getIntRangeErr 1 3000)

("year", "year of wine")
val year = Int.toString year
val query = ‘select wid from wine
where name = ~(Db.qqq name)
and year = ~(Db.qqq year) ¢

in
case Db.zeroOrOneRow query of
SOME [wid] => (wid, name, year)
| _ => (x get fresh wid from RDBMS *)

File smlserver_demo/www/demo/rating/add.sml.

82 CHAPTER 7. CONNECTING TO AN RDBMS

let val wid = Int.toString
(Db.seqNextval "wid_sequence")
val _ = Db.dml
‘insert into wine (wid, name, year)
values (“wid,
~(Db.qqq name),
“(Db.qqq year))
in (wid, name, year)
end
end

(* return forms to the user... *)
val _ =
RatingUtil.returnPageWithTitle
("Your comments to ‘" ~ name "~ " - year
‘<form action=add0.sml>
<input type=hidden name=wid value="wid>
<textarea rows=5 cols=40 name=comment></textarea>

Email:
<input type=text name=email size=30>

Name :
<input type=text name=fullname size=30>

Rate (between O and 6):
<input type=text name=rating size=2>
<input type=submit value="Rate it">
<p>Back to Best Wines
</form>°

n - year -~ I|))|l)

A rating form for the wine “Margaux - Chateau de Lamouroux” is shown in
Figure 7.7.

The script add0.sml

The script add0.sml implements the rating-insert transaction. Here is the
listing of the scriptm

structure FV = FormVar

12File smlserver_demo/www/demo/rating/addo.sml.

7.7. BEST WINES WEB SITE 83

FIefeEape VoUF Comments 10 “RAargat - Chataa de Lamotra - Jear 1968~

[http: //daffy. it-c. di:8080/demo rating/add. sul nsne-Nargauss—+Chatesu /| @

Your comments to “Margaux - Chateau de Lamouroux - year 1988"

Great wine

Emalil: Ij_mneit.adu

Name: lhﬁrt in Elsman

Rate (between 0 and 6): |5

Back to Best Wines

Served by SMisenver

Figure 7.7: The wine rating form. Users are asked to provide ratings between
0 and 6.

84 CHAPTER 7. CONNECTING TO AN RDBMS

val comment = FV.wrapFail FV.getStringkrr
"comment", "comment")
val fullname = FV.wrapFail FV.getStringErr
("fullname", "fullname")
val email = FV.wrapFail FV.getStringErr
"email", "email")
val wid = Int.toString(FV.wrapFail FV.getNatErr
("wid","internal number"))
val rating =
Int.toString(FV.wrapFail (FV.getIntRangeErr 0 6)
("rating","rating"))

val _ = Db.dml
‘insert into rating (wid, comments, fullname,
email, rating)
values (“wid, ~(Db.qqq comment), ~(Db.qqq fullname),
“(Db.qqq email), “rating)‘

val _ = Ns.returnRedirect "index.sml"

The form variable functions provided in the FormVar structure are used to
return error messages to the user in case a form variable is not present in the
request or in case its content is ill-formed.

The function Ns.returnRedirect is used to redirect the user to the Best
Wines main page after the insert transaction is executed.

The script index.sml

The script index.sml implements the Best Wines main page. It presents the
rated wines, listing the wine with the highest average rate first. Here is the
script index.sml:'3

(* the complex query that calculates the scores *)
val query =
‘select wine.wid, name, year,
avg(rating) as average,
count (*) as ratings

13File smlserver_demo/www/demo/rating/index.sml.

7.7. BEST WINES WEB SITE 85

from wine, rating

where wine.wid = rating.wid

group by wine.wid, name, year
order by average desc, name, year®

fun formatRow (g, acc) =
let val avg = g "average"
val avglnt =
case Int.fromString avg of
SOME i => i
| NONE => case Real.fromString avg of
SOME r => floor r
| NONE => raise Fail "Error in formatRow"
val wid = g "wid"
in acc 77
‘<tr><td>" (g "name")
(year ~(g "year"))
<th> ~(RatingUtil.bottleImgs avglnt)
<td align=center>"(g "ratings")
<td>rate it</tr>‘
end

val _ = RatingUtil.returnPageWithTitle "Best Wines"
(‘<table width=95% bgcolor="#dddddd" border=1>
<tr><th>Wine<th>Average Score (out of 6)
<th>Ratings<th> ‘ ~~

(Db.fold formatRow ‘‘ query) ~~
‘</table>
<form action=add.sml>
<h2>Rate new wine - type its name and year</h2>
Name:<input type=text name=name size=30>
Year:<input type=text name=year size=4>
<input type=submit value="Rate it...">
</form>*)

The implementation uses the function RatingUtil.bottleImgs to generate
HTML code for showing a number of bottle images. The result of presenting
the Best Wines main page to a user is shown in Figure 7.8.

86 CHAPTER 7. CONNECTING TO AN RDBMS

ttp :"f,"dlffy. it-c. dik: 8080/ demo/rating/index. sml

Best Wines
Wine Average Score (out of §) Ratings

S T
— T

=

Rate new wine - type its name and year

Name: Vear:|

Sernved by SMisenver

Figure 7.8: The main page for the Best Wine Web site.

Chapter 8

Checking Form Variables

Checking form variables is an important part of implementing a secure and
stable Web site, but it is often a tedious job, because the same kind of code is
written in all scripts that verify form variables. The FormVar module, which
we present in this chapter, overcomes the tedious part by defining several
functions, which may be used to test form variables consistently throughout
a large system.

8.1 The Structure FormVar

The idea is to define a set of functions corresponding to each type of value
used in forms. Each function is defined to access values contained in form
variables of the particular type. For instance, a function is defined for ac-
cessing all possible email addresses in a form variable. In case the given form
variable does not contain a valid email address, errors are accumulated and
may be presented to the user when all form variables have been checked. To
deal with error accumulation properly, each function takes three arguments:

1. The name of the form-variable holding the value

2. The name of the field in the form; the user may be presented with an
error page with more than one error and it is important that the error
message refers to a particular field in the form

3. An accumulator of type errs, used to hold the error messages sent
back to the user

87

88 CHAPTER 8. CHECKING FORM VARIABLES

The functions are named FormVar.getTErr, where T ranges over possi-
ble form types. In each script, when all form variables have been checked
using calls to particular FormVar.getTErr functions, a call to a function
FormVar.anyErrors returns an error page if any errors occurred and other-
wise proceeds with the remainder of the script. If an error page is returned,
the script is terminated.

An excerpt of the FormVar interface! is given in Figure 8.1. The type
formvar_fn represents the type of functions used to check form variables.
For instance, the function getIntErr has type int formvar_fn, which is
identical to the type

string * string * errs -> int * errs

If it is not desirable to return an error page, the programmer may use one of
the following wrapper functions to obtain appropriate behavior:

Wrapper function Description

FormVar.wrapOpt Returns SOME(v) on success, where v is the
form value; returns NONE, otherwise
FormVar.wrapExn Raises exception FormVar on error

FormVar.wrapFail On failure, a page is returned. The differ-
ence from the getTErr functions is that with
wrapFail only one error is presented to the
user

Many of the examples in this document make use of the FormVar wrapper
functions in combination with the getTErr functions. The Currency Service
described in Section [6.7 on page 56 is a good example.

8.2 Presenting Multiple Form Errors

We now turn to an example that uses the multi-error functionality of the
FormVar structure. The example constitutes a simple email service built from
two scripts, one that presents a form to the user (mail_form.sml) and one
that sends an email constructed on the basis of the form content contributed
by the user (mail.sml). The script mail_form.sml looks as follows:?

1File smlserver_demo/demo_lib/FormVar.sml.
2File smlserver_demo/www/demo/mail_form.sml.

8.2. PRESENTING MULTIPLE FORM ERRORS 89

structure FormVar :
sig

exception FormVar of string

type errs
type ’a formvar_fn

val emptyErr
val addErr
val anyErrors

val getIntErr
val getNatErr
val getRealErr
val getStringErr

val getIntRangeErr :

val getEmailErr
val getUrlErr
val getEnumErr

string * string * errs -> ’a * errs

errs
Quot.quot * errs —-> errs
errs -> unit

int formvar_fn
int formvar_fn

: real formvar_f£fn

string formvar_fn

int -> int -> int formvar_fn
string formvar_fn

string formvar_fn

string list -> string formvar_fn

val wrapOpt : ’a formvar_fn -> (string -> ’a option)

val wrapExn : ’a formvar_fn -> (string -> ’a)

val wrapFail : ’a formvar_fn -> (string * string -> ’a)
end

Figure 8.1: The signature of the FormVar structure (excerpt).

90 CHAPTER 8. CHECKING FORM VARIABLES

Page.return "Send an email"
‘<form action=mail.sml method=post>
<table>
<tr><th align=left>To:</th><td align=right>
<input type=text name=to></td></tr>
<tr><th align=left>From:</th><td align=right>
<input type=text name=from></td></tr>
<tr><th align=left>Subject:</th><td align=right>
<input type=text name=subject></td></tr>
<tr><td colspan=2><textarea name=body cols=40
rows=10>Fill in...</textarea></td></tr>
<tr><td colspan=2 align=center>
<input type=submit value="Send Email"></td></tr>
</table>
</form>°

The action of the form is the script mail.sml. When the user presses the
“Send Email” submit button, the script mail.sml is executed with the form
variables to, from, subject, and body set to the values contributed by the
user. Here is the script mail.sml:®

structure FV = FormVar

FV.getEmailErr ("to", "To", FV.emptyErr)
FV.getEmailErr ("from", "From", errs)

val (subj,errs) = FV.getStringErr ("subject", "Subject", errs)
val (body,errs) = FV.getStringErr ("body", "Body", errs)

val () = FV.anyErrors errs

val (to,errs)
val (from,errs)

val _ = Ns.Mail.send {to=to, from=from,
subject=subj, body=body}
val _ = Page.return "Email has been sent"

‘Email with subject "“subject" has been sent to “to.<p>
Send another?°¢

Notice the use of the function anyErrors from the FormVar structure; if there
are no errors in the form data, execution proceeds by sending an email using

3File smlserver_demo/www/demo/mail.sml.

8.3. IMPLEMENTATION 91

[FoH Ener . =lalx)
File Edit View Go Communicator Help
| " Bookmarks & Location: eep //daffy it-c dk 8080/demo/mail snl /| Q)" What's Related

Form Error

‘e had a problem processing your entry:
* Error in field From. You must provide a valid emall - fose @sard@as is not one
A few examples of valid emails:
O login@it-c.dk
O user@supemet.com
< FirstLastname@very.big.compary.com
* Error in field Subject. “You must provide a valid string.

Please back up using your browser, correct the form, and resubmit your entry.

Thank you.

Served by SALsener

o [0% | 48 N aP @ N2

Figure 8.2: When a user submits the email form with invalid entries, such
as an invalid email address and an empty subject field, the user is presented
with an error page that summarizes all errors.

the Ns.Mail.send function and a message saying that the email has been
sent is presented to the user with the Page.return function. Otherwise,
if one or more errors were found analyzing the form data, an error page is
presented to the user; the result of a user submitting the mail form with an
invalid “From” field and an empty “Subject” field is shown in Figure [8.2.
For another example of using the multi-error functionality of the FormVar
structure, see the file smlserver_demo/www/demo/formvar_chk.sml.

8.3 Implementation

The FormVar structure is based on the function Ns.Conn.formvar, which
provides a more primitive way of accessing form variables submitted with a
request. The function Ns.Conn.formvar has type string->string option

92 CHAPTER 8. CHECKING FORM VARIABLES

and returns the query data associated with the connection and the argument
key, if available.*

In addition to the use of the Ns.Conn.formvar function, the implemen-
tation of the FormVar structure also makes use of regular expressions (see
Section 6.2).

4A function Ns.Conn.formvarAll with type string->string list makes it possible
to access all values bound to a particular form variable.

Chapter 9

Authentication

Dynamic Web sites often make use of an authentication mechanism that
provides some form of weak identification of users. The traditional authen-
tication mechanism allows users of a Web site to login to the Web site, by
providing an email address (or some user name) and a password. There are
several reasons for adding an authentication mechanism to a Web site:

e Access restriction. If some information is available to only some users,
a mechanism is necessary to hide the restricted information from un-
privileged users.

e User contributions. If users are allowed to contribute content on the
Web site, it must be possible for the system to (weakly) identify the
user so as to avoid spam content. Also, the user that contributes with
the content, and only that user, should perhaps be allowed to modify
or delete the contributed content.

e Personalization. Different users of a Web site have different needs and
different preferences concerning page layout, and so on. By adding
personalization to a Web site, there is a chance of satisfying more users.

e User tracking. A particular user’s history on a Web site may be of
great value, perhaps for an administrator to see what content the user
has seen when answering questions asked by the user. For an in-depth
discussion about what a user tracking system may be used for, consult
[Gre99.

93

94 CHAPTER 9. AUTHENTICATION

e User transactions. If the Web site is an e-commerce site, for instance, a
secure authentication mechanism, perhaps based on SSL (Secure Socket
Layer), is necessary to allow a user to perform certain transactions. (See
Appendix|C for information on setting up SSL with SMLserver.)

In this chapter we present a simple authentication mechanism, based on
cookies (see the next section) and on a user table stored in a database. The
authentication mechanism makes it possible for users to have a machine-
generated password sent by email. Hereafter, users may login to the Web
site using their email address and the newly obtained password. The au-
thentication mechanism also provides functionality for users to logout, but
the main feature of the authentication mechanism is a simple programmer’s
interface for checking whether a user is logged in or not. It is straightforward
to add more sophisticated features to the authentication mechanism, such as
a permission system for controlling which users may do what.

9.1 Feeding Cookies to Clients

Cookies provide a general mechanism for a Web service to store and retrieve
persistent information on the client side of a connection. In response to an
HTTP request, a server may include a number of cookies in the header part
of the response. The cookies are installed on the client (e.g., Netscape and
Internet Explorer) and are automatically sent back to the Web server in later
requests to the Web service.

Although a client sends a cookie back only to the Web service that issues
the cookie, one cannot count on cookies to be a secure mechanism for trans-
ferring data between a Web service and its clients. As is the case with form
data, cookies are transmitted in clear text, unless some encryption mecha-
nism, such as SSL (Secure Socket Layer), is used. There are other problems
with cookies. Because they are often stored locally on client computers,
other users that have access to the computer may have access to the cookie
information (Windows 98). Also, most client Web browsers support only a
limited number of cookies, so if a Web service sends a cookie to a browser,
then it is uncertain for how long time the cookie remains on the client.

Despite the problems with cookies, it is difficult to build a useful authen-
tication mechanism without the use of cookies. In particular, authentication
mechanisms entirely based on form variables require a user to login to the

9.1. FEEDING COOKIES TO CLIENTS 95

Web site whenever the user visits the site. Also of importance is that authen-
tication mechanisms entirely based on form variables require more tedious
programming than when cookies are used, because authentication informa-
tion is required on all links and form actions.

SMLserver implements the following Cookie interface:

structure Cookie :

sig
exception CookieError of string
type cookiedata = {name : string,
value : string,
expiry : Date.date option,
domain : string option,
path : string option,
secure : bool}
val allCookies : unit -> (string * string) list
val getCookie : string -> (string * string) option

val getCookieValue : string -> string option

val setCookie : cookiedata -> string

val setCookies : cookiedata list —-> string

val deleteCookie : {name : string, path : string option}
-> string

end

The function setCookie returns a cookie formatted string to be included
in the header part of an HTTP response (instructing the client to store the
cookie). The function takes as argument a record with cookie attributes. The
name and value attributes are mandatory strings, which are URL encoded
so that it is possible to include characters other than letters and digits in the
strings. The function raises the exception CookieError if the name or value
attribute contains the empty string. The function setCookies generalizes
the setCookie function by taking a list of cookies as argument.

The expiry attribute is a date that defines the life time of the cookie.
The cookie is removed from the browser when the expiration date is reachedﬁ

!The date string format used in cookies is of the form Wdy, DD-Mon-YYYY HH:MM:SS
GMT.

96 CHAPTER 9. AUTHENTICATION

The life time of a cookie with no expiry attribute is the user’s session only.
A cookie may be removed from a client by specifying an expiration date in
the past (or by using the function deleteCookie). To generate an expiration
date that lasts in 60 seconds from the present time, the following Standard
ML code may be used:

let open Time
in Date.fromTimeUniv(now() + fromSeconds 60)
end

Notice that the symbolic identifier + in the expression above refers to the
identifier Time.+, which has type Time.time * Time.time -> Time.time.

9.2 Obtaining Cookies from Clients

When a user requests a URL, the user’s browser searches for cookies to
include in the request. The cookie’s domain attribute is compared against
the Internet domain name of the host being requested. The cookie is included
in the request if there is a tail match and a path match according the the
definitions below.

A tail match occurs if the cookie’s domain attribute matches the tail
of the fully qualified domain name of the requested host. So for instance,
a domain attribute “it.edu” matches the host names “www.it.edu” and
“adm.it.edu”. Only hosts within the specified domain may set a cookie for
a domain and domains must have at least two periods (.) in them to prevent
matching domains of the form “.com” and “.edu”. The default value of the
domain attribute is the host name of the server that generates the cookie.

A path match occurs if the pathname component of the requested URL
matches the path attribute of the cookie. For example, there is a path match
if the pathname component of the requested URL is /foo/bar.html and the
cookie’s path attribute is /foo. There is no path match if the pathname
component of the requested URL is index.html and the cookie’s path at-
tribute is /foo. The default path attribute is the pathname component of
the document being described by the header containing the cookie.

A cookie containing the secure attribute is transmitted on secure chan-
nels only (e.g., HT'TPS requests using SSL). Without the secure attribute,
the cookie is sent in clear text on insecure channels (e.g., HTTP requests).

9.3. COOKIE EXAMPLE 97

The functions allCookies, getCookie, and getCookieValue may be
used to access cookies and their values. The cookie name and value are
URL decoded by the functions.

If SMLserver fails to read the cookies transmitted from a browser, the
exception CookieError is raised. This error indicates an error on the browser
side.

9.3 Cookie Example

To demonstrate the cookie interface, we present a simple cookie example con-
sisting of three scripts cookie.sml, cookie_set.sml, and cookie_delete.sml.
The entry page is implemented by the cookie.sml script. It shows all
cookies received in the header of the request and displays two forms; one for
adding cookies and one for removing cookies. Figure 9.1 shows the result of
a user requesting the file cookie.sml.
The code for listing all cookies uses the function Ns.Cookie.allCookies:

val cookies =
foldl (fn ((n,v),a) => ‘<1i> "n : "v ¢ °~ a)
¢ (Ns.Cookie.allCookies())

Notice that the use of quotations in the application of foldl ensures that
the HTML list is built efficiently, without the use of string concatenation.
The action of the “Set Cookie” form is the script cookie_set.sml, which
returns a redirect to the cookie.sml script, with a cookie included in the
response header. The redirect is implemented using the function Ns.write:?

structure FV = FormVar

val cv = case FV.wrapOpt FV.getStringErr "cookie_value"
of NONE => "No Cookie Value Specified"
| SOME cv => cv
val cn = case FV.wrapOpt FV.getStringErr "cookie_name"

of NONE => "CookieName"
| SOME cn => cn

2File smlserver_demo/www/demo/cookie_set.sml.

98 CHAPTER 9. AUTHENTICATION

File Edt View Go Communicator Help
| b " Bookmarks & Location: heep - //daffy it-c dk 8080/demo/cookie snl | 5" Whats Related

FEREE I NEEEEE)
Cookie Example

® ooz : har2
® fool: barl

Cookies may be added to the list above using the “Set Cookie” form. The name and value attributes
are mandatory and are sequences of characters. The character sequences are automatically
URL-encoded, thus it is legal to include semi-colon, comma, and white space in both name and
value.

A cookie is removed from the browser when the expiration date is reached. The life time of a cookie
with no expiry attribute is the user’s session. Life times are given in seconds; the program computes
an expiration date based on the current time and the specified life time. A cookie may be removed by
specifying a negative life time or by using the “Delete Cookie™ farm.

A cookie may be specified to be secure, which means that the cookie is transmitied on secure
channels only (e.g., HTTPS reguests using SSL). A value of "MNo" means that the cookie is sent in
clear text on insecure channels {e.g, HT TP requests).

MName Value Life Time Secure

[_?foo rga-ar) [Esn Mo — | | SetCookie|
Mame

|foo . ‘ Delete Cookie|
Served by SMLsaner

Figure 9.1: The result of a user requesting the file cookie.sml with two
cookies fool and foo2.

9.3. COOKIE EXAMPLE 99

val clt = case FV.wrapOpt FV.getIntErr "cookie_1lt"
of NONE => 60
| SOME clt => clt

val cs = case FV.wrapOpt FV.getStringErr "cookie_secure"
of SOME "Yes" => true
| _ => false

val expiry = let open Time Date
in fromTimeUniv(now() + fromSeconds clt)

end

val cookie Ns.Cookie.setCookie
{name=cn, value=cv, expiry=SOME expiry,

domain=NONE, path=SOME "/", secure=cs}

val _ = Ns.write

‘HTTP/1.0 302 Found
Location: /demo/cookie.sml
MIME-Version: 1.0

“cookie

You should not be seeing this!‘

The variables cn, cv, cs, and clt contain the form values received from the
first entry form in the page returned by the cookie.sml script. Because
HTTP with status code 302 is returned, the content following the HTTP
headers is ignored.
'Theacﬁon(ﬁthe‘TkﬂeﬂeCookm”fonnisthescﬂptcookie_delete.smlﬁ

val cn =
case FormVar.wrapOpt FormVar.getStringErr "cookie_name"
of NONE => "CookieName"
| SOME cn => cn

val _ = Ns.write
‘HTTP/1.0 302 Found

3File smlserver_demo/www/demo/cookie_delete.sml.

100 CHAPTER 9. AUTHENTICATION

Location: /demo/cookie.sml
MIME-Version: 1.0
~(Ns.Cookie.deleteCookie{name=cn,path=SOME "/"})

You should not be seeing this!‘

The cookie name cn is the value received from the second entry form in the
page returned by the cookie.sml script.

9.4 Storing User Information

The authentication mechanism presented below makes use of information
about users stored in a person table in a database (see Chapter [7). The
SQL for creating the person table looks as follows:*

create table person (
person_id int primary key,
password varchar(100) not null,
email varchar(20) unique not null,
name varchar(100) not null,
url varchar (200)

)

Each person in the table is uniquely identified by a number person_id.
Moreover, it is enforced by a consistency constraint that no two persons
have the same email address. The name and url columns provide additional
information about a user and the password column holds passwords that are
compared to the passwords entered when users login.

An SQL sequence person_seq is used for creating unique person_id
numbers, dynamically. Two people are inserted in the table by default:

create sequence person_seq start 3;

insert into person (person_id, password, email, name, url)
values (1, ’Martin’, ’mael@it.edu’, ’Martin Elsman’,
"http://www.dina.kvl.dk/"mael’);

4File smlserver_demo/demo_lib/pgsql/person.sql.

9.5. THE AUTHENTICATION MECHANISM 101

insert into person (person_id, password, email, name, url)
values (2, ’Niels’, ’nh@it.edu’, ’Niels Hallenberg’,
‘http://www.it.edu/"nh’);

Now that the table for storing user information is in place, it is possible to
describe the authentication mechanism in detail.

9.5 The Authentication Mechanism

The authentication mechanism is implemented by a library structure Auth
and a series of SMLserver scripts for managing the issuing of passwords,
sending passwords to users, serving login forms to users, and so ont?

e auth_form.sml. Serves a “Login form” to users

e auth.sml. Processes the “Login form” submitted by a user; stores a
cookie containing person_id and password (the password entered in
the form, that is) on the client browser

e auth_logout.sml. Stores a cookie on the client browser with an expi-
ration date in the past; redirects to a predefined index page

e auth_new_form.sml. Serves a “Registration form” to users, querying
the user for email address, name, and home page address

e auth_new.sml. Processes the “Registration form” submitted by a user;
creates a password and a unique person_id for the user and enters a
column for the user in the person table; sends an email to the user
with the newly created password and serves a page with instructions
that an email with a password is available in the user’s mail-box

e auth_send_form.sml. Serves a form to the user, asking for an email
address

e auth_send.sml. Processes the form served by the auth_send_form.sml
script; sends an email to the entered email address with the correspond-
ing password

The three forms are shown in Figure(9.2. The library structure Auth provides

5We do not present the sources for these SMLserver scripts here; the interested reader
may find all sources in the directory smlserver_demo/www/demo/.

102

CHAPTER 9. AUTHENTICATION

Flatseape Togm fo Srilserfars

Login to SMLserver.org
Enter your email address and password.

. |

Password I

If you're not alreacly a member, you may
register by filling out a form.

You may obtain your passwaord by email

Tletecape: Obfain Passwnrd by T WIEILT

Obtain Password by Email
Submit your email address below,

address L

‘ Send me rmy Password |

Enter your email address, name, and home page address.

Email address |]

Mame

Home Page URL |

HﬂﬂiEilfl

YWhen you register, a password is sent to you by email

Served by SMLsaner

Figure 9.2: The three different forms presented by the authentication mech-
anism. The forms correspond to the SMLserver scripts auth_form.sml,
auth_send_form.sml, and auth_new_form.sml, respectively.

9.5. THE AUTHENTICATION MECHANISM 103

functionality for checking whether a user is logged in (functions verifyPerson
and isLoggedIn), for issuing passwords (function newPassword), and so oni®

structure Auth :

sig
type person_id = int
val loginPage : string
val defaultHome : string
val siteName : string
val verifyPerson : unit -> person_id option
val isLoggedIn : unit -> bool
val newPassword : int -> string
val sendPassword : person_id -> unit
end

The function newPassword takes as argument an integer n and generates
a new password constructed from n characters chosen randomly from the
character set {a...zA...Z2...9}\ {loO}.

The function sendPassword takes a person_id as argument and sends
an email with the user’s password to the user. The three strings loginPage,
defaultHome, and siteName are configuration strings that default to the
login page provided by the authentication mechanism, the default page that
the user is forwarded to once logged in, and the name of the Web site.

The function verifyPerson returns SOME(p) if the user (1) is logged in,
and (2) is identified by the person_id p; otherwise the function returns NONE.
The implementation of the function checks if cookie values auth_person_id
and auth_password are available, and if so, proceeds by checking that the
password in the database is identical with the password in the cookie. For
reasons having to do with caching of passwords (Section(9.6), we define a func-
tion verifyPerson0, which the function verifyPerson calls with a function
for extracting a password for a user from the database:

fun verifyPerson0 (getPasswd: string -> string option)
: person_id option =
(case (Ns.Cookie.getCookieValue "auth_person_id",
Ns.Cookie.getCookieValue "auth_password")
of (SOME person_id, SOME psw) =>

6File smlserver_demo/demo_lib/Auth.sml.

104 CHAPTER 9. AUTHENTICATION

(case getPasswd person_id
of NONE => NONE
| SOME db_psw =>
if db_psw = psw then Int.fromString person_id
else NONE
)
| _ => NONE
) handle Ns.Cookie.CookieError _ => NONE
fun verifyPerson() =
verifyPerson0 (fn p => Db.zeroOrOneField
‘select password from person
where person_id = “p*)

9.6 Caching Passwords for Efficiency

It is unsatisfactory that a Web site needs to query the database for password
information every time a user accesses a restricted page. The solution is
to use the SMLserver caching mechanism to avoid looking up passwords for
users that have been accessing the Web site within the last 10 minutes (600
seconds).

To implement this idea, all that is needed is to modify the function
verifyPerson as follows

fun verifyPerson() =
let fun f p = case Db.zeroOrOneField
‘select password from person

where person_id = “p°¢
of SOME pw => pw
| NONE => ""
fun g p =
case Ns.Cache.cacheWhileUsed (f, "auth", 600) p
of "" => NONE

| pw => SOME pw
in verifyPerson0O g
end

9.7. APPLYING THE AUTHENTICATION MECHANISM 105

For a discussion of the function Ns.Cache.cacheWhileUsed, see Section 6.6.

Note that if we were to implement scripts that allow users to modify their
passwords, we would, of course, need to overwrite the cache appropriately
when users modify their passwords. This overwriting may be implemented
using a combination of the functions Ns.Cache.findTm and Ns.Cache. set,
presented in Section 6.6 on page[53.

9.7 Applying the Authentication Mechanism

We shall now see how a Web site may apply the authentication mechanism
to restrict the transactions and content available to a particular user. The
example application that we present serves as a link database to keep track
of Web sites developed with SMLserver. The idea is that all visitors of the
Web site have access to browse the list of Web sites submitted by SMLserver
users. At the same time, only registered users can add new Web sites to the
list or delete entries that they have previously entered.

The first step in the design is to define a data model that extends the data
model for the authentication mechanism (the person table). The following
definition of the table 1ink serves the purpose@

create table link (
link_id int primary key,
person_id int references person not null,
url varchar(200) not null,
text varchar(200)
)

Each link in the table is identified with a unique link_id and each link is
associated with a person in the person table. The two columns url and
text constitute the link information provided by a user.

The next step in the development is to define a Web site diagram for the
link database Web site. Such a Web site diagram is pictured in Figure 9.3,
which also pictures the scripts for the authentication mechanism. The fig-
ure shows a diagram with all SMLserver scripts for the Web site. Scripts
that present forms are pictured as boxes whereas scripts that function as
transactions on the database (or have other effects, such as sending emails)

"File smlserver_demo/demo_lib/pgsql/link.sql.

106 CHAPTER 9. AUTHENTICATION

> aut h_send. sm

aut h_new_form sm

|

aut h_form sni

auth_send_form sm

emai | L1 emai | L 1 .
name [] passwd [] emil []
honmepg [1 .
~— | register send |—
,,,,,,,,,,,,,,,,,,,,,,, auth. sm aut h_| ogout . snl
| 1 /
I'i nk/ add_f orm sni '+ |link/index.smn
! server artin
text 1 3 VoteAboutlt Martin delete
l'i nk/ add. sm 41 T— I'i nk/ del ete.sm

Figure 9.3: Web site diagram for the link database. SMLserver scripts pic-
tured under the dashed line are restricted to users that are logged in; the
other SMLserver scripts are accessible for all visitors.

9.7. APPLYING THE AUTHENTICATION MECHANISM 107

are pictured by their name. As a side remark, we add that a user should
have access to delete only those Web site entries that the particular user has
added.

Now that the Web site diagram for the link database is in place, we are
ready to provide implementations for the scripts in the diagram. In the fol-
lowing, we present two of the involved scripts, link/index.sml, which shows
user-submitted links, and 1ink/delete.sml, which deletes a link submitted
kgfthet$eﬂ§'Thescruﬁ:link/index.sml,“dﬂchisthernostinvohmxlofthe
scripts, is implemented as follows:?

val person = Auth.verifyPerson()

val query =
‘select person.person_id, person.name, link_id,
person.url as purl, link.url, link.text
from person, link
where person.person_id = link.person_id*

fun delete g =
if Int.fromString (g "person_id") = person
then
¢ delete‘

else ‘¢

fun layoutRow (g, acc) =
‘<table width=1007% cellspacing=0 cellpadding=0
border=0><tr>
<td width=50%> (g "text")
<td>added by "(g "name")
<td align=right>‘ °~ delete g "~
‘</tr></table>‘ "~ acc

val loginout =
case person
of NONE =>

‘To manage links that you have entered, please

8The directory smlserver_demo/www/demo/1link/ holds all involved scripts.
9File smlserver_demo/www/link/index.sml.

108 CHAPTER 9. AUTHENTICATION

login. ‘¢

| SOME p =>
let val name = Db.oneField

‘select name from person

where person_id = ~(Int.toString p)°
in ‘You are logged in as user “name - you may

logout.°‘

end

val list = Db.fold layoutRow ‘‘ query

val _ =
Page.return "Web sites that use SMLserver"
(loginout ~°~ ‘‘ °~ list ~°~

‘<p>Add Web site‘)

The script uses the function Auth.verifyPerson to present delete links for
those Web site entries that a user is responsible for. Moreover, if a user is
already logged in, a “Logout” button is presented to the user, whereas a
“Login” button is presented if the user is not logged in. The result of a user
requesting the file is shown in Figure 9.4.

The script 1ink/delete.sml is implemented by the following Standard
ML codeﬂﬂ

val person_id =
case Auth.verifyPerson()
of SOME p => p
| NONE => (Ns.returnRedirect Auth.loginPage
; Ns.exit())

val link_id = FormVar.wrapFail
FormVar.getNatErr ("link_id", "Link id")

val delete =
‘delete from link
where person_id = ~(Int.toString person_id)
and link_id = “(Int.toString link_id)‘

10Fjle smlserver_demo/www/link/delete.sml.

9.7. APPLYING THE AUTHENTICATION MECHANISM 109

==

Web-sites that use SMLserver

‘You are logged in as user Martin Elsman - you may logout.
s ‘JoteAbputitcom added by [liels Hallenberg
» Shilserver web-site added by Martin Elsman delete

Figure 9.4: The result of a user requesting the file 1ink/index.sml.

Db.dml delete
Ns.returnRedirect "index.sml"

val _
val

Notice that users that are not logged in, but somehow request the file, are
redirected to the default login page provided in the Auth structure. Also
notice that a user can delete only those links that the user is responsible for.

110 CHAPTER 9. AUTHENTICATION

Chapter 10

Summary

This book provides a tutorial overview of programming dynamic Web ap-
plications with SMLserver through the presentation of a series of examples.
Starting with the basic mechanism for serving dynamic pages to users, the
book covers topics such as achieving and validating data from users, fetching
data from foreign Web sites, interfacing to Relational Database Management
Systems (RDBMSs), and authenticating users.

SMLserver is already used for a series of real-purpose Web sites, including
an evaluation system, an alumni system, and a course registration system for
the I'T University of Copenhagen.

Experience with SMLserver demonstrates that the strict type system of
Standard ML combined with its advanced language features, such as mod-
ules and higher-order functions, ease maintainability and extensibility. If
used properly, the advanced language features make separation of code from
presentation straightforward and increase reusability of code.

The authors are currently working on a series of composable modules,
called the SMLserver Community Suite (SCS), for building customizable Web
sites with SMLserver. Modules in the suite include a module for verifying
user submitted form content based on a large set of form variable types, a
module for constructing and managing multilingual Web sites, and a generic
authentication module.

Although it is possible to create large Web sites with SMLserver, there are
currently a few features missing, which we plan to add to SMLserver soon.
Among the features missing is the possibility (using the SMLserver API)
of scheduling execution of scripts to run at a particular time in the future.
Similarly, it is currently not possible to arrange for periodic execution of

111

112 CHAPTER 10. SUMMARY

scripts using the SMLserver API.

Bibliography

[Gre99)

[HR99)]

[MTHMO97]

[Pau96]

[TBE*01]

Philip Greenspun. Philip and Alex’s Guide to Web Publishing.
Morgan Kaufmann, May 1999. 596 pages. ISBN: 1558605347.

Michael R. Hansen and Hans Rischel. Introduction to Program-
ming using SML. Addison-Wesley, 1999. ISBN 0-201-39820-6.

Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML (Revised). MIT Press,
1997.

Lawrence C Paulson. ML for the Working Programmer (2nd
Edition, ML97). Cambridge University Press, 1996. ISBN 0-
521-56543-X (paperback), 0-521-57050-6 (hardback).

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Hgjfeld Olesen, and Peter Sestoft. Programming with
regions in the ML Kit (for version 4). Technical report, IT Uni-
versity of Copenhagen and Royal Veterinary and Agricultural
University of Denmark, September 2001.

113

114 BIBLIOGRAPHY

Appendix A

A Sample Web Server
Configuration File

A sample AOLserver configuration file, to be read by AOLserver when it
starts, is given belowﬁ For a straightforwrd installation, it should be nec-
essary to change only the first two or three lines. For Postgresql support,
Postgresql and the Postgresql driver for AOLserver is assumed to be installed
on your system.

Sample AOLserver configuration file
with SMLserver and Postgresql support

set user yourlogin
set port 8080
set pg_passwd XXXX

set webdir /home/${user}/web
set nssml_so ../../smlserver/bin/nssml.so
set home /usr/share/aolserver

set host [ns_info hostname]
set bindir [file dirname [ns_info nsd]]

1File smlserver_demo/nsd.tcl.

115

116 APPENDIX A. A SAMPLE WEB SERVER CONFIGURATION FILE

ns_section "ns/mimetypes"

ns_param .wml text/vnd.wap.wml

ns_param .wbmp image/vnd.wap.wbmp

ns_param .wmls text/vnd.wap.wmlscript
ns_param .wmlc application/vnd.wap.wmlc
ns_param .wmlsc application/vnd.wap.wmlscriptc

ns_section "ns/parameters"

ns_param debug off

ns_param Home $home

ns_param serverlog ${webdir}/log/server.log
ns_param pidfile ${webdir}/log/nspid.txt
ns_param user ${user}

ns_param stacksize 500000

ns_section "ns/servers"
ns_param ${user} "${user}’s server"

ns_section "ns/server/${userl}"
ns_param directoryfile "index.sml"
ns_param pageroot ${webdirl}/www
ns_param enabletclpages off

ns_section "ns/server/${user}/module/nslog"
ns_param file ${webdir}/log/access.log

ns_section "ns/server/${user}/module/nssock"
ns_param port ${port}
ns_param hostname $host

ns_section "ns/server/${user}/module/nssml"
ns_param prjid sources

#

Database drivers

#

ns_section "ns/db/drivers"

ns_param postgres /usr/share/pgdriver/bin/postgres.so

ns_section "ns/db/pools"

ns_param
ns_param

pg_main "pg_main"
pg_sub "pg_sub"

ns_section "ns/db/pool/pg_main"

ns_param
ns_param
ns_param
ns_param
ns_param
ns_param
ns_param
ns_param

Driver postgres

Connections 5

DataSource localhost::${user}
User ${user}

Password ${pg_passwd}

Verbose 0ff

LogSQLErrors On
ExtendedTableInfo On

ns_section "ns/db/pool/pg_sub"

ns_param
ns_param
ns_param
ns_param
ns_param
ns_param
ns_param
ns_param

Driver postgres

Connections 5

DataSource localhost::${user}
User ${user}

Password ${pg_passwd}

Verbose 0ff

LogSQLErrors On
ExtendedTableInfo On

ns_section "ns/server/${user}/db"

ns_param
ns_param

Pools pg_main,pg_sub
DefaultPool "pg_main"

ns_section "ns/server/${user}/modules"

ns_param
ns_param
ns_param

nssock nssock.so
nslog nslog.so
nssml ${nssml_so}

117

118APPENDIX A. A SAMPLE WEB SERVER CONFIGURATION FILE

Appendix B

SMLserver and MySQL

If you do not have a truck load of money to buy Oracle then we recommend
Postgresql, which has become a fairly stable and reliable database server. An
example of its use is OpenACS (http://www.openacs.org), a large commu-
nity system implemented on a Postgresql database server using AOLserver.
Another option is MySQL, but SMLserver does not support MySQL as ele-
gantly as Postgresql and Oracle because MySQL does not support sequences
and transactions, and thus does not pass the ACID test (Section 7.2 on
page[61).

If you choose to use MySQL anyway, then this appendix emphasizes what
functions in the database interface NS_DB do not work with MySQL, and how

you may work around the shortcomings. Some of the functions that are not
supported for MySQL are shown in Figure [B.1.

MySQL does not support transactions. In particular, the dm1Trans func-
tion is undefined if used with MySQL.

Moreover, MySQL does not support Oracle and Postgresql style sequences,
for which there is support in the NS_DB signature (functions seqNextval,
seqNextvalExp, seqCurrvalExp and seqCurrval). Instead, MySQL has
support for an auto increment mechanism, which leaves two ways to pro-
gram sequences in MySQL. The first way uses the auto increment feature of
MySQL, with which sequence numbers are created when a row is inserted in
a table. The second way simulates the traditional Oracle sequences where a
sequence number is generated from a sequence generator and then separately
inserted in a table. In the following, we discuss the two ways in turn.

119

http://www.openacs.org

120 APPENDIX B. SMLSERVER AND MYSQL

signature NS_DB =

sig
structure Handle :
sig
val dmlTrans : (db -> ’a) -> ’a
end
val seqNextvalExp : string -> string
val segNextval : string -> int
val seqCurrvalExp : string -> string
val seqCurrval : string -> int
end

Figure B.1: Parts of the NS_DB signature.

B.1 Auto Incrementation

The traditional MySQL way of generating unique keys is quietly supported by
the function seqNextvalExp. Consider the table 1ink from the link database
exanqﬂeﬁ

create table link (
link_id int primary key auto_increment,
person_id int not null,
url varchar(200) not null,
text varchar(200)
);

The field 1ink_id is implemented in the MySQL style using the auto
increment feature. A new row is inserted in the table with the use of the
seqNextvalExp function:?

val insert =
‘insert into link (link_id, person_id, url, text)

'File smlserver_demo/demo_lib/mysql/link.sql.
2File smlserver_demo/www/demo/link/add.sml.

B.2. SEQUENCE SIMULATION 121

values (~(Db.segNextvalExp "link_seq"),
" (Int.toString Login.person_id),
~(Db.qqq url),
~(Db.qqq text))

val = Db.dml insert

The name link_seq is important for Oracle and Postgresql, which uses
explicit sequences, but is ignored when using MySQL. The function seqNextvalExp
always returns the string "null" when using MySQL, and a new number
is created by MySQL (because of the auto_increment declaration in the
create table statement).

B.2 Sequence Simulation

The traditional Oracle version with explicit sequences can be simulated with
an extra table and the function seqNextval. Consider the Best Wine Web
site, which builds on the following table deﬁnitions:@

create table wid_sequence (
seqld integer primary key auto_increment

)

create table wine (
wid integer primary key,
name varchar(100) not null,
year integer,
unique (name, year)

);

create table rating (
wid integer not null,
comments text,
fullname varchar(100),
email varchar (100),
rating integer

);

3File smlserver_demo/demo_lib/mysql/rating.sql.

122 APPENDIX B. SMLSERVER AND MYSQL

The table wid_sequence simulates a sequence generator. The numbers
generated are used in the two tables wine and rating. The following code
inserts a new wine in the wine table:*

val (wid, name, year) =

let

val wid = Int.toString (Db.seqNextval "wid_sequence")
val _ = Db.dml
‘insert into wine (wid, name, year)
values (“wid,
~(Db.qqq name),
~(Db.qqq year)) ¢
in

(wid, name, year)
end

A fresh wine identification number (wid) is generated by segNextval us-
ing the name of the table simulating sequences (wid_sequence). The func-
tion segNextval assumes that the field in table wid_sequence is named
seqld. The number generated (stored in variable wid) is then used when
inserting a row in the wine table.

The function seqCurrval seqName returns the last generated number in
table segName. The function seqCurrvalExp does not work with MySQL.

4File smlserver_demo/www/demo/rating/add.sml.

Appendix C

Securing Your Site with SSL

This appendix introduces the Secure Socket Layer (SSL). Information on
how to install SSL on AOLserver can be found at SMLserver’s home page:
http://www.smlserver.org/inst/ssl.sml.

SSL runs below the higher-level HyperText Transport Protocol (HTTP)
and on top of the lower-level Transmission Control Protocol/Internet Proto-
col (TCP/IP), see Figure|C.1l Thus, as we shall see, the use of SSL does not
show through at the Standard ML level, only at the AOLserver level.

The TCP/IP protocol controls the sending and receiving of data packets
between two computers on the Internet. The HTTP protocol uses TCP/IP to
implement the communication between Web servers and clients (browsers).
With SSL, the communication between a client and a Web server is encrypted
and the Web server is by default authenticated to the client.

SSL uses public-key encryption to establish a connection (called the SSL
Handshake) and uses symmetric key encryption after the connection is es-
tablished. Symmetric key encryption is faster than public-key encryption.
As a result of the SSL handshake, the client and the Web server agrees to
use a pair of symmetric keys (the shared secret) to encrypt future messages.

In the following we summarize the SSL Handshake assuming that RSA
Key Exchange is used (many details are left out).

1. The client sends a client_hello message containing the SSL version
number supported by the client (e.g., v2 and v3), the supported cipher
algorithms (e.g., RSA), and some randomly generated data.

2. The server responds with a server_hello message containing the SSL

123

http://www.smlserver.org/inst/ssl.sml

124 APPENDIX C. SECURING YOUR SITE WITH SSL

application layer

—\ hetwork layer

TCP/IP

Figure C.1: The SSL layer runs on top of TCP/IP that implements the
sending and receiving of data packets between two computers on the Internet.
The SSL protocol encrypts the communication.

version number supported by the server, the supported cipher algo-
rithms, and some randomly generated data.

3. The server sends its own certificate and a server_done_message
indicating that the server now waits for a client response.

4. The client verifies the server certificate (Server Authentication). The
certificate contains among others: (1) the server’s public key (pub_key),
(2) the server_name (e.g., www.company.com), (3) a validity period and
(4) information about the Certificate authority (CA) that has signed
the certificate.

5. The client sends a client_key_exchange message containing: a 48
byte pre-master secret encrypted with the public key from the server
certificate, pub_key.

6. The client computes the shared master secret. The client sends a
change_cipher_spec message to the server containing various param-
eters computed using the shared master secret. These parameters are
used by the server to decrypt future messages from the client.

7. The client sends a finished message to the server.

8. The server computes the same shared master secret based on the pre-
master secret received from the client. The server also computes various

125

parameters using the shared master secret and sends them to the client
using a change_cipher_spec message. These parameters are used by
the client to decrypt future messages from the server.

9. The server then sends a finished message to the client and the SSL
Handshake is completed.

During the SSL Handshake the client verifies the certificate received from
the server, called Server Authentication. Server Authentication is summa-
rized below:

1. The client checks that today’s date is within the validity period con-
tained in the certificate.

2. The client checks that the Certificate Author (CA) is trusted. Most
browsers trust several CAs by default.! A user may change the list of
trusted CAs. For instance, a company may choose to be its own CA.

A certificate issued by a CA says that the CA guarantees that the
server_name (www.company.com) and the public key pub_key of the
server are tied together (i.e., if the server can decrypt a message en-
crypted with pub_key, then the server has proved that it is the server
named server_name). The CA encrypts this information in the cer-
tificate with its private key. This often requires the company to mail
documents confirming the right to use the company name and that the
company owns the server_name. The CA issues a certificate only when
they have received thorough documentation. Example CAs are Verisign
(http://www.verisign.com) and Thawte (http://www.thawte.com).

3. The client checks that the CA’s public key can be used to validate the
signature in the certificate.

4. The client checks that the domain name in the certificate matches the
server_name of the Web server.

It is also possible to have clients authenticate themselves to a Web server,
but this kind of authentication, which is normally not used on the Internet

!On Netscape Communicator 4.77 a list of trusted CAs can be seen by
choosing Communicator::Tools::Security Info in the menu and then click
Certificates::Signers

http://www.verisign.com
http://www.thawte.com

126 APPENDIX C. SECURING YOUR SITE WITH SSL

(but sometimes on Intranets where the users are known), requires the use of
client certificates. SMLserver does not support client certificates.
Below is a link to related and more in-depth literature:

e The SSL Protocol, version 3.0 is described in a document provided by
Netscape, http://home.netscape.com/eng/ss13/draft302.txt.

e The Transport Layer Security protocol (TLS) which is basically SSL
version 3.0 with a few minor differences is explained in RFC2246,
http://www.ietf.org/rfc/rfc2246.txt7number=2246.

e There is an article about SSL and AOLserver at ArsDigita written by
Scott S. Goodwin who is also releasing the SSL module for AOLserver,
http://www.arsdigita.com/asj/aolserver-ssl.adp.

e A detailed introduction to SSL can be found at the iPlanet Web site,
http://docs.iplanet.com/docs/manuals/security/sslin/. The Web
site also contains a general introduction to public-key cryptography,
http://docs.iplanet.com/docs/manuals/security/pkin/index.htm.

http://home.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2246.txt?number=2246
http://www.arsdigita.com/asj/aolserver-ssl.adp
http://docs.iplanet.com/docs/manuals/security/sslin/
http://docs.iplanet.com/docs/manuals/security/pkin/index.htm

Appendix D
HTML Reference

An HTML start tag is a name included in angle-brackets like <name>, perhaps
decorated with attributes as in <name attr=arg>. An HTML end tag is a
name included in angle-brackets and pre-fixed with a slash (/) as in </name>.
An HTML element is either some text not including < and >, a start tag, or
a start tag and an end tag, with the same name, surrounding another HTML
element. Examples of HTML elements include

e <title> A small element </title>

e some text

An HTML document is composed of a single element <html> ... </html>
composed of head and body elements as follows:
<html>
<head> ... </head>
<body> ... </body>
</html>

For compatibility with older HTML documents, the <html>, <head>, and
<body> tags are optional.

A head element may include a title element—other element types are
supported as well:

<title> ... </title>

The title element specifies a document title. Notice that the title does not
appear on the document. Instead it may appear in a window bar identifying
the contents of the window. The title element is also what is used as the
title of the document when it is bookmarked in a browser.

127

128 APPENDIX D. HTML REFERENCE

D.1 Elements Supported Inside Body Element

The following sections describe elements that may be used inside the body
element of a document.

D.1.1 Text Elements

<p>
Start a new paragraph.
<pre> ... </pre>
Encloses preformatted text to be displayed as is. Preformatted text
may include embedded tags, but not all tag types are permitted.
<listing> ... </listing>
Example computer listing; embedded tags are shown as is and tabs
work.
<blockquote> ... </blockquote>

Include a section of quoted text.

D.1.2 Uniform Resource Locators

A Uniform Resource Locator (URL) is of the form
resource Type : additionallnformation

where resource Type may be file, http, telnet, or ftp (other resource types
exist as well). Each resource type relates to a specific server type, each of
which performs a unique function and thus requires different additionalln-
formation. For example, URLs with resource type http are of the form

http://host.domain : port/pathname
The colon followed by a TCP port number is optional, and is used when a

server is listening on a non-standard port; the standard port for HTTP is
port 80.

D.1. ELEMENTS SUPPORTED INSIDE BODY ELEMENT 129

D.1.3 Anchors and Hyperlinks

An anchor specifies a location in a document. A hyperlink may be used to
refer to a location in a document or to an entire document.

Specify a location anchorName in a document.

 ...
Link to location anchorName in the present document.

 ...
Link to location anchorName in document specified by URL.

 ...
Link to file or resource specified by URL.

 ...
Link to file or resource URL with form variable arguments n1=v1 ...

nn=nv, separated by &.

To be precise, the anchorName and form variable arguments included in the
name and href attributes in the examples above are part of the URL.

D.1.4 Headers

<h1> ... </h1> | Highest significant header
<h2> ... </h2>

<h3> ... </h3>

<h4> ... </h4>

<h5> ... </hb>

<h6> ... </h6> | Lowest significant header

D.1.5 Logical Styles

 ... Emphasis
 ... | Strong emphasis

130 APPENDIX D. HTML REFERENCE

D.1.6 Physical Styles

 ... Boldface

<i> ... </i> Italics

<w> ... </w> Underline

<tt> ... </tt> | Typewriter font

D.1.7 Definition Lists

<d1l>

<dt> First term

<dd> Definition of first term
<dt> Next term

<dd> Definition of next term
</d1l>

The <d1> attribute compact, which takes no argument, can be used to gen-
erate a definition list that uses less space.

D.1.8 Unordered Lists

<1li> First item in list
<1i> Next item in list

D.1.9 Ordered Lists

<1i> First item in list
<1i> Next item in list

D.1.10 Characters

&keyword;
Display a particular character identified by a special keyword. For ex-
ample the entity & specifies the ampersand (&), and the entity
&1t ; specifies the less than (<) character. Notice that the semicolon

D.2. HTML FORMS 131

following the keyword is required. A complete listing of possible key-
words are available from http://www.w3.org.

&tascii;
Display a character using its ascii code. The semicolon following the
ASCII numeric value is required.

D.2 HTML Forms

HTML forms allow documents to contain forms to be filled out by users. An
HTML form element looks like this: <form> ... </form>.

Inside a form element, the following four elements are allowed—in addi-
tion to other HTML elements:

e <input>

e <select> ... </select>

e <option>

e <textarea> ... </textarea>

A document may contain multiple form elements, but form elements may
not be nested. Attributes to the form elements include:

action="URL":
Specifies the location of the program to process the form.

method="datakzchangeMethod"
The method chosen to exchange data between the client and the pro-

gram to process the form: The most important methods are GET and
POST (see Section 3.1).

D.2.1 Input Fields

An input element <input type="4nputType">, which has no associated
ending tag, specifies that the user may enter information in the form. The
attribute type is required in input elements. In most cases, an input field
assigns a value to a variable with a specified name and a specified input type.
Some possible input types are listed in the following table:

http://www.w3.org

132

APPENDIX D. HTML REFERENCE

input Type ‘ Description ‘

text Text field; size attribute may be used
to specify length of field.

password | As text, but stars are shown instead of
the text that the user enters.

checkbox | Allows user to select zero or more options.

radio Allows user to choose between a number of options.

submit Shows a button that sends the completed form to
the server specified by the attribute action
in the enclosing form element.

reset Shows a button that resets the form variables to
their default values.
hidden Defines a hidden input field whose value is sent

along with the other form values when the form is
submitted. This input type is used to pass state
information from one Web script to another.

Additional attributes to the input element include:

name="Name"
where Name is a symbolic name identifying the input variable.

value="Value"

where the meaning of Value depends on the argument for type.

For type="text" or type="password", Value is the default value for
the input variable. Password values are not shown on the user’s form.
Anything entered by the user replaces any default value defined with
this attribute. For type="checkbox" or type="radio", Value is the
value that is submitted to the server if that checkbox is selected. For
type="reset" or type="submit", Value is a label that appears on the
submit or reset button in place of the words “Submit” and “Reset”.

checked (no arguments)

For type="checkbox" or type="radio", if checked is present, the in-
put field is selected by default.

size="Width"

where Width is an integer value representing the number of characters
displayed for the type="text" or type="password" input field.

D.2. HTML FORMS 133

maxlength="Length"
where Length is the maximum number of characters allowed within
type="text" or type="password" variable values. This attribute is
used only in combination with the input types text and password.

D.2.2 Select Elements

The select element <select> ... </select> allows a user to select be-
tween a number of options. The select element requires an option element
for each item in the list (see below). Attributes and corresponding arguments
include:

name="Name"
where Name is the symbolic identifier for the select element.

size="ltstLength"
where [listLength is an integer representing the maximum number of
option items displayed at one time.

multiple (no arguments)
If present, more than one option value may be selected.

D.2.3 Select Element Options

Within the select element, option elements are used to define the possible
values for the enclosing select element. If the attribute selected is present
then the option value is selected by default. In the following example all
three options may be chosen but Standard ML is selected by default.

<select multiple>
<option>Haskell
<option selected>Standard ML
<option>C

</select>

D.2.4 Text Areas

A text area of the form

<textarea> default text </textarea>

134 APPENDIX D. HTML REFERENCE

defines a rectangular field where the user may enter text data. If “default
text” is present it is displayed when the field appears. Otherwise the field
is blank. Attributes and corresponding values include:

name="Name"
where Name is a symbolic name that identifies the form variable asso-

ciated with the <textarea>.

rows="numRows" and cols="numCols"
Both attributes take an integer value which represents the number of
rows and number of columns in the text area.

D.3 Miscellaneous

<l-- text -->
Place a comment in the HTML source.

<address> ... </address>
Present address information.

Embed an image in the document. Attributes:
src: Specifies the location URL of the image.

alt: Allows a text string to be put in place of the image in clients that
cannot display images.

align: Specifies a relationship to surrounding text. The argument for
align can be one of top, middle, or bottom.

border=0: Leaves out the border on the image img when it appears
within

Forces a line break immediately and retains the same style.

<hr>
Places a horizontal rule or separator between sections of text.

Appendix E

The Ns Structure

The Ns structure gives access to the Web server API. The structure name
Ns stands for Navi Server, which was the name of the AOLserver Web server

before it was purchased by America Online.

The following sections present the signatures NS_SET, NS_INFO, NS_CACHE,
NS_CONN, NS_MAIL, NS_COOKIE, NS_DB_HANDLE, NS_DB, and NS. The structure
Ns implements the NS signature, which holds sub-structures matching each

of the other listed signatures.

E.1 The NS_SET Signature

signature NS_SET = sig
type set

val
val
val
val
val
val
val
val
val

val
val

get

getOpt :
getAll :
. set

size

unique :
: set
. set
: set
filter :

key
value
list

foldl
foldr

. set

set
set

set

* string -> string option

* string * string -> string
* string -> string list

-> int

* string -> bool

* int -> string option

* int -> string option

-> (string * string) list

(string*string->bool) -> set

-> (string*string) list
((string*string)*’a->’a) -> ’a -> set -> ’a
((string*string)*’a->’a) -> ’a -> set -> ’a

135

136 APPENDIX E. THE NS STRUCTURE

end

€
[set] abstract type of sequences of key-value pairs,
returned by some calls to the web-server.

[get (s,k)] returns SOME(v) if v is the first value
associated with key k in set s; returns NONE if no value is

associated with k in s.

[getOpt (s,k,v)] returns the first value associated with key
k in set s; returns v if no value is associated with k in s.

[getAll (s,k)] returns all values associated with key k in
set s; returns the empty list if no values are associated

with k in s.
[size s] returns the number of elements in a set.

[unique (s,k)] returns true if key k appears (exactly) once
in s (case sensitive). Returns false otherwise.

[key (s,i)] returns SOME(k) if k is the key name for the
i’th field in the set s; returns NONE if size s <= 1i.

[value (s,i)] returns SOME(v) if v is the value for the
i’th field in the set s; returns NONE if size s <= i.

[list s] returns the list representation of set s.

[filter f s] returns the list of key-value pairs in s for
which applying f on the pairs (from left to right) returns
true.

[foldl f acc s] identical to (foldl o list).

[foldr f acc s] identical to (foldr o list).
*)

E.2. THE NS_INFO SIGNATURE 137

E.2 The NS_INFO Signature

signature NS_INFO = sig
val configFile : unit -> string
val configGetValue : {sectionName: string,
key: string} -> string option
val configGetValueExact : {sectionName: string,
key: string} -> string option

val errorlog : unit -> string
val homePath : unit -> string
val hostname : unit -> string
val pid : unit -> int
val uptime : unit -> int
val pageRoot : unit -> string

end

(x

[configFile()] returns the location of the configuration
file.

[configGetValue{sectionName,key}] returns SOME s, if s is
the string associated with the (sectionName, key) pair in
the configuration file. Returns NONE, otherwise. Case

insensitive on sectionName, key.

[configGetValueExact{sectionName,key}] as configGetValue,
but case sensitive.

[errorLog()] returns the location of the log file.

[homePath()] returns the directory where the Web server is
installed.

[hostname ()] returns the host name of the machine.
[pid()] returns the process id of the server process.

[uptime()] returns the number of seconds the server process

138 APPENDIX E. THE NS STRUCTURE

has been running.

[pageRoot ()] returns the directory for which the server
serves pages.

*)

E.3. THE NS_CACHE SIGNATURE

E.3 The NS_CACHE Signature

signature NS_CACHE = sig

type cache

val createTm : string * int -> cache

val createSz : string * int -> cache

val find : string -> cache option

val findTm : string * int -> cache

val findSz : string * int -> cache

val flush : cache -> unit

val set : cache * string * string -> bool
val get : cache * string -> string option

val cacheForAwhile : (string -> string) * string * int
-> string -> string
val cacheWhileUsed : (string -> string) * string * int
-> string -> string
end

(*

[cache] abstract type of cache.

[createTm (n, t)] creates a cache, given a cache name n and
a cache timeout value t in seconds.

[createSz (n, sz)] creates a cache, given a cache name n
and a maximum cache size sz in bytes.

[find n] returns a cache, given a cache name n. Returns
NONE if no cache with the given name exists.

[findTm (cn,t)] as find, except that the cache with name cn
is created if it does not already exist. If the cache is
created then t is used as cache timeout value in seconds.

[findSz (cn,s)] as find, except that the cache with name cn
is created if it does not already exist. If the cache is
created then s is used as cache size in bytes.

139

140 APPENDIX E. THE NS STRUCTURE

[flush c] deletes all entries in cache c.

[set (c,k,v)] associates a key k with a value v in the
cache c; overwrites existing entry in cache if k is
present, in which case the function returns false. If no
previous entry for the key is present in the cache, the
function returns true.

[get (c,k)] returns value associated with key k in cache c;
returns NONE if key is not in cache.

[cacheForAwhile (f,cn,t)] where f is a function, cn is a
cache name, and t a cache timeout value in seconds. Returns
a new function f’ equal to f except that its results are
cached and only recalculated when the cached results are
older than the timeout value. This function can be used, for
instance, to cache fetched HTML pages from the Internet. The
timestamp is not renewed when items are accessed.

[cacheWhileUsed (f,cn,t)] as casheForAwhile, except that
the timestamp is renewed at each access. An item is removed
from the cache if t seconds have passed after the last
access.

*)

E.4. THE NS_CONN SIGNATURE

E.4 The NS_CONN Signature

signature NS_CONN = sig

eqtype status
type set

val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
val
end

(*

[status] abstract type identical to Ns.status.

returnHtml
return
write
returnRedirect
getQuery
formvar
formvarAll
headers
host
location
peer
peerPort
port
redirect
server

url

int * string -> status
string -> status
string -> status
string -> status

: unit -> set option

string -> string option
string -> string list

: unit
: unit
: unit
: unit
: unit
: unit

set
string
string
string
int
int

string -> status

: unit -> string
: unit -> string

[set] abstract type identical to Ns.Set.set.

[returnHtml (sc,s)] sends HTML string s with status code sc
to client, including HTTP headers. Returns Ns.OK on success

and Ns.ERROR on failure.

[return s] sends HTML string s with status code 200 to
client, including HTTP headers. Returns Ns.OK on success

and Ns.ERROR on failure.

[returnFile (sc,mt,f)] sends file f with status code sc to
client, including HTTP headers. The mime type is mt.

141

142 APPENDIX E. THE NS STRUCTURE

Returns Ns.OK on success and Ns.ERROR on failure.

[write s] sends string s to client, excluding HTTP headers.
Returns Ns.OK on success and Ns.ERROR on failure.

[returnRedirect loc] sends redirection HTTP response to
client (status code 302), with information that the client
should request location loc. Returns Ns.OK on success and
Ns.ERROR on failure.

[getQuery()] constructs and returns a set representing the
query data associated with the connection. It reads the POST
content or the query string. The POST content takes
precedence over the query string.

[formvar k] returns the query data associated with the
connection and the key k; the function returns NONE if no
query data is present for the argument key k.

[formvarAll k] returns all values associated with key k in
the query data; the function returns the empty list if no
query data is present for the argument key k.

[headers()] returns, as a set, the HTTP headers associated
with the connection.

[host ()] returns the server hostname associated with the
connection.

[location()] returns the HTTP location associated with the
connection. For example: http://www.avalon.com:81. Multiple
communications drivers can be loaded into a single server.
This means a server may have more than one location. For
example, if the nsssl module is loaded and bound to port
8000 and the nssock module is loaded and bound to port 9000,
the server would have the following two locations:

http://www.avalon.com:9000

https://www.avalon.com:8000

E.4. THE NS_CONN SIGNATURE 143

For this reason it is important to use the location function
to determine the driver location at run time.

[peer ()] returns the name of the peer associated with the
connection. The peer address is determined by the
communications driver in use by the connection. Typically,
it is a dotted IP address, for example, 199.221.53.205, but

this is not guaranteed.

[peerPort ()] returns the port from which the peer is
connected.

[port ()] returns the server port number associated with the

connection.

[redirect f] performs an internal redirect, to the file f;
i.e., makes it appear that the user requested a different
URL and then run that request. This form of redirect does
not require the running of an additional thread.

[server ()] returns the name of the server associated with

the connection.

[url()] return the url (relative to server-root) associated

with the request.
*)

144 APPENDIX E. THE NS STRUCTURE

E.5 The NS_MAIL Signature

signature NS_MAIL = sig
val sendmail : {to: string list, cc: string list,
bcc: string list, from: string,
subject: string, body: string,
extra_headers: string list} -> unit
val send : {to: string, from: string,
subject: string, body: string} -> unit
end

(*
[sendmail {to,cc,bcc,from,subject,body,extra_headers}] sends
an email to the addresses in to, cc, and bcc.

[send {to,from,subject,body}] abbreviated version of
sendmail.

*)

E.6. THE NS_COOKIE SIGNATURE 145

E.6 The NS_COOKIE Signature

signature NS_COOKIE = sig
exception CookieError of string
type cookiedata = {name : string,
value : string,
expiry : Date.date option,
domain : string option,

path : string option,
secure : bool}
val allCookies : unit -> (string * string) list
val getCookie : string -> (string * string) option
val getCookieValue : string -> string option
val setCookie : cookiedata -> string
val setCookies : cookiedata list -> string
val deleteCookie : {name: string, path: string option}
-> string
end
(%

[CookieError s] exception raised on error with message s.
[cookiedata] type of cookie.

[allCookies()] returns a list [(nl,v1), (n2,v2), ...,
(nm,vm)] of all the name=value pairs of defined cookies.

[getCookie cn] returns SOME(value) where value is the
’cn=value’ string for the cookie cn, if any; otherwise
returns NONE.

[getCookieValue cn] returns SOME(v) where v is the value
associated with the cookie cn, if any; otherwise returns
NONE.

[setCookie {name,value,expiry,domain,path,secure}] returns
a string which (when transmitted to a browser as part of
the HTTP response header) sets a cookie with the given name,

146 APPENDIX E. THE NS STRUCTURE

value, expiry date, domain, path, and security level.

[setCookies ckds] returns a string which (when transmitted
to a browser as part of the HTTP response header) sets the

specified cookies.

[deleteCookie {name,path}] returns a string that (when
transmitted to a browser as part of the HTTP response
header) deletes the specified cookie by setting its expiry
to some time in the past.

*)

E.7. THE NS_DB_HANDLE SIGNATURE

E.7 The NS_DB_HANDLE Signature

signature NS_DB_HANDLE =

sig
(* Database handles *)
type db
val getHandle : unit -> db
val putHandle : db -> unit
val wrapDb : (db -> ’a) > ’a
val initPools : string list -> unit

(* Data manipulation language *)
val dmlDb : db -> quot -> unit
val panicDmlDb : db -> (quot->’a) -> quot -> unit

(* Transactions *)

val dmlTransDb :db -> (db -> ’a) -> ’a

val dmlTrans : (@b -> ’a) -> ’a

val panicDmlTransDb : db -> (quot->’a) -> (db->’a) -> ’a
val panicDmlTrans : (quot->’a) -> (db->’a) -> ’a

(* Queries *)

val foldDb : db -> ((string->string)*’a->’a)
-> ’a -> quot -> ’a
val foldSetDb : db > (NsSet.setx’a->’a) -> ’a
-> quot -> ’a
val appDb : db -> ((string->string)->’a)
-> quot -> unit
val listDb : db -> ((string->string)->’a)
-> quot -> ’a list
val zeroOrOneRowDb : db -> quot -> string list option
val oneFieldDb : db -> quot -> string
val zeroOrOneFieldDb: db -> quot -> string option
val oneRowDb : db -> quot -> string list
val oneRowDb’ : db -> ((string->string)->’a)
-> quot -> ’a
val zeroOrOneRowDb’ : db -> ((string->string)->’a)

-> quot -> ’a option

147

148 APPENDIX E. THE NS STRUCTURE

val existsOneRowDb : db -> quot -> bool

(* Sequences *)

val seqgNextvalDb : db -> string -> int
val seqCurrvalDb : db -> string -> int
end

€

[db] type of database handle. Whenever the Web server talks
to the database, it is by means of a database handle.
Database handles are kept in the Web server using a
prioritized set of pools. Each Web script obtains and
releases database handles from the set of pools in a stack-
like manner (each script may own at most one database handle
from each pool). This arrangement is to avoid the
possibility of deadlocks in case multiple Web scripts run
simultaneously.

[getHandle] returns a database handle from the next
available pool. Raises Fail if no more pools are available.

[putHandle db] returns the database handle db to its pool
and makes the pool available to a subsequent call to
getHandle.

[initPools pools] initializes the set of pools. The pools
must be defined in the nsd.tcl configuration file. See the
file 1ib/Db.sml for a use of this function.

[dm1Db db dml] executes the data manipulation language
command dml using database handle db. Raises Fail msg if dml
is unsuccessful; msg is the error message returned from the
database.

[panicDmlDb db f sql] executes the data manipulation
language command dml using database handle db. Calls the
function f with with an error message as argument if the dml
command is unsuccessful. panicDmlDb returns unit and raises

E.7. THE NS_DB_HANDLE SIGNATURE 149

an exception only if f does.

[dmlTransDb db f] executes function f using handle db, which
may send a series of SQL statements to the database. All SQL
statements are executed as one atomic transaction. If any
statement fails or any exception is raised inside f, then
the transaction is rolled back and the exception is raised.

[dmlTrans f] similar to dmlTransDb, but with a database
handle obtained from the next available pool.

[panicDmlTransDb db f_panic f_db] same as dmlTransDb except
that on error function f_panic is executed. panicDmlTransDb
returns the value returned by f_panic unless f_panic raises
an exception, in which case panicDmlTransDb raises this
exception.

[panicDmlTrans f_panic f_db] similar to panicDmlTransDb, but
a database handle is obtained from the next available pool.

[foldDb db f b sql] executes SQL statement sql and folds
over the result set. b is the base and f is the fold
function; the first argument to f is a function that maps
column names to values. Raises Fail msg on error.

[foldSetdb db f b sql] similar to foldDb except that f takes
the result set as argument. Raises Fail msg on fail.

[appDb db f sql] executes SQL statement sql and applies f on
each row in the result set. Raises Fail on error.

[1istDb db f sql] executes SQL statement sql and applies f
on each row in the result set. The result elements are
returned as a list. Raises Fail on error.

[zeroOrOneRowDb db sql] executes SQL statement that must
return either zero or one row. Returns all columns as a list
of strings. Raises Fail on error.

150 APPENDIX E. THE NS STRUCTURE

[oneFieldDb db sql] executes SQL statement sql, which must
return exactly one row with one column, which the function
returns as a string. Raises Fail on error.

[zeroOrOneFieldDb db sql] executes SQL statement sql, which
must return either zero or one row. If one row is returned
then there must be exactly one column in the row. Raises
Fail on error.

[oneRowDb db sql] executes SQL statement sql, which must
return exactly one row. Returns all columns as a list of
strings. Raises Fail on error.

[oneRowDb’ db f sql] executes SQL statement sql, which must
return exactly one row. Returns f applied on the row. Raises
Fail on error.

[zeroOrOneRowDb’ db f sql] executes SQL statement sql, which
must return either zero or one row. Returns f applied on the
row if it exists. Raises Fail on error.

[existsOneRowDb db sql] executes SQL statement sql and
returns true if one or more rows are returned; otherwise
returns false. Raises Fail on error.

[seqNextvalDb db seq_name] executes SQL statement using
database handle db to generate a new number from sequence
seq_name. Raise Fail on error.

[seqCurrvalDb db seqName] executes SQL statement using
database handle db to get the current number from sequence
seq_name. Raises Fail on error.

[wrapDb f] obtains a handle db with getHandle. applies f to
db and before returning the result, the handle db is
returned with putHandle.

*)

E.8. THE NS_DB SIGNATURE

E.8 The NS_DB Signature

signature NS_DB =

sig

structure Handle

: NS_DB_HANDLE

(* Data manipulation language *)

val
val
val

dml
maybeDml
panicDml

(* Queries *)

val
val
val
val
val
val
val
val
val

val

val

fold

foldSet

app

list

oneField

zeroOrOneField:

oneRow
oneRow’
zeroOrOneRow
zeroOrOneRow’

existsOneRow

(* Sequences *)

val
val
val
val

(* Miscellaneous *)

val
val

segqNextvalExp :

segqNextval

seqCurrvalExp :

seqCurrval

sysdateExp
Qq

: quot —> unit
: quot -> unit
(quot -> ’a) -> quot -> unit

((string->string)*’a->’a) -> ’a

-> quot -> ’a

(NsSet.set*’a->’a) -> ’a -> quot

->)a

((string->string)->’a) -> quot

-> unit

((string->string)->’a) -> quot

-> ’a list

: quot -> string
quot -> string option

: quot —-> string list

: ((string->string)->’a) -> quot -> ’a
: quot -> string list option
((string->string)->’a) -> quot

-> ’a option

: quot -> bool

string -> string

string -> int

string -> string

string -> int

string

string -> string

151

152 APPENDIX E. THE NS STRUCTURE

val qqq : string -> string

val toDate : string —-> Date.date option
val timestampType : string

val toTimestampExp: string -> string

val toTimestamp : string -> Date.date option

val fromDate : Date.date —-> string

val valuelist : string list -> string

val setlist : (string*string) list -> string
end

€

[dml sql] executes the data manipulation language command
sql using a database handle obtained from the next pool.
Raises Fail msg if sql is unsuccessful; msg is the error
message returned from the database.

[maybeDml sql] executes sql and returns the value unit. Does
not raise Fail - errors are suppressed.

[panicDml f sql] executes sql and returns the value unit. On
error the function f is applied to an error string. The
function always returns unit.

[getCol s key] returns the value affiliated with key in set
s. Returns "##" if key is not in the set s.

[getColOpt s key] returns the value SOME v where v is
associated with key in set s. NONE is returned if key is not
in the set s.

[fold f b sql] executes SQL statement sql and folds over the
result set. b is the base and f is the fold function; the
first argument to f is a function that maps column names to
values. Raises Fail msg on error.

[foldSet f b sql] similar to fold except that f takes the
result set as argument. Raises Fail msg on fail.

E.8. THE NS_DB SIGNATURE 153

[app f sql] executes SQL statement sql and applies f on each
row in the result set. Raises Fail on error.

[1ist f sql] executes SQL statement sql and applies f on
each row in the result set. The result elements are returned
as a list. Raises Fail on error.

[oneField sql] executes SQL statement sql, which must return
exactly one row with one column, which the function returns
as a string. Raises Fail on error.

[zeroOrOneField sql] executes SQL statement sql, which must
return either zero or one row. If one row is returned then

there must be exactly one column in the row. Raises Fail on
error.

[oneRow sql] executes SQL statement sql, which must return
exactly one row. Returns all columns as a list of strings.
Raises Fail on error.

[oneRow’ f sql] executes SQL statement sql, which must
return exactly one row. Returns f applied on the row. Raises
Fail on error.

[zeroOrOneRow sql] executes SQL statement sql, which must
return either zero or one row. Returns all columns as a list
of strings. Raises Fail on error.

[zeroOrOneRow’ f sql] executes SQL statement sql, which must
return either zero or one row. Returns f applied on the row
if a row exists. Raises Fail on error.

[existsOneRow sql] executes SQL statement sql and returns
true if the query results in one or more rows; otherwise
returns false. Raises Fail on error.

[seqNextvalExp seq_name] returns a string to fit in an SQL
statement generating a new number from sequence seq_name.

154 APPENDIX E. THE NS STRUCTURE

[seqNextval seq_name] executes SQL statement to generate a
new number from sequence seq_name. Raise Fail on error.

[seqCurrvalExp seq_name] returns a string to fit in an SQL
statement returning the current number from the sequence
seq_name.

[seqCurrval seqName] executes SQL statement to get the
current number from sequence seq_name. Raises Fail on
error.

[sysdateExp] returns a string representing the current date
to be used in an SQL statement (to have your application
support different database vendors) .

[qq v] returns a string with each quote (’) replaced by
double quotes (°’) (e.g., qq("don’t go") = "don’’t go").

[qaq v] similar to qq except that the result is encapsulated
by quotes (e.g., qqq("don’t go") = "’don’’t go’").

[toDate d] returns the Date.date representation of d, where
d is the date representation used in the particular
database. Returns NONE if d cannot be converted into a
Date.date. Only year, month and day are considered.

[timestampType] returns the database type (as a string)
representing a timestamp (to have your application support
different database vendors).

[toTimestampExp d] returns a string to put in a select
statement, which will return a timestamp representation of
column d. Example: ‘select ~(Db.toTimestampExp "d") from t°
where d is a column of type date (in oracle) or datatime (in
PostgreSQL and MySQL) .

[toTimestamp t] returns the Date.date representation of t,

E.8. THE NS_DB SIGNATURE 155

where d is the timestap representation from the database.
Returns NONE if t cannot be converted into a Date.date.
Year, month, day, hour, minutes and seconds are considered.

[fromDate d] returns a string to be used in an SQL statement
to insert the date d in the database.

[valuelist vs] returns a string formatted to be part of an
insert statement:

‘insert into t (f1,f2,f3)
values ("(Db.valuelist [f1,f2,f3]))°

is turned into

‘insert into t (f1,f2,f3)
values (°f1_’,’f2_7,°f3_7)¢

where fi_ are the properly quoted values.

[setList nvs] returns a string formatted to be part of an
update statement. Say nvs = [(nl,v1),(n2,v2)], then

‘update t set ~“(Db.setList nvs)
is turned into
‘update t set nl=’vl_’,n2="v2_’°

where vi_ are the properly quoted values.

*)

156 APPENDIX E. THE NS STRUCTURE

E.9 The NS Signature

signature NS = sig
(* logging *)
eqtype LogSeverity

val Notice : LogSeverity
val Warning : LogSeverity
val Error : LogSeverity
val Fatal : LogSeverity
val Bug : LogSeverity
val Debug : LogSeverity
val log : LogSeverity * string -> unit

(* status codes *)
eqtype status

val 0K : status
val ERROR : status
val END_DATA : status

(* various functions *)
type quot = Quot.quot
val return : quot -> status

val write : quot —> status

val returnHeaders : unit -> unit

val returnRedirect : string -> status

val getMimeType : string -> string

val getHostByAddr : string -> string option

val encodeUrl : string -> string

val decodelUrl : string -> string

val buildUrl : string -> (string * string) list
-> string

val fetchUrl : string -> string option

val exit : unit -> ’a

(* sub-structures x)

structure Set : NS_SET

structure Conn : NS_CONN where type status = status
and type set = Set.set

E.9. THE NS SIGNATURE 157

structure Cookie : NS_COOKIE
structure Cache : NS_CACHE
structure Info : NS_INFO
structure Mail : NS_MAIL
structure DbOra : NS_DB
structure DbPg : NS_DB
structure DbMySQL : NS_DB

end

(*

[LogSeverity] abstract type of log severity.
[Notice] something interesting occurred.
[Warning] maybe something bad occurred.
[Error] something bad occurred.

[Fatal] something extremely bad occurred. The server shuts
down after logging this message.

[Bug] something occurred that implies there is a bug in
your code.

[Debug] if the server is in Debug mode, the message is
printed. Debug mode is specified in the [ns/parameters]
section of the configuration file. If the server is not in

debug mode, the message is not printed.

[log (1s,s)] write the string s to the log file with log
severity ls.

[status] abstract type of status code returned by
functions.

[OK] status code indicating success.

[ERROR] status code indicating failure.

158 APPENDIX E. THE NS STRUCTURE

[END_DATA] status code indicating end of data.
[quot] type of quotations.

[return q] sends HTML string q to browser with status code
200, adding HTTP headers. Returns 0K on success and
ERROR on failure.

[write q] sends string q to browser. Returns OK on success
and ERROR on failure.

[returnHeaders()] sends HTTP headers to browser.

[returnRedirect loc] sends a redirection HTTP response to
location loc. Returns OK on success and ERROR on failure.

[getMimeType f] guesses the Mime type based on the
extension of the filename f. Case is ignored. The return
value is of the form "text/html".

[getHostByAddr ip] converts a numeric IP address ip into a
host name. If no name can be found, NONE is returned.
Because the response time of the Domain Name Service can be
slow, this function may significantly delay the response to
a client.

[encodeUrl s] returns an encoded version of the argument s
as URL query data. All characters except the alphanumerics
are encoded as specified in RFC1738, Uniform Resource
Locators. This function can be used to append arguments to
a URL as query data following a ‘?’.

[decodeUrl s] decodes data s that was encoded as URL query
data. The decoded data is returned.

[buildUrl u 1] constructs a link to the URL u with the form
variable pairs 1 appended to u?, delimited by &, and with

E.9. THE NS SIGNATURE 159

the form values URL encoded.

[fetchUrl u] fetches a remote URL u; connects the Web
server to another HTTP Web server and requests the
specified URL. The URL must be fully qualified. Currently,
the function cannot handle redirects or requests for any
protocol except HTTP. Returns NONE if no page is found.

[exit()] terminates the script by raising the exception
Interrupt, which is silently caught by the SMLserver module
(other uncaught exceptions are logged in the server.log
file).

*)

Index

in quotation, (31
symbolic identifier, 31
~¢ ’ ’?)T

<a> element, [129
aborting execution, |24
access restriction, 93
ACID test, 61
action attribute, 131
<address> element, 134
allCookies function, 97
alter table

SQL command, 63
alumni system, [viii, [111]
anchor,
anonymous function, 19|
anyErrors function, 90|
AOLserver

configuration file, [6, 21

log file, 24

modules, [19

restart, |8

setup, 25

start up, 21
ArsDigita, 7
atomicity, 61
attribute

HTML tag, [127
Auth structure, 101/
authentication, 52,93

160

auto increment, (119
average rating, [77

 element, (130

Best Wines Web site, [74
Bill Gates, [52
<blockquote> element, 128
<body> element, [127
bookmark, [127

bottle images, [85
bottleImgs function, 78

 element, 134

cache,
cache type, 53
cacheForAwhile, [53
cacheForAwhile function, [56
cacheWhileUsed, [53
cacheWhileUsed function, [105
CGI, 2|
character, 130
checkbox, 132!
cols, /134
Common Gateway Interface, 2
compact attribute, 130
compilation, 21,22
configuration file

project file name, 21
consistency, 61
consistency constraint, |61, 63, 76
content-type, 17

INDEX

cookie, 23,94
Cookie structure, 95
CookieError exception, 95, 97
course registration system, 111
create sequence

SQL command, 76/
create table

SQL command, 62|
createdb command, [8
createuser command, [8

data definition language, (62
data manipulation language, |62
database handle, [69
database user, |8
Db structure, (69
Db.fold function, |79
Db.qq function, 71
Db.qqq function, 71
<dd> element, 130
deadlock, 70
definition list, 130!
delete

SQL command, 66/
deleteCookie function, 96
diagram

Entity-Relationship (E-R), 74

Web site, 68,105
directory structure, 6/
<d1> element, 130
dmlTrans function,
document

location, 129
domain

cookie attribute, 96
driver

Postgresql, 7|
drop table, 67

161

SQL command, 64
<dt> element, 130
durability, 61!

E-R diagram, [74
easy part, |67
element, 127
email
sending, 91
employee.sql file, |67
end tag, [127
Entity-Relationship diagram, [74
errs type, 87
evaluation system, 111
Example
Best Wines Web site, [74
caching, 54/
counting up and down, [37
dynamic recipe, 31
employee, [59
guess a number, |39
link database, 105
multiplication table, 18
sending email, |88
temperature conversion, 27
time of day, 17|
exception
Interrupt, [25
uncaught, 25|
execution
aborting, [24
scheduling, 111
expiry
cookie attribute, 95
extensibility, 111

form, [131
<form> element,

162

form variable, 129
hidden, 132
FormVar structure, 29, 83
formvar_fn type, |88
frag type, 30
function
anonymous, 19|

functional programming, '3

getCookie function, 97|
getIntErr function, 29|
getNatErr function,

getStringOrFail function, 72

group by
SQL command, 77|

<h1> element, 129
hard part, [67
<head> element, 127
header, 129
hidden form variable, 132
high-level language, 3
higher-order function, 111
hit rate, 52|
<hr> element, [134
HTML, 127
comment, 134
element, [127
form, 131
HTTP, 2
request, 13
response, 14,17
response headers, [14
status code, [14
status codes, [17
hyperlink, 129

<i> element, [130
 element,

imperative features, [3
index

database table, 63
inittab file, (9]
<input> element, 131
insert

SQL command, 64/
installation, 5
integrity constraint, |76
Intel, 5
interpreter

embedded,
Interrupt exception, 25
isolation, 61

killall command, 9

language embedding,
<1i> element, 130
library code, 10
limitations, 111
line break, (134
<listing> element, 128
little sleep, 60
local host, |7
log file, 124
login, 93,94

form, 101
logout, 94/
low-level language, (3|

mailto function, 78
maintainability, 111
Margaux

INDEX

Chateau de Lamouroux, |82

method attribute, 131

Mime-type, see content-type
ML Server Pages (MSP), 18

modules, [111

INDEX

Mosmlcgi library, 2

Msp structure, 19
multilingual Web sites, 111
MySQL, 7,162, 69,119

newPassword function, 103
not null, 63

NS signature, 156

Ns structure, [135
Ns.Conn.formvar, |37, 91
Ns.Conn.return, 17
Ns.DbMySQL structure, [69
Ns.DbOra structure, (69
Ns.DbPg structure, 69
Ns.encodeUrl, 45|
Ns.exit, 25

Ns.Info structure, 25
Ns.Mail.send, 91
Ns.returnRedirect, 73,84
Ns.write function, 97
NS_CACHE signature, 139
NS_CONN signature, (141
NS_COOKIE signature,
NS_DB signature, [151
NS_DB_HANDLE signature, (147
NS_INFO signature, [137
NS_MAIL signature, 144
NS_SET signature, 135

nsd, 6/

<o0l> element, 130
one-to-many relation, (75
<option> element, 131} 133
Oracle 8i, 7
order by

SQL command, 77
ordered list, 130

<p> element,

Page structure, 34|

163

Panoptic Computer Network, 7

paragraph, [128
password

field, 131
path

cookie attribute, 96
pattern, [46
performance, (60
Perl, 13
permission system, 94/
person table, 100
personalization, (93|

PHP, 3|
PM directories, [22
pool, [69

port, [7, [128|
postgres user, |8
Postgresql
daemon process, [8
installation, [7|
power failure, 62|
<pre> element, 128
primary key, |63

process

fork, 2
project file, [10, 21/
psql, 68|

psql command, 8

Quot structure, 31!
quot type, 31
Quot.flatten, 31|
quotation, 97
quotations, [30

radio button, 132
RatingUtil structure, [78

164

RDBMS, 7,59

connection, |69
README_SMLSERVER file, [5
recompilation, 21
Redhat Packet Manager, 5
referential integrity constraint, 76
RegExp.extract, 49
RegExp.match, 49
registration, 101
regular expression, 46, (92
reset input type, [132
resource type, 128
response headers, |14
reusability, 111/

rows, 134
RPM, 5

rebuild, (10
rule

horizontal, 134

scheduling execution, [111

script, (19
SCS, 111
secure
cookie attribute, (96|
select

SQL command, 65, (77
select box, 133
<select> element, 131} [133
sending email, 91
sendPassword function, 103
seqNextvalExp function, [120
sequence, 76,100
setCookie function, 95|
shut down, 60
SML, 3|
SMLserver

compiler, 21, 22

INDEX

module, 21
SMLserver Community Suite, 111
smlserverc, (7,21, 22
SQL, 62

alter table,[63

create sequence, |76

create table,

delete, 66

drop table, 64

group by, 77

insert, 64

order by, |77

select, 65,77

update, 66
SSL, 21,194, 96
Standard ML, 3
Standard ML Basis Library, 21
standard port,
start tag, 127
state

cookie, 94

maintaining, (23
static type system, 3
status code, |14

302,199
structured query language, see SQL
style

logical, 129

physical, 130
submit input type, 132
system crash, [62

tag
end, 127
TCL, 3
TCP
port, 128
telinit command, 9

INDEX

text
field, 131
preformatted, [128
quoted, 128

<textarea> element, 131,133
<title> element, 127
transaction, 61|

<tt> element, 130

type attribute, [131

type system, 111

<u> element,

 element, 130

uncaught exception, 25|
Uniform Resource Locator, |13
uniform resource locator, 128
unordered list, 130

update
SQL command, 66
URL, 13,128

URL decode, 97
URL encode, 73,95
user
contribution, 93
identification, 93
input, 27
tracking, 93
transactions, 93

varchar column data type, (63
verifyPerson function, 103

wealth clock, [52

Web server
API, 17,135
restart, '8

Web site
customizable, [111
multilingual,

real-purpose, [111
Web site diagram, 67,105

165

	Preface
	Introduction
	Web Scripting
	Why Standard ML
	Outline

	Getting Started
	Requirements
	Installing RPMs
	Starting AOLserver
	Compiling the Sample Web Project
	Interfacing to an RDBMS
	Interfacing to Postgresql
	Automating Startup of the Web Server
	So You Want to Write Your Own Project
	Rebuilding The RPMs

	Presenting Pages to Users
	The HyperText Transfer Protocol
	Time of day
	A Multiplication Table
	How SMLserver Serves Pages
	Project Files
	Compilation
	Loading and Serving Pages
	Logging Messages, Warnings, and Errors
	Uncaught Exceptions and Aborting Execution
	Accessing Setup Information

	Obtaining Data from Users
	Temperature Conversion
	Quotations for HTML Embedding
	A Dynamic Recipe

	Emulating State Using Hidden Form Variables
	Counting Up and Down
	Guess a Number

	Extracting Data from Foreign Web Sites
	Grabbing a Page
	Regular Expressions
	The Structure RegExp
	Currency Service---Continued
	Caching Support
	The Cache Interface
	Caching Version of Currency Service

	Connecting to an RDBMS
	What to Expect from an RDBMS
	The ACID Test
	Data Modeling
	Data Manipulation
	Three Steps to Success
	Transactions as Web Scripts
	Best Wines Web Site

	Checking Form Variables
	The Structure FormVar
	Presenting Multiple Form Errors
	Implementation

	Authentication
	Feeding Cookies to Clients
	Obtaining Cookies from Clients
	Cookie Example
	Storing User Information
	The Authentication Mechanism
	Caching Passwords for Efficiency
	Applying the Authentication Mechanism

	Summary
	A Sample Web Server Configuration File
	SMLserver and MySQL
	Auto Incrementation
	Sequence Simulation

	Securing Your Site with SSL
	HTML Reference
	Elements Supported Inside Body Element
	Text Elements
	Uniform Resource Locators
	Anchors and Hyperlinks
	Headers
	Logical Styles
	Physical Styles
	Definition Lists
	Unordered Lists
	Ordered Lists
	Characters

	HTML Forms
	Input Fields
	Select Elements
	Select Element Options
	Text Areas

	Miscellaneous

	The Ns Structure
	The NS95SET Signature
	The NS95INFO Signature
	The NS95CACHE Signature
	The NS95CONN Signature
	The NS95MAIL Signature
	The NS95COOKIE Signature
	The NS95DB95HANDLE Signature
	The NS95DB Signature
	The NS Signature

