rtf2IXTEX 2¢ Documentation
version (.22 beta

Ujwal S. Sathyam
setlur@bigfoot.com

26. April 1999

1 Introduction

rtf2IATEX 2¢ is an RTF to ETEXconverter written using Paul DuBois’ RTF
reader framework. It takes as its input RTF files produced by Microsoft
Word and comparable word processors and generates a TgX-able “.tex”
file. It has the capability to handle fairly complex RTF files containing
figures, tables, and equations to some extent. rtf2IATEX 2¢ is written using
standard C' and should compile on any platform supporting a C' compiler. 1
have tested it on the Macintosh, Linux (Intel), Linux (PowerPC), Windows
95/NT, and Solaris.

This is not the first attempt at rtf2latex. Several souls have taken a shot
at it to varying degrees of success. Some handled equations, some worked
on figures fairly well, and some did neither. Unfortunately, when I went
hunting for a converter, the ones I found were at least four years old and
wouldn’t work on my RTF file. RTF had obviously moved on. That was
six months ago. I then decided to write a converter that would handle the
latest RTF specification. Nights of furious coding followed by months of
complete neglect finally resulted the latest incarnation of rtf2IATEX 2¢. 1
have decided that it is ready for public viewing and maybe even consumption
since it finally succeeded my converting initial RTF file.

rtf2IRTEX 2¢ uses the generic RTF reader framework by Paul DuBois.
The framework is a general purpose tool for processing RTF files and may
be configured in a well-defined manner to allow it to be used with a variety
of writers generating different output formats. This provides a method for
generating RTF-to-XXX translators. Essentially, rtf2IATEX 2¢ provides the
KTEX 2cwriter code to the RTF reader.

What you will get

If you expect a WYSIWYG reproduction of your RTF file, you may be
disappointed. My main concerns have been translating the essential features
of the RTF file such as character, figures, tables, and equations (as pictures).
I have largely ignored visual formatting such as ruler positions, tabs (until I
figure out a good way of doing this), paragraph indentations, and other fluff.
I have always expected the output KTEX 2¢file to require manual editing to
put the finishing touches. I just want to make that task a little easier. In my
opinion, expecting a WYSIWYG reproduction is not practical and misses
the point entirely.

2 Installation and Use

2.1 Macintosh

The Macintosh distribution includes a PPC drag-and-drop application on
which you can drop multiple RTF files. The output I&TEXfiles will be created
in the same directory as the input RTF files. If Mac users want to build
their own binaries, 1 have included the CodeWarrior project file (for version
Pro 1). To compile, you will need to download the DropUnix1.3 application
framework which is available at http:/www.zenspider.com. Then you will
need to change the access path in the CodeWarrior project settings to point
to the location of DropUnix on your machine.

2.2 Unix

Unix users will need to compile the binary. The sources are in the sources
directory, and there is a Makefile. To start building the rtf2IATEX 2¢ bi-
nary, type:

make rtfprep

This will build a program called rtfprep. It basically generates some files
needed by rtf2IATEX 2¢. After building rtfprep, run it by typing:
./rtfprep

This will generate three header files and one look-up table. You are now
ready to build rtf2IATEX 2¢ by typing:

make

To clean up, type:

make clean

To install, type:

make install

The install target just copies the binary and the auxiliary files to the install
directory that is specified in the Makefile. You can change the directory into
which rtf2latex2e is installed by editing the variable INSTALL_DIR at the
top of the Makefile. Default install directory is /usr/rtf2latex2e. You may
need to become superuser to install into that directory. If you do not have
superuser previleges, you can change the INSTALL_DIR to somewhere in
your home directory, say $(HOME) /rtf2latex2e.

Finally, you will need to set the environment variable RTF2LATEX2E_DIR
from within your shell. The variable has to point to the directory into which
rtf2latex2e was installed. You can set the variable using
export RTF2LATEX2E_DIR=directory (bash) or
setenv RTF2LATEX2E_DIR=directory (csh)
in your .bashrc or .login file, whichever is read by your shell. It is also con-
vinient to add the rtf2latex2e directory to your search PATH or create a
symbolic link to the binary in your /usr/bin directory.

To run the program, type:
rtf2latex2e < rtf FileName >
If the file name contains spaces, enclose the path in double quotes. No
command line options are supported yet. I come from the Mac world, and
I am not used to them. When I think of some useful options, I will provide
for command line options.

2.3 Windows

Windows users get precompiled binaries of rtf2IXTEX 2¢ and rtfprep to be
run from the MS-DOS prompt. If anyone needs to recompile either program,
I have included CodeWarrior Pro 4 project files for both rtf2IRTEX 2¢ and
rtfprep.

You will need to set the environment variable RTF2LATEX2E _DIR from
within DOS. The variable has to point to the directory into which rtf2latex2e
was installed. You can set the variable using
SET RTF2LATEX2E_DIR=directory
in your AUTOEXEC.BAT file.

It is also convinient to add the rtf2latex2e directory to your search PATH
in the AUTOEXEC.BAT file.

Important

The character set map files (all the gen and sym files), the output map file
TEX-map, and the RTF control word look-up table rtf-ctrl need to reside in
the same directory as the rtf2IATEX 2¢ binary.

rtfprep is an auxiliary program. This was written by Paul DuBois and
modified by me: its task is to read the a list of RTF control words from a
file rtf-controls and a list of standard character names from standard-names
and generate the look-up table ritf-ctrl along with three header files. The
header files (rtf-ctridef.h, rtf-namedef.h, and stdcharnames.h) are required
to compile rtf2IATREX 2¢ , and the look-up table rtf-ctrl is required at run
time. You should not need to run rtfprep ever again after the first time
unless you are adding control words or standard character names. If you
do, you will need to recompile rtf2IATEX 2¢. If you add new RTF control
words and run rtfprep, make sure to move the newly generated rtf-ctrl into
the same folder that contains rtf2IATEX 2¢. In both the Mac and Windows
distributions, the rtfprep binary is in the sources folder.

The r2l-pref preference file

Based on the feedback from some early testers, I have added a feature in
version 0.21 to read a preference file r2l-pref. In it, you can choose among
options to ignore ruler settings and to set paper size. Ignoring ruler settings
will result in the loss of some visual formatting, but it will also result in
cleaner I¥TEX 2ccode. You also have an option to ignore color information.
Finally, you can specify an encoding style for use with the inputenc package.
This will cause rtf2latex2e to directly insert characters between 128-255 into
the ITEX 2cfile.

3 Features

rtf2IATEX 2¢ is designed to convert journal articles, reports, and letters
written in Microsoft Word. That means I would like it to handle the follow-
ing:

e Text Style: some amount of stylized text like color, bold, italic,

underlined, and relative size like small, normal, blg, Very blg,

aﬂd lafge This is a little weak in older RTF files as the
older RTF spec is a little crappier than the newer one. All other font

information is disregarded, as TeX can do better anyway.

e Figures: Right now rtf2IATEX 2¢ can read figures of format PICT,
WMF, PNG, and JPEG embedded into RTF files. These are the most
common formats encountered in RTF files. When rtf2LaTeXe encoun-
ters an embedded figure, it reads out the figure into a separate file.
The output format of the figure is the same as the format it is em-
bedded in. You may need to convert the figure to format appropriate
for inserting into a LaTeX file, usually EPS. Figures within tables are
read but not output for fear of messing up the LaTeX source. I will
get to that some day.

In version 0.22, I have added internal conversion of embedded JPEG
files to EPS. The code was adapted from the program Thomas Merz’s
jpeg2ps program (with his permission). The conversion is equivalent
to running jpeg2ps with the “-h” option, ie. hex encoding is used.

¢ Equations: The most common source of the RTF file is Microsoft
Word. Equations in Word are created in Equation Editor, and when
saved into an RTF file, the equation is embedded as an OLE object.
Unfortunately, decoding OLE objects is beyond the scope of my skills
right now. I hope to tackle it somehow in the future. Fortunately, MS
Word also embeds the equation as a picture for older RTF readers.
rtf2IATEX 2¢ reads that picture and outputs the equation as a picture
file. Not perfect, but it will have to do for now. At least, you can see
what the equation looks like and re-implement it in I&XTEX 2¢.

e Tables: Yeah, it does tables!! However, this is the weakest link in the
chain and the messiest part of the code. This is largely due to the fact
that RTF does not have a separate ‘Table’ group. It is also due to the
fact that TeX likes to know in advance the number of columns in the
table, and RTF does not tell us that. I spent a lot of time to support
tables to this extent. A lot of the test files have tables in them. To
get an idea of the type of tables that rtf2IATRX 2¢ can handle, take
a look at tablel.rtf, Script.rtf, and RTF-Spec.rtf. Some test files
that break the program are also included in the directory “test files
not working”. Not surprisingly, the program messes up in a table. 1
use longtable.sty package for table handling to take care of tables that
span several pages.

e Paragraph Style: I care for alignment issues like centering, left, and
right justification. Useful in letters. All other visual formatting like in-
dentation is currently ignored until I figure out how to translate RTF’s
paragraph syntax into appropriate LateX commands/environments.

e Character mapping: Character mapping is not complete yet. Most,
but not all, Greek and math symbols are supported by referencing
character set maps and the output map file “TEX-map”. 1 plan to
support Unicode through binary search of an external file to which
additions can be made, much like the external rtf-ctrl file that the
RTF reader uses. This should take care of most symbols we care
about. Check out the various test files with Symbol in their names to
see how well math and greek symbols are handled. Some of those files
were encoded by the RTF writer using the ANSI character set map,
and some with the Macintosh character set map. When you run these
files through rtf2IATEX 2¢, you will likely get warning messages about
unknown characters. The reason I have not mapped those character
is simply that I don’t know how to represent them in TpX. Quite
embarrassing, huh? But they are also quite arcane characters that
I have never seen in any document. I will work on beefing up this
portion of the code. Also, check out math.rtf: it has quite a bit of
math in it. There is some issue with mapping of accented characters
and some math symbols (ASCII range > 127) for RTF files that use
the ansi character set map. RTF seems to have changed its ansi en-
coding somewhere between Word 5.1 and Word 97/98. Even the new
versions of Word themselves (Word 97/98) do not correctly interpret
some characters (beyond ASCII range 127) from RTF files produced
by older versions (say Word 5.1). I have therefore included in the
directory “for-older-rtf-files” the files ansi-gen and ansi-sym for older
verions of RTF files. Experiment with your RTF file to determine
whether you need the new set or the old set. Be sure to safely back up
the versions you are not using for later use. At some point, I will write
code to make the reader dynamically read the appropriate character
map files. RTF files with Mac character encoding do not seem to suffer
from this malaise.

In version 0.22, I have added a feature to use the inputenc package.
The type of encoding is specified in the r2l-pref preference file. Speci-
fying an encoding type causes rtf2latex2e to directly insert into the tex
file characters between 128-255 that are defined by the < encoding >
def file.

e Footnotes: It was quite simple to add footnote support. I would like
to support footnotes in tables too, but TEXis not cooperating even
though I am using the longtable package for tables. I will look into it
further.

Features I would like to support in future versions are:

e Unicode: This should really get rid of the need for different character
set maps. Word 98 on the Mac already puts out Unicode.

o Lists

4 Test files

Along with the rtf2latex2e distribution, you can also download a set of test
files to see how the program behaves. These test files are in a tarred gzipped
archive in the same place where you downloaded the rtf2latex2e distribution.
“RTF-test-files” contains several RTF files that have been successfully tested
on rtf2IATEX 2¢. By success, I mean that rtf2IATEX 2¢ processes the
RTF file without any problems (except maybe giving a few warnings) and
produces a “tex” file that is ITEX 2¢-able!! It does not mean that the
TEXoutput file will look exactly the same as the RTF input file. In fact,
most of the time, it will not. Some features like I do not care to convert,
others like Unicode support will be implemented in future versions.

The distribution also has a directory called “test-files-not-working”. This
contains files that break the rtf2IATEX 2¢ program. Either, the program get
stuck while processing the RTF file, or it produces non-KTEX 2¢-able output
files. I have included this so that you can get idea what rtf2IATRX 2¢ can
and can not do. Hopefully, I can resolve these issues soon.

5 RTF Translator Architecture

In the following sections, I will attempt to provide documentation for people
who wish to correct /modify /improve the code. I shall be borrowing heavily
from Paul’s documentation of the reader. For detailed documentation on
the RTF reader framework, read the files rtfReader.rtf and rtf.Arch.rtf
in the RTFIXTEX 2¢test files directory (or you can run the files through
rtf2ITEX 2¢ and typeset the resulting rtfReader.tex files!).

There are three components to an RTF translator: reader code, writer
code, and driver code. These break down as follows:

e reader: Responsible for peeling tokens out of the input stream, clas-
sifying them, and causing the writer to process them.

e writer: Responsible for translating tokens from the input stream into
the required output format. This is my contribution.

e driver: Responsible for making sure the reader and writer are initial-
ized, and for calling the reader, to cause translation to occur. The
function main() resides here.

This architecture allows the reader to remain constant, so that different
translators can be built by supplying different writer and driver code. Also,
for a given translator, the reader and writer remain constant and the trans-
lator can be ported to different types of systems by supplying system-specific
driver code.

In practice, to build a new translator, you supply a main() function and
the writer code, and link in the RTF reader. main() includes the driver
code and is responsible to see that the following are done:

e Determine which files are to be translated
e Configure the reader, which may involve:

— Reset the input stream if necessary

— Configure other reader behavior, such as whether or not to pro-
cess the font and color tables internally

— Install writer callbacks into the reader so it knows what functions
to call when various kinds of tokens occur

Initialize the writer

Call the reader to process the input stream

Terminate the writer

6 Reader Operation
Each time a token is read, several global variables are set:
e rtfClass: token class
e rtfMajor: token major number
e rtfMinor: token minor number
e rtfParam: token parameter value
e rtfTextBuf: token text

e rtfTextLen: length of token (including parameter text)

Tokens are classified using up to three numbers: token class, and major
and minor numbers. The major and minor numbers may be meaningless
depending on the kind of token.

The class number can be:

e rtfUnknown: unrecognized token

e rtGroup: “{“ or “}”

e rtfText: plain text character

e rtfControl: token beginning with “\”

o rtfEOF': fake class number, indicates end of input stream

Generally, a translator will configure the RTF reader to call particular writer
functions when certain kinds of tokens are encountered in the input stream.
These functions are known as class callbacks. Writer callbacks can be reg-
istered with the reader using RTFSetClassCallback() for each token class.

The reader reads each token, classifies it, and sends it to a token routing
function RTFRouteToken(), which tries to find a writer callback function
to process the token. Tokens in a given class are ignored if no callback is
registered for the class.

Grouping in RTF documents occurs within braces “{*’ and “}”. One kind
of group is the destination. The token immediately following the opening
brace is a destination control symbol. These indicate such things as headers,
footers, footnotes, etc. The reader provides built-in destination readers for
the color table, style sheet, and the font table.

The RTF reader also provides a programming interface to enable the
writer code to access information about the read token and to act upon it.
It is this programming interface that allows the writer code to interact with
the reader code to produce a specific RTF translator.

7 rtf2ITEX 2 Writer Code

At some point, I will try to document the writer source code, but at present
it is in too fluid a state. The source code file I TEX-writer.c is commented
though.

8 Acknowledgements

I would not even have attempted this thing had it not been for Paul DuBois’
very nicely designed RTF tool. I did not have to bother with parsing the
RTF tokens and understanding it. All I had to do was write code to act
upon the token. Thanks, Paul, for simplifying it. Another great help has
been the DropUnix application framework by Ryan Davis that makes port-
ing between command-line Unix and drag-and-drop Macintosh a matter of
changing one line of code. DropUnix itself is based on the drag-and-drop
DropShell framework by Leonard Rosenthol, Marshall Clow, and Stephan
Somogyi.

Finally, I have to thank Scott Prahl for providing constant feedback and
encouragement to keep this going.

9 Legalese

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation.

The JPEG—EPS conversion routine was adapted from Thomas Merz’s
jpeg2ps program with his permission. Any copyright notices regarding
jpeg2ps still apply to the adapted code within rtf2IATEX 2¢. Thomas
Merz’s homepage is:
http://www.ifconnection.de/ tm

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. If you format your hard disk,
or do anything else inconvenient, its not my fault.

The reader part of this code is copyright Paul DuBois. The Macintosh
DropUnix framework is by Ryan Davis, and the DropShell part of the code
by its authors.

If you make any modifications that you think makes this program better,
please send me the modifications so that I can incorporate them in later
versions. Please do not distribute modified versions. I plan to keep working
on this project, and anybody is welcome to help.

10

