The GAP 4 Reference Manual - Index A

. / 4 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \

Abelian Number Fields 57.0
abelian number fields, Galois group 57.3
AbelianGroup 47.1
AbelianInvariants.grp 36.15
AbelianInvariantsNormalClosureFpGroup 44.7
AbelianInvariantsNormalClosureFpGroupRrs 44.7
AbelianInvariantsSubgroupFpGroup 44.7
AbelianInvariantsSubgroupFpGroupMtc 44.7
AbelianInvariantsSubgroupFpGroupRrs 44.7
AbelianNumberField 57.0
About the GAP Reference Manual 1.0
AbsInt 14.1
absolute value of an integer 14.1
abstract word 33.1
AbstractWordTietzeWord 45.4
accessing, list elements 21.3
accessing, record elements 27.1
AClosestVectorCombinationsMatFFEVecFFE 23.5
ActingAlgebra 59.10
ActingDomain 38.10
Action 38.6
action, by conjugation 38.2
action, on blocks 38.2
action, on sets 38.2
ActionHomomorphism 38.6
actions 38.2
ActorOfExternalSet 38.10
Add 21.4
add, an element to a set 21.15
AddCoeffs 23.3
AddGenerator 45.6
AddGenerators 35.1
AddGeneratorsExtendSchreierTree 40.10
addition 4.12
addition, operation 29.11
addition, rational functions 62.2
Additive Magmas 52.0
AdditiveInverse 29.9
AdditiveInverseOp 29.9
AdditiveNeutralElement 52.3
AddRelator 45.6
AddRowVector 23.3
AddRule 35.1
AddRuleReduced 35.1
AddSet 21.15
AdjointAssociativeAlgebra 60.9
AdjointBasis 59.8
AdjointMatrix 60.9
AdjointModule 59.10
administrator 73.2
AffineAction 42.14
AffineActionLayer 42.14
AffineOperation 42.14
AffineOperationLayer 42.14
Agemo 36.13
ALF 71.9
Algebra 59.1
AlgebraByStructureConstants 59.3
AlgebraGeneralMappingByImages 59.9
AlgebraHomomorphismByImages 59.9
AlgebraHomomorphismByImagesNC 59.9
Algebraic extensions of fields 63.0
AlgebraicExtension 63.1
Algebras 59.0
AlgebraWithOne 59.1
AlgebraWithOneGeneralMappingByImages 59.9
AlgebraWithOneHomomorphismByImages 59.9
AlgebraWithOneHomomorphismByImagesNC 59.9
AllBlocks 38.9
AllCharacterTableNames 71.2
AllGroups 47.6
ALLPKG 73.3
AllSmallGroups 47.6
ALN 71.9
Alpha 70.1
AlternatingGroup 47.1
and 20.3
and, for filters 13.2 20.3
ANFAutomorphism 57.3
AntiSymmetricParts 68.11
Append 21.4
AppendTo 9.7
AppendTo, for streams F 10.4
Apple 72.11
ApplicableMethod 7.2
ApplicableMethodTypes 7.2
Apply 21.16
ApplySimpleReflection 60.7
ApproximateSuborbitsStabilizerPermGroup 40.9
ARCH.system.g 72.15
Arrangements 17.2
arrow notation for functions 4.21
AsAlgebra 59.8
AsAlgebraWithOne 59.8
AsBlockMatrix 24.14
AscendingChain 36.16
AsDivisionRing 55.1
AsDuplicateFreeList 21.16
AsField 55.1
AsFreeLeftModule 54.3
AsGroup 36.2
AsGroupGeneralMappingByImages 37.1
AsLeftIdeal 53.2
AsLeftModule 54.1
AsList 28.2
AsMagma 32.2
AsMonoid 49.0
AsPolynomial 62.4
AsRightIdeal 53.2
AsRing 53.1
AsSemigroup 48.0
Assert 7.5
AssertionLevel 7.5
AsSet 28.2
assignment, to a list 21.4
assignment, to a record 27.2
assignment, variable 4.14
AssignNiceMonomorphismAutomorphismGroup 37.7
AssociatedPartition 17.2
AssociatedReesMatrixSemigroupOfDClass 48.6
Associates 53.5
Associative Words 34.0
associativity 4.12
AsSortedList 28.2
AsSSortedList 28.2
AsStruct 29.4
AsSubalgebra 59.8
AsSubalgebraWithOne 59.8
AsSubgroup 36.3
AsSubgroupOfWholeGroupByQuotient 44.9
AsSubmagma 32.2
AsSubmonoid 49.0
AsSubsemigroup 48.0
AsSubspace 58.1
AsSubstruct 29.7
AsTransformation 51.0
AsTransformationNC 51.0
AsTwoSidedIdeal 53.2
AsVectorSpace 58.1
at exit functions 6.7
AtlasLabelsOfIrreducibles 71.5
atomic irrationalities 18.4
AttributeValueNotSet 13.6
AugmentationIdeal 61.1
AugmentedCosetTableMtc 44.5
AugmentedCosetTableRrs 44.5
automatic loading of share packages 73.3
automorphism group, of number fields 57.3
AutomorphismDomain 37.6
AutomorphismGroup 37.6
AutomorphismsOfTable 67.7

[Top] [Up]

GAP 4 manual
February 2000