The GAP 4 Manual - Full Index A
_ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
- A First Session with GAP T 2.0
- AClosestVectorCombinationsMatFFEVecFFE R 23.5
- ALF R 71.9
- ALLPKG R 73.3
- ALN R 71.9
- ANFAutomorphism R 57.3
- ARCH.system.g R 72.15
- Abelian Number Fields R 57.0
- AbelianGroup R 47.1
- AbelianInvariants.grp R 36.15
- AbelianInvariantsNormalClosureFpGroup R 44.7
- AbelianInvariantsNormalClosureFpGroupRrs R 44.7
- AbelianInvariantsSubgroupFpGroup R 44.7
- AbelianInvariantsSubgroupFpGroupMtc R 44.7
- AbelianInvariantsSubgroupFpGroupRrs R 44.7
- AbelianNumberField R 57.0
- About Programming in GAP P 1.0
- About the GAP Reference Manual R 1.0
- About the New Features Manual N 1.0
- About: Extending GAP E 1.0
- AbsInt R 14.1
- AbstractWordTietzeWord R 45.4
- ActingAlgebra R 59.10
- ActingDomain R 38.10
- Action R 38.6
- ActionHomomorphism R 38.6
- ActorOfExternalSet R 38.10
- Add R 21.4
- AddCoeffs R 23.3
- AddGenerator R 45.6
- AddGenerators R 35.1
- AddGeneratorsExtendSchreierTree R 40.10
- AddHashEntry N 2.3
- AddRelator R 45.6
- AddRowVector R 23.3
- AddRule R 35.1
- AddRuleReduced R 35.1
- AddSet R 21.15
- Additive Magmas R 52.0
- AdditiveInverse R 29.9
- AdditiveInverseOp R 29.9
- AdditiveNeutralElement R 52.3
- AdjointAssociativeAlgebra R 60.9
- AdjointBasis R 59.8
- AdjointMatrix R 60.9
- AdjointModule R 59.10
- AffineAction R 42.14
- AffineActionLayer R 42.14
- AffineOperation R 42.14
- AffineOperationLayer R 42.14
- Agemo R 36.13
- Algebra R 59.1
- AlgebraByStructureConstants R 59.3
- AlgebraGeneralMappingByImages R 59.9
- AlgebraHomomorphismByImages R 59.9
- AlgebraHomomorphismByImagesNC R 59.9
- AlgebraWithOne R 59.1
- AlgebraWithOneGeneralMappingByImages R 59.9
- AlgebraWithOneHomomorphismByImages R 59.9
- AlgebraWithOneHomomorphismByImagesNC R 59.9
- Algebraic extensions of fields R 63.0
- AlgebraicExtension R 63.1
- Algebras R 59.0
- AllBlocks R 38.9
- AllCharacterTableNames R 71.2
- AllGroups R 47.6
- AllSmallGroups R 47.6
- Alpha R 70.1
- AlternatingGroup R 47.1
- An Example -- Designing Arithmetic Operations P 6.0
- An Example -- Residue Class Rings P 5.0
- AntiSymmetricParts R 68.11
- Append R 21.4
- AppendTo R 9.7
- AppendTo, for streams F R 10.4
- Apple R 72.11
- ApplicableMethod R 7.2
- ApplicableMethodTypes R 7.2
- Apply R 21.16
- ApplySimpleReflection R 60.7
- ApproximateSuborbitsStabilizerPermGroup R 40.9
- ArithmeticElementCreator P 4.12
- Arrangements R 17.2
- AsAlgebra R 59.8
- AsAlgebraWithOne R 59.8
- AsBlockMatrix R 24.14
- AsDivisionRing R 55.1
- AsDuplicateFreeList R 21.16
- AsField R 55.1
- AsFreeLeftModule R 54.3
- AsGroup R 36.2
- AsGroupGeneralMappingByImages R 37.1
- AsLeftIdeal R 53.2
- AsLeftModule R 54.1
- AsList R 28.2
- AsMagma R 32.2
- AsMonoid R 49.0
- AsPolynomial R 62.4
- AsRightIdeal R 53.2
- AsRing R 53.1
- AsSSortedList R 28.2
- AsSemigroup R 48.0
- AsSet R 28.2
- AsSortedList R 28.2
- AsStruct R 29.4
- AsSubalgebra R 59.8
- AsSubalgebraWithOne R 59.8
- AsSubgroup R 36.3
- AsSubgroupOfWholeGroupByQuotient R 44.9
- AsSubmagma R 32.2
- AsSubmonoid R 49.0
- AsSubsemigroup R 48.0
- AsSubspace R 58.1
- AsSubstruct R 29.7
- AsTransformation R 51.0
- AsTransformationNC R 51.0
- AsTwoSidedIdeal R 53.2
- AsVectorSpace R 58.1
- AscendingChain R 36.16
- Assert R 7.5
- AssertionLevel R 7.5
- AssignNiceMonomorphismAutomorphismGroup R 37.7
- AssociatedPartition R 17.2
- AssociatedReesMatrixSemigroupOfDClass R 48.6
- Associates R 53.5
- Associative Words R 34.0
- AtlasLabelsOfIrreducibles R 71.5
- AttributeValueNotSet R 13.6
- AugmentationIdeal R 61.1
- AugmentedCosetTableMtc R 44.5
- AugmentedCosetTableRrs R 44.5
- AutomorphismDomain R 37.6
- AutomorphismGroup R 37.6
- AutomorphismsOfTable R 67.7
- abelian number fields, Galois group R 57.3
- absolute value of an integer R 14.1
- abstract word R 33.1
- accessing, list elements R 21.3
- accessing, record elements R 27.1
- action, by conjugation R 38.2
- action, on blocks R 38.2
- action, on sets R 38.2
- actions R 38.2
- add, an element to a set R 21.15
- addition R 4.12
- addition, operation R 29.11
- addition, rational functions R 62.2
- administrator R 73.2
- and R 20.3
- and, for filters R 13.2 R 20.3
- arrow notation for functions R 4.21
- assignment T 2.4
- assignment, to a list R 21.4
- assignment, to a record R 27.2
- assignment, variable R 4.14
- associativity R 4.12
- at exit functions R 6.7
- atomic irrationalities R 18.4
- automatic loading of share packages R 73.3
- automorphism group, of number fields R 57.3
[Top] [Up]
GAP 4 manual