This guide gives a tutorial on the use of the Cyrus SASL library
for a client or server application. It compiles with versions up
to and including 1.5.5. The following pages should only be
considered a guide, not the final word on programming with the
Cyrus SASL library. Consult the sasl.h file in the distribution in
the case of ambiguities.
What is SASL?
SASL stands for Simple Authentication Security Layer and is
explained in RFC
2222. That document is very difficult to understand however
and it should be unnecessary to consult it.
Background
How did the world work before SASL?
Before SASL, when a new protocol was written which required authentication (users proving who they are to an entity), the protocol had to allow explicitly for each individual authentication mechanism. There had to be a distinct way to say "I want to log in with Kerberos V4". There had to be another distinct way to say "I want to log in with CRAM-MD5". There had to be yet a different way to say "I want to log in anonymously," and so on. This was non-ideal for both the protocol and application writers.
Additionally, many programmers were not very familiar with security, so the protocol did support many mechanisms, or worse, they were supported incorrectly. Moreover, when a new authentication method was invented the protocol needed to be modified to support that mechanism.
This system also was not ideal for application writer. She had
to have a special case for each mechanism she wished her
application to support. Also, the mechanisms were difficult to
implement. Even with a good library, an understanding of how the
mechanism worked was still necessary. Finally if an application
used more than one protocol (for example a mail client might use
IMAP, POP, and SMTP) then "Kerberos V4 for IMAP", "Kerberos V4 for
POP", "Kerberos V4 for SMTP", "CRAM MD5 for IMAP", "CRAM-MD5 for
POP", etc... would need to be written. This could quickly create a
huge number of different mechanism-protocol pairs to implement.
SASL to the rescue!
SASL hopefully solves all these problems. In practice it makes many of them easier to deal with.
Protocol designers simply have to support SASL (in particular RFC 2222). Consequently, any mechanism that supports SASL (just about anything you would want to use does now) is supported by the protocol. If a new authentication mechanism is invented the protocol automatically supports it without any modifications.
Application writers, instead of having to support every mechanism
for every protocol, only need to support SASL for every
protocol. Application writers do not need to understand the
authentication mechanisms at all: the SASL library handles all
that. Also with the Cyrus SASL library if a new mechanism is
invented you do not have rewrite your application at all. You may
not even have to restart your application if it is a long running
process. This is because the Cyrus SASL library loads each mechanism
from a shared library. Simply copying a shared library into a
directory will magically make your application support a new
mechanism.
Briefly
What is the Cyrus SASL library good for?
The Cyrus SASL library is good for applications that wish to
use protocols that support SASL authentication. An non-exhaustive
list of these are: IMAP, SMTP, ACAP, and LDAP. Also if you are
making a proprietary system and wish to support authentication it
is a good way of supporting many different authentication types.
What does the Cyrus SASL library do?
From a client point of view, the Cyrus SASL library, given a list of
mechanisms the server supports it will decide the best mechanism
to use and tell you what to send to the server at each step of the
authentication. From a server perspective, it handles
authentication requests from clients.
What doesn't the Cyrus SASL library do?
The Cyrus SASL library is neither network nor protocol aware. It
is up to the application to send the data over the wire as well as
to send the data in the protocol specific manner. With IMAP this
means putting it in the form: + [base64'ed data]\r\n. LDAP
just sends data in binary via bind requests. The Cyrus SASL library
has utility base64 encode and decode routines to help with this.
Client-only Section
A typical interaction from the client's perspective
int result; /* attempt to start sasl * See the section on Callbacks and Interactions for an * explanation of the variable callbacks */ result=sasl_client_init(callbacks); /* check to see if that worked */ if (result!=SASL_OK) [failure] [for each new connection] sasl_conn_t *conn; /* The SASL context kept for the life of the connection */ /* client new connection */ result=sasl_client_new("imap", /* The service we are using */ serverFQDN, /* The fully qualified domain name of the server we're connecting to */ NULL, 0, &conn); /* allocated on success */ /* check to see if that worked */ if (result!=SASL_OK) [failure] [get list of mechanisms supported by the server. format them as a single string separated by spaces] sasl_interact_t *client_interact=NULL; char *out; unsigned outlen; do { result=sasl_client_start(conn, /* the same context from above */ mechlist, /* the list of mechanisms from the server */ NULL, &client_interact, /* filled in if an interaction is needed */ &out, /* filled in on success */ &outlen, /* filled in on success */ &mechusing); if (result==SASL_INTERACT) { [deal with the interactions] } } while (result==SASL_INTERACT); /* the mechanism may ask us to fill in things many times. result is SASL_OK on success */ if (result!=SASL_OK) [failure] [send over the network a request to start authentication with mechanism mechusing depending on the protocol the string out should also be sent. For IMAP this might look like: A01 AUTHENTICATE KERBEROS_V4\r\n ] [read from the network] [check what it is: success (authentication complete), failure, data to continue the authentication] while ([there it's data]) { [convert the server response to a string. This may include Base64 decoding it] do { result=sasl_client_step(conn, /* our context */ in, /* the data from the server */ inlen, /* it's length */ &client_interact, /* this should be unallocated and NULL */ &out, /* filled in on success */ &outlen); /* filled in on success */ if (result==SASL_INTERACT) { [deal with the interactions] } } while (result==SASL_INTERACT); if (result!=SASL_OK) [failure] [format out with length outlen in the protocol specific manner and send it over the network] } [the life of the connection keep the context around. Call sasl_encode() and sasl_decode() for sending and reading from the network. This may encrypt/decrypt the traffic if a layer was negotiated. ] [when we're done with the connection] sasl_dispose(&conn); [when we're done with SASL forever] sasl_done();
int result; /* Initialize SASL */ result=sasl_server_init(callbacks, /* Callbacks supported */ "TestServer"); /* Name of the application */This should be called for each new connection. It probably should be called right when the socket is accepted. The service name is used for PAM authentication if applicable.
sasl_conn_t *conn; int result; /* Make a new context for this connection */ result=sasl_server_new("smtp", NULL, /* my fully qualified domain name; NULL says use gethostname() */ NULL, /* The user realm used for password lookups; NULL means default to serverFQDN Note: This does not affect Kerberos */ NULL, /* Callbacks supported only for this connection */ SASL_SECURITY_LAYER, /* I support encryption layers; otherwise pass 0 */ &conn);When a client requests the list of mechanisms supported by the server. This particular call might produce the string: "{PLAIN, KERBEROS_V4, CRAM-MD5, DIGEST-MD5}"
result=sasl_listmech(conn, /* The context for this connection */ NULL, /* not supported */ "{", /* What to prepend the string with */ ", ", /* What to seperate mechanisms with */ "}", /* What to append to the string */ &result_string, /* The produced string. Allocated by library */ &string_length, /* length of the string */ &number_of_mechanisms); /* Number of mechanisms in the string */When a client requests to authenticate:
int result; const char *errstr; char *out; unsigned outlen; result=sasl_server_start(conn, /* context */ mechanism_client_chose, clientin, /* the optional string the client gave us */ clientinlen, /* and it's length */ &out, /* allocated by library on success. Might not be NULL terminated */ &outlen, &errstr); /* error string filled in on failure */ if ((result!=SASL_OK) && (result!=SASL_CONTINUE)) { failure. Send client the protocol specific message that says authentication failed } if (result==SASL_OK) { client authentication suceeded. Send client the protocol specific message to say that authentication is complete. }When a response is returned by the client. clientin is the data from the client decoded from protocol specific format to a string of bytes of length clientinlen. This step may occur zero or more times. An application should be able to deal with it occuring an arbitrary number of times.
int result; result=sasl_server_step(conn, clientin, /* what the client gave */ clientinlen, /* it's length */ &out, /* allocated by library on success. Might not be NULL terminated */ &outlen, &errstr); /* error string sometimes filled in on failure */ if ((result!=SASL_OK) && (result!=SASL_CONTINUE)) { failure. Send client the protocol specific message that says authentication failed } if (result==SASL_OK) { client authentication suceeded. Send client the protocol specific message to say that authentication is complete. } send data 'out' with length 'outlen' over the network in protocol specific format
int sasl_server_start(sasl_conn_t *conn, const char *mech, const char *clientin, unsigned clientinlen, char **serverout, unsigned *serveroutlen, const char **errstr);
int sasl_server_step(sasl_conn_t *conn, const char *clientin, unsigned clientinlen, char **serverout, unsigned *serveroutlen, const char **errstr);
int sasl_listmech(sasl_conn_t *conn, const char *user, const char *prefix, const char *sep, const char *suffix, char **result, unsigned *plen, unsigned *pcount);
int sasl_checkpass(sasl_conn_t *conn, const char *user, unsigned userlen, const char *pass, unsigned passlen, const char **errstr);
For a detailed description of what each of the callback types are see the sasl.h file. Here are some brief explanations: SASL_CB_AUTHNAME - the name of the user authenticating SASL_CB_USER - the name of the user acting for. (for example postman delivering mail for tmartin might have an AUTHNAME of postman and a USER of tmartin) SASL_CB_PASS - password for AUTHNAME SASL_CB_GETREALM - Realm of the server An example of a way to handle callbacks: /* callbacks we support. This is a global variable at the top of the program */ static sasl_callback_t callbacks[] = { { SASL_CB_GETREALM, NULL, NULL /* we'll just use an interaction if this comes up */ }, { SASL_CB_USER, NULL, NULL /* we'll just use an interaction if this comes up */ }, { SASL_CB_AUTHNAME, &getauthname_func, NULL /* A mechanism should call getauthname_func if it needs the authentication name */ }, { SASL_CB_PASS, &getsecret_func, NULL /* Call getsecret_func if need secret */ }, { SASL_CB_LIST_END, NULL, NULL } }; static int getsecret_func(sasl_conn_t *conn, void *context __attribute__((unused)), int id, sasl_secret_t **psecret) { [ask the user for their secret] [allocate psecret and insert the secret] return SASL_OK; } static int getauthname_func(void *context, int id, const char **result, unsigned *len) { if (id!=SASL_CB_AUTHNAME) return SASL_FAIL; [fill in result and len] return SASL_OK; } in the main program somewhere sasl_client_init(callbacks);
Make sure that you set the IP addresses, the username, the authenticate name, and anything else on the command line (some mechanisms depend on these being present).
Also, sometimes you will receive a get "realm: Information not
available" message, or similar; this is due to the fact that some
mechanisms do not support realms and therefore never set it.
Cyrus imapd v1.6.0 or later
The Cyrus IMAP server now incorporates SASL for all its
authentication needs. It is a good example of a fairly large server
application. Also of interest is the prot layer, included in
libcyrus. This is a stdio-like interface that automatically takes
care of layers using a simple "prot_setsasl()" call.
Cyrus Imapd also sets a SASL_CB_PROXY_POLICY callback, which should
be of interest to many applications.
imtest, from cyrus imapd 1.6.0 or later
imtest is an application included with Cyrus imapd. It is a
very simple IMAP client, but should be of interest to those writing
applications. It also uses the prot layer, but it is easy to
incorporate similar support without using the prot layer.
Miscelaneous Information
Empty exchanges
Some SASL mechanisms intentionally send no data; an application should
be prepared to either send or receive an empty exchange. The SASL
profile for the protocol should define how to send an empty string;
make sure to send an empty string when requested, and when receiving
an empty string make sure that the "inlength" passed in is 0.
What's not implemented
Some parts of this API are not implemented by this implementation. A
brief outline of these features (and what might come of them) is in
this section.
Credentials
None of the modules support passing credentials. In the future, we
hope to add credential passing to the modules that support it (most
likely the Kerberos modules). Thus, an application that specifies
SASL_SEC_PASS_CREDENTIALS will not receive any mechanisms.
The functions sasl_cred_install() and
sasl_cred_uninstall() do nothing.
It's likely that the credential API will change, and it's also
likely that you'll need the Cyrus SASL library on both sides of the
connection to make it work.
Secrets
sasl_client_auth() is unimplemented. It is unclear what this
is intended for. If we implement it, it will probably be for
generating secrets for fast reauthentication.
The "secret" parameter to sasl_client_start() is
unused. It is likely that we will use this for fast reauthentication.
Idle
While the implementation & plugins correctly implement the idle calls,
none of them currently do anything.