[next][previous][up][top][index]
search for:

tensor products of rings

The operator ** or the function tensor can be used to construct tensor products of rings.

i1 : ZZ/101[x,y]/(x^2-y^2) ** ZZ/101[a,b]/(a^3+b^3)

       ZZ
      --- [x, y, a, b]
      101
o1 = ------------------
       2    2   3    3
     (x  - y , a  + b )

o1 : QuotientRing

Other monomial orderings can be specified.

i2 : T = tensor(ZZ/101[x,y], ZZ/101[a,b], MonomialOrder => Eliminate 2)

o2 = T

o2 : PolynomialRing

The options to tensor can be discovered with options.

i3 : options tensor

o3 = OptionTable{Adjust => identity      }
                 Degrees => 
                 Inverses => false
                 MonomialOrder => GRevLex
                 MonomialSize => 8
                 NewMonomialOrder => 
                 Repair => identity
                 SkewCommutative => false
                 VariableBaseName => 
                 VariableOrder => 
                 Variables => 
                 Weights => {}
                 WeylAlgebra => {}

o3 : OptionTable


[next][previous][up][top][index]
search for: