[next][previous][up][top][index]
search for:

ideals and modules -- an overview

In this section we present an overview of ideals and modules. For details, see Ideal and Module.

The most general module M is represented as a submodule of a quotient module of a free module F. The quotient module is presented internally by a matrix whose columns generate the relations, and the submodule is represented internally by a matrix whose columns generate the submodule. The two matrices the same number of rows, namely, the rank of F.

  • ideals
  • free modules
  • making modules from matrices
  • manipulating modules
  • maps between modules
  • bases of parts of modules

  • [next][previous][up][top][index]
    search for: