
BaCon BASIC converter documentation - version 2.4

Contents

Introduction
BaCon usage and parameters
General syntax
Mathematics, variables
Equations
Indexed arrays
    Declaration of static arrays
    Declaration of dynamic arrays
    Dimensions
    Passing arrays to functions or subs
    Returning arrays from functions
Associative arrays
    Declaration
    Relations, lookups, keys
    Basic logic programming
Strings by value or by reference
Execute BaCon source program using a 'shebang'
Creating and linking to libraries created with BaCon
    Step 1: create a library
    Step 2: compile the library
    Step 3: copy library to a system path
    Step 4: update linker cache
    Step 5: demonstration program
    Step 6: compile and link
Creating internationalization files
    Step 1: create program
    Step 2: compile program
    Step 3: create catalog file
    Step 4: add translations
    Step 5: create object file
    Step 6: install
    Step 7: setup Unix environment
Networking
Ramdisks and memory streams
Error trapping, error catching and debugging
Notes on transcompiling
Overview of statements and functions
Appendix A: Runtime error codes
Appendix B: Standard POSIX variables

Introduction

BaCon is an acronym for BAsic CONverter. The BaCon BASIC converter is a tool to convert 
programs written in BASIC syntax to C. The resulting C program should be compilable with GCC 



or CC.
BaCon is intended to be a programming aid in creating small tools which can be compiled on 
different Unix-based platforms. It tries to revive the days of the good old BASIC.
The BaCon converter passes expressions and numeric assignments to the C compiler without 
verification or modification. Therefore BaCon can be considered a lazy converter: it relies on the 
expression parser of the C compiler.

BaCon usage and parameters

To use BaCon, download the converter and make sure the program has executable rights. There is 
no difference between the Kornshell version or the BASH version. Only one of them is needed. 
Suppose the BASH version is downloaded, the converter can be used as follows:
    bash ./bacon.bash myprog.bac
By default the converter will refer to '/bin/bash' by itself. It uses a so-called 'shebang' which allows 
the program to run standalone provided the executable rights are set correctly. This way there is no 
need to execute BaCon with an explicit use of BASH. So this is valid:
    ./bacon.bash myprog.bac
All BaCon programs should use the '.bac' extension. But it is not necessary to provide this extension 
for conversion. So BaCon also understands the following syntax:
    ./bacon.bash myprog
Another possibility is to point to the URL of a BaCon program hosted by a website. The program 
will then be downloaded automatically, after which it is converted:
    ./bacon.bash http://www.basic-converter.org/fetch.bac

The BaCon Basic Converter can be started with the following parameters.
• -c: determine which C compiler should create the binary. The default value is 'gcc'. 

Example: ./bacon -c cc prog. In this situation, the converted program will be compiled by a 
C compiler called 'cc'

• -l: pass libraries to the C linker
• -o: pass compiler options to the C compiler
• -i: the compilation will use an additional external C include file
• -d: determine the directory where BaCon should store the generated C files. Default value is 

the current directory
• -x: extract gettext strings from generated c sources
• -f: create a shared object of the program
• -n: do not compile the C code automatically after conversion
• -j: invoke C preprocessor to interpret C macros which were added to BaCon source code
• -p: do not cleanup the generated C files. Default behavior is to delete all generated C files 

automatically
• -b: use bacon in the 'shebang' so BaCon programs can be executed similar to a script (binary 

version of BaCon only)
• -w: store commandline settings in a configurationfile. This file will be used in subsequent 

invocations of BaCon (not applicable for the GUI version)
• -v: shows the current version of BaCon
• -h: shows an overview of all possible options on the prompt. Same as the '-?' parameter

So how to pass compiler and linker flags to the C compiler? Here are a few examples.
• Convert and compile program with debug symbols: ./bacon -o -g yourprogram.bac
• Convert and compile program , optimize and strip: ./bacon -o -O2 -o -s yourprogram.bac
• Convert and compile program and export functions as symbols: ./bacon -o -export-dynamic 

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/BASIC_programming_language


yourprogram.bac
• Convert and compile program using TCC and export functions as symbols: ./bacon -c tcc -o 

-rdynamic yourprogram.bac
• Convert and compile program forcing 32bit and optimize for current platform: ./bacon -o 

-m32 -o -mtune=native yourprogram.bac
• Convert and compile program linking to a particular library: ./bacon -l somelib 

yourprogram.bac
• Convert and compile program including an additional C header file: ./bacon -i header.h 

yourprogram.bac

General syntax

BaCon consists of statements, functions and expressions. Each line should begin with a statement. 
A line may continue onto the next line by using the '\' symbol at the end of the line. The LET 
statement may be omitted, so a line may contain an assignment. Expressions are not converted but 
are passed unchanged to the C compiler (lazy conversion).
BaCon does not need line numbers. More statements per line are accepted. These should be 
separated by the colon symbol ':'.
All keywords must be written in capitals. Keywords in small letters are considered to be variables. 
Statements are always written without using brackets. Only functions must use brackets to enclose 
their arguments. Functions always return a value or string, contrary to subs. Functions created in the 
BaCon program can be invoked standalone, meaning that they do not need to appear in an 
assignment.
A variable will be declared implicitly when the variable is used in an assignment or in a statement 
which assigns a value to a variable. Implicitly declared variables always have a global scope, 
meaning that they are visible to all functions and routines in the whole program. Variables which 
are used and declared within a SUB or FUNCTION also by default have a global scope. With the 
LOCAL statement variables can be declared local to the FUNCTION or SUB.
If a variable name ends with the '$' symbol, a string variable is assumed. Otherwise the variable is 
considered to be numeric. By default, BaCon assumes long type with NUMBER variables. With the 
'DECLARE' statement it is possible to define a variable to any other C-type explicitly.
The three main types in BaCon are defined as STRING, NUMBER and FLOATING. These are 
translated to char*, long and double.
Subroutines may be defined using SUB/ENDSUB and do not return a value. With the 
FUNCTON/ENDFUNCTION statements a routine can be defined which does return a value. The 
return value must be explicitly stated with the statement RETURN.

Mathematics, variables

The standard C operators for mathematics can be used, like '+' for addition, '-' for substraction, '/' for 
division and '*' for multiplication. For the binary 'and', the '&' symbol must be used, and for the 
binary 'or' use the pipe symbol '|'. Binary shifts are possible with '>>' and '<<'.

C operator Meaning C Operator Meaning

+ Addition | Inclusive or

- Substraction ^ Exclusive or

* Multiplication >> Binary shift right



/ Division << Binary shift left

& Binary and +=, -=, *=, /= Invalid in BaCon

The C operators '+=', '-=' and the like are not valid in BaCon. Use INCR or DECR instead.
Variable names may be of any length but may not start with a number or an underscore symbol.

Equations

Equations are used in statements like IF...THEN, WHILE...WEND, and REPEAT...UNTIL. In 
BaCon the following symbols for equations can be used:

Symbol Meaning Type

=, == Equal to String, numeric

!=, <> Not equal to String, numeric

>, GT Greater than Numeric

<, LT Less than Numeric

EQ, IS Equal to Numeric

>=, GE Greater or equal Numeric

<=, LE Less or equal Numeric

NE, ISNOT Not equal to Numeric

EQUAL() Equal to String

Indexed arrays

Declaration of static arrays

An array will never be declared implicitly by BaCon, so arrays must be declared explicitly. This can 
be done by using the keyword GLOBAL or DECLARE for arrays which should be globally visible, 
or LOCAL for local array variables.
Arrays must be declared in the C syntax, using square brackets for each dimension. For example, a 
local string array must be declared like this: 'LOCAL array$[5]'. Two-dimensional arrays are 
written like 'array[5][5]', three-dimensional arrays like 'array[5][5][5]' and so on.
In BaCon, static numeric arrays can have all dimensions, but static string arrays cannot have more 
than one dimension.

Declaration of dynamic arrays

Also dynamic arrays must be declared explicitly. To declare a dynamic array, the statements 
GLOBAL or LOCAL must be used together with the ARRAY keyword, which determines the 
amount of elements. For example, to declare a dynamic array of 5 integer elements: 'LOCAL array 
TYPE int ARRAY 5'.



The difference with a static array is that the size of a dynamic array can declared using variables, 
and that they can redimension their size during runtime. The latter can be achieved with the REDIM 
statement.
As with static numeric arrays, also dynamic numeric arrays can have all dimensions, and dynamic 
string arrays cannot have more than one dimension. The syntax to refer to elements in a dynamic 
array is the same as the syntax for elements in a static array.

Dimensions

Static arrays must be declared with fixed dimensions, meaning that it is not possible to determine 
the dimensions of an array using variables or functions, so during program runtime. The reason for 
this is that the C compiler needs to know the array dimensions during compile time. Therefore the 
dimensions of an array must be defined with fixed numbers or with CONST definitions. Also, the 
size of a static array cannot be changed afterwards.
Dynamic arrays however can be declared with variable dimensions, meaning that the size of an 
array also can be contained in a variable. Furthermore, the size of a one dimensional dynamic array 
can be changed afterwards with the REDIM statement.
By default, if an array is declared with 5 elements, then it means that the array elements range from 
0 to 4. Element 5 is not part of the array. This behavior can be changed using the OPTION BASE 
statement. If OPTION BASE is set to 1, an array declared with 5 elements will have a range from 1 
to 5.

Passing arrays to functions or subs

In BaCon it is possible to pass one-dimensional arrays to a function or sub. The caller should 
simply use the basename of the array (so without mentioning the dimension of the array).
When the function or sub argument mentions the dimension, a local copy of the array is created.
CONST dim = 2
DECLARE series[dim] TYPE NUMBER
SUB demo(NUMBER array[dim])
    array[0] = 987
    array[1] = 654
END SUB
series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
    PRINT series[x]
NEXT
This will print the values originally assigned. The sub does not change the original assignments.
When the function or sub argument does not mention the dimension, but only uses square brackets, 
the array is passed by reference.
CONST dim = 2
DECLARE series[dim] TYPE NUMBER
SUB demo(NUMBER array[])
    array[0] = 987
    array[1] = 654
END SUB
series[0] = 123
series[1] = 456
demo(series)
FOR x = 0 TO dim - 1
    PRINT series[x]
NEXT



This will modify the original array and prints the values assigned in the sub.

Returning arrays from functions

In BaCon it is also possible to return a one dimensional array from a function. This can only be 
done with dynamic arrays, as the static arrays always use the stack memory assigned to a function. 
This means, that when a function is finished, also the memory for that function is destroyed, 
together with the variables and static arrays in that function.
The syntax to return a one dimensional dynamic array involves two steps: the declaration of the 
array must contain the STATIC keyword, and the RETURN argument should only contain the 
basename of the array without mentioning the dimensions. For example:
FUNCTION demo
    LOCAL array TYPE int ARRAY 10 STATIC
    FOR x = 0 TO 9
        array[x] = x
    NEXT
    RETURN array
END FUNCTION
DECLARE my_array TYPE int ARRAY 10
my_array = demo()
This example will create a dynamic array and assign some initial values, after which it is returned 
from the function. The target 'my_array' now will contain the values assigned in the function.
The statements SPLIT and LOOKUP also accept the STATIC keyword, which allows the implicitly 
created dynamic array containing results to be returned from a function.
Note that when returning arrays, the assigned array should have the same dimensions in order to 
prevent memory errors.

Associative arrays

Declaration

An associative array is an array of which the index is determined by a string, instead of a number. 
Associative arrays use round brackets '(…)' instead of the square brackets '[…]' used by normal 
arrays.
An associative array can use any kind of string for the index, and it can have an unlimited amount 
of elements. The declaration of associative arrays therefore never mentions the range. An 
associative array can have any amount of dimension. Note that the OPTION BASE statement has 
no impact.
To declare an associative array, the following syntax applies: DECLARE info ASSOC int. This 
declares an array containing integer values. To assign a value, using a random string “abcd” as 
example: info(“abcd”) = 1. Similarly an associative array containing other types can be declared, 
for example strings: DECLARE txt$ ASSOC STRING. An associative array cannot be declared 
using the LOCAL keyword.
For the index, it is also possible to use the STR$ function to convert numbers or numerical variables 
to strings: PRINT txt$(STR$(123)).

Relations, lookups, keys

In BaCon it is possible to setup relations between associative arrays of the same type. This may be 
convenient when multiple arrays with the same index need to be set at once. To setup a relation the 
RELATE keyword can be used, e.g.: RELATE assoc TO other. Now for each index in the array 



'assoc', the same index in the array 'other' is set.
Next to this, the actual elements in an associative array can be looked up using the LOOKUP 
statement. This statement returns a dynamically created array containing all indexes. The size of the 
resulting array is dynamically declared as it depends on the amount of available elements.
To find out if a key already was defined in the associative array, the function ISKEY can be used. 
This function needs the array name and the string containing the index name, and will return either 
TRUE or FALSE, depending on whether the index is defined (TRUE) or not (FALSE).
Deleting individual associative array members can be done by using the FREE statement. This will 
leave the associative array insertion order intact.

Basic logic programming

With the current associative array commands it is possible to perform basic logic programming. 
Consider the following Logic program which can be executed with any Prolog implementation:
mortal(X) :- human(X).

human(socrates).
human(sappho).
human(august).

mortals_are:
    write('Mortals are:'),
    mortal(X),
    write(X),
    fail.
The following BaCon program does the same thing:
DECLARE human, mortal ASSOC int
RELATE human TO mortal

human("socrates") = TRUE
human("sappho") = TRUE
human("august") = TRUE

PRINT "Mortals are:"
LOOKUP mortal TO member$ SIZE amount
FOR x = 0 TO amount - 1
    PRINT member$[x]
NEXT

Strings by value or by reference

Strings can be stored by value or by reference. By value means that a copy of the original string is 
stored in a variable. This happens automatically when when a string variable name ends with the '$' 
symbol.
Sometimes it may be necessary to refer to a string by reference. In such a case, simply declare a 
variable name as STRING but omit the '$' at the end. Such a variable will point to the same memory 
location as the original string. The following examples should show the difference between by 
value and by reference.
When using string variables by value:
a$ = "I am here"
b$ = a$
a$ = "Hello world..."
PRINT a$, b$
This will print “Hello world...I am here”. The variables point to their individual memory areas so 
they contain different strings. Now consider the following code:
a$ = "Hello world..."



LOCAL b TYPE STRING
b = a$
a$ = "Goodbye..."
PRINT a$, b FORMAT "%s%s\n"
This will print “Goodbye...Goodbye...” because the variable 'b' points to the same memory area as 
'a$'. (The optional FORMAT forces the variable 'b' to be printed as a string, otherwise BaCon 
assumes that the variable 'b' contains a value.)

Execute BaCon source program using a 'shebang'

In Unix, it is possible to execute a script directly from the commandline. The first line of the script 
must describe the interpreter. This is called a 'shebang'. A similar thing can be done with BaCon. If 
the first line of the BaCon program contains a shebang, the program will be compiled 
automatically. If the shebang also adds the '-b' option, the program will be compiled and also 
executed, as if it were a script. For example:
#!/dir/to/bacon -b
a$ = "Run from shebang"
PRINT a$
The first line points to the BaCon binary using the '-b' option. Also make sure to set the executable 
rights of the BaCon source program. Now the program can be executed like any other script. So if 
the program is called 'shebang.bac', then from the Unix commandline just run the following to 
compile and execute it:
./shebang.bac
Note that this way of executing a BaCon source program only can be performed with the binary 
version of BaCon.

Creating and linking to libraries created with BaCon

With Bacon, it is possible to create libraries. In the world of Unix these are known as shared 
objects. The following steps should be sufficient to create and link to BaCon libraries.

Step 1: create a library

The below program only contains a function, which accepts one argument and returns a value.
FUNCTION bla (NUMBER n)
    LOCAL i
    i = 5 * n
    RETURN i
END FUNCTION
In this example the program will be saved as 'libdemo.bac'. Note that the name must begin with the 
prefix 'lib'. This is a Unix convention. The linker will search for library names starting with these 
three letters.

Step 2: compile the library

The program must be compiled using the '-f' flag: bacon -f libdemo.bac
This will create a file called 'libdemo.so'.

Step 3: copy library to a system path

To use the library, it must be located in a place which is known to the linker. There are more ways 
to achieve this. For sake of simplicity, in this example the library will be copied to a system 
location. It is common usage to copy additional libraries to '/usr/local/lib': sudo cp libdemo.so 

http://en.wikipedia.org/wiki/Shebang_(Unix)


/usr/local/lib

Step 4: update linker cache

The linker now must become aware that there is a new library. Update the linker cache with the 
following command: sudo ldconfig

Step 5: demonstration program

The following program uses the function from the new library:
PROTO bla
x = 5
result = bla(x)
PRINT result
This program first declares the function 'bla' as prototype, so the BaCon parser will not choke on 
this external function. Then the external function is invoked and the result is printed on the screen.

Step 6: compile and link

Now the program must be compiled with reference to the library created before. This can be done 
as follows: ./bacon -l demo program.bac
With the Unix command 'ldd' it will be visible that the resulting binary indeed has a dependency 
with the new library!
When executed, the result of this program should show 25.

Creating internationalization files

It is possible to create internationalized strings for a BaCon program. In order to do so, OPTION 
INTERNATIONAL should be enabled in the beginning of the program. After this, make sure that 
each translatable string is surrounded by the INTL$ or NNTL$ function.
Now start BaCon and use the '-x' option. This will generate a template for the catalog file, provided 
that the 'xgettext' utility is available on your platform. The generated template by default has the 
same name as your BaCon program, but with a '.pot' extension.
Then proceed with the template file and fill in the needed translations, create the PO file as usual 
and copy the binary formatted catalog to the base directory of the catalog files (default: 
"/usr/share/locale").
The default textdomain and base directory can be changed with the TEXTDOMAIN statement.
Below a complete sequence of steps creating internationalization files. Make sure the GNU gettext 
utilities are installed.

Step 1: create program

The following simple program should be translated:
OPTION INTERNATIONAL TRUE
PRINT INTL$("Hello cruel world!")
x = 2
PRINT x FORMAT NNTL$("There is %ld green bottle", "There are %ld green bottles", 
x)
This program is saved as 'hello.bac'.

Step 2: compile program

Now compile the program using the '-x' option.
# bacon -x hello.bac



Next to the resulting binary, a template catalog file is created called 'hello.pot'.

Step 3: create catalog file

At the command line prompt, run the 'msginit' utility on the generated template file.
# msginit -l nl_NL -o hello.po -i hello.pot
In this example the nl_NL locale is used, which is Dutch. This will create a genuine catalog file 
called 'hello.po' from the template 'hello.pot'.

Step 4: add translations

Edit the catalog file 'hello.po' by adding the necessary translations.

Step 5: create object file

Again at the command line prompt, run the 'msgfmt' utility to convert the catalog file to a binary 
machine object file. The result will have the same name but with an '.mo' extension:
# msgfmt -c -v -o hello.mo hello.po

Step 6: install

Copy the resulting binary formatted catalog file 'hello.mo' into the correct locale directory. In this 
example, the locale used was 'nl_NL'. Therefore, it needs to be copied to the default textdomain 
directory '/usr/share/locale' appended with the locale name, thus: /usr/share/locale/nl_NL. In there, 
the subdirectory LC_MESSAGES should contain the binary catalog file.
# cp hello.mo /usr/share/locale/nl_NL/LC_MESSAGES/
The TEXTDOMAIN statement can be used to change the default directory for the catalog files.

Step 7: setup Unix environment

Finally, the Unix environment needs to understand that the correct locale must be used. To do so, 
simply set the LANG environment variable to the desired locale.
# export LANG nl_NL
After this, the BaCon program will show the translated strings.

Networking

TCP

With BaCon it is possible to create programs which have access to TCP networking. The following 
small demonstration shows a client program which fetches a website:
OPEN "www.basic-converter.org:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.basic-converter.org\r\n\r\n") TO mynet
REPEAT
    RECEIVE dat$ FROM mynet
    total$ = CONCAT$(total$, dat$)
UNTIL ISFALSE(WAIT(mynet, 5000))
CLOSE NETWORK mynet
PRINT total
The next program shows how to setup a TCP server which accepts multiple connections. It first 
imports the UNIX function 'fork'. The main program uses OPEN FOR SERVER multiple times. At 
each new connection the program forks itself and handles the incoming data:



IMPORT "fork" FROM "libc.so" TYPE int ALIAS "FORK" 
PRINT "Connect from other terminals with 'telnet localhost 51000' and enter text 
- 'quit' ends." 
WHILE TRUE 
    OPEN "localhost:51000" FOR SERVER AS mynet 
    spawn = FORK() 
    IF spawn = 0 THEN 
        REPEAT
            RECEIVE dat$ FROM mynet 
            PRINT "Found: ", dat$; 
        UNTIL LEFT$(dat$, 4) = "quit"
        CLOSE SERVER mynet 
        END 
    ENDIF 
WEND

UDP

The UDP mode can be set with the OPTION NETWORK statement. From then on a network 
program for UDP looks the same as a network program for TCP. This is an example client program:
OPTION NETWORK UDP
OPEN "localhost:1234" FOR NETWORK AS mynet
SEND "Hello" TO mynet
CLOSE NETWORK mynet
Example server program:
OPTION NETWORK UDP
OPEN "localhost:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

BROADCAST

BaCon also knows how to send data in UDP broadcast mode. For example:
OPTION NETWORK BROADCAST
OPEN "192.168.1.255:12345" FOR NETWORK AS mynet
SEND "Using UDP broadcast" TO mynet
CLOSE NETWORK mynet
Example server program using UDP broadcast, listening to all interfaces:
OPTION NETWORK BROADCAST
OPEN "*:12345" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

MULTICAST

If UDP multicast is required then simply specify MULTICAST. Optionally, the TTL can be 
determined also. Here are the same examples, but using a multicast address with a TTL of 5:
OPTION NETWORK MULTICAST 5
OPEN "225.2.2.3:1234" FOR NETWORK AS mynet
SEND "This is UDP multicast" TO mynet
CLOSE NETWORK mynet
Example server program using multicast:



OPTION NETWORK MULTICAST
OPEN "225.2.2.3:1234" FOR SERVER AS mynet
RECEIVE dat$ FROM mynet
CLOSE NETWORK mynet
PRINT dat$

SCTP

BaCon also supports networking using the SCTP protocol. Optionally, a value for the amount of 
streams within one association can be specified.
OPTION NETWORK SCTP 5
OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR NETWORK AS mynet
SEND "Hello world" TO mynet
CLOSE NETWORK mynet
An example server program:
OPTION NETWORK SCTP 5
OPEN "127.0.0.1:12380", "172.17.130.190:12380" FOR SERVER AS mynet 
RECEIVE txt$ FROM mynet
CLOSE NETWORK mynet
PRINT txt$

Ramdisks and memory streams

When creating programs which need heavy I/O towards the hard drive, it may come handy to create 
a ramdisk for performance reasons. Basically, a ramdisk is a storage in memory. While on Unix 
level administrator rights are required to create such a disk, BaCon can create an elementary 
ramdisk during runtime which is accessible within the program.
First, some amount of memory needs to be claimed which has to be opened in streaming mode. 
This returns a memory pointer which indicates the current position in memory, similar to a file 
pointer for files.
Then, the statements GETLINE and PUTLINE can be used to read and write lines of data towards 
the memory storage. For example:
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
PUTLINE "Hello world" TO ramdisk
If the ramdisk needs to be read from the beginning, use MEMREWIND to reposition the memory 
pointer. In the next example, a GETLINE retrieves the line which was stored there:
MEMREWIND ramdisk
GETLINE text$ FROM ramdisk
If the option MEMSTREAM was set to TRUE, BaCon can treat the created ramdisk also as a string 
variable, which allows manipulations by using the standard string functions. The variable used for 
the memory pointer must be a string variable:
OPTION MEMSTREAM TRUE
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk$
PUTLINE "Hello world" TO ramdisk$ 
MEMREWIND ramdisk$ 
IF INSTR(ramdisk$, "world") THEN PRINT "found!
PRINT REPLACE$(ramdisk$, "Hello", "Goodbye")
Always make sure that there is enough memory to perform string changes to the ramdisk. The 
RESIZE statement safely can be used to enlarge the claimed memory during runtime, as this will 
preserve the data.
The contents of the ramdisk can be written to disk using PUTBYTE. However, it must be clear how 
many bytes need to be written, as the total amount of memory reserved to the ramdisk may be 
bigger than the actual amount of data. The function MEMTELL can be used in case the memory 



pointer is positioned at the end of the ramdisk:
memory_chunk = MEMORY(1000)
OPEN memory_chunk FOR MEMORY AS ramdisk
    PUTLINE "Hello world" TO ramdisk
    OPEN "ramdisk.txt" FOR WRITING AS txtfile
        PUTBYTE memory_chunk TO txtfile CHUNK MEMTELL(ramdisk)-memory_chunk
    CLOSE FILE txtfile
CLOSE MEMORY ramdisk
FREE memory_chunk
Alternatively, if the ramdisk was opened with OPTION MEMSTREAM set to TRUE, the string 
function LEN also will return the length of the data.

Error trapping, error catching and debugging

BaCon can distinguish between 4 types of errors.
1. System errors. These relate to the environment in which BaCon runs.
2. Syntax errors. These are detected during the conversion process.
3. Compiler errors. These are generated by the C compiler and passed on to BaCon.
4. Runtime errors. These can occur during execution of the program.

When an error occurs, the default behaviour of a BaCon program is to stop. Only in case of runtime 
errors, it is possible to intercept the error with CATCH. This allows to proceed with a self-defined 
error handling function. This is especially convenient when creating GUI applications, as runtime 
errors by default appear on the Unix command prompt. To prevent BaCon detecting runtime errors 
altogether, use TRAP SYSTEM.
The reserved ERROR variable contains the number of the last error occurred. A full list of error 
numbers can be found in appendix A. With the ERR$ function a human readable text for the error 
number can be retrieved programmatically.
Next to these options, the statement TRACE ON can set the program in such a way that it is 
executed at each keystroke, step-by-step. This way it is possible to spot the location where the 
problem occurs. The ESC-key will then exit the program. To switch of trace mode within a 
program, use TRACE OFF.
Also the STOP statement can be useful in debugging. This will interrupt the execution of the 
program and return to the Unix command prompt, allowing intermediate checks. By using the Unix 
'fg' command, or by sending the CONT signal to the PID of the program, execution can be resumed.

Notes on transcompiling

The process of translating a programming language into another language, and then compiling it, is 
also known as transcompiling. BaCon is a Basic to C translator, or a transcompiler, or transpiler.
When using BaCon, three stages can be distinguished:

1. conversion time
2. compilation time
3. runtime

It is important to realize that BaCon commands can function in all these stages. Examples of 
statements which have impact the on conversion stage are INCLUD  E  , RELATE, USEC, USEH, 
WITH and some of the OPTION arguments. These statements instruct BaCon about the way the 
Basic code should be converted.
A statement impacting the compilation stage is PRAGMA. With this statement it is possible to 
influence the behavior of the compiler.
Most other BaCon statements are effective during runtime. These form the actual program being 
executed.
It should be clear that the aforementioned stages cannot be mixed. For example, it is not possible to 



define the argument for INCLUDE in a string variable, as the INCLUDE statement is effective 
during conversion time, while variables are used during runtime.
Note that except for system errors, the logic of the error messages basically follows the same 
structure: there are syntax errors (conversion time), compiler errors and runtime errors. The system 
errors do not fit in as they relate to the possibility of using BaCon itself.

Overview of BaCon statements and functions

ABS

ABS(x)
Type: function
Returns the absolute value of x. Example with and without ABS:
PRINT PI
PRINT ABS(PI)

ACOS

ACOS(x)
Type: function
Returns the calculated arc cosine of x.

ADDRESS

ADDRESS(x)
Type: function
Returns the memory address of a variable or function. The ADDRESS function can be used when 
passing pointers to imported C functions (see IMPORT).

ALARM

ALARM <sub>, <time>
Type: statement
Sets a SUB to be executed in <time> milliseconds. Use '0' to cancel an alarm. The alarm will 
interrupt any action the BaCon currently is performing; an alarm always has priority. Example:
SUB dinner
    PRINT "Dinner time!"
END SUB
ALARM dinner, 5000

ALIAS

ALIAS <function> TO <alias>
Type: statement
Defines an alias to an existing function or an imported function. Aliases cannot be created for 
statements or operators. Example:



ALIAS "DEC" TO "ConvertToDecimal"
PRINT ConvertToDecimal("AB1E")

AND

x AND y
Type: operator
Performs a logical 'and' between x and y. For the binary 'and', use the '&' symbol. Example:
IF x = 0 AND y = 1 THEN PRINT "Hello"

ARGUMENT$

ARGUMENT$
Type: variable
Reserved variable containing name of the program and the arguments to the program. These are all 
separated by spaces.

ASC

ASC(char)
Type: function
Calculates the ASCII value of char (opposite of CHR$). Example:
PRINT ASC("x")

ASIN

ASIN(x)
Type: function
Returns the calculated arcsine of x.

ATN

ATN(x)
Type: function
Returns the calculated arctangent of x.
PRINT ATN(1)

BREAK

BREAK [x]
Type: statement
Breaks out loop constructs like FOR/NEXT, WHILE/WEND or REPEAT/UNTIL.
The optional parameter can define to which level the break should take place in case of nested 
loops. This parameter should be an integer value higher than 0. See also CONTINUE to resume a 
loop.



CALL

CALL <sub name> [TO <var>]
Type: statement
Calls a subroutine if the sub is defined at the end of the program. With the optional TO also a 
function can be invoked which stores the result value in <var>.
Example:
CALL fh2cel(72) TO celsius
PRINT celsius

CATCH

CATCH GOTO <label> | RESET
Type: statement
Sets the error function where the program should jump to if error checking is enabled with TRAP. 
For an example, see the RESUME statement. Using the RESET argument restores the BaCon 
default error messages.

CHANGEDIR

CHANGEDIR <directory>
Type: statement
Changes the current working directory. Example:
CHANGEDIR "/tmp/mydir"

CHOP$

CHOP$(x$[, y$[, z]])
Type: function
Returns a string defined in x$ where on both sides <CR>, <NL>, <TAB> and <SPACE> have been 
removed. If other characters need to be chopped then these can be specified in the optional y$. The 
optional parameter z defines where the chopping must take place: 0 means on both sides, 1 means 
chop at the left and 2 means chop at the right. Examples:
PRINT CHOP$("bacon", "bn")
PRINT CHOP$(" hello world ", " ", 2)

CHR$

CHR$(x)
Type: function
Returns the character belonging to ASCII number x. This function does the opposite of ASC. The 
value for x must lay between 0 and 255.
LET a$ = CHR$(0x23)
PRINT a$



CLEAR

CLEAR
Type: statement
Clears the terminal screen. To be used with ANSI compliant terminals.

CLOSE

CLOSE FILE|DIRECTORY|NETWORK|SERVER|MEMORY <handle>
Type: statement
Close file, directory, network or memory identified by handle. Example:
CLOSE FILE myfile

COLOR

COLOR <BG|FG> TO 
<BLACK|RED|GREEN|YELLOW|BLUE|MAGENTA|CYAN|WHITE>
COLOR <NORMAL|INTENSE|INVERSE|RESET>
Type: statement
Sets coloring for the output of characters in a terminal screen. For FG, the foreground color is set. 
With BG, the background color is set. This only works with ANSI compliant terminals. Example:
COLOR FG TO GREEN
PRINT "This is green!"
COLOR RESET
Instead of color names, it is also possible to use their internal enumeration: black is 0, red is 1, 
green is 2, and so on. For BG a 0 can be used, and for FG a 1. For example:
COLOR 1 TO 3
PRINT "This is yellow!"
COLOR RESET

COLUMNS

COLUMNS
Type: function
Returns the amount of columns in the current ANSI compliant terminal. See also ROWS. Example:
PRINT "X,Y: ", COLUMNS, "," , ROWS

CONCAT$

CONCAT$(x$, y$, …)
Type: function
Returns the concatenation of x$, y$, ... The CONCAT$ function can accept an unlimited amount of 
arguments. Example:
txt$ = CONCAT$("Help this is ", name$, " carrying a strange ", 
thing$)
The CONCAT$ function is in place for compatibility reasons. Instead, BaCon also accepts the '&' 
symbol as infix string concatenator. The following is the same example using '&':
txt$ = "Help this is " & name$ & " carrying a strange " & thing$



CONST

CONST <var> = <value> | <expr>
Type: statement
Assigns a value a to a label which cannot be changed during execution of the program. Consts are 
globally visible from the point where they are defined. Example:
CONST WinSize = 100
CONST Screen = WinSize * 10 + 5

CONTINUE

CONTINUE [x]
Type: statement
Skips the remaining body of loop constructs like FOR/NEXT, WHILE/WEND or 
REPEAT/UNTIL.
The optional parameter can define at which level a continue should be performed in case of nested 
loops, and should be an integer value higher than 0.

COPY

COPY <file> TO <newfile>
Type: statement
Copies a file to a new file. Example:
COPY "file.txt" TO "/tmp/new.txt"

COS

COS(x)
Type: function
Returns the calculated COSINUS of x.

COUNT

COUNT(string, y)
Type: function
Returns the amount of times the ASCII value <y> occurs in <string>. Example:
PRINT COUNT("Hello world", ASC("l"))
See also FILL$.

CURDIR$

CURDIR$
Type: function
Returns the full path of the current working directory.



CURSOR

CURSOR <ON|OFF> | <FORWARD|BACK|UP|DOWN> [x]
Type: statement
Shows (“on”) or hides (“off”) the cursor in the current ANSI compliant terminal. Also, the cursor 
can be moved one position in one of the four directions. Optionally, the amount of steps to move 
can be specified. Example:
PRINT "I am here"
CURSOR DOWN 2
PRINT "...now I am here"

DATA

DATA <x, y, z, ...>
Type: statement
Defines data. The DATA statement always contains data which is globally visible. The data can be 
read with the READ statement. If more data is read than available, then in case of numeric data a '0' 
will be retrieved, and in case of string data an empty string. To start reading from the beginning 
again use RESTORE. Example:
DATA 1, 2, 3, 4, 5, 6
DATA 0.5, 0.7, 11, 0.15
DATA 1, "one", 2, "two", 3, "three", 4, "four"

DAY

DAY(x)
Type: function
Returns the day of the month (1-31) where x is amount of seconds since January 1, 1970. Example:
PRINT DAY(NOW)

DEC

DEC(x)
Type: function
Calculates the decimal value of x, where x should be passed as a string. Example:
PRINT DEC("AB1E")

DECLARE

DECLARE <var>[,var2,var3,...] TYPE|ASSOC <c-type> | [ARRAY <size>]
Type: statement
This statement is similar to the GLOBAL statement and is available for compatibility reasons. 

DECR

DECR <x>[, y]
Type: statement



Decreases variable <x> with 1. Optionally, the variable <x> can be decreased with <y>. Example:
x = 10
DECR x
PRINT x
DECR x, 3
PRINT x

DEF FN

DEF FN <label> [(args)] = <value> | <expr>
Type: statement
Assigns a value or expression to a label. Examples:
DEF FN func(x) = 3 * x
PRINT func(12)
DEF FN First$(x$) = LEFT$(x$, INSTR(x$, " ")-1)
PRINT First$("One Two Three")

DELETE

DELETE <FILE|DIRECTORY|RECURSIVE> <x$>
Type: statement
Deletes a file with the FILE argument, or an empty directory when using the DIRECTORY 
argument. The RECURSIVE argument can delete a directory containing files. It can also delete a 
complete directory tree. If an error occurs then this can be captured by using the CATCH statement. 
Example:
DELETE FILE "/tmp/data.txt"
DELETE RECURSIVE "/usr/data/stuff"

END

END [value]
Type: statement
Exits a program. Optionally, a value can be provided which the program can return to the shell.

ENDFILE

ENDFILE(filehandle)
Type: function
Function to check if EOF on a file opened with <handle> is reached. If the end of a file is reached, 
the value '1' is returned, else this function returns '0'. For an example, see the OPEN statement.

ENUM

ENUM
    item1, item2, item3
ENDENUM | END ENUM
Type: statement



Enumerates variables automatically. If no value is provided, the enumeration starts at 0 and will 
increase with integer numbers. Example:
ENUM
    cat, dog, fish
END ENUM
It is also possible to explicitly define a value:
ENUM
    Monday=1, Tuesday=2, Wednesday=3
END ENUM

EPRINT

EPRINT [value] | [text] | [variable] | [expression] [FORMAT <format>[TO <variable>[SIZE 
<size>]] | [,] | [;]
Type: statement
Same as PRINT but uses 'stderror' as output.

EQ

x EQ y
Type: operator
Verifies if x is equal to y. To improve readability it is also possible to use IS instead. Both the EQ 
and IS operators only can be used in case of numerical comparisons. Examples:
IF q EQ 5 THEN
    PRINT "q equals 5"
END IF
BaCon also accepts a single '=' symbol for comparison. Next to the single '=' also the double '==' 
can be used. These work both for numerical comparisons and for string comparisons. See also NE.
IF b$ = "Hello" THEN
    PRINT "world"
END IF

EQUAL

EQUAL(x$, y$)
Type: function
Compares two strings, and returns 1 if x$ and y$ are equal, or 0 if x$ and y$ are not equal. Use 
OPTION COMPARE to establish case insensitive comparison. Example:
IF EQUAL(a$, "Hello") THEN
    PRINT "world"
END IF
The EQUAL function is in place for compatibility reasons. The following code also works:
IF a$ = "Hello" THEN
    PRINT "world"
END IF



ERR$

ERR$(x)
Type: function
Returns the runtime error as a human readable string, identified by x. Example:
PRINT ERR$(ERROR)

ERROR

ERROR
Type: variable
This is a reserved variable, which contains the last error number. This variable may be reset during 
runtime.

EVEN

EVEN(x)
Type: function
Returns 1 if x is even, else returns 0.

EXEC$

EXEC$(command$ [, stdin$])
Type: function
Executes an operating system command and returns the result to the BaCon program. The exit 
status of the executed command itself is stored in the reserved variable RETVAL. Optionally a 
second argument may be used to feed to STDIN. See SYSTEM to plainly execute a system 
command. Example:
result$ = EXEC$("ls -l")
result$ = EXEC$("bc", CONCAT$("123*456", NL$, "quit"))

EXIT

EXIT
Type: statement
Exits a SUB or FUNCTION prematurely. Note that functions which are supposed to return a value 
will return a 0. String functions will return an empty string.
Also note that it is allowed to write EXIT SUB or EXIT FUNCTION to improve code readability.

EXP

EXP(x)
Type: function
Returns e (base of natural logarithms) raised to the power of x.



EXTRACT$

EXTRACT$(x$, y$[, flag])
Type: function
Returns the string defined in <x$> from which the string mentioned in <y$> has been removed. The 
optional flag determines if the <y$> should be taken as a regular expression.
Examples:
PRINT EXTRACT$("bacon program", "ar")
PRINT EXTRACT$(name$, "e")
PRINT EXTRACT$("a b c", " .* ", TRUE)

FALSE

FALSE
Type: variable
Represents and returns the value of '0'.

FILEEXISTS

FILEEXISTS(filename)
Type: function
Verifies if <filename> exists. If the file exists, this function returns 1, else it returns 0.

FILELEN

FILELEN(filename)
Type: function
Returns the size of a file identified by <filename>. If an error occurs this function returns '-1'. The 
ERR$ statement can be used to find out the error if TRAP is set to LOCAL. Example:
length = FILELEN("/etc/passwd")

FILETIME

FILETIME(filename, type)
Type: function
Returns the timestamp of a file identified by <filename>, depending on the type of timestamp 
indicated in <type>. The type can be one of the following: 0 = access time, 1 = modification time 
and 2 = status change time. Example:
stamp = FILETIME("/etc/hosts", 0) 
PRINT "Last access: ", MONTH$(stamp), " ", DAY(stamp), ", ", 
YEAR(stamp)

FILETYPE

FILETYPE(filename)
Type: function
Returns the type of a file identified by <filename>. If an error occurs this function returns '0'. The 



ERR$ statement can be used find out which error if TRAP is set to LOCAL. The following values 
may be returned:

Value Meaning

0 Error or undetermined

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe (FIFO)

6 Symbolic link

7 Socket

FILL$

FILL$(x, y)
Type: function
Returns an <x> amount of ASCII character <y>. The value for y must lay between 0 and 255. 
Example printing 10 times the character '@':
PRINT FILL$(10, ASC("@"))
See also COUNT to count the amount of times a character occurs in a string.

FLOOR

FLOOR(x)
Type: function
Returns the rounded down value of x. Note that this function always returns an integer value.

FOR

FOR var = x TO y [STEP z] 
    <body>
    [BREAK]
NEXT [var]
FOR var$ IN source$ [STEP z$] 
    <body>
    [BREAK]
NEXT [var]
Type: statement
With FOR/NEXT a body of statements can be repeated a fixed amount of times.
In the first usage the variable x will be increased until y with 1, unless a STEP is specified. 



Example:
FOR x = 1 TO 10 STEP 0.5
    PRINT x
NEXT
In the second usage the variable x$ will get the space separated strings mentioned in source$. 
Instead of a space, a set of characters can be specified as delimiter in the STEP keyword. Example:
FOR x$ IN "Hello cruel world"
    PRINT x$
NEXT
FOR y$ IN "1,2,3,4,5" STEP ","
    PRINT y$
NEXT

FP

FP (x)
Type: function
Returns the memory address of a function with name 'x'. Example:
SUB Hello 
    PRINT "Hello world"
END SUB 
DECLARE (*func)() TYPE void 
func = FP(Hello) 
CALL (*func)()

FREE

FREE x
Type: statement
Releases claimed memory (see also MEMORY). Example:
mem = MEMORY(500)
FREE mem
This statement also can be used to delete members from associative arrays:
FREE array$("abc")

FUNCTION

FUNCTION <name> ()|(STRING s, NUMBER i, FLOATING f, VAR v SIZE t)
    <body>
    RETURN <x>
ENDFUNCTION | END FUNCTION
Type: statement
Defines a function. The variables within a function are visible globally, unless declared with the 
LOCAL statement. Instead of the Bacon types STRING, NUMBER and FLOATING for the 
incoming arguments, also regular C-types can be used. With VAR a variable amount of arguments 
can be defined.
A FUNCTION always returns a value or a string, this should explicitly be specified with the 
RETURN statement. If the FUNCTION returns a string, then the function name should end with a 
'$' to indicate a string by value. Example:



FUNCTION fh2cel(NUMBER fahrenheit)
    LOCAL celsius
    celsius = fahrenheit*9/5 + 32
    RETURN celsius
END FUNCTION
FUNCTION Hello$(STRING name$)
    RETURN "Hello " & name$ & " !"
END FUNCTION

GETBYTE

GETBYTE <memory> FROM <handle> [CHUNK x] [SIZE y]
Type: statement
Retrieves binary data into a memory area from a either a file or a device identified by handle, with 
optional amount of <x> bytes depending on OPTION MEMTYPE (default amount of bytes = 1). 
Also optionally, the actual amount retrieved can be stored in variable <y>. Use PUTBYTE to write 
binary data.
Example program:
OPEN prog$ FOR READING AS myfile
    bin = MEMORY(100)
    GETBYTE bin FROM myfile SIZE 100
CLOSE FILE myfile

GETENVIRON$

GETENVIRON$(var$)
Type: function
Returns the value of the environment variable 'var$'. If the environment variable does not exist, this 
function returns an empty string. See SETENVIRON to set an environment variable.

GETFILE

GETFILE <var> FROM <dirhandle>
Type: statement
Reads a file from an opened directory. Subsequent reads return the files in the directory. If there are 
no more files then an empty string is returned. Refer to the OPEN statement for an example on 
usage.

GETKEY

GETKEY
Type: function
Returns a key from the keyboard without waiting for <RETURN>-key. See also INPUT and WAIT. 
Example:
PRINT "Press <escape> to exit now..."
key = GETKEY
IF key = 27 THEN
    END



END IF

GETLINE

GETLINE <variable$> FROM <handle>
Type: statement
Reads a line of data from a memory area identified by <handle> into a string variable. The memory 
area can be opened in streaming mode using the the OPEN statement (see also the chapter on 
ramdisks and memory streams). A line of text is read until the next newline character. Example:
GETLINE text$ FROM mymemory
See also PUTLINE to store lines of text into memory areas.

GETPEER$

GETPEER$(x)
Type: function
Gets the IP address and port of the remote host connected to a handle returned by OPEN FOR 
SERVER. Example:
OPEN "localhost:51000" FOR SERVER AS mynet
PRINT "Peer is: ", GETPEER$(mynet)
CLOSE SERVER mynet

GETX / GETY

GETX
GETY
Type: function
Returns the current x and y position of the cursor. An ANSI compliant terminal is required. See 
GOTOXY to set the cursor position.

GLOBAL

GLOBAL <var>[,var2,var3,...] [TYPE]|ASSOC <c-type> | [ARRAY <size>]
Type: statement
Explicitly declares a variable to a C-type. The ASSOC keyword is used to declare associative 
arrays. This is always a global declaration, meaning that variables declared with the GLOBAL 
keyword are visible in each part of the program. Use LOCAL for local declarations.
The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a 
later stage in the program.
Optionally, within a SUB or FUNCTION it is possible to use GLOBAL in combination with 
RECORD to define a record variable which is visible globally.
GLOBAL x TYPE float
GLOBAL q$
GLOBAL new_array TYPE float ARRAY 100
GLOBAL name$ ARRAY 25
Multiple variables of the same type can be declared at once, using a comma separated list. In case 
of pointer variables the asterisk should be attached to the variable name:
GLOBAL x, y, z TYPE int



GLOBAL *s, *t TYPE long

GOSUB

GOSUB <label>
Type: statement
Jumps to a label defined elsewhere in the program (see also the LABEL statement). When a 
RETURN is encountered, the program will return to the last invoked GOSUB and continue from 
there. Note that a SUB or FUNCTION also limits the scope of the GOSUB; it cannot jump outside. 
Example:
PRINT "Where are you?"
GOSUB there
PRINT "Finished."
END
LABEL there
    PRINT "In a submarine!"
    RETURN

GOTO

GOTO <label>
Type: statement
Jumps to a label defined elsewhere in the program. Note that a SUB or FUNCTION limits the scope 
of the GOTO; it cannot jump outside. See also the LABEL statement.

GOTOXY

GOTOXY x, y
Type: statement
Puts cursor to position x,y where 1,1 is the upper left of the terminal screen. An ANSI compliant 
terminal is required. Example:
CLEAR
FOR x = 5 TO 10
    GOTOXY x, x
    PRINT "Hello world"
NEXT
GOTOXY 1, 12

HEX$

HEX$(x)
Type: function
Calculates the hexadecimal value of x. Returns a string with the result.

HOST$

HOST$(name$)



Type: function
When name$ contains a hostname this function returns the corresponding IP address. If name$ 
contains an IP address the corresponding hostname is returned. If the name or IP address cannot be 
resolved an error is generated. Examples:
PRINT HOST$("www.google.com")
PRINT HOST$("127.0.0.1")

HOUR

HOUR(x)
Type: function
Returns the hour (0-23) where x is the amount of seconds since January 1, 1970.

IF

IF <expression> THEN
    <body>
[ELIF]
    <body>
[ELSE]
    [body]
ENDIF | END IF | FI
Type: statement
Execute <body> if <expression> is true. If <expression> is not true then run the optional ELSE 
body. Multiple IF's can be written with ELIF. The IF construction should end with ENDIF or END 
IF or FI. Example:
a = 0
IF a > 10 THEN
    PRINT "This is strange:"
    PRINT "a is bigger than 10"
ELSE
    PRINT "a is smaller than 10"
END IF
If only one function or statement has to be executed, then the if-statement also can be used without 
a body. For example:
IF age > 18 THEN PRINT "You are an adult"
ELSE INPUT "Your age: ", age
Use with care as nested IF/THEN statements using one function may confuse the parser.

IMPORT

IMPORT <function[(type arg1, type arg2, ...)]> FROM <library> TYPE <type> [ALIAS word]
Type: statement
Imports a function from a C library defining the type of returnvalue. Optionally, the type of 
arguments can be specified. Also optionally it is possible to define an alias under which the 
imported function will be known to BaCon. Examples:
IMPORT "ioctl" FROM "libc.so" TYPE int
IMPORT "gdk_draw_line(long, long, int, int, int, int)" FROM 
"libgdk-x11-2.0.so" TYPE void



IMPORT "fork" FROM "libc.so" TYPE int ALIAS "FORK"
IMPORT "atan(double)" FROM "libm.so" TYPE double ALIAS 
"arctangens"

INCLUDE

INCLUDE <filename>[, func1, func2, ...]
Type: statement
Adds a external BaCon file to current program. Includes may be nested. Optionally, it is possible to 
specify which particular functions in the included file need to be added. Examples:
INCLUDE "beep.bac"
INCLUDE "hug.bac", INIT, WINDOW, DISPLAY

INCR

INCR <x>[, y]
Type: statement
Increases variable <x> with 1. Optionally, the variable <x> can be increased with <y>.

INPUT

INPUT [text[, ... ,]<variable[$]>
Type: statement
Gets input from the user. If the variable ends with a '$' then the input is considered to be a string. 
Otherwise it will be treated as numeric. Example:
INPUT a$
PRINT "You entered the following: ", a$
The input-statement also can print text. The input variable always must be present at the end of the 
line. Example:
INPUT "What is your age? ", age
PRINT "You probably were born in ", YEAR(NOW) - age

INSTR

INSTR(haystack$, needle$ [,z])
Type: function
Returns the position where needle$ begins in haystack$, optionally starting at position z. If not 
found then this function returns the value '0'.
position = INSTR("Hello world", "wo")
PRINT INSTR("Don't take my wallet", "all", 10)

INSTRREV

INSTRREV(haystack$, needle$ [,z])
Type: function
Returns the position where needle$ begins in haystack$, but start searching from the end of 
haystack$, optionally at position z also counting from the end. The result is counted from the 



beginning of haystack$. If not found then this function returns the value '0'.
See also OPTION STARTPOINT to return the result counted from the end of haystack$.

INTL$

INTL$(x$)
Type: function
Specifies that <x$> should be taken into account for internationalization. All strings which are 
surrounded by INTL$ will be candidate for the template catalog file. This file is created when 
BaCon is executed with the '-x' switch. See also the chapter about internationalization and the 
TEXTDOMAIN statement.

ISFALSE

ISFALSE(x)
Type: function
Verifies if x is equal to 0.

ISKEY

ISKEY(array, string)
Type: function
Returns TRUE (1) if <string> is defined as a key in the associative <array>. If not, FALSE (0) is 
returned. Example:
DECLARE array ASSOC int
array("hello") = 25
array("world") = 30
PRINT ISKEY(array, "goodbye")
PRINT ISKEY(array, "world")

ISTRUE

ISTRUE(x)
Type: function
Verifies if x is not equal to 0.

JOIN

JOIN <array> BY <sub> TO <string> SIZE <variable>
Type: statement
This statement can join elements of a one dimensional string array to a single string. The <sub> 
argument defines with which substring the elements are connected. The result is stored in <string>. 
The total amount of elements to be joined must be defined in <variable>. See also SPLIT to do the 
opposite. Example:
DECLARE name$[3]
name$[0] = "King"
name$[1] = "of"



name$[2] = "Holland"
JOIN name$ BY " " TO result$ SIZE 3

LABEL

LABEL <label>
Type: statement
Defines a label which can be jumped to by using a GOTO, GOSUB or CATCH GOTO statement. 
Also RESTORE may refer to a label. A label may not contain spaces.

LCASE$

LCASE$(x$)
Type: function
Converts x$ to lowercase characters and returns the result. Example:
PRINT LCASE$("ThIs Is All LoWeRcAsE")

LEFT$

LEFT$(x$, y)
Type: function
Returns y characters from the left of x$.

LEN

LEN(x$)
Type: function
Returns the length of x$.

LET

LET <var> = <value> | <expr>
Type: statement
Assigns a value or result from an expression to a variable. The LET statement may be omitted. 
Example:
LET a = 10

LOCAL

LOCAL <var>[,var2,var3,...] [TYPE <c-type>] [ARRAY <size>]
Type: statement
This statement only has sense within functions, subroutines or records. It defines a local variable 
<var> with C type <type> which will not be visible for other functions, subroutines or records, nor 
for the main program.
If the TYPE keyword is omitted then variables are assumed to be of 'long' type. If TYPE is omitted 
and the variablename ends with a '$' then the variable will be a string.



The ARRAY keyword is used to define a dynamic array, which can be resized with REDIM at a 
later stage in the program.
Example:
LOCAL tt TYPE int
LOCAL q$
LOCAL new_array TYPE float ARRAY 100
LOCAL name$ ARRAY 25
Multiple variables of the same type can be declared at once, using a comma separated list. In case 
of pointer variables the asterisk should be attached to the variable name:
LOCAL x, y, z TYPE int
LOCAL *s, *t TYPE long

LOG

LOG(x)
Type: function
Returns the natural logarithm of x.

LOOKUP

LOOKUP <assoc> TO <array> SIZE <variable> [STATIC]
Type: statement
Retrieves all indexnames created in an associative array. The results are stored in <array>. As it 
sometimes is unknown how many elements this resulting array will contain, the array should not be 
declared explicitly. Instead, LOOKUP will declare the result array dynamically.
If LOOKUP is being used in a function or sub, then <array> will have a local scope. Else <array> 
will be visible globally, and can be accessed within all functions and subs.
The total amount of elements created in this array is stored in <variable>. This variable can be 
declared explicitly using LOCAL or GLOBAL. Example:
LOOKUP mortal TO men$ SIZE amount
FOR x = 0 TO amount – 1
    PRINT men$[x]
NEXT
The optional STATIC keyword allows the created <array> to be returned from a function.

MAKEDIR

MAKEDIR <directory>
Type: statement
Creates and empty directory. Parent directories are created implicitly. If the directory already exists 
then it is recreated. Errors like write permissions, disk quota issues and so on can be captured with 
CATCH. Example:
MAKEDIR "/tmp/mydir/is/here"

MAXRANDOM

MAXRANDOM
Type: variable



Reserved variable which contains the maximum value RND can generate. The actual value may 
vary on different operating systems.

MEMCHECK

MEMCHECK(memory address)
Type: function
Verifies if <memory address> is accessible, in which case a '1' is returned. If not, this function 
returns a '0'. Example:
IF MEMCHECK(mem) THEN POKE mem, 1234

MEMORY

MEMORY(x)
Type: function
Claims memory of x size, returning a handle to the address where the memory block resides. Use 
FREE to release the memory. Note that OPTION MEMTYPE can influence the type of memory 
created. Example creating a memory area to store integers:
OPTION MEMTYPE int
area = MEMORY(100)

MEMREWIND

MEMREWIND <handle>
Type: statement
Returns to the beginning of a memory area opened with <handle>.

MEMTELL

MEMTELL(handle)
Type: function
Returns the current position in the memory area opened with <handle>.

MID$

MID$(x$, y, [z])
Type: function
Returns z characters starting at position y in x$. The parameter 'z' is optional. When omitted, this 
function returns everything from position 'y' until the end of the string. Example:
txt$ = "Hello cruel world"
PRINT MID$(txt$, 7, 5)

MINUTE

MINUTE(x)
Type: function



Returns the minute (0-59) where x is amount of seconds since January 1, 1970.

MOD

MOD(x, y)
Type: function
Returns the modulo of x divided by y.

MONTH

MONTH(x)
Type: function
Returns the month (1-12) in a year, where x is the amount of seconds since January 1, 1970.

MONTH$

MONTH$(x)
Type: function
Returns the month of the year as string in the system's locale ("January", "February", etc), where x 
is the amount of seconds since January 1, 1970.

NE

x NE y
Type: operator
Checks if x and y are not equal. Instead, ISNOT can be used as well to improve code readability. 
The NE and ISNOT operators only work for numerical comparisons.
Next to these, BaCon also accepts the '!=' and '<>' constructs for comparison. These work both for 
numerical and string comparisons. See also EQ.

NL$

NL$
Type: variable
Represents the newline as a string.

NNTL$

NNTL$(x$, y$, value)
Type: function
Specifies that <x$> should be taken into account for internationalization. This is a variation to 
INTL$. With NNTL$ singularities and multitudes can be specified, which are candidate for the 
template catalog file. This file is created when BaCon is executed with the '-x' switch. See also 
TEXTDOMAIN and INTL$ and the chapter on internationalization. Example:
LET x = 2
PRINT x FORMAT NNTL$("There is %ld green bottle\n", "There are %ld 



green bottles\n", x)

NOT

NOT(x)
Type: function
Returns the negation of x.

NOW

NOW
Type: function
Returns the amount of seconds since January 1, 1970.

ODD

ODD(x)
Type: Function
Returns 1 if x is odd, else returns 0.

OPEN

OPEN <file|dir|address> FOR 
READING|WRITING|APPENDING|READWRITE|DIRECTORY|NETWORK [FROM 
address[:port]]|SERVER|MEMORY AS <handle>
Type: statement
When used with READING, WRITING, APPENDING or READWRITE, this statement opens a 
file assigning a handle to it. The READING keyword opens a file for read-only, the WRITING for 
writing, APPENDING to append data and READWRITE opens a file both for reading and writing. 
Example:
OPEN "data.txt" FOR READING AS myfile
WHILE NOT(ENDFILE(myfile)) DO
    READLN txt$ FROM myfile
    IF NOT(ENDFILE(myfile)) THEN
        PRINT txt$
    ENDIF
WEND
CLOSE FILE myfile
When used with DIRECTORY a directory is opened as a stream. Subsequent reads will return the 
files in the directory. Example:
OPEN "." FOR DIRECTORY AS mydir
REPEAT
    GETFILE myfile$ FROM mydir
    PRINT "File found: ", myfile$
UNTIL ISFALSE(LEN(myfile$))
CLOSE DIRECTORY mydir
When used with NETWORK a network address is opened as a stream. Optionally, the source IP 
address and port can be specified using FROM.



OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
    RECEIVE dat$ FROM mynet
    total$ = CONCAT$(total$, dat$)
UNTIL ISFALSE(WAIT(mynet, 500))
PRINT total$
CLOSE NETWORK mynet
When used with SERVER the program starts as a server to accept incoming network connections. 
When invoked multiple times in TCP mode using the same host and port, OPEN SERVER will not 
create a new socket, but accept another incoming connection. Instead of specifying an IP address, 
also the Unix wildcard '*' can be used to listen to all interfaces. See also OPTION NETWORK to 
set the network protocol.
OPEN "*:51000" FOR SERVER AS myserver
WHILE NOT(EQUAL(LEFT$(dat$, 4), "quit")) DO
    RECEIVE dat$ FROM myserver
    PRINT "Found: ", dat$
WEND
CLOSE SERVER myserver
When used with MEMORY a memory area can be used in streaming mode.
data = MEMORY(500)
OPEN data FOR MEMORY AS mem
PUTLINE "Hello cruel world" TO mem
MEMREWIND mem
GETLINE txt$ FROM mem
CLOSE MEMORY mem
PRINT txt$
When used with DEVICE, a file or device can be opened in any mode. The open mode can set by 
using OPTION DEVICE. Use PUTBYTE or GETBYTE to write and retrieve data from the opened 
device.
OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B38400
GETBYTE mem FROM myserial CHUNK 5 SIZE received
CLOSE DEVICE myserial

OPTION

OPTION <BASE x> | <COMPARE x> | <SOCKET x> | <NETWORK type [ttl]> | 
<MEMSTREAM x> | <MEMTYPE type> | <COLLAPSE x> | <INTERNATIONAL x> | 
<STARTPOINT x> | <DEVICE x>
Type: statement
Sets an option to define the behavior of the compiled BaCon program. It is recommended to use this 
statement in the beginning of the program, to avoid unexpected results.

• The BASE argument determines the lower bound of arrays. By default the lower bound is 
set to 0. Note that this setting also has impact on the array returned by the SPLIT and 
LOOKUP statements. It has no impact on arrays which assign their values statically at the 
moment of declaration.

• The COMPARE argument defines if string comparisons or regular expressions with 
REGEX should be case sensitive (0) or not (1). The default is case sensitive (0).

• The SOCKET argument defines the timeout for setting up a socket to an IP address. Default 
value is 5 seconds.



• The NETWORK argument defines the type of protocol: TCP, UDP, BROADCAST, 
MULTICAST or SCTP. When MULTICAST is selected also an optional value for TTL can 
be specified. When SCTP is selected an optional value for the amount of streams can be 
specified. Default setting for this option is: TCP. Default value for TTL is 1. Default amount 
of SCTP streams is 1.

• The MEMSTREAM argument allows the handle created by the OPEN FOR MEMORY 
statement to be used as a string variable (1). Default value is 0.

• The MEMTYPE argument defines the type of memory to be used by POKE, PEEK, 
MEMORY, RESIZE, PUTBYTE and GETBYTE. Default value is 'char' (1 byte). Any valid 
C type can be used here, for example 'float', 'unsigned int', 'void' etc.

• The COLLAPSE argument specifies if the results of the SPLIT statement may contain 
empty results (0) in case the separator occurs as a sequence in the target string, or not (1). 
Default value is 0.

• The INTERNATIONAL argument enables support for internationalization of strings. It sets 
the textdomain for INTL$ and NNTL$ to the current filename. See also TEXTDOMAIN 
and the chapter on creating internationalization files. The default value is 0.

• The STARTPOINT argument has impact on the way the INSTRREV function returns its 
results. When set to 1, the result of the INSTRREV function is counted from the end of the 
string. Default value is 0 (counting from the beginning of the string).

• The DEVICE argument determines the way a device or file is opened in the OPEN FOR 
DEVICE statement. By default BaCon uses the following open mode: 
O_RDWR|O_NOCTTY|O_SYNC. Other common Unix open modes are O_APPEND, 
O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK and O_TRUNC. Please refer to the 
open manpage for more details on the open modes.

OR

x OR y
Type: operator
Performs a logical or between x and y. For the binary or, use the '|' symbol.

OS$

OS$
Type: function
Function which returns the name and machine of the current Operating System.

PEEK

PEEK(x)
Type: function
Returns a value stored at memory address x. The type of the returned value can be determined with 
OPTION MEMTYPE.

PI

PI



Type: variable
Reserved variable containing the number for PI: 3.1415926536.

POKE

POKE <x>, <y>
Type: statement
Stores a value <y> at memory addres <x>. Use PEEK to retrieve a value from a memory address. 
Use OPTION MEMTYPE to determine the type of the value to store. Example:
OPTION MEMTYPE float
mem = MEMORY(500)
POKE mem, 32.123

POW

POW(x, y)
Type: function
Raise x to the power of y.

PRAGMA

PRAGMA <OPTIONS x> | <LDFLAGS x> | <COMPILER x> | <INCLUDE x>
Type: statement
Instead of passing commandline arguments to influence the behavior of the compiler, it is also 
possible to define these arguments programmatically. Mostly these arguments are used when 
embedding variables or library dependent structures into BaCon code. Example when SDL code is 
included in the BaCon program:
PRAGMA LDFLAGS SDL
PRAGMA INCLUDE SDL/SDL.h
Example when GTK2 code is included in the BaCon program:
PRAGMA LDFLAGS `pkg-config --cflags --libs gtk+-2.0`
PRAGMA INCLUDE gtk-2.0/gtk/gtk.h
PRAGMA COMPILER gcc
Example on passing optimization parameters to the compiler:
PRAGMA OPTIONS -O2 -s
Multiple arguments can be passed too:
PRAGMA LDFLAGS iup cd iupcd im
PRAGMA INCLUDE iup.h cd.h cdiup.h im.h im_image.h

PRINT

PRINT [value] | [text] | [variable] | [expression] [FORMAT <format>][TO <variable> [SIZE 
<size>]] | [,] | [;]
Type: statement
Prints a numeric value, text, variable or result from expression to standard output. See EPRINT for 
printing to stderr. A semicolon at the end of the line prevents printing a newline. Example:
PRINT "This line does ";
PRINT "end here: ";



PRINT linenr + 2
Multiple arguments maybe used but they must be separated with a comma. Examples:
PRINT "This is operating system: ", OS$
PRINT "Sum of 1 and 2 is: ", 1 + 2
The FORMAT argument is optional and can be used to specify different types in the PRINT 
argument. The syntax of FORMAT is similar to the printf argument in C. Example:
PRINT "My age is ", 42, " years which is ", 12 + 30 FORMAT "%s%d%s
%d\n"
The result also can be printed to a string variable. This can also be done in combination with 
FORMAT. To achieve this, use the keyword TO. Optionally, the total amount of resulting 
characters can be provided with the SIZE keyword. If no size is given, BaCon will use its default 
internal buffer size (512 characters).
PRINT "Hello cruel world" TO hello$
PRINT "Hello" & "cruel" & "world" TO hello$ SIZE 32
t = NOW + 300
PRINT HOUR(t), MINUTE(t), SECOND(t) FORMAT "%.2ld%.2ld%.2ld" TO 
time$
PRINT MONTH$(t) FORMAT "%s" TO current$ SIZE 15

PROTO

PROTO <function name>[,function name [, ...]] [ALIAS word]
Type: statement
Defines an external function so it is accepted by the BaCon parser. Mutliple function names may be 
mentioned but these should be separated by a comma. Optionally, PROTO accepts an alias which 
can be used instead of the original function name. During compilation the BaCon program must 
explicitly be linked with an external library to resolve the function name. Examples:
PROTO glClear, glClearColor, glEnable
PROTO "glutSolidTeapot" ALIAS "TeaPot"

PULL

PULL x
Type: statement
Puts a value from the internal stack into variable <x>. The argument must be a variable. The stack 
will decrease to the next available value.
If the internal stack has reached its last value, subsequent PULL's will retrieve this last value. If no 
value has been pushed before, a PULL will deliver 0 for numeric values and an empty string for 
string values. See PUSH to push values to the stack.

PUSH

PUSH <x>|<expression>
Type: statement
Pushes a value <x> or expression to the internal stack. There is no limit to the amount of values 
which can be put onto the stack other than the available memory. The principle of the stack is Last 
In, First Out.
See also PULL to get a value from the stack.
' Initially create a new 0 value for stack



' This will only be 0 when stack wasn't declared before
PULL stack
PUSH stack
' Increase and push the stack 2x 
' Stack has now 3 values
INCR stack
PUSH stack
PUSH "End"
PULL var$
' Print and pull current stack value - will return "end" 1 0
PRINT var$
PULL stack
PRINT stack
PULL stack
PRINT stack

PUTBYTE

PUTBYTE <memory> TO <handle> [CHUNK x] [SIZE y]
Type: statement
Store binary data from a memory area to either a file or a device identified by handle, with an 
optional amount of <x> bytes, depending on OPTION MEMTYPE (default amount of bytes = 1). 
Also optionally, the actual amount stored can be captured in variable <y>.
This statement is the inverse of GETBYTE, refer to this command for an example.

PUTLINE

PUTLINE "text"|<variable$> TO <handle>
Type: statement
Write a line of string data to a memory area identified by handle. The line will be terminated by a 
newline character. The memory area must be set in streaming mode first using OPEN (see also the 
chapter on ramdisks and memory streams). Example:
PUTLINE "hello world" TO mymemory
See also GETLINE to retrieve a line of text from a memory area.

RANDOM

RANDOM (x)
Type: function
This is a convenience function to generate a random integer number between 0 and x - 1. See also 
RND for more flexibility in creating random numbers. Example creating a random number between 
1 and 100:
number = RANDOM(100) + 1

READ

READ <x1[, x2, x3, ...]>
Type: statement



Reads a value from a DATA block into variable <x>. Example:
LOCAL dat[8]
FOR i = 0 TO 7
    READ dat[i]
NEXT
DATA 10, 20, 30, 40, 50, 60, 70, 80
Also, multiple variables may be provided:
READ a, b, c, d$
DATA 10, 20, 30, "BaCon"
See RESTORE to define where to start reading the data.

READLN

READLN <var> FROM <handle>
Type: statement
Reads a line of ASCII data from a file identified by <handle> into variable <var>. See the 
GETBYTE statement to read binary data. Example:
READLN txt$ FROM myfile

RECEIVE

RECEIVE <var> FROM <handle> [CHUNK <chunksize>] [SIZE <amount>]
Type: statement
Reads data from a network location identified by handle into a string variable or memory area. 
Subsequent reads return more data until the network buffer is empty. The chunk size can be 
determined with the optional CHUNK keyword.
The amount of bytes actually received can be retrieved by using the optional SIZE keyword. If the 
amount of bytes received is 0, then the other side has closed the connection in an orderly fashion. In 
such a situation the network connection needs to be reopened. Example:
OPEN "www.google.com:80" FOR NETWORK AS mynet
SEND "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" TO mynet
REPEAT
    RECEIVE dat$ FROM mynet
    total$ = CONCAT$(total$, dat$)
UNTIL ISFALSE(WAIT(mynet, 500))
CLOSE NETWORK mynet

RECORD

RECORD <var>
    LOCAL <member1> TYPE <type>
    LOCAL <member2> TYPE <type>
    ....
END RECORD
Type: statement
Defines a record <var> with members. If the record is defined in the mainprogram, it automatically 
will be globally visible. If the record is defined within a function, the record will have a local scope, 
meaning that it is only visible within that function. To declare a global record in a function, use the 
DECLARE or GLOBAL keyword.



The members of a record should be defined using the LOCAL statement and can be accessed with 
the 'var.member' notation. Also refer to WITH for assigning values to multiple members at the same 
time. Example:
RECORD var
    LOCAL x
    LOCAL y
END RECORD
var.x = 10
var.y = 20
PRINT var.x + var.y

REDIM

REDIM <var> TO <size>
Type: statement
Redimensions a one dimensional dynamic array to a new size. The contents of the array will be 
preserved. If the array becomes smaller then the elements at the end of the array will be cleared. 
The dynamic array has to be declared previously using DECLARE or LOCAL. Example:
REDIM a$ TO 20

REGEX

REGEX (txt$, expr$)
Type: function
Applies a POSIX Extended Regular Expression expr$ to the string txt$. If the expression matches, 
the position of the first match is returned. If not, this function returns '0'. The length of the last 
match is returned in the reserved variable REGLEN.
Use OPTION COMPARE to set case sensitive matching. Examples:
' Does the string match alfanum character
PRINT REGEX("Hello world", "[[:alnum:]]")
' Does the string *not* match a number
PRINT REGEX("Hello world", "[^0-9]")
' Does the string contain an a, l or z
PRINT REGEX("Hello world", "a|l|z")

REGLEN

REGLEN
Type: variable
Reserved variable containing the length of the last REGEX match.

RELATE

RELATE <assocA> TO <assocB>[, assocC, ...]
Type: statement
This statement creates a relation between associative arrays. Effectively this will result into 
duplication of settings; an index in array <assocA> also will be set in array <assocB>. A previous 
declaration of the associative arrays involved is required. Example:

http://linux.die.net/man/7/regex


DECLARE human, mortal ASSOC int
RELATE human TO mortal
human("socrates") = TRUE
PRINT mortal("socrates")

REM

REM [remark]
Type: statement
Adds a comment to your code. Any type of string may follow the REM statement. Instead of REM 
also the single quote symbol ' maybe used to insert comments in the code.
BaCon also accepts C-style block comments: this can be done by surrounding multiple lines 
using /* and */.

RENAME

RENAME <filename> TO <new filename>
Type: statement
Renames a file. If different paths are included the file is moved from one path to the other. 
Example:
RENAME "tmp.txt" TO "real.txt"

REPEAT

REPEAT
    <body>
    [BREAK]
UNTIL <expr>
Type: statement
The REPEAT/UNTIL construction repeats a body of statements. The difference with 
WHILE/WEND is that the body will be executed at least once. The optional BREAK statement can 
be used to break out the loop. Example:
REPEAT
    C = GETKEY
UNTIL C EQ 27

REPLACE$

REPLACE$(haystack$, needle$, replacement$ [, flag])
Type: function
Substitutes a substring <needle$> in <haystack$> with <replacement$> and returns the result. The 
replacement does not necessarily need to be of the same size as the substring. The optional flag 
determines if the <needle$> should be taken as a regular expression.
Examples:
PRINT REPLACE$("Hello world", "l", "p")
PRINT REPLACE$("Some text", "me", "123")
PRINT REPLACE$("Goodbye <all>", "<.*>", "123", TRUE)
PRINT REPLACE$("abc123def", "[[:digit:]]", "x", TRUE)



RESIZE

RESIZE <x>, <y>
Type: statement
Resizes memory area starting at address <x> to an amount of <y> of the type determined by 
OPTION MEMTYPE. If the area is enlarged, the original contents of the area remain intact.

RESTORE

RESTORE [label]
Type: statement
Restores the internal DATA pointer(s) to the beginning of the first DATA statement.
Optionally, the restore statement allows a label from where the internal DATA pointer needs to be 
restored. See also READ. Example:
DATA 1, 2, 3, 4, 5
LABEL txt
DATA "Hello", "world", "this", "is", "BaCon"
RESTORE txt
READ dat$

RESUME

RESUME
Type: function
When an error is caught, this statement tries to continue after the statement where an error occurred. 
Example:
TRAP LOCAL
CATCH GOTO print_err
DELETE FILE "somefile.txt"
PRINT "Resumed..."
END
LABEL print_err
    PRINT ERR$(ERROR)
    RESUME

RETURN

RETURN [value]
Type: statement
If RETURN has no argument it will return to the last invoked GOSUB. If no GOSUB was invoked 
previously then RETURN has no effect.
Only in case of functions the RETURN statement must contain a value. This is the value which is 
returned when the FUNCTION is finished.



RETVAL

RETVAL
Type: variable
Reserved variable containing the return status of the operating system commands executed by 
SYSTEM or EXEC$.

REVERSE$

REVERSE$(x$)
Type: function
Returns the reverse of x$.

REWIND

REWIND <handle>
Type: statement
Returns to the beginning of a file opened with <handle>.

RIGHT$

RIGHT$(x$, y)
Type: function
Returns y characters from the right of x$.

RND

RND
Type: function
Returns a random number between 0 and the reserved variable MAXRANDOM. The generation of 
random numbers can be seeded with the statement SEED. See also the function RANDOM for a 
more convenient way of generating random numbers. Example:
SEED NOW
x = RND

ROUND

ROUND(x)
Type: function
Rounds x to the nearest integer number. For compatibility reasons, the keyword INT may be used 
instead. Note that this function always returns an integer value.
See also FLOOR to round down to the nearest the integer and MOD to get the fraction from a 
fractional number.



ROWS

ROWS
Type: function
Returns the amount of rows in the current ANSI compliant terminal. Use COLUMNS to get the 
amount of columns.

SCROLL

SCROLL <UP [x]|DOWN [x]>
Type: statement
Scrolls the current ANSI compliant terminal up or down one line. Optionally, the amount of lines to 
scroll can be provided.

SEARCH

SEARCH(handle, string)
Type: function
Searches for a <string> in file opened with <handle>. Returns the offset in the file where the first 
occurrence of <string> is located. Use SEEK to effectively put the filepointer at this position. If the 
string is not found, then the value '-1' is returned.

SECOND

SECOND(x)
Type: function
Returns the second (0-59) where x is the amount of seconds since January 1, 1970.

SEED

SEED x
Type: statement
Seeds the random number generator with some value. After that, subsequent usages of RND and 
RANDOM will return numbers in a random order. Note that seeding the random number generator 
with the same number also will result in the same sequence of random numbers.
By default, a BaCon program will automatically seed the random number generator as soon as it is 
executed, so it may not be needed to use this function explicitly. Example:
SEED NOW

SEEK

SEEK <handle> OFFSET <offset> [WHENCE START|CURRENT|END]
Type: statement
Puts the filepointer to new position at <offset>, optionally starting from <whence>.



SELECT

SELECT <variable> CASE <body>[;] [DEFAULT <body>] END SELECT
Type: statement
With this statement a variable can be examined on multiple values. Optionally, if none of the values 
match the SELECT statement may fall back to the DEFAULT clause. Example:
SELECT myvar
    CASE 1
        PRINT "Value is 1"
    CASE 5
        PRINT "Value is 5"
    CASE 2*3
        PRINT "Value is ", 2*3
    DEFAULT
        PRINT "Value not found"
END SELECT
Contrary to most implementations, in BaCon the CASE keyword also may refer to expressions and 
variables. Also BaCon knows how to 'fall through' using a semicolon, in case multiple values lead 
to the same result:
SELECT st$
    CASE "Man"
        PRINT "It's male"
    CASE "Woman"
        PRINT "It's female"
    CASE "Child";
    CASE "Animal"
        PRINT "It's it"
    DEFAULT
        PRINT "Alien detected"
END SELECT

SEND

SEND <var> TO <handle> [CHUNK <chunk>] [SIZE <size>]
Type: statement
Sends data in <var> to a network location identified by <handle>. Optionally, the amount of bytes 
to send can be specified with the CHUNK keyword. As by default SEND will consider the <var> to 
be a string, the default amount of data is the string length of <var>. However, instead of a string, 
also binary data can be sent by using a memory area created by the MEMORY function. In such a 
situation it is obligatory to also specify the chunk size.
The amount of bytes actually sent can be retrieved by using the optional SIZE keyword. For an 
example of SEND, see the RECEIVE statement.

SETENVIRON

SETENVIRON var$, value$
Type: statement
Sets the environment variable 'var$' to 'value$'. If the environment variable already exists, this 
statement will overwrite a previous value. See GETENVIRON$ to retrieve the value of an 
environment variable. Example:



SETENVIRON "LANG", "C"

SETSERIAL

SETSERIAL <device> IMODE|OMODE|CMODE|LMODE|SPEED|OTHER <value>
Type: statement
This statement can set the properties of a serial device. The Input Mode (IMODE), Output Mode 
(OMODE), Control Mode (CMODE) and Local Mode (LMODE) can be set, as well as the speed 
and the special properties on the serial device. A discussion on the details of all these options is 
outside the scope of this manual. Please refer to the TermIOS documentation of your C compiler 
instead.
Example usage opening a serial port in 8N1, ignoring 0-byte as a break, canonical, and 
non-blocking with a timeout of 0.5 seconds:
OPEN "/dev/ttyUSB0" FOR DEVICE AS myserial
SETSERIAL myserial SPEED B9600
SETSERIAL myserial IMODE ~IGNBRK
SETSERIAL myserial CMODE ~CSIZE
SETSERIAL myserial CMODE CS8
SETSERIAL myserial CMODE ~PARENB
SETSERIAL myserial CMODE ~CSTOPB
SETSERIAL myserial LMODE ICANON
SETSERIAL myserial OTHER VMIN = 0
SETSERIAL myserial OTHER VTIME = 5

SGN

SGN(x)
Type: function
Returns the sign of x. If x is a negative value, this function returns -1. If x is a positive value, this 
function returns 1. If x is 0 then a 0 is returned.

SIN

SIN(x)
Type: function
Returns the calculated SINUS of x.

SIZEOF

SIZEOF(type)
Type: function
Returns the bytesize of a C type.

SLEEP

SLEEP <x>
Type: statement



Sleeps <x> milliseconds (sleep 1000 is 1 second).

SORT

SORT <x> [SIZE <x>] [DOWN]
Type: statement
Sorts the one-dimensional array <x> in ascending order. Only the basename of the array should be 
mentioned, not the dimension. The array may both be a numeric or a string array. The amount of 
elements involved can be specified with SIZE. This keyword is optional for static arrays, but should 
always be used in case of dynamic arrays. Also optionally the keyword DOWN can be used to sort 
in descending order. Example:
GLOBAL a$[5] TYPE STRING
a$[0] = "Hello"
a$[1] = "my"
a$[2] = "good"
a$[4] = "friend"
SORT a$

SPC$

SPC$(x)
Type: function
Returns an x amount of spaces.

SPLIT

SPLIT <string> BY <sub> TO <array> SIZE <variable> [STATIC]
Type: statement
This statement can split a string into smaller pieces. The <sub> argument determines where the 
string is being split. The results are stored in <array>. As sometimes it cannot be known in advance 
how many elements this resulting array will contain, the array may not be declared before with 
LOCAL or GLOBAL.
If SPLIT is being used in a function or sub, then <array> will have a local scope. Else <array> will 
be visible globally, and can be accessed within all functions and subs.
The total amount of elements created in this array is stored in <variable>. This variable can be 
declared explicitly using LOCAL or GLOBAL. Example usage:
OPTION BASE 1
LOCAL dimension
SPLIT "one,two,,three" BY "," TO array$ SIZE dimension
FOR i = 1 TO dimension
    PRINT array$[i]
NEXT
The above example will return four elements, of which the third element is empty. If OPTION 
COLLAPSE is put to 1, the above example will return three elements, ignoring empty entries. See 
also JOIN.
The optional STATIC keyword allows the created <array> to be returned from a function.



SQR

SQR(x)
Type: function
Calculates the square root from a number.

STOP

STOP
Type: statement
Halts the current program and returns to the Unix prompt. The program can be resumed by 
performing the Unix command 'fg', or by sending the CONT signal to its pid: kill -CONT <pid>.

STR$

STR$(x)
Type: function
Convert numeric value x to a string (opposite of VAL). Example:
PRINT STR$(123)

SUB

SUB <name>[(STRING s, NUMBER i, FLOATING f, VAR v SIZE t)]
    <body>
ENDSUB | END SUB
Type: statement
Defines a subprocedure. A subprocedure never returns a value (use FUNCTION instead).
Variables used in a sub are visible globally, unless declared with LOCAL. The incoming arguments 
are always local. Instead of the BaCon types STRING, NUMBER and FLOATING for the 
incoming arguments, also regular C-types also can be used. With VAR a variable amount of 
arguments can be defined. Example:
SUB add(NUMBER x, NUMBER y)
    LOCAL result
    PRINT "The sum of x and y is: ";
    result = x + y
    PRINT result
END SUB

SWAP

SWAP x, y
Type: statement
Swaps the contents of the variables x and y.

SYSTEM

SYSTEM <command$>



Type: statement
Executes an operating system command. It causes the BaCon program to hold until the command 
has been completed. The exit status of the executed command itself is stored in the reserved 
variable RETVAL. Use EXEC$ to catch the result of an operating system command. Example:
SYSTEM "ls -l"

TAB$

TAB$(x)
Type: function
Returns an x amount of tabs.

TAN

TAN(x)
Type: function
Returns the calculated tangent of x.

TELL

TELL(handle)
Type: function
Returns current position in file opened with <handle>.

TEXTDOMAIN

TEXTDOMAIN <domain$>, <directory$>
Type: statement
When OPTION INTERNATIONAL is enabled, BaCon by default configures a textdomain with the 
current filename and a base directory "/usr/share/locale" for the message catalogs. With this 
statement it is possible to explicitly specify a different textdomain and base directory.

TIMER

TIMER
Type: function
Keeps track of the amount of milliseconds the current program is running. Example:
iter = 1
WHILE iter > 0 DO
    IF TIMER = 1 THEN BREAK
    INCR iter
WEND
PRINT "Got ", iter-1, " iterations in 1 millisecond!"



TIMEVALUE

TIMEVALUE(a,b,c,d,e,f)
Type: function
Returns the amount of seconds since January 1 1970, from year (a), month (b), day (c), hour (d), 
minute (e), and seconds (f). Example:
PRINT TIMEVALUE(2009, 11, 29, 12, 0, 0)

TRACE

TRACE <ON|OFF>
Type: statement
Starts trace mode. The program will wait for a key to continue. After each keypress, the next line of 
source code is displayed on the screen, and then executed. Pressing the ESCAPE key will exit the 
program.

TRAP

TRAP <LOCAL|SYSTEM>
Type: statement
Sets the runtime error trapping. By default, BaCon performs error trapping (LOCAL). BaCon tries 
to examine statements and functions where possible, and will display an error message based on the 
operating system internals, indicating which statement or function causes a problem. Optionally, 
when a CATCH is set, BaCon can jump to a LABEL instead, where a self-defined error function 
can be executed, and from where a RESUME is possible.
When set to SYSTEM, error trapping is performed by the operating system. This means that if an 
error occurs, a signal will be caught by the program and a generic error message is displayed on the 
prompt. The program will then exit gracefully
The setting LOCAL decreases the performance of the program, because additional runtime checks 
are carried out when the program is executed.

TRUE

TRUE
Type: variable
Represents and returns the value of '1'. This is the opposite of the FALSE variable.

UCASE$

UCASE$(x$)
Type: function
Converts x$ to uppercase characters and returns the result. See LCASE$ to do the opposite.

USEC

USEC
    <body>



ENDUSEC | END USEC
Type: statement
Defines a body with C code. This code is put unmodified into the generated C source file. Example:
USEC
    char *str;
    str = strdup("Hello");
    printf("%s\n", str);
END USEC

USEH

USEH
    <body>
ENDUSEH | END USEH
Type: statement
Defines a body with C declarations and/or definitions. This code is put unmodified into the 
generated global header source file. This can particularly be useful in case of using variables from 
external libraries. See also USEC to pass C source code. Example:
USEH
    char *str;
    extern int pbl_errno;
END USEH

VAL

VAL(x$)
Type: function
Returns the actual value of x$. This is the opposite of STR$. Example:
nr$ = "456"
q = VAL(nr$)

VAR

VAR <array$> SIZE <x>
Type: statement
Declares a variable argument list in a FUNCTION or SUB. There may not be other variable 
declarations in the function header. The arguments to the function are put into an array of strings, 
and the resulting amount of elements is stored in <x>. Example:
OPTION BASE 1 
SUB demo (VAR arg$ SIZE amount) 
    LOCAL x 
    PRINT "Amount of incoming arguments: ", amount
    FOR x = 1 TO amount 
        PRINT arg$[x] 
    NEXT 
END SUB 

' No argument 
demo(0) 



' One argument 
demo("abc") 
' Three arguments 
demo("123", "456", "789")

VERSION$

VERSION$
Type: variable
Reserved variable which contains the BaCon version text.

WAIT

WAIT(handle, milliseconds)
Type: function
Suspends the program for a maximum of <milliseconds> until data becomes available on <handle>.
This is especially useful in network programs where a RECEIVE will block if there is no data 
available. The WAIT function checks the handle and if there is data in the queue, it returns with 
value '1'. If there is no data then it waits for at most <milliseconds> before it returns. If there is no 
data available, WAIT returns '0'. Refer to the RECEIVE statement for an example.
This statement also can be used to find out if a key is pressed without actually waiting for a key, so 
without interrupting the current program. In this case, use the STDIN filedescriptor (0) as the 
handle. Example:
REPEAT
    PRINT "Press Escape... waiting..."
    key = WAIT(STDIN_FILENO, 50)
UNTIL key = 27
As can be observed in this code, instead of '0' the reserved POSIX variable STDIN_FILENO can be 
used also. See also appendix B for more standard POSIX variables.

WEEK

WEEK(x)
Type: function
Returns the week number (1-53) in a year, where x is the amount of seconds since January 1, 1970. 
Example:
PRINT WEEK(NOW)

WEEKDAY$

WEEKDAY$(x)
Type: function
Returns the day of the week as a string in the system's locale ("Monday", "Tuesday", etc), where x 
is the amount of seconds since January 1, 1970.



WHILE

WHILE <expr> [DO]
    <body>
    [BREAK]
WEND
Type: statement
The WHILE/WEND is used to repeat a body of statements and functions. The DO keyword is 
optional. The optional BREAK statement can be used to break out the loop. Example:
LET a = 5
WHILE a > 0 DO
    PRINT a
    a = a - 1
WEND

WITH

WITH <var>
    .<var> = <value>
    .<var> = <value>
    ....
END WITH
Type: statement
Assign values to individual members of a RECORD. For example:
WITH myrecord
    .name$ = "Peter"
    .age = 41
    .street = Falkwood Area 1
    .city = The Hague
END WITH

WRITELN

WRITELN "text"|<var> TO <handle>
Type: statement
Write a line of ASCII data to a file identified by handle. Refer to the PUTBYTE statement to write 
binary data. Example:
WRITELN "hello world" TO myfile

YEAR

YEAR(x)
Type: function
Returns the year where x is amount of seconds since January 1, 1970. Example:
PRINT YEAR(NOW)



Appendix A: Runtime error codes

Code Meaning

0 Success

1 Trying to access illegal memory

2 Error opening file

3 Could not open library

4 Symbol not found in library

5 Wrong hexvalue

6 Unable to claim memory

7 Unable to delete file

8 Could not open directory

9 Unable to rename file

10 NETWORK argument should contain colon with port number

11 Could not resolve hostname

12 Socket error

13 Unable to open address

14 Error reading from socket

15 Error sending to socket

16 Error checking socket

17 Unable to bind the specified socket address

18 Unable to listen to socket address

19 Cannot accept incoming connection

20 Unable to remove directory

21 Unable to create directory

22 Unable to change to directory

23 GETENVIRON argument does not exist as environment variable

24 Unable to stat file

25 Search contains illegal string



Code Meaning

26 Cannot return OS name

27 Illegal regex expression

28 Unable to create bidirectional pipes

29 Unable to fork process

30 Cannot read from pipe

31 Gosub nesting too deep

32 Could not open device

33 Error configuring serial port

34 Error accessing device

35 Error in INPUT

Appendix B: standard POSIX variables

Variable Value

EXIT_SUCCESS 0

EXIT_FAILURE 1

STDIN_FILENO 0

STDOUT_FILENO 1

STDERR_FILENO 2

RAND_MAX System dependent

This documentation © by Peter van Eerten.
Please report errors to: REVERSE$("gro.retrevnoc-cisab@retep")
Created with LibreOffice 3.6.2.
Back to top of document


	Contents
	Introduction
	BaCon usage and parameters
	General syntax
	Mathematics, variables
	Equations
	Indexed arrays
	Declaration of static arrays
	Declaration of dynamic arrays
	Dimensions
	Passing arrays to functions or subs
	Returning arrays from functions

	Associative arrays
	Declaration
	Relations, lookups, keys
	Basic logic programming

	Strings by value or by reference
	Execute BaCon source program using a 'shebang'
	Creating and linking to libraries created with BaCon
	Step 1: create a library
	Step 2: compile the library
	Step 3: copy library to a system path
	Step 4: update linker cache
	Step 5: demonstration program
	Step 6: compile and link

	Creating internationalization files
	Step 1: create program
	Step 2: compile program
	Step 3: create catalog file
	Step 4: add translations
	Step 5: create object file
	Step 6: install
	Step 7: setup Unix environment

	Networking
	TCP
	UDP
	BROADCAST
	MULTICAST
	SCTP

	Ramdisks and memory streams
	Error trapping, error catching and debugging
	Notes on transcompiling
	Overview of BaCon statements and functions
	ABS
	ACOS
	ADDRESS
	ALARM
	ALIAS
	AND
	ARGUMENT$
	ASC
	ASIN
	ATN
	BREAK
	CALL
	CATCH
	CHANGEDIR
	CHOP$
	CHR$
	CLEAR
	CLOSE
	COLOR
	COLUMNS
	CONCAT$
	CONST
	CONTINUE
	COPY
	COS
	COUNT
	CURDIR$
	CURSOR
	DATA
	DAY
	DEC
	DECLARE
	DECR
	DEF FN
	DELETE
	END
	ENDFILE
	ENUM
	EPRINT
	EQ
	EQUAL
	ERR$
	ERROR
	EVEN
	EXEC$
	EXIT
	EXP
	EXTRACT$
	FALSE
	FILEEXISTS
	FILELEN
	FILETIME
	FILETYPE
	FILL$
	FLOOR
	FOR
	FP
	FREE
	FUNCTION
	GETBYTE
	GETENVIRON$
	GETFILE
	GETKEY
	GETLINE
	GETPEER$
	GETX / GETY
	GLOBAL
	GOSUB
	GOTO
	GOTOXY
	HEX$
	HOST$
	HOUR
	IF
	IMPORT
	INCLUDE
	INCR
	INPUT
	INSTR
	INSTRREV
	INTL$
	ISFALSE
	ISKEY
	ISTRUE
	JOIN
	LABEL
	LCASE$
	LEFT$
	LEN
	LET
	LOCAL
	LOG
	LOOKUP
	MAKEDIR
	MAXRANDOM
	MEMCHECK
	MEMORY
	MEMREWIND
	MEMTELL
	MID$
	MINUTE
	MOD
	MONTH
	MONTH$
	NE
	NL$
	NNTL$
	NOT
	NOW
	ODD
	OPEN
	OPTION
	OR
	OS$
	PEEK
	PI
	POKE
	POW
	PRAGMA
	PRINT
	PROTO
	PULL
	PUSH
	PUTBYTE
	PUTLINE
	RANDOM
	READ
	READLN
	RECEIVE
	RECORD
	REDIM
	REGEX
	REGLEN
	RELATE
	REM
	RENAME
	REPEAT
	REPLACE$
	RESIZE
	RESTORE
	RESUME
	RETURN
	RETVAL
	REVERSE$
	REWIND
	RIGHT$
	RND
	ROUND
	ROWS
	SCROLL
	SEARCH
	SECOND
	SEED
	SEEK
	SELECT
	SEND
	SETENVIRON
	SETSERIAL
	SGN
	SIN
	SIZEOF
	SLEEP
	SORT
	SPC$
	SPLIT
	SQR
	STOP
	STR$
	SUB
	SWAP
	SYSTEM
	TAB$
	TAN
	TELL
	TEXTDOMAIN
	TIMER
	TIMEVALUE
	TRACE
	TRAP
	TRUE
	UCASE$
	USEC
	USEH
	VAL
	VAR
	VERSION$
	WAIT
	WEEK
	WEEKDAY$
	WHILE
	WITH
	WRITELN
	YEAR

	Appendix A: Runtime error codes
	Appendix B: standard POSIX variables

