(PHP 8 >= 8.3.0)
Random\Randomizer::getFloat — Get a uniformly selected float
$min
, float $max
, Random\IntervalBoundary $boundary
= Random\IntervalBoundary::ClosedOpen): floatReturns a uniformly selected, equidistributed float from a requested interval.
Due to the limited precision, not all real numbers can be exactly represented as
a floating point number.
If a number cannot be represented exactly, it is rounded to the nearest
representable exact value.
Furthermore, floats are not equally dense across the whole number line.
Because floats use a binary exponent, the distance between two neighboring
floats doubles at each power of two.
In other words: There are the same number of representable floats between
1.0
and 2.0
as they are between
2.0
and 4.0
,
4.0
and 8.0
,
8.0
and 16.0
,
and so on.
Randomly sampling an arbitrary number within the requested interval, for example by dividing two integers, might result in a biased distribution for this reason. The necessary rounding will cause some floats to be returned more often than others, especially around powers of two when the density of floats changes.
Random\Randomizer::getFloat() implements an algorithm that will return a uniformly selected float from the largest possible set of exactly representable and equidistributed floats within the requested interval. The distance between the selectable floats (“step size”) matches the distance between the floats with the lowest density, i.e. the distance between floats at interval boundary with the larger absolute value. This means that not all representable floats within a given interval may be returned if the interval crosses one or more powers of two. Stepping will start from the interval boundary with the larger absolute value to ensure the steps align with the exactly representable floats.
Closed interval boundaries will always be included in the set of selectable floats. Thus, if the size of the interval is not an exact multiple of the step size and the boundary with the smaller absolute value is a closed boundary, the distance between that boundary and its nearest selectable float will be smaller than the step size.
Post-processing the returned floats is likely going to break the uniform equidistribution, because the intermediate floats within a mathematical operation are experiencing implicit rounding. The requested interval should match the desired interval as closely as possible and rounding should only be performed as an explicit operation right before displaying the selected number to a user.
To give an example of how the algorithm works, consider a floating point
representation that uses a 3-bit mantissa.
This representation is capable of representing 8 different floating point
values between consecutive powers of two.
This means that between
1.0
and 2.0
all steps of size 0.125
are exactly representable and between 2.0
and 4.0
all steps of size 0.25
are exactly representable.
In reality PHP’s floats use a 52-bit mantissa and can represent 2^{52}
different values between each power of two.
This means that
1.0
1.125
1.25
1.375
1.5
1.625
1.75
1.875
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
1.0
and 4.0
.
Now consider that $randomizer->getFloat(1.625, 2.5, IntervalBoundary::ClosedOpen)
is called, i.e. a random float starting at 1.625
until, but not including,
2.5
is requested.
The algorithm first determines the step size at the boundary with the larger absolute
value (2.5
). The step size at that boundary is 0.25
.
Note that the size of the requested interval is 0.875
, which is
not an exact multiple of 0.25
.
If the algorithm would start stepping at the lower bound 1.625
, it
would encounter 2.125
, which is not exactly representable and would
experience implicit rounding.
Thus the algorithm starts stepping at the upper boundary 2.5
.
The selectable values are:
2.25
2.0
1.75
1.625
2.5
is not included, because the upper boundary of the requested
interval is an open boundary.
1.625
is included, even though its distance to the nearest value
1.75
is 0.125
, which is smaller than the
previously determined step size of 0.25
.
The reason for that is that the requested interval is closed at the lower boundary
(1.625
) and closed boundaries are always included.
Finally the algorithm uniformly selects one of the four selectable values at random and returns it.
In the previous example, there are eight representable floating point numbers
between each sub-interval delimited by a power of two.
To give an example why dividing two integers would not work well to generate
a random float, consider that there are 16 equidistributed floating point numbers
in the right-open interval from 0.0
until, but not including,
1.0
. Half of them are the eight exactly representable values
between 0.5
and 1.0
, the other half are the
values between 0.0
and 1.0
that the step
size of 0.0625
.
These can easily be generated by dividing a random integer between 0
and 15
by 16
to obtain one of:
0.0
0.0625
0.125
0.1875
0.25
0.3125
0.375
0.4375
0.5
0.5625
0.625
0.6875
0.75
0.8125
0.875
0.9375
This random float could be scaled to right-open interval from 1.625
until, but not including, 2.75
by multiplying it with the size
of the interval (0.875
) and adding the minimum 1.625
.
This so-called affine transformation would result in the values:
1.625
rounded to 1.625
1.679
rounded to 1.625
1.734
rounded to 1.75
1.789
rounded to 1.75
1.843
rounded to 1.875
1.898
rounded to 1.875
1.953
rounded to 2.0
2.007
rounded to 2.0
2.062
rounded to 2.0
2.117
rounded to 2.0
2.171
rounded to 2.25
2.226
rounded to 2.25
2.281
rounded to 2.25
2.335
rounded to 2.25
2.390
rounded to 2.5
2.445
rounded to 2.5
2.5
would be returned, despite
being an open boundary and thus being excluded.
Also note how 2.0
and 2.25
are twice as
likely to be returned compared to the other values.
min
The lower bound of the interval.
max
The upper bound of the interval.
boundary
Specifies whether the interval boundaries are possible return values.
A uniformly selected, equidistributed float from the interval specified by min
,
max
, and boundary
.
Whether min
and max
are possible return values depends
on the value of boundary
.
min
is not finite (is_finite()),
a ValueError will be thrown.
max
is not finite (is_finite()),
a ValueError will be thrown.
Random\Randomizer::$engine
.
Example #1 Random\Randomizer::getFloat() example
<?php
$randomizer = new \Random\Randomizer();
// Note that the latitude granularity is double the
// longitude’s granularity.
//
// For the latitude the value may be both -90 and 90.
// For the longitude the value may be 180, but not -180, because
// -180 and 180 refer to the same longitude.
printf(
"Lat: %+.6f Lng: %+.6f",
$randomizer->getFloat(-90, 90, \Random\IntervalBoundary::ClosedClosed),
$randomizer->getFloat(-180, 180, \Random\IntervalBoundary::OpenClosed),
);
?>
Il precedente esempio visualizzerà qualcosa simile a:
Lat: +69.244304 Lng: -53.548951
Nota:
This method implements the γ-section algorithm as published in » Drawing Random Floating-Point Numbers from an Interval. Frédéric Goualard, ACM Trans. Model. Comput. Simul., 32:3, 2022 to obtain the desired behavioral properties.