New features in 2.20 since 2.18

New for musical notation
Displaying pitch improvements
e Pitches that have a sharp or flat in their name now need to be hyphenated;
\key a-flat \major
instead of:
\key aflat \major

Pitches that contain double sharps or flats in their name, however, do not need a second
hyphen. For example using the Dutch notation cisis:

\key c-sharpsharp \major
e Accidental rules can now be defined across ChoirStaff contexts.

e Two new accidental rules have been added. Both combine the characteristics of
modern-voice, piano and their equivalents:

choral
o) | | | .
] | M| 1L |.| &') I
' i
o o
r / e
: 3 b
e i — — -
This is the now the default accidental style for ChoirStaff.
choral-cautionary
- () | | | .
] | | J7 S Y |
o s
o o f» | '@ -
s 3 / !
Z e — — —

The same as choral but with the extra accidentals typeset as cautionaries instead.
Also see Section “Automatic accidentals” in Notation Reference.

e Four new clef glyphs are now available; ‘GG’ (double-G), ‘Tenor G’, ‘varC’ plus related
tessitura and ‘Varpercussion’:

Example Output Example Output
\clef GG \clef tenorG
\clef varC \clef altovarC

== ==



\clef tenorvarC \clef baritonevarC

LE= LS

==

Also see Section “Clef styles” in Notation Reference.

\clef varpercussion

e French note names are now explicitly defined — previously they were aliased to Italian note
names. The d pitch may be entered as either re or ré.
\language "frangais"
do ré mi fa | sol la si do | ré1

!
{2 |
[ 4 \ _‘_!

- 1
Y, oo’ 1

Double sharps are entered using an x suffix.

N>

¢

D

\language "frangais"
dob, rebb misb fabsb | sold ladd six dosd | rédsdi

o) |
)’ 4

/\ r ) ) .

[ Fav Y W [y ] 1

F T pabadede tFeT

Rhythm improvements

N
A
¢

e Multi-measure rests have length according to their total duration, under the control of
MultiMeasureRest.space-increment. Note the default value is 2.0.

\compressFullBarRests
R1x2 R1%4 R1%64 R1x*16

0 2 4 64 16
%JU V) I 1 | 1

\compressFullBarRests
\override Staff.MultiMeasureRest.space-increment = 2.5
R1%2 R1%*4 R1%*64 R1x*16

0 2 4 64 16
%}ﬂ\y \ W] | | I 1 I 1

e Improvements to the \partial command have been made when used with parallel music
and/or multiple contexts.

e It is now possible to change the time signature mid-measure by using both the \time and
\partial commands together.

fff£f | £2. \bar "||"
\time 3/4 \partial 4



f8 8 | £f2 £8 £ |

o)

)’ A
7\ r )

e Isolated durations in music now stand for unpitched notes. Pitches are taken from the
preceding note or chord. This is especially convenient for specifying rhythms in both music
and scheme functions and can help improve the readability of LilyPond source files.

c64[ 64] 32 16 8- <g b d>4~ 2 | 1

4]
— -
)= 4
/ >4
ANV b
p—
U — |

\new DrumStaff \with { \override StaffSymbol.line-count = 1 }
\drummode {
\time 3/4
tambourine 8 \tuplet 3/2 { 16 16 16 }
8 \tuplet 3/2 { 16 16 16 } 8 8 |

e eere

e Beaming exceptions can now be constructed using the simpler \beamExceptions scheme
function. Previously, this would have required writing:

\set Timing.beamExceptions =

#'( ;start of alist
(end . ;entry for end of beams
( ;start of alist of end points
(1. 32) . (22 2) ;rule for 1/32 beams -- end each 1/16
)

\time #'(2 1) 3/16
clé c c
\repeat unfold 6 { c32 }
With the new \beamExceptions scheme function, this becomes:

\set Timing.beamExceptions =
\beamExceptions { 32[ 32] 32[ 32] 32[ 32] }

\time #'(2 1) 3/16
cl6 c c |
\repeat unfold 6 { c32 } |

4}

v €

/\ e

() ¢ o0 ¢ o ¢dddo

with multiple exceptions separated by bar checks. Note that writing the exception pattern
without pitches is convenient but not mandatory (also see the previous documented rhythm
improvement — Isolated durations in music now stand for unpitched notes.



e The positioning of tuplet numbers for kneed beams has been improved. Previously, tuplet
numbers were placed according to the position of the tuplet bracket, even if the bracket was
not printed. This could lead to tuplet numbers being ‘stranded’.

Previously:
- 2 » &
Q — — — —
,I’\“ F F | |
Y = [ F L2 2
1/3 3 L3 3

Now, when the bracket is not drawn, tuplet numbers are positioned closer.

A = = = »
S —— T ——
ANAV4 . .
v = i I
1/3 L3

e Collision detection for the kneed beam tuplet numbers has also been added, shifting the
offset horizontally if the number is too close to an adjoining note column (but still preserving
the number’s vertical distance). In the event of a collision — for example with an accidental
— the tuplet number will be shifted vertically instead. If the tuplet number is itself too
large to fit within the available space, the original, ‘bracket-based’, positioning system will
be used instead.

-
0 = £ E
A2 o i .
o S < —
[y, ;j;d ! — - 3
[ o =

The original kneed-beam tuplet behavior is still available with a new, knee-to-beam prop-
erty for the TupletNumber layout object.

\time 2/4

\override Beam.auto-knee-gap = 3

\override TupletNumber.knee-to-beam = ##f

\override TupletBracket.bracket-visibility = ##t

\tuplet 3/2 4 { g8 c'' e, }

\once \override TupletBracket.bracket-visibility = ##f

\tuplet 3/2 4 { g,,8 c'' e, }

= =

e
¢

E£3/) :3

Expressive mark improvements

e The ends of hairpins may now be fine-tuned using the shorten-pair grob property. This
previously only affected text-spanners (e.g. TupletBracket and OttavaBracket).

Positive and negative values offset right and left respectively.

\once \override Hairpin.shorten-pair = #'(0 . 2)



al\< | a2 a\!

\once \override Hairpin.shorten-pair = #'(2 . 0)
\once \override Hairpin.stencil = #constante-hairpin
al\< | a2 a\!

\once \override Hairpin.shorten-pair = #'(-1 . -1)
\once \override Hairpin.stencil = #flared-hairpin
al\< | a2 a\!

h | | | | |
)’ 4 | | | | |
/\ r &) | | | | |
AN U O 7 7 O 7 7 O 7 7
ANV
¢ —_— !

e Individual slurs and phrasing slurs may now be started from an explicit note within a chord.
<f a( c>1 | <c') e g(> | <a c) e>

o) o

)" 4 <« <«
4\ e <) <« <)
[ fan Y W] [ @ ] <«

<f(Ca\( c>1 | <c'\) e\( g> | <a c e\)>

<«
[ @1 K@ )
[ © ) <>

N (@

A
o0

[ @)

2 et
-

e A new command \=X has been added — where ‘X’ can be any non-negative integer or symbol
— so that a specific ‘id” can be assigned to the start and end of slurs and phrasing slurs.

This is useful when simultaneous slurs are required or if one slur overlaps another or when
nesting short slurs within a longer one.

<a ¢ e\=7\(>1 | <g b d\=L(> |

<f\=A( a c\="f00"(> | <c'\="fo0")\=4) e\=£) g\=7\)> |

f Q
\J [0 1 P <€)
A/ o <> >4 [ @] [ @ )
N U O =4 [ Q)
0l — =

Also see Section “Expressive marks as curves” in Notation Reference.

Repeat notation improvements

e The visual style of tremolo slashes (shape, style and slope) is now more finely controlled.

QL

Y t Tz z 2T

e The music function \unfoldRepeats can now take an optional argument-list specifying
which type(s) of repeated music should be unfolded. Possible entries are percent, tremolo,
volta. If the optional argument-list is unspecified, repeated-music will be used, unfolding
all.



Staff notation improvements

e A new command \magnifyStaff has been added which scales staff sizes, staff lines, bar
lines, beamlets and horizontal spacing generally at the Staff context level. Staff lines are
prevented from being scaled smaller than the default since the thickness of stems, slurs, and
the like are all based on the staff line thickness.

e A new command \magnifyMusic has been added, which allows the notation size to be
changed without changing the staff size, while automatically scaling stems, beams, and
horizontal spacing.

\new Staff <<
\new Voice \relative {

\voiceOne

<e' e'>4 <f £'>8. <g g'>16 <f £'>8 <e e'>4 18
}
\new Voice \relative {

\voiceTwo

\magnifyMusic 0.63 {
\override Score.SpacingSpanner.spacing-increment = #(x 1.2 0.63)
r32 c'''acacacrcacacac

rcacacacacacacac
}
}

>>

i i ==

e A new command, \RemoveAllEmptyStaves, has been made available, which acts exactly
like \RemoveEmptyStaves, except for also removing empty staves on the first system in a
score.

e A new markup command \justify-line has been added. Similar to the \fill-line
markup command except that instead of setting words in columns, the \justify-line
command balances the whitespace between them ensuring that when there are three or
more words in a markup, the whitespace is always consistent.

\markup \fill-line {0o00000 000000 000000 00OOOO}

\markup \fill-line {000000000 00000000 00O 00O}

000000 000000 000000 000000

000000000 00000000 00 000

\markup \justify-line {000000 000000 000000 000000}
\markup \justify-line {000000000 00000000 00O 00O}

000000 000000 000000 000000

000000000 00000000 00 000



Editorial annotation improvements

e It is now possible to add text to analysis brackets through the HorizontalBracketText
object.

\layout {
\context {
\Voice
\consists "Horizontal_bracket_engraver"
}
}
{
\once \override HorizontalBracketText.text = "a"

c''\startGroup d''\stopGroup
e''-\tweak HorizontalBracketText.text "a'" \startGroup d''\stopGroup

}
f)
'_L'—
&€ |
Y \_/\—|/
a a

Text formatting improvements

e Support for making it easier to use alternative ‘music’ fonts other than the default Emmen-
taler in LilyPond has been added. See Section “Replacing the notation font” in Notation
Reference for more information.

e Default text fonts have been changed from Century Schoolbook L, sans-serif, and
monospace.

For svg backend:

Family Default font
roman serif

sans sans-serif
typewriter monospace

serif, sans-serif, and monospace are generic-family in SVG and CSS specifications.
For other backends:

Family Default font (alias) Alias definition lists

roman LilyPond Serif TeX Gyre Schola, C059, Century SchoolBook
URW, Century Schoolbook L, DejaVu Serif, ...,
serif

sans LilyPond Sans Serif TeX Gyre Heros, Nimbus Sans, Nimbus Sans L,
DejaVu Sans, ..., sans-serif

typewriter LilyPond Monospace TeX Gyre Cursor, Nimbus Mono PS, Nimbus
Mono, Nimbus Mono L, DejaVu Sans Mono, ...,
monospace

LilyPond Serif, LilyPond Sans Serif, and LilyPond Monospace are font aliases defined
in the LilyPond dedicated FontConfig configuration file 00-1ilypond-fonts.conf. Where
a character dosen’t exist in the first font listed, the next font listed will be used instead
for that character. For details of alias definitions, please see to 00-1ilypond-fonts.conf
under the installed directory.



e When using OpenType fonts, font features can be used. Note: Not all OpenType fonts
have all functions.

% True small caps

\markup { Normal Style: Hello HELLO }

\markup { \caps { Small Caps: Hello } }

\markup { \override #'(font-features . ("smcp"))
{ True Small Caps: Hello } }

% Number styles

\markup { Normal Number Style: 0123456789 }

\markup { \override #'(font-features . ("onum"))
{ 01d Number Style: 0123456789 } }

% Stylistic Alternates

\markup { \override #'(font-features . ("salt 0"))
{ Stylistic Alternates 0: epmpf } }

\markup { \override #'(font-features . ("salt 1"))
{ Stylistic Alternates 1: epmpf } }

% Multiple features
\markup { \override #'(font-features . ("onum" "smcp" "salt 1"))
{ Multiple features: Hello 0123456789 e¢pmpf } }

Normal Style: Hello HELLO

SMALL CAPS: HELLO

Truk SmaLL Caps: HELLO

Normal Number Style: 0123456789
Old Number Style: 0123456789
Stylistic Alternates 0: eq@tp0
Stylistic Alternates 1: e¢@0

MurripLE FEATURES: HELLO 0123456789 €d®o0

e Two new styles of whiteout are now available. The outline style approximates the contours
of a glyph’s outline, and its shape is produced from multiple displaced copies of the glyph.
The rounded-box style produces a rounded rectangle shape. For all three styles, including
the default box style, the whiteout shape’s thickness, as a multiple of staff-line thickness,
can be customized.

\markup {
\combine
\filled-box #'(-1 . 15) #'(-3 . 4) #1
\override #'(thickness . 3)
\whiteout whiteout-box



}
\markup {
\combine
\filled-box #'(-1 . 24) #'(-3 . 4) #1
\override #'(style . rounded-box)
\override #'(thickness . 3)
\whiteout whiteout-rounded-box

}
\markup {
\combine

\filled-box #'(-1 . 18) #'(-3 . 4) #1
\override #'(style . outline)
\override #'(thickness . 3)
\whiteout whiteout-outline

}

\relative {
\override Staff.Clef.whiteout-style = #'outline
\override Staff.Clef.whiteout = 3
g'l

}

whiteout-box

whiteout-rounded-box

whiteoutzoutline

N C——]

e A new markup-command, \with-dimensions-from, makes \with-dimensions easier to
use by taking the new dimensions from a markup object, given as first argument.

\markup {
\pattern #5 #Y #0 "x"
\pattern #5 #Y #0 \with-dimensions-from "x" "f"
\pattern #5 #Y #0 \with-dimensions-from "x" "g"
\override #'(baseline-skip . 2)
\column {
\pattern #5 #X #0 "n"
\pattern #5 #X #0 \with-dimensions-from "n" "m"
\pattern #5 #X #0 \with-dimensions-from "n" "!"



e Markup-command \draw-squiggle-line is now available. Customizing is possible with
overrides of thickness, angularity, height and orientation

\markup

\overlay {
\draw-squiggle-line #0.5 #'(3 . 3) #i#t

\translate #'(3 . 3)
\override #'(thickness . 4)
\draw-squiggle-line #0.5 #'(3 . -3) #i#t

\translate #'(6 . 0)
\override #'(angularity . -5)
\draw-squiggle-line #0.5 #'(-3 . -3) #i#t

\translate #'(3 . -3)

\override #'(angularity . 2)

\override #'(height . 0.3)

\override #'(orientation . -1)
\draw-squiggle-line #0.2 #'(-3 . 3) #i#t

&

e Markup-commands \undertie and \overtie are now available, as well as the generic
markup-command \tie.
\markup {
\undertie "undertied"
\overtie "overtied"

}
m={

c''1l \prall -\tweak text \markup \tie "131" -1
}

{ \voiceOne \m \voiceTwo \m }

—
undertied overtied
v

831
o) W
)V 4
/\ o O O
[ fan YA W]
ANV
Y] Ve
131
N

New for specialist notation

Vocal music improvements

e A new flexible template suitable for a range of choral music, is now provided. This may be
used to create simple choral music, with or without piano accompaniment, in two or four
staves. Unlike other templates, this template is ‘built-in’, which means it does not need



to be copied and edited: instead it is simply \include’d in the input file. For details, see
Section “Built-in templates” in Learning Manual.

e The \addlyrics function now works with arbitrary contexts incuding Staff.

e \lyricsto and \addLyrics have been ‘harmonized’. Both now accept the same kind of
delimited argument list that \lyrics and \chords accept. Backward compatibility has
been added so music identifiers (i.e. \mus) are permitted as arguments. A convert-1y rule
has been added that removes redundant uses of \1lyricmode and rearranges combinations
with context starters such that \lyricsto in general is applied last (i.e. like \lyricmode
would be).

Unfretted and fretted string instrument improvements
e A new note head style for Tabulature has been added — TabNoteHead.style = #'slash.

e In fret-diagrams the distance between frets and the distance between strings is now indepen-
dently adjustable. Available are fret-distance and string-distance as subproperties of
fret-diagram-details

fretMrkp = \markup { \fret-diagram-terse "x;x;0;2;3;2;" }
\markuplist
\override #'(padding . 2)
\table #'(0 -1) {
"default"
\fretMrkp

"fret-distance"

\override #'(fret-diagram-details . ((fret-distance . 2)))
\fretMrkp

"string-distance"

\override #'(fret-diagram-details . ((string-distance . 2)))
\fretMrkp

default xx0

fret-distance  xxo

string-distance x x o

e It is now possible to individually color both the dots and parentheses in fret diagrams when
using the \fret-diagram-verbose markup command.

\new Voice {



ci™\markup {
\override #'(fret-diagram-details . (
(finger-code . in-dot))) {
\fret-diagram-verbose #'((mute 6)
(place-fret 5 3 1 red)
(place-fret 4 5 2 inverted)
(place-fret 3 5 3 green)
(place-fret 2 5 4 blue inverted)
(place-fret 1 3 1 violet)
(barre 5 1 3 ))
}
}
c1™\markup {
\override #'(fret-diagram-details . (
(finger-code . below-string))) {
\fret-diagram-verbose #'((mute 6)
(place-fret 5 3 1 red parenthesized)
(place-fret 4 5 2 yellow
default-paren-color
parenthesized)
(place-fret 3 5 3 green)
(place-fret 2 5 4 blue )
(place-fret 1 3 1)
(barre 5 1 3))

X
X Samme |
T o
A HE

[ Il 12341
)’ A
4\ r )
[ oY W]
ANV
[J) © o

e Two new properties have been added for use in fret-diagram-details when using the
\fret-diagram-verbose markup command; fret-label-horizontal-offset which af-
fects the fret-label-indication and paren-padding which controls the space between
the dot and the parentheses surrounding it.

\new Voice {

ci™\markup {
\fret-diagram-verbose #'((mute 6)

(place-fret 5
(place-fret 4
(place-fret 3
1
2
)

[y

)
)
)

parenthesized)

)

(place-fret
(place-fret
(barre 5 2 3))

w o o1 o1 W
=D W N

}
c1™"\markup {
\override #'(fret-diagram-details . (
(fret-label-horizontal-offset . 2)
(paren-padding . 0.25))) {



\fret-diagram-verbose #'((mute 6)

(place-fret 5 3 1)
(place-fret 4 5 2)
(place-fret 3 5 3)
(place-fret 1 6 4 parenthesized)
(place-fret 2 3 1)
(barre 5 2 3))
}
}
}
Xll‘—“l iii X e iii
Q ® 7Y
(€
ANV4
[J) o o
e Additional bass strings (for lute tablature) are supported.
m={f44d afda, g, fis, e, d, ¢, \bar "|." }
\score {
\new TabStaff \m
\layout {
\context {
\Score
tablatureFormat = #fret-letter-tablature-format
}
\context {
\TabStaff

stringTunings = \stringTuning <a, d f a 4' f'>
additionalBassStrings = \stringTuning <c, d, e, fis, g,>
fretLabels = #l (llall IIbll llrll |Idll llell llfll Ilgll llhll Ili|| llkll)

}
}
}
a 1
—3"—&
A a =
a-
B a =

a /a /lal/lla 4

e String numbers can now also be used to print roman numerals (e.g. for unfretted string
instruments).
c2\2
\romanStringNumbers
c\2
\arabicStringNumbers

7 [ @ )

f ® = ®
b CF

|

|




e TabStaff is now able to print micro-tones for bendings etc.

\layout {
\context {
\Score
supportNonIntegerFret = ##t

}
}

mus = \relative { c'4 cih 4 dih }

<<
\new Staff << \clef "G_8" \mus >>

\new TabStaff \mus
>>

—g’—l—l 1/2—3—31/2—
A

T

Chord notation improvements
e \chordmode can now use < > and << >> constructs.
e It is now possible to override the text property of chord names.
<<
\new ChordNames \chordmode {
a' b c:7
\once \override ChordName.text = "foo"
d
}

>>

A B C’ foo

New for input and output

Input structure improvements

e Blocks introduced with \header can be stored in variables and used as arguments to music
and scheme functions and as the body of #{...#} constructs. They are represented as a
Guile module.

While \book, \bookpart, \score, \with, \layout, \midi, \paper blocks can be passed
around in similar manner, they are represented by different data types.
Titles and header improvements
e Page numbers may now be printed in roman numerals, by setting the page-number-type
paper variable.
Input file improvements

e A new command \tagGroup has now been added. This complements the existing
\keepWithTag and \removeWithTag commands. For Example:

\tagGroup #'(violinI violinII viola cello)



declares a list of ‘tags’ that belong to a single ‘tag group’.
\keepWithTag #'violinlI
Is now only concerned with ‘tags’ from ‘violinl”’s tag group.

Any element of the included music tagged with one or more tags from the group, but not
with violinl, will be removed.

Output improvements

e LilyPond source files may now be embedded inside the generated PDF files. This experi-
mental feature is disabled by default and may be regarded as unsafe, as PDF documents
with hidden content tend to present a security risk. Please note that not all PDF view-
ers have the ability to handle embedded documents (if not, the PDF output will appear
normally and source files will remain invisible). This feature only works with the PDF
backend.

e The output-classic-framework procedure and the -dclip-systems are now available
with the SVG backend.

e An argument, -dcrop, has been added, formatting SVG and PDF output without margins or
page-breaks.

e A new output-attributes grob property is now used for svg output instead of the id
grob property. It allows multiple attributes to be defined as an association list. For exam-
ple, #' ((id . 123) (class . foo) (data-whatever . \bar")) will produce the following
group tag in an SVG file: <g 1d=\123" class=\foo" data-whatever=\bar"> ... </g>.

e The PostScript functionality of stroke adjustment is no longer applied automatically but
left to the discretion of the PostScript device (by default, Ghostscript uses it for resolutions
up to 150dpi when generating raster images). When it is enabled, a more complex drawing
algorithm designed to benefit from stroke adjustment is employed mostly for stems and bar
lines.

Stroke adjustment can be forced by specifying the command line option ‘-dstrokeadjust’
to LilyPond. When generating PDF files, this will usually result in markedly better looking
PDF previews but significantly larger file size. Print quality at high resolutions will be
unaffected.

e Added a new make-path-stencil function that supports all path commands both relative
and absolute:

lineto, rlineto, curveto, rcurveto, moveto, rmoveto, closepath. The function also
supports ‘single-letter’ syntax used in standard SVG path commands:

L,1,C, c,M m Zand z. The new command is also backward-compatible with the original
make-connected-path-stencil function. Also see scm/stencil.scm.

MIDI improvements

e The most common articulations are now reflected in MIDI output. Accent and marcato
make notes louder; staccato, staccatissimo and portato make them shorter. Breath marks
shorten the previous note.

This behavior is customizable through the midiLength and midiExtraVelocity properties
on ArticulationEvent. See script-init.1ly for examples.

e Improved MIDI output for breathe marks. After tied notes, breaths take time only from
the last note of the tie; e.g. { ¢4~ c8 \breathe } performs as { c4™ c16 r } instead of {
c4 r8 }. This is more consistent with articulations and how humans interpret breaths after
ties. It now also makes it easier to align simultaneous breathe marks over multiple parts,
all with different note lengths.

e There is now support for controlling the ‘expression level’ of MIDI channels using the
Staff.midiExpression context property. This can be used to alter the perceived volume



of even sustained notes (albeit in a very ‘low-level”’ way) and accepts a number value between

0.0and 1.0
\score {
\new Staff \with {
midiExpression = #0.6
midiInstrument = "clarinet"
X
<<
{a'1” a'1 }
{
\set Staff.midiExpression = #0.7 s4\f\<
\set Staff.midiExpression = #0.8 s4
\set Staff.midiExpression = #0.9 s4
\set Staff.midiExpression = #1.0 s4
\set Staff.midiExpression = #0.9 s4\>
\set Staff.midiExpression = #0.8 s4
\set Staff.midiExpression = #0.7 s4
\set Staff.midiExpression = #0.6 s4\!
b
>>
\midi { }
}

e When outputting MIDI, LilyPond will now store the title defined in a score’s \header
block (or, if there is no such definition on the \score level, the first such definition found in
a \header block of the score’s enclosing \bookpart, \book, or top-level scope) as the name
of the MIDI sequence in the MIDI file. Optionally, the name of the MIDI sequence can be
overridden using the new midititle \header field independently of title (for example, in
case title contains markup code which does not render as plain text in a satisfactory way
automatically).

e Support for making it easier to use alternative ‘music’ fonts other than the default Emmen-
taler in LilyPond has been added. See Section “Replacing the notation font” in Notation
Reference for more information.

Extracting music improvements

e \displayLilyMusic and its underlying Scheme functions no longer omit redundant note
durations. This makes it easier to reliably recognize and format standalone durations in
expressions like

{ c4 d4 8%

New for spacing issues
Page breaking improvements

e There are two new page breaking functions. 1ly:one-page-breaking automatically ad-
justs the height of the page to fit the music, so that everything fits on one page.
ly:one-line-auto-height-breaking is like 1ly:one-line-breaking, placing the music
on a single line and adjusting the page width accordingly, however it also automatically
adjusts the page height to fit the music.

Vertical and Horizontal spacing improvements

e It is now possible to move systems with reference to their current position using the
extra-offset subproperty of NonMusicalPaperColumn.line-break-system-details.



Both vertical and horizontal changes are possible. This feature is especially useful for
making slight adjustments to the default vertical position of individual systems. See
Section “Explicit staff and system positioning” in Notation Reference for more information.

e Improved visual spacing of small and regular ‘MI” Funk and Walker noteheads so they are
now the same width as other shaped notes in their respective sets. SOL noteheads are also
now visually improved when used with both the normal Aiken and Sacred Harp heads, as
well as with the thin variants.

e LeftEdge now has a definable Y-extent (i.e.vertical). See Section “LeftEdge” in Internals
Reference.

e Grobs and their parents can now be aligned separately allowing more flexibility for grob
positions. For example the ‘left’ edge of a grob can now be aligned on the ‘center’ of its
parent.

e Improved horizontal alignment when using TextScript, with DynamicText or LyricText.

New for changing defaults

An optional argument for the \afterGrace command has been added.

\afterGrace now has an optional argument to specificy the spacing fraction position of its
notes.
<<
\new Staff \relative {
% The default, hard-coded value (3/4)
c''1 \afterGrace d1 { c16[ d] } c1
}
\new Staff \relative {
% Changing the hard-coded value manually (15/16)
#(define afterGraceFraction (cons 15 16))
c''1 \afterGrace d1 { c16[ d] } c1
}
\new Staff \relative {
% Using the new argument (5/6)
c''l \afterGrace 5/6 d1 { c16[ d] } ci

>>
o) =
)’ 4 > | 4
7\ (o O e A O
[ fav YA W]
NV
(Y
o) =
)" 4 O | o
7\ (o O ~F o~ O
[ £an Y W]
NV
¢
o) =
)’ 4 Pay | o
7\ (s O ~F o~ O
[ £an Y W]
ANV4
(Y

e All of \override, \revert, \set, and \unset now work with the \once prefix for making
one-time settings.
\relative {
c'd d
\override NoteHead.color = #red
ed f |



\once \override NoteHead.color = #green
gl a

\once \revert NoteHead.color

b c |

\revert NoteHead.color

f2 c |

p_—
N @4

i i — Ig
o 1

Jz et

New for Internal interfaces and functions

e The music and grob property spanner-id, used for distinguishing simultaneous slurs and
phrasing slurs, has been changed from a string to a key which can be either a non-negative
integer or symbol (also see the previous documented expressive mark improvement — A new

command \=X has been added).

e Context properties named in the ‘alternativeRestores’ property are restored to their
value at the start of the first alternative in all subsequent alternatives.

Currently the default set restores ‘current meter’:
\time 3/4
\repeat volta 2 { c2 e4 | }

\alternative {
{ \time 4/4 f2 4 | }

{f2d4 | }
}
g2. |
s S T i € T s~ | i
!U@ q i \ W '=!
‘measure position’:
\time 3/4
\repeat volta 2 { c2 e4 | }
\alternative {
{ \time 4/4
\set Timing.measurePosition = #(ly:make-moment -1/2)
f2 1 }
{f2d4 | }
}
g2. |
" e .
. ™ il € M S— | 1 f—2
!UQ q i \ W2 '= i

and ‘chord changes’:
<<
\new ChordNames {



\set chordChanges = ##t
\chordmode { cl:m d:m c:m d:m }
}
\new Staff {
\repeat volta 2 { \chordmode { cl:m } }
\alternative {
{ \chordmode { d:m } }
{ \chordmode { c:m } }

}
\chordmode { d:m }
}
>>
[ |2
A Cm Dm Cm Dm
. — ) N
N U | o~ <« 0] TVaS [ )
ANV 12924 [ @) i hos [ @)
o ‘S O o O

e LilyPond functions defined with define-music-function, define-event-function,
define-scheme-function and define-void-function can now be directly called from
Scheme as if they were genuine Scheme procedures. Argument checking and matching
will still be performed in the same manner as when calling the function through LilyPond
input. This includes the insertion of defaults for optional arguments not matching their
predicates. Instead of using \default in the actual argument list for explicitly skipping a
sequence of optional arguments, *unspecified* can be employed.

e Current input location and parser are now stored in GUILE fluids and can be referenced
via the function calls (*location*) and (*parserx). Consequently, a lot of functions
previously taking an explicit parser argument no longer do so.

Functions defined with define-music-function, define-event-function,
define-scheme-function and define-void-function no longer use parser and
location arguments.

With those particular definitions, LilyPond will try to recognize legacy use of parser and
location arguments, providing backwards-compatible semantics for some time.

e Scheme functions and identifiers can now be used as output definitions.
e Scheme expressions can now be used as chord constituents.

e Music (and scheme and void) functions and markup commands that just supply the final
parameters to a chain of overrides, music function and markup command calls can now be
defined in the form of just writing the expression cut short with \etc.

\markup bold-red = \markup \bold \with-color #red \etc
highlight = \tweak font-size 3 \tweak color #red \etc

\markup \bold-red "text"
\markuplist \column-lines \bold-red { One Two }

{ ¢' \highlight d' e'2-\highlight -! }

text

One



Two

N>

Y D) —1
4 \ U]

e Dot-separated symbol lists like FretBoard.stencil were already supported as of ver-
sion 2.18. They may now also contain unsigned integers, and may alternatively be separated
by commata. This allows usage such as

{ \time 2,2,1 5/8 g'88888}

D

N>

|

and
\tagGroup violin,oboe,bassoon
e Such lists may also be used in expressions for assignments, sets, and overrides. This allows
usage such as

{ \unset Timing.beamExceptions
\set Timing.beatStructure = 1,2,1
g'888888887

f

)V 4 1 T T 71 T
Ot osddeesdoe
0y,

e Association list elements could previously be assigned values individually (for example,
paper variables like system-system-spacing.basic-distance). They may now be also
referenced in this manner, as with

\paper {
\void \displayScheme \system-system-spacing.basic-distance
}
In combination with the previously mentioned changes, this allows setting and referencing
pseudovariables like violin. 1.
e The markup-list-command \table is now available. Each column may be aligned differently

\markuplist {
\override #'(padding . 2)
\table
#'(0 10 -1
{
\underline { center-aligned right-aligned center-aligned left-aligned }
one "1" thousandth "0.001"
eleven "11" hundredth "0.01"
twenty "20" tenth "0.1"
thousand "1000" one "1.0"

center-aligned right-aligned center-aligned left-aligned



one 1 thousandth 0.001

eleven 11 hundredth 0.01
twenty 20 tenth 0.1
thousand 1000 one 1.0

InstrumentName now supports text-interface.
The thin-kern property of the BarLine grob has been renamed to segno-kern.
KeyCancellation grobs now ignore cue clefs (like KeySignature grobs do).

Add support for \once \unset



