
Kan

A package for Induced Category Actions

Version 1.27

20/10/2016

Anne Heyworth
Chris Wensley

Chris Wensley Email: c.d.wensley@bangor.ac.uk
Homepage: http://pages.bangor.ac.uk/~mas023/
Address: School of Computer Science, Bangor University,

Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

Kan 2

Abstract
The Kan package was originally implemented in 1996 using the GAP 3 language, to compute induced actions
of categories, when the first author was studying for a Ph.D. in Bangor.

This reduced version only provides functions for the computation of normal forms of representatives of
double cosets of finitely presented groups.

Kan became an accepted GAP package in May 2015.
Bug reports, suggestions and comments are, of course, welcome. Please submit an issue at

https://github.com/gap-packages/kan/issues/ or send an email to the second author at
c.d.wensley@bangor.ac.uk.

Copyright
© 1996-2016 Anne Heyworth and Chris Wensley

kan is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

Acknowledgements
This documentation was prepared with the GAPDoc package of Frank Lübeck and Max Neunhöffer.

The procedure used to mount new releases on GitHub uses the packages GitHubPagesForGAP and
ReleaseTools of Max Horn.

https://github.com/gap-packages/kan/issues/
mailto://c.d.wensley@bangor.ac.uk
 http://www.fsf.org/licenses/gpl.html
 http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 4

2 Double Coset Rewriting Systems 6
2.1 Rewriting Systems . 6
2.2 Example 1 – free product of two cyclic groups . 7
2.3 Example 2 – the trefoil group . 8
2.4 Example 3 – an infinite rewriting system . 11

3 Development History 14
3.1 Versions of the package . 14
3.2 What needs doing next? . 14

References 16

3

Chapter 1

Introduction

The Kan package started out as part of Anne Heyworth’s thesis [Hey99], and was designed to compute
induced actions of categories (see also [BH00]).

This version of Kan only provides functions for the computation of normal forms of represen-
tatives of double cosets of finitely presented groups, and is made available in support of the paper
[BGHW06]. Existing methods for computing double cosets in GAP are described in [Lin91].

The package is loaded into GAP with the command
Example

gap> LoadPackage("kan");

The package may be obtained as a compressed tar file kan-1.27.tar.gz by ftp from one of the
following sites:

• any GAP archive, e.g. http://www.gap-system.org/Packages/packages.html;

• the package GitHub repository: https://gap-packages.github.io/kan.

Some of the functions in the automata package are used to compute word acceptors and regular
expressions for the languages they accept.

The kbmag package is also used to compute a word acceptor of a group G when G has no finite
rewriting system. If kbmag is not available (the user is not on a UNIX system, or the C-programs
have not been compiled), the file dckbmag.gi will not be read, so methods for the functions detailed
in section 2.4.1 will not be available.

Once the package is loaded, it is possible to check the installation is correct by running a test file
of the manual examples with the following command. (The test file itself is tst/fulltest.tst or
tst/parttest.tst, depending whether or not kbmag is available.)

Example

gap> ReadPackage("kan", "tst/testall.g");
#I Testing /Applications/gap/my-dev/pkg/kan/tst/fulltest.tst
#I No errors detected while testing package kan
true

4

http://www.gap-system.org/Packages/packages.html
https://gap-packages.github.io/kan

Kan 5

The information parameter InfoKan takes default value 0. When raised to a higher value, addi-
tional information is printed out.

Once the package is loaded, the manual doc/manual.pdf can be found in the documentation
folder. The html versions, with or without MathJax, may be rebuilt as follows.

Example

gap> InfoLevel(InfoKan);
0
gap> ReadPackage("kan, "makedoc.g");

Please send bug reports, suggestions and other comments to the second author, or use the GitHub
issue tracker at https://github.com/gap-packages/kan/issues/new.

Additional information can be found on the Computational Higher-dimensional Discrete Algebra
website at http://pages.bangor.ac.uk/~mas023/chda/.

https://github.com/gap-packages/kan/issues/new
http://pages.bangor.ac.uk/~mas023/chda/

Chapter 2

Double Coset Rewriting Systems

The Kan package provides functions for the computation of normal forms for double coset represen-
tatives of finitely presented groups. The first version of the package was released to support the paper
[BGHW06], which describes the algorithms used in this package.

2.1 Rewriting Systems

2.1.1 KnuthBendixRewritingSystem

. KnuthBendixRewritingSystem(grp, gensorder, ordering, alph) (operation)

. ReducedConfluentRewritingSystem(grp, gensorder, ordering, limit) (operation)

. DisplayRwsRules(rws) (operation)

Methods for KnuthBendixRewritingSystem and ReducedConfluentRewritingSystem are
supplied which apply to a finitely presented group. These start by calling IsomorphismFpMonoid
and then work with the resulting monoid. The parameter gensorder will normally be "shortlex"
or "wreath", while ordering is an integer list for reordering the generators, and alph is an alphabet
string used when printing words. A partial rewriting system may be obtained by giving a limit to
the number of rules calculated. As usual, A,B denote the inverses of a,b.

In the example the generators are by default ordered [A,a,B,b], so the list L1 is used to specify
the order [a,A,b,B] to be used with the shortlex ordering. Specifying a limit 0 means that no limit
is prescribed.

Example

gap> G1 := FreeGroup(2);;
gap> L1 := [2,1,4,3];;
gap> order := "shortlex";;
gap> alph1 := "AaBb";;
gap> rws1 := ReducedConfluentRewritingSystem(G1, L1, order, 0, alph1);
Rewriting System for Monoid([f1, f1^-1, f2, f2^-1], ...) with rules
[[f1*f1^-1, <identity ...>], [f1^-1*f1, <identity ...>],

[f2*f2^-1, <identity ...>], [f2^-1*f2, <identity ...>]]
gap> DisplayRwsRules(rws1);;
[[Aa, id], [aA, id], [Bb, id], [bB, id]]

6

Kan 7

2.2 Example 1 – free product of two cyclic groups

2.2.1 DoubleCosetRewritingSystem

. DoubleCosetRewritingSystem(grp, genH, genK, rws) (function)

. IsDoubleCosetRewritingSystem(dcrws) (property)

A double coset rewriting system for the double cosets H\G/K requires as data a finitely presented
group G =grp; generators genH, genK for subgroups H,K; and a rewriting system rws for G.

A simple example is given by taking G to be the free group on two generators a,b, a cyclic
subgroup H with generator a6, and a second cyclic subgroup K with generator a4. (Similar examples
using different powers of a are easily constructed.) Since gcd(6,4)=2, we have Ha2K = HK, so the
double cosets have representatives [HK,HaK,Haiba jK,Haibwba jK] where i ∈ [0..5], j ∈ [0..3], and
w is any word in a,b.

In the example the free group G is converted to a four generator monoid with relations defining
the inverse of each generator, [[Aa,id],[aA,id],[Bb,id],[bB,id]], where id is the empty word.
The initial rules for the double coset rewriting system comprise those of G plus those given by the
generators of H,K, which are [[Ha6,H], [a4K,K]]. In the complete rewrite system new rules involving
H or K may arise, and there may also be rules involving both H and K.

For this example,

• there are two H-rules, [[Ha4,HA2], [HA3,Ha3]],

• there are two K-rules, [[a3K,AK], [A2K,a2K]],

• and there are two H-K-rules, [[Ha2K,HK], [HAK,HaK]].

Here is how the computation may be performed.
Example

gap> genG1 := GeneratorsOfGroup(G1);;
gap> genH1 := [genG1[1]^6];;
gap> genK1 := [genG1[1]^4];;
gap> dcrws1 := DoubleCosetRewritingSystem(G1, genH1, genK1, rws1);;
gap> IsDoubleCosetRewritingSystem(dcrws1);
true
gap> DisplayRwsRules(dcrws1);;
G-rules:
[[Aa, id], [aA, id], [Bb, id], [bB, id]]
H-rules:
[[Haaaa, HAA],

[HAAA, Haaa]]
K-rules:
[[aaaK, AK],

[AAK, aaK]]
H-K-rules:
[[HaaK, HK],

[HAK, HaK]]

Kan 8

2.2.2 WordAcceptorOfReducedRws

. WordAcceptorOfReducedRws(rws) (attribute)

. WordAcceptorOfDoubleCosetRws(rws) (attribute)

. IsWordAcceptorOfDoubleCosetRws(aut) (property)

Using functions from the automata package, we may

• compute a word acceptor for the rewriting system of G;

• compute a word acceptor for the double coset rewriting system;

• test a list of words to see whether they are recognised by the automaton;

• obtain a rational expression for the language of the automaton.
Example

gap> waG1 := WordAcceptorOfReducedRws(rws1);
Automaton("det",6,"aAbB",[[1, 4, 1, 4, 4, 4], [1, 3, 3, 1, 3, 3], [1, 2,\
2, 2, 1, 2], [1, 1, 5, 5, 5, 5]],[6],[2, 3, 4, 5, 6]);;

gap> wadc1 := WordAcceptorOfDoubleCosetRws(dcrws1);
< deterministic automaton on 6 letters with 15 states >
gap> Print(wadc1);
Automaton("det",15,"HKaAbB",[[2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\
[2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2], [2, 2, 13, 2, 10, 5, 2, 13,\
2, 7, 11, 11, 12, 2, 2], [2, 2, 9, 2, 2, 14, 2, 9, 15, 2, 2, 2, 2, 7, 15],\
[2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8], [2, 2, 3, 2, 3, 3, 3, 2, 3,\
3, 3, 3, 3, 3, 3]],[4],[1]);;

gap> words1 := ["HK","HaK","HbK","HAK","HaaK","HbbK","HabK","HbaK","HbaabK"];;
gap> valid1 := List(words1, w -> IsRecognizedByAutomaton(wadc1, w));
[true, true, true, false, false, true, true, true, true]
gap> lang1 := FAtoRatExp(wadc1);
((H(aaaUAA)BUH(a(aBUB)UABUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(a(aa*bUb)Ub)UA(AA\
*bUb))UH(aaaUAA)bUH(a(abUb)UAbUb))((a(a(aa*BUB)UB)UA(AA*BUB))(a(a(aa*BUB)UB)UA\
(AA*BUB)UB)*(a(a(aa*bUb)Ub)UA(AA*bUb))Ua(a(aa*bUb)Ub)UA(AA*bUb)Ub)*((a(a(aa*BU\
B)UB)UA(AA*BUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(aKUK)UAKUK)Ua(aKUK)UAKUK)U(H(a\
aaUAA)BUH(a(aBUB)UABUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(aKUK)UAKUK)UH(aKUK)

2.3 Example 2 – the trefoil group

2.3.1 PartialDoubleCosetRewritingSystem

. PartialDoubleCosetRewritingSystem(grp, Hgens, Kgens, rws, limit) (operation)

. WordAcceptorOfPartialDoubleCosetRws(grp, prws) (attribute)

It may happen that, even when G has a finite rewriting system, the double coset rewriting system
is infinite. This is the case with the trefoil group T with generators [x,y] and relator [x3 = y2] when
the wreath product ordering is used with X > x > Y > y. The group itself has a rewriting system with
just 6 rules.

Kan 9

Example

gap> FT := FreeGroup(2);;
gap> relsT := [FT.1^3*FT.2^-2];; T := FT/relsT;;
gap> genT := GeneratorsOfGroup(T);; x := genT[1]; y := genT[2];
gap> alphT := "XxYy";; ordT := [4,3,2,1];; orderT := "wreath";;
gap> rwsT := ReducedConfluentRewritingSystem(T, ordT, orderT, 0, alphT);;
gap> DisplayRwsRules(rwsT);;
[[Yy, id], [yY, id], [xxx, yy], [yyx, xyy], [X, xxYY], [Yx, yxYY]\
]

gap> accT := WordAcceptorOfReducedRws(rwsT);
< deterministic automaton on 4 letters with 7 states >
gap> Print("accT = ", accT);
accT = Automaton("det",7,"yYxX",[[1, 2, 1, 5, 2, 5, 5], [1, 1, 3, 3, 1, 3,\
3], [1, 1, 1, 7, 7, 1, 6], [1, 1, 1, 1, 1, 1, 1]],[4],[2, 3, 4, 5, 6\

, 7]);;
gap> langT := FAtoRatExp(accT);
(yxUx)((xyUy)x)*((xyUy)(yy*U@)Ux(YY*U@)UYY*U@)Uy(yy*U@)UYY*U@
gap> IsRecognizedByAutomaton(accT, "X");
false
gap> IsRecognizedByAutomaton(accT, "yxyxyxYY");
true

In versions of Kan, from about 1.01 up to 1.21, the complementary automaton and language were
returned in the example above. This error has now been rectified.

In earlier versions of Kan (in 0.95 for example) a shorter rational expression for the language
was obtained from Automata. In what follows, we check that the two expressions define the same
language.

Example

gap> alph := AlphabetOfRatExpAsList(langT);;
gap> a1 := RatExpOnnLetters(alph, [], [1]);; ## y
gap> a2 := RatExpOnnLetters(alph, [], [2]);; ## Y
gap> a3 := RatExpOnnLetters(alph, [], [3]);; ## x
gap> a4 := RatExpOnnLetters(alph, [], [4]);; ## X
gap> s1 := RatExpOnnLetters(alph, "star", a1);; ## y*
gap> s2 := RatExpOnnLetters(alph, "star", a2);; ## Y*
gap> a1a3 := RatExpOnnLetters(alph, "product", [a1, a3]);; ## yx
gap> u1 := RatExpOnnLetters(alph, "union", [a1a3, a3]);; ## yxUx
gap> a3a1 := RatExpOnnLetters(alph, "product", [a3, a1]);; ## xy
gap> u2 := RatExpOnnLetters(alph, "union", [a3a1, a1]);; ## xyUy
gap> u2a3 := RatExpOnnLetters(alph, "product", [u2, a3]);; ## (xyUy)x
gap> su2a3 := RatExpOnnLetters(alph, "star", u2a3);; ## ((xyUy)x)*
gap> u2s1 := RatExpOnnLetters(alph, "product", [u2, s1]);; ## (xyUy)y*
gap> a3s2 := RatExpOnnLetters(alph, "product", [a3, s2]);; ## xY*
gap> u3 := RatExpOnnLetters(alph, "union", [u2s1,a3s2,s2]);;
gap> prod := RatExpOnnLetters(alph, "product", [u1,su2a3,u3]);;
gap> a1s1 := RatExpOnnLetters(alph, "product", [a1, s1]);; ## yy*
gap> r := RatExpOnnLetters(alph, "union", [prod, a1s1, s2]);
(yxUx)((xyUy)x)*((xyUy)y*UxY*UY*)Uyy*UY*
gap> AreEqualLang(langT, r);

Kan 10

true

Taking subgroups H, K to be generated by x and y respectively, the double coset rewriting system has
an infinite number of H-rules. It turns out that only a finite number of these are needed to produce
the required automaton. The function PartialDoubleCosetRewritingSystem allows a limit to be
specified on the number of rules to be computed. In the listing below a limit of 20 is used, but in fact
10 is sufficient.

Example

gap> prwsT := PartialDoubleCosetRewritingSystem(T, [x], [y], rwsT, 20);;
#I WARNING: reached supplied limit 20 on number of rules
gap> DisplayRwsRules(prwsT);
G-rules:
[[X, xxYY], [Yx, yxYY], [Yy, id], [yY, id], [xxx, yy], [yyx, xyy]\
]

H-rules:
[[Hx, H],

[HY, Hy],
[Hyy, H],
[Hyxyy, Hyx],
[HyxY, Hyxy],
[Hyxyxyy, Hyxyx],
[Hyxxyy, Hyxx],
[HyxxY, Hyxxy],
[HyxyxY, Hyxyxy],
[Hyxyxyxyy, Hyxyxyx],
[Hyxyxxyy, Hyxyxx],
[Hyxxyxyy, Hyxxyx],
[HyxxyxYY, Hyxxyx]]

K-rules:
[[YK, K],

[yK, K]]

This list of partial rules is then used by a modified word acceptor function.
Example

gap> paccT := WordAcceptorOfPartialDoubleCosetRws(T, prwsT);;
< deterministic automaton on 6 letters with 6 states >
gap> Print(paccT, "\n");
Automaton("det",6,"HKyYxX",[[2, 2, 2, 6, 2, 2], [2, 2, 1, 2, 2, 1], [2, \
2, 5, 2, 2, 5], [2, 2, 2, 2, 2, 2], [2, 2, 6, 2, 3, 2], [2, 2, 2, 2, 2, \
2]],[4],[1]);;
gap> plangT := FAtoRatExp(paccT);
H(yx(yx)*x)*(yx(yx)*KUK)
gap> wordsT := ["HK", "HxK", "HyK", "HYK", "HyxK", "HyxxK", "HyyH", "HyxYK"];;
gap> validT := List(wordsT, w -> IsRecognizedByAutomaton(paccT, w));
[true, false, false, false, true, true, false, false]

Kan 11

2.4 Example 3 – an infinite rewriting system

2.4.1 KBMagRewritingSystem

. KBMagRewritingSystem(fpgrp) (attribute)

. KBMagWordAcceptor(fpgrp) (attribute)

. KBMagFSAtoAutomataDFA(fsa, alph) (operation)

. WordAcceptorByKBMag(grp, alph) (operation)

. WordAcceptorByKBMagOfDoubleCosetRws(grp, dcrws) (operation)

When the group G has an infinite rewriting system, the double coset rewriting system will
also be infinite. In this case we may use the function KBMagWordAcceptor which calls KBMAG
to compute a word acceptor for G, and KBMagFSAtoAutomataDFA to convert this to a determin-
istic automaton as used by the automata package. The resulting dfa forms part of the double
coset automaton, together with sufficient H-rules, K-rules and H-K-rules found by the function
PartialDoubleCosetRewritingSystem. (Note that these five attributes and operations will not
be available if the kbmag package has not been loaded.)

In the following example we take a two generator group G3 with relators [a3,b3,(a ∗ b)3], the
normal forms of whose elements are some of the strings with a or a−1 alternating with b or b−1. The
automatic structure computed by KBMAG has a word acceptor with 17 states.

Example

gap> F3 := FreeGroup("a","b");;
gap> rels3 := [F3.1^3, F3.2^3, (F3.1*F3.2)^3];;
gap> G3 := F3/rels3;;
gap> alph3 := "AaBb";;
gap> waG3 := WordAcceptorByKBMag(G3, alph3);;
gap> Print(waG3, "\n");
Automaton("det",18,"aAbB",[[2, 18, 18, 8, 10, 12, 13, 18, 18, 18, 18, 18, 18\
, 8, 17, 12, 18, 18], [3, 18, 18, 9, 11, 9, 12, 18, 18, 18, 18, 18, 18, 11, \
18, 11, 18, 18], [4, 6, 6, 18, 18, 18, 18, 18, 6, 12, 16, 18, 12, 18, 18, 18\
, 12, 18], [5, 5, 7, 18, 18, 18, 18, 14, 15, 5, 18, 18, 7, 18, 18, 18, 15, 1\
8]],[1],[1 .. 17]);;
gap> langG3 := FAtoRatExp(waG3);
((abUAb)AUbA)(bA)*(b(aU@)UB(aB)*(a(bU@)U@)U@)U(abUAb)(aU@)U((aBUB)(aB)*AUba(Ba\
)*BA)(bA)*(b(aU@)U@)U(aBUB)(aB)*(a(bU@)U@)Uba(Ba)*(BU@)UbUaUA(B(aB)*(a(bU@)UAU\
@)U@)U@

2.4.2 DCrules

. DCrules(dcrws) (operation)

. Hrules(dcrws) (attribute)

. Krules(dcrws) (attribute)

. HKrules(dcrws) (attribute)

We now take H to be generated by ab and K to be generated by ba. If we specify a limits of
50, 75, 100, 200 for the number of rules in a partial double coset rewrite system, we obtain lists of
H-rules, K-rules and H-K-rules of increasing length. The numbers of states in the resulting automata

Kan 12

also increase. We may deduce by hand (but not computationally – see [BGHW06]) three infinite sets
of rules and a limit for the automata.

Example

gap> lim := 100;;
gap> genG3 := GeneratorsOfGroup(G3);;
gap> a := genG3[1];; b := genG3[2];;
gap> gH3 := [a*b];; gK3 := [b*a];;
gap> rwsG3 := KnuthBendixRewritingSystem(G3, "shortlex", [2,1,4,3], alph3);;
gap> dcrws3 := PartialDoubleCosetRewritingSystem(G3, gH3, gK3, rwsG3, lim);;
#I using PartialDoubleCosetRewritingSystem with limit 100
#I 51 rules, and 1039 pairs
#I WARNING: reached supplied limit 100 on number of rules
gap> Print(Length(Rules(dcrws3)), " rules found.\n");
101 rules found.
gap> dcaut3 := WordAcceptorByKBMagOfDoubleCosetRws(G3, dcrws3);;
gap> Print("Double Coset Minimalized automaton:\n", dcaut3);
Double Coset Minimalized automaton:
Automaton("det",44,"HKaAbB",[[2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\
, 2\
, 2, 2], [2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, \
2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1], [2, 2, 2,\
2, 3, 24, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 43, 2, 43, 2, 27, 2, 2, 2\

, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 44, 3, 29, 2\
, 8, 2, 10, 2, 12, 2, 14, 2, 16, 2, 18, 2, 20, 2, 22, 2, 2, 2, 2, 26, 2, 29, 2\
, 31, 2, 33, 2, 35, 2, 37, 2, 39, 2, 41, 2, 2], [2, 2, 2, 2, 21, 2, 2, 28, 2\
, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 19, 2, 42, 2, 3, 2, 28, 3, 2, 7, 2, 30, 2,\
32, 2, 34, 2, 36, 2, 38, 2, 40, 2, 2, 28], [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\

, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 25, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2,\
2, 2, 2, 2, 2, 2, 23, 6]],[4],[1]);;

gap> dclang3 := FAtoRatExp(dcaut3);;
gap> Print("Double Coset language of acceptor:\n", dclang3, "\n");
Double Coset language of acceptor:
(HbAbAbAbAbAbAbAbUHAb)(Ab)*(A(Ba(Ba)*bKUK)UK)UHbAbA(bA(bA(bA(bA(bAKUK)UK)UK)UK\
)UK)UH(A(B(aB)*(abUA)KUK)UaKUb(a(Ba)*BA(bA(bA(bA(bA(bA(bA(bA(bA)*(bKUK)UK)UK)U\
K)UK)UK)UK)UK)UAK)UK)
gap> ok := DCrules(dcrws3);;
gap> alph3e := dcrws3!.alphabet;;
gap> Print("H-rules:\n"); DisplayAsString(Hrules(dcrws3), alph3e, true);
H-rules:
[HB, Ha]
[HaB, Hb]
[Hab, H]
[HbAB, HAba]
[HbAbAB, HAbAba]
[HbAbAbAB, HAbAbAba]
[HbAbAbAbAB, HAbAbAbAba]
[HbAbAbAbAbAB, HAbAbAbAbAba]
[HbAbAbAbAbAbAB, HAbAbAbAbAbAba]
[HbAbAbAbAbAbAbAB, HAbAbAbAbAbAbAba]
gap> Print("K-rules:\n"); DisplayAsString(Krules(dcrws3), alph3e, true);;
K-rules:
[BK, aK]

Kan 13

[BaK, bK]
[baK, K]
[BAbK, abAK]
[BAbAbK, abAbAK]
[BAbAbAbK, abAbAbAK]
[BAbAbAbAbK, abAbAbAbAK]
[BAbAbAbAbAbK, abAbAbAbAbAK]
[BAbAbAbAbAbAbK, abAbAbAbAbAbAK]
[BAbAbAbAbAbAbAbK, abAbAbAbAbAbAbAK]
gap> Print("HK-rules:\n"); DisplayAsString(HKrules(dcrws3), alph3e, true);;
HK-rules:
[HbK, HAK]
[HbAbK, HAbAK]
[HbAbAbK, HAbAbAK]
[HbAbAbAbK, HAbAbAbAK]
[HbAbAbAbAbK, HAbAbAbAbAK]
[HbAbAbAbAbAbK, HAbAbAbAbAbAK]
[HbAbAbAbAbAbAbK, HAbAbAbAbAbAbAK]

2.4.3 NextWord

. NextWord(dcrws, word) (operation)

. WordToString(word, alph) (operation)

. DisplayAsString(word, alph) (operation)

. IdentityDoubleCoset(dcrws) (operation)

These functions may be used to find normal forms of increasing length for double coset represen-
tatives.

Example

gap> len := 30;;
gap> L3 := 0*[1..len];;
gap> L3[1] := IdentityDoubleCoset(dcrws3);;
gap> for i in [2..len] do
gap> L3[i] := NextWord(dcrws3, L3[i-1]);
gap> od;
gap> ## List of 30 normal forms for double cosets:
gap> DisplayAsString(L3, alph3e, true);
[HK, HAK, HaK, HAbK, HbAK, HABAK, HAbAK, HABabK, HAbAbK, HbAbAK, HbaBAK, HABa\
BAK, HAbAbAK, HABaBabK, HAbABabK, HAbAbAbK, HbAbAbAK, HbaBAbAK, HbaBaBAK, HABa\
BaBAK, HAbAbAbAK, HABaBaBabK, HAbABaBabK, HAbAbABabK, HAbAbAbAbK, HbAbAbAbAK, \
HbaBAbAbAK, HbaBaBAbAK, HbaBaBaBAK, HABaBaBaBAK]
gap> w := NextWord(dcrws3, L3[30]);
m1*(m3*m6)^4*m3*m2
gap> s := WordToString(w, alph3e);
"HAbAbAbAbAK"

Chapter 3

Development History

3.1 Versions of the package

The first version of the package, written for GAP 3, formed part of Anne Heyworth’s thesis [Hey99]
in 1999, but was not made generally available.

Version 0.91 was prepared to run under GAP 4.4.6, in July 2005.
Version 0.94 differed in two significant ways.

• The manual was produced using the GAPDoc package.

• The test file kan/tst/kan_manual.tst set the AssertionLevel to 0 to avoid recursion in
the Automata package.

Version 0.95, of 9th October 2007, just fixed file protections and added a CHANGES file.
Version 0.96 was required because the Kan website moved with the rest of the Mathematics web-

site at Bangor.
Version 0.97, of November 18th 2008, deleted temporary fixes which were no longer needed once

version 1.12 of Automata became available.
Version 1.01, of August 2011, included minor changes required for GAP 4.5. In particular, the

test file kan_manual.tst was replaced by the pair fulltest.tst and parttest.tst.
Version 1.11, of December 2014 was required when the Kan website moved yet again. At the

same time a bitbucket repository for the package was started.
Kan became an accepted GAP package in May 2015.

3.2 What needs doing next?

There are too many items to list here, but some of the most important are as follows.

• Implement iterators and enumerators for double cosets.

• At present the methods for DoubleCosetsNC and RightCosetsNC in this package return au-
tomata, rather than lists of cosets or coset enumerators. This needs to be fixed.

• Provide methods for operations such as DoubleCosetRepsAndSizes.

• Convert the rest of the original GAP 3 version of Kan to GAP 4.

14

Kan 15

3.2.1 DoubleCosetsAutomaton

. DoubleCosetsAutomaton(G, U, V) (operation)

. RightCosetsAutomaton(G, V) (operation)

Alternative methods for DoubleCosetsNC(G,U,V) and RightCosetsNC(G,V) should be pro-
vided in the cases where the group G has a rewriting system or is known to be infinite. At present the
functions RightCosetsAutomaton and DoubleCosetsAutomaton return minimized automata, and
Iterators for these are not yet available.

Example

gap> F := FreeGroup(2);;
gap> rels := [F.2^2, (F.1*F.2)^2];;
gap> G4 := F/rels;;
gap> genG4 := GeneratorsOfGroup(G4);;
gap> a := genG4[1]; b := genG4[2];;
gap> U := Subgroup(G4, [a^2]);;
gap> V := Subgroup(G4, [b]);;
gap> dc4 := DoubleCosetsAutomaton(G4, U, V);;
gap> Print(dc4);
Automaton("det",5,"HKaAbB",[[2, 2, 2, 5, 2], [2, 2, 1, 2, 1], [2, 2, 2, \
2, 3], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]],[4],[1])\
;;
gap> rc4 := RightCosetsAutomaton(G4, V);;
gap> Print(rc4);
Automaton("det",6,"HKaAbB",[[2, 2, 2, 6, 2, 2], [2, 2, 1, 2, 1, 1], [2, \
2, 3, 2, 2, 3], [2, 2, 2, 2, 5, 5], [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, \
2]],[4],[1]);;

References

[BGHW06] R. Brown, N. Ghani, A. Heyworth, and C. D. Wensley. String rewriting systems for
double coset systems. J. Symbolic Comput., 41:573–590, 2006. 4, 6, 12

[BH00] R. Brown and A. Heyworth. Using rewriting systems to compute left kan extensions and
induced actions of categories. J. Symbolic Comput., 29:5–31, 2000. 4

[Hey99] A. Heyworth. Applications of Rewriting Systems and Groebner Bases to Com-
puting Kan Extensions and Identities Among Relations. PhD thesis, University of
Wales, Bangor, 1999. http://www.maths.bangor.ac.uk/research/ftp/theses/
heyworth.ps.gz. 4, 14

[Lin91] S. Linton. Double coset enumeration. J. Symbolic Comput., 12:415–426, 1991. 4

16

http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz
http://www.maths.bangor.ac.uk/research/ftp/theses/heyworth.ps.gz

Index

DCrules, 11
DisplayAsString, 13
DisplayRwsRules, 6
DoubleCosetRewritingSystem, 7
DoubleCosetsAutomaton, 15

example – free product, 7
example – infinite rws, 11
example – trefoil group, 8

HKrules, 11
Hrules, 11

IdentityDoubleCoset, 13
IsDoubleCosetRewritingSystem, 7
IsWordAcceptorOfDoubleCosetRws, 8

KBMagFSAtoAutomataDFA, 11
KBMagRewritingSystem, 11
KBMagWordAcceptor, 11
KnuthBendixRewritingSystem, 6
Krules, 11

License, 2

NextWord, 13

PartialDoubleCosetRewritingSystem, 8

ReducedConfluentRewritingSystem, 6
RightCosetsAutomaton, 15

trefoil group, 8

WordAcceptorByKBMag, 11
WordAcceptorByKBMagOfDoubleCosetRws, 11
WordAcceptorOfDoubleCosetRws, 8
WordAcceptorOfPartialDoubleCosetRws, 8
WordAcceptorOfReducedRws, 8
WordToString, 13

17

	Introduction
	Double Coset Rewriting Systems
	Rewriting Systems
	Example 1 – free product of two cyclic groups
	Example 2 – the trefoil group
	Example 3 – an infinite rewriting system

	Development History
	Versions of the package
	What needs doing next?

	References

