The GNU C Library Reference Manual






The GNU C Library

Reference Manual

Sandra Loosemore
with
Roland McGrath, Andrew Oram, and Richard M. Stallman

last updated 9 April 1993

for version 1.06 Beta



Copyright ©) 1993 Free Software Foundation, Inc.



Chapter 1: Introduction 1

1 Introduction

The C language provides no built-in facilities for performing such common operations as in-
put/output, memory management, string manipulation, and the like. Instead, these facilities are
defined in a standard library, which you compile and link with your programs.

The GNU C library, described in this document, defines all of the library functions that are
specified by the ANSI C standard, as well as additional features specific to POSIX and other
derivatives of the Unix operating system, and extensions specific to the GNU system.

The purpose of this manual is to tell you how to use the facilities of the GNU library. We have
mentioned which features belong to which standards to help you identify things that are potentially
nonportable to other systems. But the emphasis on this manual is not on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with the
C programming language and basic programming concepts. Specifically, familiarity with ANSI
standard C (see Section 1.2.1 [ANSI C], page 2), rather than “traditional” pre-ANSI C dialects, is
assumed.

The GNU C library includes several header files, each of which provides definitions and decla-
rations for a group of related facilities; this information is used by the C compiler when processing
your program. For example, the header file ‘stdio.h’ declares facilities for performing input and
output, and the header file ‘string.h’ declares string processing utilities. The organization of this
manual generally follows the same division as the header files.

If you are reading this manual for the first time, you should read all of the introductory material
and skim the remaining chapters. There are a Iot of functions in the GNU C library and it’s not
realistic to expect that you will be able to remember exactly how to use each and every one of
them. It’s more important to become generally familiar with the kinds of facilities that the library
provides, so that when you are writing your programs you can recognize when to make use of library
functions, and where in this manual you can find more specific information about them.



2 The GNU C Library

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C library is based
upon. These sources include the ANSI C and POSIX standards, and the System V and Berkeley

Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU library
facilities. But if you are concerned about making your programs compatible with these standards,
or portable to operating systems other than GNU, this can affect how you use the library. This
section gives you an overview of these standards, so that you will know what they are when they
are mentioned in other parts of the manual.

See Appendix B [Library Summary|, page 583, for an alphabetical list of the functions and other
symbols provided by the library. This list also states which standards each function or symbol comes

from.

1.2.1 ANSIC

The GNU C library is compatible with the C standard adopted by the American National
Standards Institute (ANSI): American National Standard X3.159-1989—“ANSI C”. The header

files and library facilities that make up the GNU library are a superset of those specified by the
ANSI C standard.

If you are concerned about strict adherence to the ANSI C standard, you should use the ‘-ansi’
option when you compile your programs with the GNU C compiler. This tells the compiler to define
only ANSI standard features from the library header files, unless you explicitly ask for additional
features. See Section 1.3.4 [Feature Test Macros], page 9, for information on how to do this.

Being able to restrict the library to include only ANSI C features is important because ANSI C
puts limitations on what names can be defined by the library implementation, and the GNU exten-
sions don’t fit these limitations. See Section 1.3.3 [Reserved Names|, page 7, for more information
about these restrictions.

This manual does not attempt to give you complete details on the differences between ANSI C
and older dialects. It gives advice on how to write programs to work portably under multiple C
dialects, but does not aim for completeness.



Chapter 1: Introduction 3

1.2.2 POSIX (The Portable Operating System Interface)

The GNU library is also compatible with the IEEE POSIX family of standards, known more
formally as the Portable Operating System Interface for Computer Environments. POSIX is derived
mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standard are a superset of those required by ANSI
C; POSIX specifies additional features for ANSI C functions, as well as specifying new additional
functions. In general, the additional requirements and functionality defined by the POSIX standard
are aimed at providing lower-level support for a particular kind of operating system environment,
rather than general programming language support which can run in many diverse operating system
environments.

The GNU C library implements all of the functions specified in IEEE Std 1003.1-1988, the
POSIX System Application Program Interface, commonly referred to as POSIX.1. The primary
extensions to the ANSI C facilities specified by this standard include file system interface primitives
(see Chapter 13 [File System Interface], page 233), device-specific terminal control functions (see

Chapter 16 [Low-Level Terminal Interface], page 321), and process control functions (see Chapter 23
[Child Processes|, page 481).

Some facilities from draft 11 of IEEE Std 1003.2, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU library. These include utilities for dealing with regular
expressions and other pattern matching facilities (see Chapter 9 [Pattern Matching], page 113).

1.2.3 Berkeley Unix

The GNU C library defines facilities from some other versions of Unix, specifically from the 4.2
BSD and 4.3 BSD Unix systems (also known as Berkeley Unix) and from SunOS (a popular 4.2
BSD derivative that includes some Unix System V functionality).

The BSD facilities include symbolic links (see Section 13.4 [Symbolic Links], page 240), the
select function (see Section 12.6 [Waiting for I/0O], page 215), the BSD signal functions (see
Section 21.9 [BSD Signal Handling], page 458), and sockets (see Chapter 15 [Sockets], page 269).



4 The GNU C Library

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix System
V operating system. It is to some extent a superset of the POSIX standard (see Section 1.2.2
[POSIX], page 3).

The GNU C library defines some of the facilities required by the SVID that are not also required
by the ANSI or POSIX standards, for compatibility with System V Unix and other Unix systems
(such as SunOS) which include these facilities. However, many of the more obscure and less
generally useful facilities required by the SVID are not included. (In fact, Unix System V itself
does not provide them all.)

Incomplete: Are there any particular System V facilities that ought to be mentioned specifically
here?

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains the
definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or variable exists and
gives its type. For a function declaration, information about the types of its arguments might be
provided as well. The purpose of declarations is to allow the compiler to correctly process references
to the declared variables and functions. A definition, on the other hand, actually allocates storage
for a variable or says what a function does.)

In order to use the facilities in the GNU C library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations of
these facilities available and can correctly process references to them. Once your program has been
compiled, the linker resolves these references to the actual definitions provided in the archive file.



Chapter 1: Introduction 5

Header files are included into a program source file by the ‘#include’ preprocessor directive.
The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain definitions
and declarations describing the interfaces between the different parts of your particular application.
By contrast,

#include <file.h>

is typically used to include a header file ‘file.h’ that contains definitions and declarations for
a standard library. This file would normally be installed in a standard place by your system
administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any other code.
If you begin your source files with some comments explaining what the code in the file does (a
good idea), put the ‘#include’ directives immediately afterwards, following the feature test macro
definition (see Section 1.3.4 [Feature Test Macros|, page 9).

For more information about the use of header files and ‘#include’ directives, see section “Header
Files” in The GNU C Preprocessor Manual.

The GNU C library provides several header files, each of which contains the type and macro
definitions and variable and function declarations for a group of related facilities. This means that
your programs may need to include several header files, depending on exactly which facilities you
are using.

Some library header files include other library header files automatically. However, as a matter
of programming style, you should not rely on this; it is better to explicitly include all the header
files required for the library facilities you are using. The GNU C library header files have been
written in such a way that it doesn’t matter if a header file is accidentally included more than
once; including a header file a second time has no effect. Likewise, if your program needs to include
multiple header files, the order in which they are included doesn’t matter.



6 The GNU C Library

Compatibility Note: Inclusion of standard header files in any order and any number of times
works in any ANSI C implementation. However, this has traditionally not been the case in many
older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares; you
could declare the function explicitly yourself, according to the specifications in this manual. But
it is usually better to include the header file because it may define types and macros that are not
otherwise available and because it may define more efficient macro replacements for some functions.
It is also a sure way to have the correct declaration.

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as well. This
normally has no effect on how your program runs—the macro definition does the same thing as the
function would. In particular, macro equivalents for library functions evaluate arguments exactly
once, in the same way that a function call would. The main reason for these macro definitions is
that sometimes they can produce an inline expansion that is considerably faster than an actual
function call.

Taking the address of a library function works even if it is also defined as a macro. This is
because, in this context, the name of the function isn’t followed by the left parenthesis that is
syntactically necessary to recognize the a macro call.

You might occasionally want to avoid using the a macro definition of a function—perhaps to
make your program easier to debug. There are two ways you can do this:

e You can avoid a macro definition in a specific use by enclosing the name of the function in
parentheses. This works because the name of the function doesn’t appear in a syntactic context

where it is recognizable as a macro call.

¢ You can suppress any macro definition for a whole source file by using the ‘#undef’ preprocessor
directive, unless otherwise stated explicitly in the description of that facility.

For example, suppose the header file ‘stdlib.h’ declares a function named abs with

extern int abs (int);



Chapter 1: Introduction 7

and also provides a macro definition for abs. Then, in:

#include <stdlib.h>
int f (int *i) { return (abs (++*i)); }

the reference to abs might refer to either a macro or a function. On the other hand, in each of the

following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int *i) { return ((abs)(++*i)); }

#undef abs
int h (int *i) { return (abs (++*i)); }

Since macro definitions that double for a function behave in exactly the same way as the actual
function version, there is usually no need for any of these methods. In fact, removing macro
definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ANSI
C standard are reserved unconditionally; your program may not redefine these names. All other
library names are reserved if your programs explicitly includes the header file that defines or declares
them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function named
exit to do something completely different from what the standard exit function does, for
example. Preventing this situation helps to make your programs easier to understand and
contributes to modularity and maintainability.

e It avoids the possibility of a user accidentally redefining a library function that is called by
other library functions. If redefinition were allowed, those other functions would not work
properly.

e It allows the compiler to do whatever special optimizations it pleases on calls to these functions,
without the possibility that they may have been redefined by the user. Some library facili-
ties, such as those for dealing with variadic arguments (see Section A.2 [Variadic Functions],
page 564) and non-local exits (see Chapter 20 [Non-Local Exits], page 397), actually require a



8 The GNU C Library

considerable amount of cooperation on the part of the C compiler, and implementationally it
might be easier for the compiler to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external identi-
fiers (global functions and variables) that begin with an underscore (‘_’) and all identifiers regardless
of use that begin with either two underscores or an underscore followed by a capital letter are re-
served names. This is so that the library and header files can define functions, variables, and macros
for internal purposes without risk of conflict with names in user programs.

Some additional classes of identifier names are reserved for future extensions to the C language.
While using these names for your own purposes right now might not cause a problem, they do raise
the possibility of conflict with future versions of the C standard, so you should avoid these names.

e Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for addi-
tional error code names. See Chapter 2 [Error Reporting], page 15.

e Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used for
additional character testing and conversion functions. See Chapter 4 [Character Handling],
page 61.

e Names that begin with ‘LC_’ followed by an uppercase letter may be used for additional macros
specifying locale attributes. See Chapter 7 [Locales], page 97.

e Names of all existing mathematics functions (see Chapter 17 [Mathematics], page 349) suffixed
with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float or long double
arguments, respectively.

e Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional signal
names. See Section 21.2 [Standard Signals], page 406.

e Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional signal
actions. See Section 21.3.1 [Basic Signal Handling], page 416.

e Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved for
additional string and array functions. See Chapter 5 [String and Array Utilities], page 65.

e Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually define.

You only need to worry about these restrictions if your program includes that particular header
file.

e The header file ‘dirent.h’ reserves names prefixed with ‘d_’.



Chapter 1: Introduction 9

e The header file ‘fcntl.h’ reserves names prefixed with ‘1_°, ‘F_’, ‘0_’, and ‘S_’.

e The header file ‘grp.h’ reserves names prefixed with ‘gr_’.

e The header file ‘1imits.h’ reserves names suffixed with ‘_MAX’.

e The header file ‘pwd.h’ reserves names prefixed with ‘pw_’.

e The header file ‘signal.h’ reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file ‘sys/stat.h’ reserves names prefixed with ‘st_’ and ‘S_’.
e The header file ‘sys/times.h’ reserves names prefixed with ‘tms_’.

e The header file ‘termios.h’ reserves names prefixed with ‘c_’, ‘V’, ‘I’, ‘0’, and ‘TC’; and names
prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which feature
test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ANSI C library features,
unless you explicitly request additional features by defining one or more of the feature macros. See
section “Options” in The GNU CC Manual, for more information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of your
source code files. You could also use the ‘-D’ option to GCC, but it’s better if you make the source
files indicate their own meaning in a self-contained way.

_POSIX_SOURCE Macro
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ANSI C facilities.

_POSIX_C_SOURCE Macro
If you define this macro with a value of 1, then the functionality from the POSIX.1
standard (IEEE Standard 1003.1) is made available. If you define this macro with a
value of 2, then both the functionality from the POSIX.1 standard and the functionality
from the POSIX.2 standard (IEEE Standard 1003.2) are made available. This is in
addition to the ANSI C facilities.



The GNU C Library

_BSD_SOURCE Macro
If you define this macro, functionality derived from 4.3 BSD Unix is included as well
as the ANSI C, POSIX.1, and POSIX.2 material.

Some of the features derived from 4.3 BSD Unix conflict with the corresponding features
specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD definitions
take precedence over the POSIX definitions.

_SVID_SOURCE Macro
If you define this macro, functionality derived from SVID is included as well as the
ANSI C, POSIX.1, and POSIX.2 material.

-GNU_SOURCE Macro
If you define this macro, everything is included: ANSI C, POSIX.1, POSIX.2, BSD,
SVID, and GNU extensions. In the cases where POSIX.1 conflicts with BSD, the
POSIX definitions take precedence.

If you want to get the full effect of _GNU_SOURCE but make the BSD definitions take
precedence over the POSIX definitions, use this sequence of definitions:

#define _GNU_SOURCE
#define _BSD_SOURCE
#define _SVID_SOURCE

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’ option
to GCC and don’t define any of these macros explicitly, the effect as the same as defining _GNU_
SOURCE.

When you define a feature test macro to request a larger class of features, it is harmless to define
in addition a feature test macro for a subset of those features. For example, if you define _POSIX_
C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise, if you define _GNU_SOURCE,
then defining either _POSIX_SOURCE or _POSIX_C_SOURCE or _SVID_SOURCE as well has no effect.

Note, however, that the features of _BSD_SOURCE are not a subset of any of the other feature test
macros supported. This is because it defines BSD features that take precedence over the POSIX
features that are requested by the other macros. For this reason, defining _BSD_SOURCE in addition
to the other feature test macros does have an effect: it causes the BSD features to take priority
over the conflicting POSIX features.



Chapter 1: Introduction

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

e Chapter 2 [Error Reporting], page 15, describes how errors detected by the library are reported.

e Appendix A [Language Features|, page 563, contains information about library support for
standard parts of the C language, including things like the sizeof operator and the symbolic
constant NULL, and how to write functions accepting variable numbers of arguments.

e Chapter 3 [Memory Allocation], page 29, describes the GNU library’s facilities for dynamic
allocation of storage. If you do not know in advance how much storage your program needs,
you can allocate it dynamically instead, and manipulate it via pointers.

e Chapter 4 [Character Handling], page 61, contains information about character classification
functions (such as isspace) and functions for performing case conversion.

e Chapter 5 [String and Array Utilities|, page 65, has descriptions of functions for manipulating
strings (null-terminated character arrays) and general byte arrays, including operations such
as copying and comparison.

e Chapter 6 [Extended Characters|, page 83, contains information about manipulating characters
and strings using character sets larger than will fit in the usual char data type.

e Chapter 7 [Locales], page 97, describes how selecting a particular country or language affects
the behavior of the library. For example, the locale affects collation sequences for strings and
how monetary values are formatted.

e Chapter 8 [Searching and Sorting], page 107, contains information about functions for search-
ing and sorting arrays. You can use these functions on any kind of array by providing an
appropriate comparison function.

e Chapter 10 [I/O Overview|, page 131, gives an overall look at the input and output facilities
in the library, and contains information about basic concepts such as file names.

e Chapter 11 [I/O on Streams|, page 139, describes I/O operations involving streams (or FILE *
objects). These are the normal C library functions from ‘stdio.h’.

e Chapter 12 [Low-Level 1/0], page 203, contains information about I/O operations on file
descriptors. File descriptors are a lower-level mechanism specific to the Unix family of operating
systems.

e Chapter 13 [File System Interface], page 233, has descriptions of operations on entire files, such
as functions for deleting and renaming them and for creating new directories. This chapter
also contains information about how you can access the attributes of a file, such as its owner
and file protection modes.

e Chapter 14 [Pipes and FIFOs|, page 263, contains information about simple interprocess com-
munication mechanisms. Pipes allow communication between two related processes (such as



The GNU C Library

between a parent and child), while FIFOs allow communication between processes sharing a
common file system.

Chapter 15 [Sockets], page 269, describes a more complicated interprocess communication
mechanism that allows processes running on different machines to communicate over a network.
This chapter also contains information about Internet host addressing and how to use the
system network databases, such as ‘/etc/hosts’.

Chapter 16 [Low-Level Terminal Interface], page 321, describes how you can change the at-
tributes of a terminal device. If you want to disable echo of characters typed by the user, for
example, read this chapter.

Section A.1 [Consistency Checking], page 563, contains information about a simple debugging
mechanism. You can put assertions in your code, and diagnostic messages are printed if the
test fails.

Chapter 17 [Mathematics|, page 349, contains information about the math library functions.
These include things like random-number generators and remainder functions on integers as
well as the usual trigonometric and exponential functions on floating-point numbers.

Chapter 19 [Date and Time|, page 371, describes functions for measuring both calendar time
and CPU time, as well as functions for setting alarms and timers.

Chapter 20 [Non-Local Exits|, page 397, contains descriptions of the setjmp and longjmp
functions.

Chapter 21 [Signal Handling], page 403, tells you all about signals—what they are, how to
establish a handler that is called when a particular kind of signal is delivered, and how to
prevent signals from arriving during critical sections of your program.

Chapter 23 [Child Processes], page 481, contains information about how to start new processes
and run programs.

Chapter 22 [Process Startup|, page 463, tells how your programs can access their command-line
arguments and environment variables.

Chapter 24 [Job Control], page 495, describes functions for manipulating process groups. This
material is probably only of interest if you are writing a shell.

Section 25.12 [User Database], page 533, and Section 25.13 [Group Database], page 536, tell
you how to access the system user and group databases.

Chapter 26 [System Information], page 541, describes functions for getting information about
the hardware and software configuration your program is executing under.

Section A.5.2 [Range of Type], page 574, contains information about parameters that charac-
terize the sizes of integer and floating-point types used by the particular C implementation that
your program has been compiled with. Most of these parameters are provided for compatibility
with ANSI C.

Chapter 27 [System Configuration], page 545, tells you how you can get information about

various operating system limits. Most of these parameters are provided for compatibility with
POSIX.



Chapter 1: Introduction

If you already know the name of the facility you are interested in, you can look it up in Appen-
dix B [Library Summary], page 583. This gives you a summary of its syntax and a pointer to where
you can find a more detailed description. This appendix is particularly useful if you just want to
verify the order and type of arguments to a function, for example.



The GNU C Library



Chapter 2: Error Reporting

2 Error Reporting

Many functions in the GNU C library detect and report error conditions, and sometimes your
programs need to check for these error conditions. For example, when you open an input file, you
should verify that the file was actually opened correctly, and print an error message or take other
appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should include the
header file ‘errno.h’ to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special value
is typically -1, a null pointer, or a constant such as EQF that is defined for that purpose. But this
return value tells you only that an error has occurred. To find out what kind of error it was, you
need to look at the error code stored in the variable errno. This variable is declared in the header
file ‘errno.h’.

volatile int errno Variable
The variable errno contains the system error number. You can change the value of

errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 21.4 [Defining Handlers|, page 425. However, a properly written
signal handler saves and restores the value of errno, so you generally do not need to
worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. Many library functions are
guaranteed to set it to certain nonzero values when they encounter certain kinds of
errors. These error conditions are listed for each function. These functions do not
change errno when they succeed; thus, the value of errno after a successful call is not
necessarily zero, and you should not use errno to determine whether a call failed. The
proper way to do that is documented for each function. If the call the failed, you can

examine errno.



The GNU C Library

Many library functions can set errno to a nonzero value as a result of calling other
library functions which might fail. You should assume that any library function might
alter errno.

Portability Note: ANSI C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *_errno (). In fact, that is what it is on the GNU
system itself. The GNU library, on non-GNU systems, does whatever is right for the
particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legitimate
value in case of an error, but also set errno. For these functions, if you want to check
to see whether an error occurred, the recommended method is to set errno to zero
before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in ‘errno.h’. The names start
with ‘E’ and an upper-case letter or digit; you should consider names of this form to be reserved
names. See Section 1.3.3 [Reserved Names|, page 7.

The error code values are all positive integers and are all distinct. (Since the values are distinct,
you can use them as labels in a switch statement, for example.) Your program should not make
any other assumptions about the specific values of these symbolic constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since some
library functions might return other error codes of their own for other situations. The only values
that are guaranteed to be meaningful for a particular library function are the ones that this manual
lists for that function.

On non-GNU systems, almost any system call can return EFAULT if it is given an invalid pointer
as an argument. Since this could only happen as a result of a bug in your program, and since it will
not happen on the GNU system, we have saved space by not mentioning EFAULT in the descriptions
of individual functions.



Chapter 2: Error Reporting

2.2 Error Codes

The error code macros are defined in the header file ‘errno.h’. All of them expand into integer
constant values. Some of these error codes can’t occur on the GNU system, but they can occur
using the GNU library on other systems.

int EPERM Magcro
Operation not permitted; only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT Macro
No such file or directory. This is a “file doesn’t exist” error for ordinary files that are
referenced in contexts where they are expected to already exist.

int ESRCH Macro
No process matches the specified process ID.

int EINTR Macro
Interrupted function call; an asynchronous signal occured and prevented completion of
the call. When this happens, you should try the call again.

You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 21.5 [Interrupted Primitives|, page 438.

int EIO Macro
Input/output error; usually used for physical read or write errors.

int ENXIO Magcro
No such device or address. Typically, this means that a file representing a device has
been installed incorrectly, and the system can’t find the right kind of device driver for
it.

int E2BIG Macro
Argument list too long; used when the arguments passed to a new program being
executed with one of the exec functions (see Section 23.5 [Executing a File|, page 485)
occupy too much memory space. This condition never arises in the GNU system.



The GNU C Library

int ENOEXEC Macro
Invalid executable file format. This condition is detected by the exec functions; see
Section 23.5 [Executing a File|, page 485.

int EBADF Magcro
Bad file descriptor; for example, I/O on a descriptor that has been closed or reading
from a descriptor open only for writing (or vice versa).

int ECHILD Macro
There are no child processes. This error happens on operations that are supposed to
manipulate child processes, when there aren’t any processes to manipulate.

int EDEADLK Magcro
Deadlock avoided; allocating a system resource would have resulted in a deadlock
situation. For an example, See Section 12.11 [File Locks|, page 226.

int ENOMEM Magcro
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

int EACCES Macro

Permission denied; the file permissions do not allow the attempted operation.

int EFAULT Macro
Bad address; an invalid pointer was detected.

int ENOTBLK Macro
A file that isn’t a block special file was given in a situation that requires one. For
example, trying to mount an ordinary file as a file system in Unix gives this error.

int EBUSY Macro
Resource busy; a system resource that can’t be shared is already in use. For example,
if you try to delete a file that is the root of a currently mounted filesystem, you get
this error.



Chapter 2: Error Reporting

int EEXIST Macro
File exists; an existing file was specified in a context where it only makes sense to
specify a new file.

int EXDEV Magcro
An attempt to make an improper link across file systems was detected.

int ENODEV Macro
The wrong type of device was given to a function that expects a particular sort of
device.

int ENOTDIR Macro

A file that isn’t a directory was specified when a directory is required.

int EISDIR Magcro
File is a directory; attempting to open a directory for writing gives this error.

int EINVAL Macro
Invalid argument. This is used to indicate various kinds of problems with passing the
wrong argument to a library function.

int ENFILE Magcro
There are too many distinct file openings in the entire system. Note that any number
of linked channels count as just one file opening; see Section 12.5.1 [Linked Channels],
page 213.

int EMFILE Macro

The current process has too many files open and can’t open any more. Duplicate
descriptors do count toward this limit.

int ENOTTY Macro
Inappropriate I/O control operation, such as trying to set terminal modes on an ordi-
nary file.



The GNU C Library

int ETXTBSY Macro
An attempt to execute a file that is currently open for writing, or write to a file that is
currently being executed. (The name stands for “text file busy”.) This is not an error
in the GNU system; the text is copied as necessary.

int EFBIG Macro
File too big; the size of a file would be larger than allowed by the system.

int ENOSPC Macro

No space left on device; write operation on a file failed because the disk is full.

int ESPIPE Macro
Invalid seek operation (such as on a pipe).

int EROFS Macro

An attempt was made to modify a file on a read-only file system.

int EMLINK Macro

Too many links; the link count of a single file is too large.

int EPIPE Macro
Broken pipe; there is no process reading from the other end of a pipe. Every library
function that returns this error code also generates a SIGPIPE signal; this signal termi-
nates the program if not handled or blocked. Thus, your program will never actually
see EPIPE unless it has handled or blocked SIGPIPE.

int EDOM Macro
Domain error; used by mathematical functions when an argument value does not fall
into the domain over which the function is defined.

int ERANGE Macro
Range error; used by mathematical functions when the result value is not representable
because of overflow or underflow.



Chapter 2: Error Reporting

int EAGAIN Macro
Resource temporarily unavailable; the call might work if you try again later. Only fork
returns error code EAGAIN for such a reason.

int EWOULDBLOCK Macro
An operation that would block was attempted on an object that has non-blocking mode
selected.

Portability Note: In 4.4BSD and GNU, EWOULDBLOCK and EAGAIN are the same. Earlier
versions of BSD (see Section 1.2.3 [Berkeley Unix]|, page 3) have two distinct codes,
and use EWOULDBLOCK to indicate an I/O operation that would block on an object with
non-blocking mode set, and EAGAIN for other kinds of errors.

int EINPROGRESS Macro
An operation that cannot complete immediately was initiated on an object that has
non-blocking mode selected.

int EALREADY Macro

An operation is already in progress on an object that has non-blocking mode selected.

int ENOTSOCK Macro

A file that isn’t a socket was specified when a socket is required.

int EDESTADDRREQ Macro

No destination address was supplied on a socket operation.

int EMSGSIZE Macro

The size of a message sent on a socket was larger than the supported maximum size.

int EPROTOTYPE Macro
The socket type does not support the requested communications protocol.

int ENOPROTOOPT Macro

You specified a socket option that doesn’t make sense for the particular protocol being
used by the socket. See Section 15.11 [Socket Options|, page 316.



The GNU C Library

int EPROTONOSUPPORT Macro

The socket domain does not support the requested communications protocol. See
Section 15.7.1 [Creating a Socket], page 292.

int ESOCKTNOSUPPORT Macro
The socket type is not supported.

int EOPNOTSUPP Macro
The operation you requested is not supported. Some socket functions don’t make sense
for all types of sockets, and others may not be implemented for all communications
protocols.

int EPFNOSUPPORT Macro

The socket communications protocol family you requested is not supported.

int EAFNOSUPPORT Macro
The address family specified for a socket is not supported; it is inconsistent with the
protocol being used on the socket. See Chapter 15 [Sockets], page 269.

int EADDRINUSE Macro
The requested socket address is already in use. See Section 15.3 [Socket Addresses|,
page 271.

int EADDRNOTAVAIL Macro

The requested socket address is not available; for example, you tried to give a socket
a name that doesn’t match the local host name. See Section 15.3 [Socket Addresses],
page 271.

int ENETDOWN Macro

A socket operation failed because the network was down.

int ENETUNREACH Macro
A socket operation failed because the subnet containing the remost host was unreach-
able.



Chapter 2: Error Reporting

int ENETRESET Macro

A network connection was reset because the remote host crashed.

int ECONNABORTED Macro

A network connection was aborted locally.

int ECONNRESET Macro
A network connection was closed for reasons outside the control of the local host, such
as by the remote machine rebooting.

int ENOBUFS Macro
The kernel’s buffers for I/O operations are all in use.

int EISCONN Macro
You tried to connect a socket that is already connected. See Section 15.8.1 [Connecting],
page 295.

int ENOTCONN Macro

The socket is not connected to anything. You get this error when you try to transmit
data over a socket, without first specifying a destination for the data.

int ESHUTDOWN Macro
The socket has already been shut down.

int ETIMEDOUT Macro
A socket operation with a specified timeout received no response during the timeout
period.

int ECONNREFUSED Magcro

A remote host refused to allow the network connection (typically because it is not
running the requested service).

int ELOOP Macro
Too many levels of symbolic links were encountered in looking up a file name. This
often indicates a cycle of symbolic links.



The GNU C Library

int ENAMETOOLONG Macro
Filename too long (longer than PATH_MAX; see Section 27.6 [Limits for Files], page 553)
or host name too long (in gethostname or sethostname; see Section 26.1 [Host Iden-
tification], page 541).

int EHOSTDOWN Macro

The remote host for a requested network connection is down.

int EHOSTUNREACH Macro

The remote host for a requested network connection is not reachable.

int ENOTEMPTY Magcro
Directory not empty, where an empty directory was expected. Typically, this error
occurs when you are trying to delete a directory.

int EUSERS Macro

The file quota system is confused because there are too many users.

int EDQUOT Macro

The user’s disk quota was exceeded.

int ESTALE Magcro
Stale NFS file handle. This indicates an internal confusion in the NFS system which is
due to file system rearrangements on the server host. Repairing this condition usually
requires unmounting and remounting the NFS file system on the local host.

int EREMOTE Magcro
An attempt was made to NFS-mount a remote file system with a file name that already
specifies an NFS-mounted file. (This is an error on some operating systems, but we
expect it to work properly on the GNU system, making this error code impossible.)

int ENOLCK Macro
No locks available. This is used by the file locking facilities; see Section 12.11 [File
Locks], page 226.



Chapter 2: Error Reporting

int ENOSYS Macro
Function not implemented. Some functions have commands or options defined that
might not be supported in all implementations, and this is the kind of error you get if
you request them and they are not supported.

int ED Macro
The experienced user will know what is wrong.

int EGRATUITOUS Macro

This error code has no purpose.

2.3 Error Messages

The library has functions and variables designed to make it easy for your program to report
informative error messages in the customary format about the failure of a library call. The functions
strerror and perror give you the standard error message for a given error code; the variable
program_invocation_short_name gives you convenient access to the name of the program that
encountered the error.

char * strerror (int errnum) Function
The strerror function maps the error code (see Section 2.1 [Checking for Errors],
page 15) specified by the errnum argument to a descriptive error message string. The
return value is a pointer to this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror, the string might be overwritten. (But it’s guaranteed that no library
function ever calls strerror behind your back.)

The function strerror is declared in ‘string.h’.

void perror (const char x*message) Function
This function prints an error message to the stream stderr; see Section 11.2 [Standard
Streams|, page 139.



The GNU C Library

If you call perror with a message that is either a null pointer or an empty string, perror
just prints the error message corresponding to errno, adding a trailing newline.

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in ‘stdio.h’.

strerror and perror produce the exact same message for any given error code; the precise
text varies from system to system. On the GNU system, the messages are fairly short; there are
no multi-line messages or embedded newlines. Each error message begins with a capital letter and

does not include any terminating punctuation.

Compatibility Note: The strerror function is a new feature of ANSI C. Many older C systems
do not support this function yet.

Many programs that don’t read input from the terminal are designed to exit if any system call
fails. By convention, the error message from such a program should start with the program’s name,
sans directories. You can find that name in the variable program_invocation_short_name; the
full file name is stored the variable program_invocation_name:

char * program_invocation_name Variable
This variable’s value is the name that was used to invoke the program running in the
current process. It is the same as argv[0].

char * program_invocation_short_name Variable
This variable’s value is the name that was used to invoke the program running in the
current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

Both program_invocation_name and program_invocation_short_name are set up by the sys-
tem before main is called.

Portability Note: These two variables are GNU extensions. If you want your program to work
with non-GNU libraries, you must save the value of argv[0] in main, and then strip off the
directory names yourself. We added these extensions to make it possible to write self-contained

error-reporting subroutines that require no explicit cooperation from main.



Chapter 2: Error Reporting

Here is an example showing how to handle failure to open a file correctly. The function open_
sesame tries to open the named file for reading and returns a stream if successful. The fopen
library function returns a null pointer if it couldn’t open the file for some reason. In that situation,
open_sesame constructs an appropriate error message using the strerror function, and terminates
the program. If we were going to make some other library calls before passing the error code to
strerror, we’d have to save it in a local variable instead, because those other library functions
might overwrite errno in the meantime.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE =*
open_sesame (char *name)

{
FILE *stream;

errno = 0;

stream = fopen (name, "r");

if (!stream) {
fprintf (stderr, "%s: Couldn’t open file %s; %s\n",

program_invocation_short_name, name, strerror (errno));

exit (EXIT_FAILURE);

} else
return stream;



The GNU C Library



Chapter 3: Memory Allocation

3 Memory Allocation

The GNU system provides several methods for allocating memory space under explicit program
control. They vary in generality and in efficiency.

e The malloc facility allows fully general dynamic allocation. See Section 3.3 [Unconstrained
Allocation], page 30.

e Obstacks are another facility, less general than malloc but more efficient and convenient for
stacklike allocation. See Section 3.4 [Obstacks]|, page 40.

e The function alloca lets you allocate storage dynamically that will be freed automatically.
See Section 3.5 [Variable Size Automatic], page 54.

3.1 Dynamic Memory Allocation Concepts

Dynamic memory allocation is a technique in which programs determine as they are running
where to store some information. You need dynamic allocation when the number of memory blocks
you need, or how long you continue to need them, depends on the data you are working on.

For example, you may need a block to store a line read from an input file; since there is no
limit to how long a line can be, you must allocate the storage dynamically and make it dynamically
larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data; since you can’t
know in advance how many there will be, you must allocate a new block for each record or definition
as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that the
program requests explicitly. You call a function or macro when you want to allocate space, and
specify the size with an argument. If you want to free the space, you do so by calling another
function or macro. You can do these things whenever you want, as often as you want.

3.2 Dynamic Allocation and C

The C language supports two kinds of memory allocation through the variables in C programs:



The GNU C Library

e Static allocation is what happens when you declare a static variable. Each static variable
defines one block of space, of a fixed size. The space is allocated once, when your program is
started, and is never freed.

e Automatic allocation happens when you declare an automatic variable, such as a function
argument or a local variable. The space for an automatic variable is allocated when the
compound statement containing the declaration is entered, and is freed when that compound
statement is exited.

In GNU C, the length of the automatic storage can be an expression that varies. In other C

implementations, it must be a constant.

Dynamic allocation is not supported by C variables; there is no storage class “dynamic”, and
there can never be a C variable whose value is stored in dynamically allocated space. The only
way to refer to dynamically allocated space is through a pointer. Because it is less convenient, and
because the actual process of dynamic allocation requires more computation time, programmers
use dynamic allocation only when neither static nor automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct foobar, you
cannot declare a variable of type struct foobar whose contents are the dynamically allocated
space. But you can declare a variable of pointer type struct foobar * and assign it the address

¢

of the space. Then you can use the operators ‘*’ and ‘->’ on this pointer variable to refer to the

contents of the space:

struct foobar *ptr
= (struct foobar *) malloc (sizeof (struct foobar));
ptr—->name = Xx;
ptr->next = current_foobar;
current_foobar = ptr;

3.3 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of
memory of any size at any time, make them bigger or smaller at any time, and free the blocks
individually at any time (or never).



Chapter 3: Memory Allocation

3.3.1 Basic Storage Allocation

To allocate a block of memory, call malloc. The prototype for this function is in ‘std1lib.h’.

void * malloc (size_t size) Function
This function returns a pointer to a newly allocated block size bytes long, or a null
pointer if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use calloc instead;
see Section 3.3.5 [Allocating Cleared Space|, page 35). Normally you would cast the value as a
pointer to the kind of object that you want to store in the block. Here we show an example of
doing so, and of initializing the space with zeros using the library function memset (see Section 5.4
[Copying and Concatenation|, page 67):

struct foo *ptr;

ptr = (struct foo *) malloc (sizeof (struct foo));
if (ptr == 0) abort (O);
memset (ptr, 0, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast, because ANSI C
automatically converts the type void * to another type of pointer when necessary. But the cast
is necessary in contexts other than assignment operators or if you might want your code to run in
traditional C.

Remember that when allocating space for a string, the argument to malloc must be one plus
the length of the string. This is because a string is terminated with a null character that doesn’t
count in the “length” of the string but does need space. For example:

char *ptr;

ptr = (char *) malloc (length + 1);

See Section 5.1 [Representation of Strings|, page 65, for more information about this.



The GNU C Library

3.3.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check the value of every
call to malloc. It is useful to write a subroutine that calls malloc and reports an error if the
value is a null pointer, returning only if the value is nonzero. This function is conventionally called
xmalloc. Here it is:

void *
xmalloc (size_t size)
{
register void *value = malloc (size);
if (value == 0)
fatal ("virtual memory exhausted");
return value;

}

Here is a real example of using malloc (by way of xmalloc). The function savestring will
copy a sequence of characters into a newly allocated null-terminated string;:

char *
savestring (const char *ptr, size_t len)

{

register char *value = (char *) xmalloc (len + 1);
memcpy (value, ptr, len);

value[len] = 0;

return value;

The block that malloc gives you is guaranteed to be aligned so that it can hold any type of
data. In the GNU system, the address is always a multiple of eight; if the size of block is 16 or
more, then the address is always a multiple of 16. Only rarely is any higher boundary (such as
a page boundary) necessary; for those cases, use memalign or valloc (see Section 3.3.7 [Aligned
Memory Blocks], page 36).

Note that the memory located after the end of the block is likely to be in use for something else;
perhaps a block already allocated by another call to malloc. If you attempt to treat the block as
longer than you asked for it to be, you are liable to destroy the data that malloc uses to keep track
of its blocks, or you may destroy the contents of another block. If you have already allocated a
block and discover you want it to be bigger, use realloc (see Section 3.3.4 [Changing Block Size],
page 34).



Chapter 3: Memory Allocation

3.3.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make the
block available to be allocated again. The prototype for this function is in ‘stdlib.h’.

void free (void *ptr) Function
The free function deallocates the block of storage pointed at by ptr.

void cfree (void *ptr) Function
This function does the same thing as free. It’s provided for backward compatibility
with SunOS; you should use free instead.

Freeing a block alters the contents of the block. Do not expect to find any data (such as a
pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever you
need out of the block before freeing it! Here is an example of the proper way to free all the blocks
in a chain, and the strings that they point to:

struct chain
struct chain *next;
char *name;

}

void
free_chain (struct chain *chain)
{
while (chain != 0)
{
struct chain *next = chain->next;
free (chain->name);
free (chain);
chain = next;

Occasionally, free can actually return memory to the operating system and make the process
smaller. Usually, all it can do is allow a later later call to malloc to reuse the space. In the mean
time, the space remains in your program as part of a free-list used internally by malloc.



The GNU C Library

There is no point in freeing blocks at the end of a program, because all of the program’s space
is given back to the system when the process terminates.

3.3.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at the time you
must begin to use the block. For example, the block might be a buffer that you use to hold a line
being read from a file; no matter how long you make the buffer initially, you may encounter a line
that is longer.

You can make the block longer by calling realloc. This function is declared in ‘stdlib.h’.

void * realloc (void *ptr, size_t newsize) Function
The realloc function changes the size of the block whose address is ptr to be newsize.

Since the space after the end of the block may be in use, realloc may find it necessary
to copy the block to a new address where more free space is available. The value of
realloc is the new address of the block. If the block needs to be moved, realloc
copies the old contents.

Like malloc, realloc may return a null pointer if no memory space is available to make the
block bigger. When this happens, the original block is untouched; it has not been modified or
relocated.

In most cases it makes no difference what happens to the original block when realloc fails,
because the application program cannot continue when it is out of memory, and the only thing to do
is to give a fatal error message. Often it is convenient to write and use a subroutine, conventionally
called xrealloc, that takes care of the error message as xmalloc does for malloc:

void *
xrealloc (void *ptr, size_t size)
{
register void *value = realloc (ptr, size);
if (value == 0)
fatal ("Virtual memory exhausted");
return value;

}



Chapter 3: Memory Allocation

You can also use realloc to make a block smaller. The reason you would do this is to avoid
tying up a lot of memory space when only a little is needed. Making a block smaller sometimes
necessitates copying it, so it can fail if no other space is available.

If the new size you specify is the same as the old size, realloc is guaranteed to change nothing
and return the same address that you gave.

3.3.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in ‘stdlib.h’.

void * calloc (size_t count, size_t eltsize) Function
This function allocates a block long enough to contain a vector of count elements, each
of size eltsize. Its contents are cleared to zero before calloc returns.

You could define calloc as follows:

void *
calloc (size_t count, size_t eltsize)
{

size_t size = count * eltsize;

void *value = malloc (size);

if (value !'= 0)

memset (value, 0, size);
return value;

We rarely use calloc today, because it is equivalent to such a simple combination of other
features that are more often used. It is a historical holdover that is not quite obsolete.

3.3.6 Efficiency Considerations for malloc

To make the best use of malloc, it helps to know that the GNU version of malloc always
dispenses small amounts of memory in blocks whose sizes are powers of two. It keeps separate
pools for each power of two. This holds for sizes up to a page size. Therefore, if you are free to
choose the size of a small block in order to make malloc more efficient, make it a power of two.



The GNU C Library

Once a page is split up for a particular block size, it can’t be reused for another size unless all
the blocks in it are freed. In many programs, this is unlikely to happen. Thus, you can sometimes
make a program use memory more efficiently by using blocks of the same size for many different
purposes.

When you ask for memory blocks of a page or larger, malloc uses a different strategy; it rounds
the size up to a multiple of a page, and it can coalesce and split blocks as needed.

The reason for the two strategies is that it is important to allocate and free small blocks as fast
as possible, but speed is less important for a large block since the program normally spends a fair
amount of time using it. Also, large blocks are normally fewer in number. Therefore, for large
blocks, it makes sense to use a method which takes more time to minimize the wasted space.

3.3.7 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in the GNU system is always a multiple
of eight. If you need a block whose address is a multiple of a higher power of two than that, use
memalign or valloc. These functions are declared in ‘stdlib.h’.

With the GNU library, you can use free to free the blocks that memalign and valloc return.
That does not work in BSD, however—BSD does not provide any way to free such blocks.

void * memalign (size_t size, int boundary) Function
The memalign function allocates a block of size bytes whose address is a multiple of
boundary. The boundary must be a power of two! The function memalign works by
calling malloc to allocate a somewhat larger block, and then returning an address
within the block that is on the specified boundary.

void * valloc (size_t size) Function
Using valloc is like using memalign and passing the page size as the value of the
second argument.

3.3.8 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic storage by using the mcheck function.
This function is a GNU extension, declared in ‘malloc.h’.



Chapter 3: Memory Allocation

void mcheck (void (*abortfn) (void)) Function
Calling mcheck tells malloc to perform occasional consistency checks. These will catch
things such as writing past the end of a block that was allocated with malloc.

The abortfn argument is the function to call when an inconsistency is found. If you
supply a null pointer, the abort function is used.

It is too late to begin allocation checking once you have allocated anything with malloc.
So mcheck does nothing in that case. The function returns -1 if you call it too late,
and 0 otherwise (when it is successful).

The easiest way to arrange to call mcheck early enough is to use the option ‘-1mcheck’
when you link your program.

3.3.9 Storage Allocation Hooks

The GNU C library lets you modify the behavior of malloc, realloc, and free by specifying
appropriate hook functions. You can use these hooks to help you debug programs that use dynamic
storage allocation, for example.

The hook variables are declared in ‘malloc.h’.

—-malloc_hook Variable
The value of this variable is a pointer to function that malloc uses whenever it is called.
You should define this function to look like malloc; that is, like:

void *function (size_t size)
_realloc_hook Variable

The value of this variable is a pointer to function that realloc uses whenever it is
called. You should define this function to look like realloc; that is, like:

void *function (void *ptr, size_t size)



The GNU C Library

_free_hook Variable

The value of this variable is a pointer to function that free uses whenever it is called.
You should define this function to look like free; that is, like:

void function (void *ptr)

You must make sure that the function you install as a hook for one of these functions does not
call that function recursively without restoring the old value of the hook first! Otherwise, your
program will get stuck in an infinite recursion.

Here is an example showing how to use __malloc_hook properly. It installs a function that
prints out information every time malloc is called.

static void *(*old_malloc_hook) (size_t);
static void *
my_malloc_hook (size_t size)
{
void *result;
__malloc_hook = old_malloc_hook;
result = malloc (size);
__malloc_hook = my_malloc_hook;
printf ("malloc (%u) returns %p\n", (unsigned int) size, result);
return result;

}
main ()
{
old_malloc_hook = __malloc_hook;
__malloc_hook = my_malloc_hook;
}

The mcheck function (see Section 3.3.8 [Heap Counsistency Checking], page 36) works by installing
such hooks.



Chapter 3: Memory Allocation

3.3.10 Statistics for Storage Allocation with malloc

You can get information about dynamic storage allocation by calling the mstats function. This
function and its associated data type are declared in ‘malloc.h’; they are a GNU extension.

struct mstats Data Type
This structure type is used to return information about the dynamic storage allocator.
It contains the following members:

size_t bytes_total
This is the total size of memory managed by malloc, in bytes.
size_t chunks_used

This is the number of chunks in use. (The storage allocator internally
gets chunks of memory from the operating system, and then carves them
up to satisfy individual malloc requests; see Section 3.3.6 [Efficiency and
Malloc], page 35.)

size_t bytes_used
This is the number of bytes in use.
size_t chunks_free

This is the number of chunks which are free — that is, that have been
allocated by the operating system to your program, but which are not now
being used.

size_t bytes_free

This is the number of bytes which are free.

struct mstats mstats (void) Function
This function returns information about the current dynamic memory usage in a struc-

ture of type struct mstats.

3.3.11 Summary of malloc-Related Functions
Here is a summary of the functions that work with malloc:

void *malloc (size_t size)

Allocate a block of size bytes. See Section 3.3.1 [Basic Allocation], page 31.



The GNU C Library

void free (void *addr)

Free a block previously allocated by malloc. See Section 3.3.3 [Freeing after Malloc],
page 33.

void *realloc (void *addr, size_t size)

Make a block previously allocated by malloc larger or smaller, possibly by copying it
to a new location. See Section 3.3.4 [Changing Block Size|, page 34.

void *calloc (size_t count, size_t eltsize)

Allocate a block of count * eltsize bytes using malloc, and set its contents to zero. See
Section 3.3.5 [Allocating Cleared Space|, page 35.

void *valloc (size_t size)

Allocate a block size bytes, starting on a page boundary. See Section 3.3.7 [Aligned
Memory Blocks], page 36.

void *memalign (size_t size, size_t boundary)

Allocate a block size bytes, starting on an address that is a multiple of boundary. See
Section 3.3.7 [Aligned Memory Blocks|, page 36.

void mcheck (void (*abortfn) (void))

Tell malloc to perform occasional consistency checks on dynamically allocated memory,
and to call abortfn when an inconsistency is found. See Section 3.3.8 [Heap Consistency
Checking], page 36.

void *(*__malloc_hook) (size_t size)

A pointer to a function that malloc uses whenever it is called.
void *(*__realloc_hook) (void *ptr, size_t size)

A pointer to a function that realloc uses whenever it is called.
void (*__free_hook) (void *ptr)

A pointer to a function that free uses whenever it is called.
void struct mstats mstats (void)

Read information about the current dynamic memory usage. See Section 3.3.10 [Statis-
tics of Malloc], page 39.

3.4 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the last
object allocated must always be the first one freed, but distinct obstacks are independent of each
other.



Chapter 3: Memory Allocation

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack can
contain any number of objects of any size. They are implemented with macros, so allocation is
usually very fast as long as the objects are usually small. And the only space overhead per object
is the padding needed to start each object on a suitable boundary.

3.4.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file ‘obstack.h’.

struct obstack Data Type
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space
in which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can allocate
obstacks dynamically like any other kind of object. Dynamic allocation of obstacks allows your
program to have a variable number of different stacks. (You can even allocate an obstack structure
in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use. You do
this with a pointer of type struct obstack *. In the following, we often say “an obstack” when
strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct obstack
structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t fit in the
previous chunk. Since the obstack library manages chunks automatically, you don’t need to pay
much attention to them, but you do need to supply a function which the obstack library should
use to get a chunk. Usually you supply a function which uses malloc directly or indirectly. You
must also supply a function to free a chunk. These matters are described in the following section.



The GNU C Library

3.4.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the header file
‘obstack.h’, like this:

#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define two functions or
macros that will be called by the obstack library. One, obstack_chunk_alloc, is used to allocate
the chunks of memory into which objects are packed. The other, obstack_chunk_free, is used to
return chunks when the objects in them are freed.

Usually these are defined to use malloc via the intermediary xmalloc (see Section 3.3 [Uncon-
strained Allocation], page 30). This is done with the following pair of macro definitions:

#define obstack_chunk_alloc xmalloc
##define obstack_chunk_free free

Though the storage you get using obstacks really comes from malloc, using obstacks is faster
because malloc is called less often, for larger blocks of memory. See Section 3.4.10 [Obstack
Chunks]|, page 51, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

void obstack_init (struct obstack *obstack ptr) Function
Initialize obstack obstack_ptr for allocation of objects.

Here are two examples of how to allocate the space for an obstack and initialize it. First, an
obstack that is a static variable:

struct obstack myobstack;

obstack_init (&myobstack);



Chapter 3: Memory Allocation

Second, an obstack that is itself dynamically allocated:

struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

3.4.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is invoked

almost like malloc.

void * obstack_alloc (struct obstack *obstack ptr, size_t size) Function
This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack_ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack_ptr as the first argument.

For example, here is a function that allocates a copy of a string str in a specific obstack, which

is the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

char *s = (char *) obstack_alloc (&string_obstack,
strlen (string) + 1);

memcpy (s, string, strlen (string));
return s;

}

To allocate a block with specified contents, use the function obstack_copy, declared like this:

void * obstack_copy (struct obstack *obstack ptr, void *address, Function

size_t size)
This allocates a block and initializes it by copying size bytes of data starting at address.



The GNU C Library

void * obstack_copyO (struct obstack *obstack ptr, void *address, Function
size_t size)
Like obstack_copy, but appends an extra byte containing a null character. This extra
byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an obstack
as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, size_t size)
{
return obstack_copy0 (&myobstack, addr, size);
}

Contrast this with the previous example of savestring using malloc (see Section 3.3.1 [Basic

Allocation], page 31).

3.4.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the obstack is
a stack of objects, freeing one object automatically frees all other objects allocated more recently

in the same obstack.

void obstack free (struct obstack *obstack ptr, void *object) Function
If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all storage in
an obstack but leave it valid for further allocation, call obstack_free with the address of the first
object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);



Chapter 3: Memory Allocation

Recall that the objects in an obstack are grouped into chunks. When all the objects in a chunk
become free, the obstack library automatically frees the chunk (see Section 3.4.2 [Preparing for

Obstacks], page 42). Then other obstacks, or non-obstack allocation, can reuse the space of the
chunk.

3.4.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depending
on the compiler. The obstack facility works with all C compilers, including both ANSI C and
traditional C, but there are precautions you must take if you plan to use compilers other than
GNU C.

If you are using an old-fashioned non-ANSI C compiler, all the obstack “functions” are actually
defined only as macros. You can call these macros like functions, but you cannot use them in any
other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack pointer)
may not contain any side effects, because it may be computed more than once. For example, if you
write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use *obstack_list_ptr++ as
the obstack pointer argument, you will get very strange results since the incrementation may occur
several times.

In ANSI C, each function has both a macro definition and a function definition. The function
definition is used if you take the address of the function without calling it. An ordinary call uses
the macro definition by default, but you can request the function definition instead by writing the
function name in parentheses, as shown here:

char *x;

void *(*funcp) ();

/* Use the macro. =*/

x = (char *) obstack_alloc (obptr, size);
/* Call the function. =*/

x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */



The GNU C Library

funcp = obstack_alloc;

This is the same situation that exists in ANSI C for the standard library functions. See Section 1.3.2
[Macro Definitions|, page 6.

Warning: When you do use the macros, you must observe the precaution of avoiding side effects
in the first operand, even in ANSI C.

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.4.6 Growing Objects

Because storage in obstack chunks is used sequentially, it is possible to build up an object step
by step, adding one or more bytes at a time to the end of the object. With this technique, you do
not need to know how much data you will put in the object until you come to the end of it. We
call this the technique of growing objects. The special functions for adding data to the growing
object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of the
functions to add data to the object automatically starts it. However, it is necessary to say explicitly
when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished. Until
then, it always remains possible that you will add so much data that the object must be copied
into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary allocation of
another object. If you try to do so, the space already added to the growing object will become part
of the other object.

void obstack _blank (struct obstack *obstack ptr, size_t size) Function
The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.



Chapter 3: Memory Allocation

void obstack _grow (struct obstack *obstack ptr, void *data, size_t Function
size)
To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack grow0 (struct obstack *obstack ptr, void *data, Function
size_t size)
This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_1lgrow (struct obstack *obstack ptr, char c) Function
To add one character at a time, use the function obstack_1igrow. It adds a single byte
containing ¢ to the growing object.

void * obstack_finish (struct obstack *obstack ptr) Function
When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

When you build an object by growing it, you will probably need to know afterward how long
it became. You need not keep track of this as you grow the object, because you can find out the
length from the obstack just before finishing the object with the function obstack_object_size,
declared as follows:

size_t obstack_object_size (struct obstack *obstack ptr) Function
This function returns the current size of the growing object, in bytes. Remember to call
this function before finishing the object. After it is finished, obstack_object_size
will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then free
it, like this:

obstack_free (obstack_ptr, obstack_finish (obstack_ptr));



The GNU C Library

This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object smaller.
Just don’t try to shrink it beyond zero length—there’s no telling what will happen if you do that.

3.4.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is room for
the new growth in the current chunk. If you are frequently constructing objects in small steps of
growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the object
without checking. In order to have a robust program, you must do the checking yourself. If you do
this checking in the simplest way each time you are about to add data to the object, you have not
saved anything, because that is what the ordinary growth functions do. But if you can arrange to
check less often, or check more efficiently, then you make the program faster.

The function obstack_room returns the amount of room available in the current chunk. It is
declared as follows:

size_t obstack_room (struct obstack *obstack ptr) Function
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast growth
functions.

While you know there is room, you can use these fast growth functions for adding data to a
growing object:

void obstack_lgrow_fast (struct obstack *obstack ptr, char c) Function
The function obstack_lgrow_fast adds one byte containing the character c to the
growing object in obstack obstack_ptr.

void obstack_blank_fast (struct obstack *obstack ptr, size_t size) Function
The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack_ptr without initializing them.



Chapter 3: Memory Allocation

When you check for space using obstack_room and there is not enough room for what you want
to add, the fast growth functions are not safe. In this case, simply use the corresponding ordinary
growth function instead. Very soon this will copy the object to a new chunk; then there will be
lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space using
obstack_room. Once the object is copied to a new chunk, there will be plenty of space again, so
the program will start using the fast growth functions again.

Here is an example:

void
add_string (struct obstack *obstack, char *ptr, size_t len)
{
while (len > 0)
{
if (obstack_room (obstack) > len)
{
/* We have enough room: add everything fast. */
while (len-- > 0)
obstack_lgrow_fast (obstack, *ptr++);
}
else
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);

len—-;

3.4.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.



The GNU C Library

void * obstack _base (struct obstack *obstack ptr) Function
This function returns the tentative address of the beginning of the currently growing
object in obstack_ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will

change!

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack next_free (struct obstack *obstack ptr) Function
This function returns the address of the first free byte in the current chunk of obstack
obstack_ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

size_t obstack_object_size (struct obstack *obstack ptr) Function
This function returns the size in bytes of the currently growing object. This is equivalent

to

obstack_next_free (obstack_ptr) - obstack_base (obstack_ptr)

3.4.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary is 4
bytes.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask, whose

function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack ptr) Macro
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2: the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is 3, so that addresses are multiples of 4. A mask value of 0 means
an object can start on any multiple of 1 (that is, no alignment is required).



Chapter 3: Memory Allocation

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:

obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an object
is allocated or finished in the obstack. If you are not growing an object, you can make the new
alignment mask take effect immediately by calling obstack_finish. This will finish a zero-length
object and then do proper alignment for the next object.

3.4.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out space
in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless you specify a
different chunk size. The chunk size includes 8 bytes of overhead that are not actually used for
storing objects. Regardless of the specified size, longer chunks will be allocated when necessary for
long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc, which you
must define. When a chunk is no longer needed because you have freed all the objects in it, the
obstack library frees the chunk by calling obstack_chunk_free, which you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that uses
obstack_init (see Section 3.4.1 [Creating Obstacks|, page 41). Most often they are defined as
macros like this:

##define obstack_chunk_alloc xmalloc
##define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments will not
work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone, expand into a
function name if it is not itself a function name.



The GNU C Library

The function that actually implements obstack_chunk_alloc cannot return “failure” in any
fashion, because the obstack library is not prepared to handle failure. Therefore, malloc itself is not
suitable. If the function cannot obtain space, it should either terminate the process (see Section 22.3
[Program Termination], page 476) or do a nonlocal exit using longjmp (see Chapter 20 [Non-Local
Exits], page 397).

If you allocate chunks with malloc, the chunk size should be a power of 2. The default chunk
size, 4096, was chosen because it is long enough to satisfy many typical requests on the obstack yet
short enough not to waste too much memory in the portion of the last chunk not yet used.

size_t obstack_chunk_size (struct obstack *obstack ptr) Macro
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning it a new
value. Doing so does not affect the chunks already allocated, but will change the size of chunks
allocated for that particular obstack in the future. It is unlikely to be useful to make the chunk
size smaller, but making it larger might improve efficiency if you are allocating many objects whose
size is comparable to the chunk size. Here is how to do so cleanly:

if (obstack_chunk_size (obstack_ptr) < new_chunk_size)
obstack_chunk_size (obstack_ptr) = new_chunk_size;

3.4.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address of an
obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack ptr)
Initialize use of an obstack. See Section 3.4.1 [Creating Obstacks]|, page 41.
void *obstack_alloc (struct obstack *obstack ptr, size_t size)

Allocate an object of size uninitialized bytes. See Section 3.4.3 [Allocation in an Ob-
stack|, page 43.

void *obstack_copy (struct obstack *obstack ptr, void *address, size_t size)

Allocate an object of size bytes, with contents copied from address. See Section 3.4.3
[Allocation in an Obstack], page 43.



Chapter 3: Memory Allocation

void *obstack_copyO (struct obstack *obstack ptr, void *address, size_t size)

Allocate an object of size+1 bytes, with size of them copied from address, followed by
a null character at the end. See Section 3.4.3 [Allocation in an Obstack], page 43.

void obstack_free (struct obstack *obstack ptr, void *object)

Free object (and everything allocated in the specified obstack more recently than ob-
ject). See Section 3.4.4 [Freeing Obstack Objects], page 44.

void obstack_blank (struct obstack *obstack ptr, size_t size)

Add size uninitialized bytes to a growing object. See Section 3.4.6 [Growing Objects],
page 46.

void obstack_grow (struct obstack *obstack ptr, void *address, size_t size)

Add size bytes, copied from address, to a growing object. See Section 3.4.6 [Growing
Objects], page 46.

void obstack_grow0 (struct obstack *obstack ptr, void *address, size_t size)

Add size bytes, copied from address, to a growing object, and then add another byte
containing a null character. See Section 3.4.6 [Growing Objects], page 46.

void obstack_lgrow (struct obstack *obstack ptr, char data’char)

Add one byte containing data_char to a growing object. See Section 3.4.6 [Growing
Objects], page 46.

void *obstack_finish (struct obstack *obstack ptr)

Finalize the object that is growing and return its permanent address. See Section 3.4.6
[Growing Objects|, page 46.

size_t obstack_object_size (struct obstack *obstack ptr)

Get the current size of the currently growing object. See Section 3.4.6 [Growing Ob-
jects], page 46.

void obstack_blank_fast (struct obstack *obstack ptr, size_t size)

Add size uninitialized bytes to a growing object without checking that there is enough
room. See Section 3.4.7 [Extra Fast Growing], page 48.

void obstack_lgrow_fast (struct obstack *obstack ptr, char data char)

Add one byte containing data_char to a growing object without checking that there is
enough room. See Section 3.4.7 [Extra Fast Growing|, page 48.

size_t obstack_room (struct obstack *obstack ptr)

Get the amount of room now available for growing the current object. See Section 3.4.7
[Extra Fast Growing], page 48.

int obstack_alignment_mask (struct obstack *obstack ptr)

The mask used for aligning the beginning of an object. This is an lvalue. See Sec-
tion 3.4.9 [Obstacks Data Alignment|, page 50.



The GNU C Library

size_t obstack_chunk_size (struct obstack *obstack ptr)

The size for allocating chunks. This is an lvalue. See Section 3.4.10 [Obstack Chunks],
page 51.

void *obstack_base (struct obstack *obstack ptr)

Tentative starting address of the currently growing object. See Section 3.4.8 [Status of
an Obstack], page 49.

void *obstack_next_free (struct obstack *obstack ptr)

Address just after the end of the currently growing object. See Section 3.4.8 [Status of
an Obstack], page 49.

3.5 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which blocks are allocated
dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many blocks as you
wish, and compute the size at run time. But all the blocks are freed when you exit the function
that alloca was called from, just as if they were automatic variables declared in that function.
There is no way to free the space explicitly.

The prototype for alloca is in ‘stdlib.h’. This function is a BSD extension.

void * alloca (size_t size); Function
The return value of alloca is the address of a block of size bytes of storage, allocated
in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get unpredictable results,
because the stack space for the alloca would appear on the stack in the middle of the space for
the function arguments. An example of what to avoid is foo (x, alloca (4), y).

3.5.1 alloca Example

As an example of use of alloca, here is a function that opens a file name made from concate-
nating two argument strings, and returns a file descriptor or minus one signifying failure:



Chapter 3: Memory Allocation

int
open2 (char #*strl, char *str2, int flags, int mode)

{

char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
strcpy (name, stril);

strcat (name, str2);

return open (name, flags, mode);

Here is how you would get the same results with malloc and free:

int
open2 (char *strl, char *str2, int flags, int mode)

{

char *name = (char *) malloc (strlen (strl) + strlen (str2) + 1);
int desc;
if (name == 0)
fatal ("virtual memory exceeded");
strcpy (name, stril);
strcat (name, str2);
desc = open (name, flags, mode);
free (name);
return desc;

As you can see, it is simpler with alloca. But alloca has other, more important advantages,

and some disadvantages.

3.5.2 Advantages of alloca

Here are the reasons why alloca may be preferable to malloc:

e Using alloca wastes very little space and is very fast. (It is open-coded by the GNU C

compiler.)

e Since alloca does not have separate pools for different sizes of block, space used for any size

block can be reused for any other size. alloca does not cause storage fragmentation.

e Nonlocal exits done with longjmp (see Chapter 20 [Non-Local Exits], page 397) automatically
free the space allocated with alloca when they exit through the function that called alloca.

This is the most important reason to use alloca.



The GNU C Library

To illustrate this, suppose you have a function open_or_report_error which returns a de-
scriptor, like open, if it succeeds, but does not return to its caller if it fails. If the file cannot
be opened, it prints an error message and jumps out to the command level of your program
using longjmp. Let’s change open2 (see Section 3.5.1 [Alloca Example|, page 54) to use this
subroutine:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) alloca (strlen (strl) + strlen (str2) + 1);
strcpy (name, stri);
strcat (name, str2);
return open_or_report_error (name, flags, mode);

}

Because of the way alloca works, the storage it allocates is freed even when an error occurs,
with no special effort required.

By contrast, the previous definition of open2 (which uses malloc and free) would develop a
storage leak if it were changed in this way. Even if you are willing to make more changes to
fix it, there is no easy way to do so.

3.5.3 Disadvantages of alloca
These are the disadvantages of alloca in comparison with malloc:

e If you try to allocate more storage than the machine can provide, you don’t get a clean error
message. Instead you get a fatal signal like the one you would get from an infinite recursion;
probably a segmentation violation (see Section 21.2.1 [Program Error Signals], page 406).

e Some non-GNU systems fail to support alloca, so it is less portable. However, a slower
emulation of alloca written in C is available for use on systems with this deficiency.

3.5.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size. Here is how
open2 would look then:

int open2 (char *strl, char *str2, int flags, int mode)



Chapter 3: Memory Allocation

char name[strlen (strl) + strlen (str2) + 1];
strcpy (name, stri);

strcat (name, str2);

return open (name, flags, mode) ;

But alloca is not always equivalent to a variable-sized array, for several reasons:

e A variable size array’s space is freed at the end of the scope of the name of the array. The
space allocated with alloca usually remains until the end of the function.

e It is possible to use alloca within a loop, allocating an additional block on each iteration.
This is impossible with variable-sized arrays. On the other hand, this is also slightly unclean.

Note: If you mix use of alloca and variable-sized arrays within one function, exiting a scope in
which a variable-sized array was declared frees all blocks allocated with alloca during the execution
of that scope.

3.6 Relocating Allocator

Any system of dynamic memory allocation has overhead: the amount of space it uses is more
than the amount the program asks for. The relocating memory allocator achieves very low overhead
by moving blocks in memory as necessary, on its own initiative.

3.6.1 Concepts of Relocating Allocation

When you allocate a block with malloc, the address of the block never changes unless you use
realloc to change its size. Thus, you can safely store the address in various places, temporarily or
permanently, as you like. This is not safe when you use the relocating memory allocator, because
any and all relocatable blocks can move whenever you allocate memory in any fashion. Even calling
malloc or realloc can move the relocatable blocks.

For each relocatable block, you must make a handle—a pointer object in memory, designated to
store the address of that block. The relocating allocator knows where each block’s handle is, and
updates the address stored there whenever it moves the block, so that the handle always points to



The GNU C Library

the block. Each time you access the contents of the block, you should fetch its address anew from
the handle.

To call any of the relocating allocator functions from a signal handler is almost certainly incor-
rect, because the signal could happen at any time and relocate all the blocks. The only way to
make this safe is to block the signal around any access to the contents of any relocatable block—mnot
a convenient mode of operation. See Section 21.4.6 [Nonreentrancy]|, page 434.

3.6.2 Allocating and Freeing Relocatable Blocks

In the descriptions below, handleptr designates the address of the handle. All the functions are
declared in ‘malloc.h’; all are GNU extensions.

void * r_alloc (void **handleptr, size_t size) Function
This function allocates a relocatable block of size size. It stores the block’s address in
*handleptr and returns a non-null pointer to indicate success.

If r_alloc can’t get the space needed, it stores a null pointer in *handleptr, and returns
a null pointer.

void r_alloc_free (void **handleptr) Function
This function is the way to free a relocatable block. It frees the block that *handleptr
points to, and stores a null pointer in * handleptr to show it doesn’t point to an allocated
block any more.

void * r_re_alloc (void **handleptr, size_t size) Function
The function r_re_alloc adjusts the size of the block that *handleptr points to, mak-
ing it size bytes long. It stores the address of the resized block in *handleptr and
returns a non-null pointer to indicate success.

If enough memory is not available, this function returns a null pointer and does not
modify *handleptr.



Chapter 3: Memory Allocation

3.7 Memory Usage Warnings

You can ask for warnings as the program approaches running out of memory space, by calling
memory_warnings. This is a GNU extension declared in ‘malloc.h’.

void memory_warnings (void *start, void (*warnfunc) (char *)) Function
Call this function to request warnings for nearing exhaustion of virtual memory.

The argument start says where data space begins, in memory. The allocator compares
this against the last address used and against the limit of data space, to determine the
fraction of available memory in use. If you supply zero for start, then a default value
is used which is right in most circumstances.

For warn_func, supply a function that malloc can call to warn you. It is called with
a string (a warning message) as argument. Normally it ought to display the string for
the user to read.

The warnings come when memory becomes 75% full, when it becomes 85% full, and when it
becomes 95% full. Above 95% you get another warning each time memory usage increases.



The GNU C Library



Chapter 4: Character Handling

4 Character Handling

Programs that work with characters and strings often need to classify a character—is it al-
phabetic, is it a digit, is it whitespace, and so on—and perform case conversion operations on
characters. The functions in the header file ‘ctype.h’ are provided for this purpose.

Since the choice of locale and character set can alter the classifications of particular character
codes, all of these functions are affected by the current locale. (More precisely, they are affected
by the locale currently selected for character classification—the LC_CTYPE category; see Section 7.3
[Locale Categories], page 98.)

4.1 Classification of Characters

This section explains the library functions for classifying characters. For example, isalpha is
the function to test for an alphabetic character. It takes one argument, the character to test, and
returns a nonzero integer if the character is alphabetic, and zero otherwise. You would use it like
this:

if (isalpha (c))
printf ("The character ‘Jc’ is alphabetic.\n", c);

Each of the functions in this section tests for membership in a particular class of characters;
each has a name starting with ‘is’. Each of them takes one argument, which is a character to test,
and returns an int which is treated as a boolean value. The character argument is passed as an
int, and it may be the constant value EOF instead of a real character.

The attributes of any given character can vary between locales. See Chapter 7 [Locales], page 97,
for more information on locales.

These functions are declared in the header file ‘ctype.h’.

int islower (int c) Function
Returns true if ¢ is a lower-case letter.



The GNU C Library

int isupper (int c) Function
Returns true if ¢ is an upper-case letter.

int isalpha (int c¢) Function
Returns true if ¢ is an alphabetic character (a letter). If islower or isupper is true
of a character, then isalpha is also true.

In some locales, there may be additional characters for which isalpha is true-letters
which are neither upper case nor lower case. But in the standard "C" locale, there are
no such additional characters.

int isdigit (int c) Function
Returns true if ¢ is a decimal digit (‘0" through ‘9’).

int isalnum (int c) Function
Returns true if ¢ is an alphanumeric character (a letter or number); in other words, if
either isalpha or isdigit is true of a character, then isalnum is also true.

int isxdigit (int c) Function
Returns true if c is a hexadecimal digit. Hexadecimal digits include the normal decimal
digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through ‘f’.

int ispunct (int c) Function
Returns true if ¢ is a punctuation character. This means any printing character that
is not alphanumeric or a space character.

int isspace (int ¢) Function
Returns true if ¢ is a whitespace character. In the standard "C" locale, isspace returns
true for only the standard whitespace characters:

? 0 space
\f? formfeed
’\n’ newline

\r’ carriage return



Chapter 4: Character Handling

\t?’ horizontal tab
\v’ vertical tab

int isblank (int c) Function
Returns true if ¢ is a blank character; that is, a space or a tab. This function is a GNU
extension.

int isgraph (int c) Function

Returns true if c is a graphic character; that is, a character that has a glyph associated
with it. The whitespace characters are not considered graphic.

int isprint (int c) Function
Returns true if ¢ is a printing character. Printing characters include all the graphic
characters, plus the space (‘ ’) character.

int iscntrl (int c) Function
Returns true if ¢ is a control character (that is, a character that is not a printing
character).

int isascii (int c) Function

Returns true if ¢ is a 7-bit unsigned char value that fits into the US/UK ASCII
character set. This function is a BSD extension and is also an SVID extension.

4.2 Case Conversion

This section explains the library functions for performing conversions such as case mappings on
characters. For example, toupper converts any character to upper case if possible. If the character
can’t be converted, toupper returns it unchanged.

These functions take one argument of type int, which is the character to convert, and return
the converted character as an int. If the conversion is not applicable to the argument given, the
argument is returned unchanged.



The GNU C Library

Compatibility Note: In pre-ANSI C dialects, instead of returning the argument unchanged,
these functions may fail when the argument is not suitable for the conversion. Thus for portability,
you may need to write islower(c) ? toupper(c) : c rather than just toupper(c).

These functions are declared in the header file ‘ctype.h’.

int tolower (int c) Function
If ¢ is an upper-case letter, tolower returns the corresponding lower-case letter. If ¢
is not an upper-case letter, ¢ is returned unchanged.

int toupper (int c) Function
If ¢ is a lower-case letter, tolower returns the corresponding upper-case letter. Other-
wise c is returned unchanged.

int toascii (int c) Function
This function converts ¢ to a 7-bit unsigned char value that fits into the US/UK
ASCII character set, by clearing the high-order bits. This function is a BSD extension
and is also an SVID extension.

int _tolower (int ¢) Function
This is identical to tolower, and is provided for compatibility with the SVID. See
Section 1.2.4 [SVID], page 4.

int _toupper (int c) Function
This is identical to toupper, and is provided for compatibility with the SVID.



Chapter 5: String and Array Utilities

5 String and Array Utilities

Operations on strings (or arrays of characters) are an important part of many programs. The
GNU C library provides an extensive set of string utility functions, including functions for copying,
concatenating, comparing, and searching strings. Many of these functions can also operate on
arbitrary regions of storage; for example, the memcpy function can be used to copy the contents of
any kind of array.

It’s fairly common for beginning C programmers to “reinvent the wheel” by duplicating this
functionality in their own code, but it pays to become familiar with the library functions and to
make use of them, since this offers benefits in maintenance, efficiency, and portability.

For instance, you could easily compare one string to another in two lines of C code, but if you
use the built-in strcmp function, you’re less likely to make a mistake. And, since these library
functions are typically highly optimized, your program may run faster too.

5.1 Representation of Strings

This section is a quick summary of string concepts for beginning C programmers. It describes
how character strings are represented in C and some common pitfalls. If you are already familiar
with this material, you can skip this section.

A string is an array of char objects. But string-valued variables are usually declared to be
pointers of type char *. Such variables do not include space for the text of a string; that has to be
stored somewhere else—in an array variable, a string constant, or dynamically allocated memory
(see Chapter 3 [Memory Allocation], page 29). It’s up to you to store the address of the chosen
memory space into the pointer variable. Alternatively you can store a null pointer in the pointer
variable. The null pointer does not point anywhere, so attempting to reference the string it points
to gets an error.

By convention, a null character, >\0’, marks the end of a string. For example, in testing to see
whether the char * variable p points to a null character marking the end of a string, you can write
1*p or *p == ’\0’.

A null character is quite different conceptually from a null pointer, although both are represented
by the integer 0.



The GNU C Library

String literals appear in C program source as strings of characters between double-quote char-
acters (‘"’). In ANSI C, string literals can also be formed by string concatenation: "a" "b" is the
same as "ab". Modification of string literals is not allowed by the GNU C compiler, because literals
are placed in read-only storage.

Character arrays that are declared const cannot be modified either. It’s generally good style
to declare non-modifiable string pointers to be of type const char *, since this often allows the
C compiler to detect accidental modifications as well as providing some amount of documentation
about what your program intends to do with the string.

The amount of memory allocated for the character array may extend past the null character
that normally marks the end of the string. In this document, the term allocation size is always
used to refer to the total amount of memory allocated for the string, while the term length refers
to the number of characters up to (but not including) the terminating null character.

A notorious source of program bugs is trying to put more characters in a string than fit in its
allocated size. When writing code that extends strings or moves characters into a pre-allocated
array, you should be very careful to keep track of the length of the text and make explicit checks
for overflowing the array. Many of the library functions do not do this for you! Remember also
that you need to allocate an extra byte to hold the null character that marks the end of the string.

5.2 String/Array Conventions

This chapter describes both functions that work on arbitrary arrays or blocks of memory, and
functions that are specific to null-terminated arrays of characters.

Functions that operate on arbitrary blocks of memory have names beginning with ‘mem’ (such as
memcpy) and invariably take an argument which specifies the size (in bytes) of the block of memory
to operate on. The array arguments and return values for these functions have type void *, and
as a matter of style, the elements of these arrays are referred to as “bytes”. You can pass any kind
of pointer to these functions, and the sizeof operator is useful in computing the value for the size
argument.

In contrast, functions that operate specifically on strings have names beginning with ‘str’ (such
as strcpy) and look for a null character to terminate the string instead of requiring an explicit size
argument to be passed. (Some of these functions accept a specified maximum length, but they also
check for premature termination with a null character.) The array arguments and return values for
these functions have type char *, and the array elements are referred to as “characters”.



Chapter 5: String and Array Utilities

In many cases, there are both ‘mem’ and ‘str’ versions of a function. The one that is more
appropriate to use depends on the exact situation. When your program is manipulating arbitrary
arrays or blocks of storage, then you should always use the ‘mem’ functions. On the other hand,
when you are manipulating null-terminated strings it is usually more convenient to use the ‘str’
functions, unless you already know the length of the string in advance.

5.3 String Length

You can get the length of a string using the strlen function. This function is declared in the
header file ‘string.h’.

size_t strlen (const char *s) Function
The strlen function returns the length of the null-terminated string s. (In other words,
it returns the offset of the terminating null character within the array.)

For example,

strlen ("hello, world")
= 12

When applied to a character array, the strlen function returns the length of the string
stored there, not its allocation size. You can get the allocation size of the character
array that holds a string using the sizeof operator:

char string[32] = "hello, world";
sizeof (string)

= 32
strlen (string)

= 12

5.4 Copying and Concatenation

You can use the functions described in this section to copy the contents of strings and arrays,
or to append the contents of one string to another. These functions are declared in the header file
‘string.h’.



The GNU C Library

A helpful way to remember the ordering of the arguments to the functions in this section is that
it corresponds to an assignment expression, with the destination array specified to the left of the
source array. All of these functions return the address of the destination array.

Most of these functions do not work properly if the source and destination arrays overlap. For
example, if the beginning of the destination array overlaps the end of the source array, the original
contents of that part of the source array may get overwritten before it is copied. Even worse, in
the case of the string functions, the null character marking the end of the string may be lost, and
the copy function might get stuck in a loop trashing all the memory allocated to your program.

All functions that have problems copying between overlapping arrays are explicitly identified
in this manual. In addition to functions in this section, there are a few others like sprintf (see
Section 11.9.7 [Formatted Output Functions|, page 159) and scanf (see Section 11.11.8 [Formatted
Input Functions], page 181).

void * memcpy (void *to, const void *from, size_t size) Function
The memcpy function copies size bytes from the object beginning at from into the object
beginning at to. The behavior of this function is undefined if the two arrays to and
from overlap; use memmove instead if overlapping is possible.

The value returned by memcpy is the value of to.
Here is an example of how you might use memcpy to copy the contents of a struct:

struct foo *o0ld, *new;

memcpy (new, old, sizeof(struct foo));

void * memmove (void *to, const void *from, size_t size) Function
memmove copies the size bytes at from into the size bytes at to, even if those two blocks
of space overlap. In the case of overlap, memmove is careful to copy the original values
of the bytes in the block at from, including those bytes which also belong to the block
at to.

void * memccpy (void *to, const void *from, int c, size_t size) Function
This function copies no more than size bytes from from to to, stopping if a byte
matching c is found. The return value is a pointer into to one byte past where ¢ was
copied, or a null pointer if no byte matching ¢ appeared in the first size bytes of from.



Chapter 5: String and Array Utilities

void * memset (void *block, int c, size_t size) Function

char

char

char

char

This function copies the value of ¢ (converted to an unsigned char) into each of the
first size bytes of the object beginning at block. It returns the value of block.

* strcpy (char *to, const char *from) Function
This copies characters from the string from (up to and including the terminating null
character) into the string to. Like memcpy, this function has undefined results if the
strings overlap. The return value is the value of to.

* strncpy (char *to, const char *from, size_t size) Function
This function is similar to strcpy but always copies exactly size characters into to.

If the length of from is more than size, then strncpy copies just the first size characters.

If the length of from is less than size, then strncpy copies all of from, followed by
enough null characters to add up to size characters in all. This behavior is rarely
useful, but it is specified by the ANSI C standard.

The behavior of strncpy is undefined if the strings overlap.

Using strncpy as opposed to strcpy is a way to avoid bugs relating to writing past
the end of the allocated space for to. However, it can also make your program much
slower in one common case: copying a string which is probably small into a potentially
large buffer. In this case, size may be large, and when it is, strncpy will waste a
considerable amount of time copying null characters.

* strdup (const char *s) Function
This function copies the null-terminated string s into a newly allocated string. The
string is allocated using malloc; see Section 3.3 [Unconstrained Allocation], page 30.

If malloc cannot allocate space for the new string, strdup returns a null pointer.
Otherwise it returns a pointer to the new string.

* stpcpy (char *to, const char *from) Function
This function is like strcpy, except that it returns a pointer to the end of the string
to (that is, the address of the terminating null character) rather than the beginning.

For example, this program uses stpcpy to concatenate ‘foo’ and ‘bar’ to produce
‘foobar’, which it then prints.



The GNU C Library

#include <string.h>

int
main (void)
{

char *to = buffer;

to = stpcpy (to, "foo");
to = stpcpy (to, "bar");
printf ("%s\n", buffer);

This function is not part of the ANSI or POSIX standards, and is not customary on
Unix systems, but we did not invent it either. Perhaps it comes from MS-DOG.

Its behavior is undefined if the strings overlap.

char * strcat (char *to, const char *from) Function
The strcat function is similar to strcpy, except that the characters from from are
concatenated or appended to the end of to, instead of overwriting it. That is, the first
character from from overwrites the null character marking the end of to.

An equivalent definition for strcat would be:

char *
strcat (char *to, const char *from)

{
strcpy (to + strlen (to), from);
return to;

}

This function has undefined results if the strings overlap.

char * strncat (char *to, const char *from, size_t size) Function
This function is like strcat except that not more than size characters from from are
appended to the end of to. A single null character is also always appended to to, so the
total allocated size of to must be at least size + 1 bytes longer than its initial length.



Chapter 5: String and Array Utilities

char =*
strncat (char *to, const char *from, size_t size)
{

strncpy (to + strlen (to), from, size);

return to;

The behavior of strncat is undefined if the strings overlap.

Here is an example showing the use of strncpy and strncat. Notice how, in the call to strncat,
the size parameter is computed to avoid overflowing the character array buffer.

#include <string.h>
#include <stdio.h>

#define SIZE 10
static char buffer[SIZE];

main ()

{
strncpy (buffer, "hello", SIZE);
printf ("%s\n", buffer);
strncat (buffer, ", world", SIZE - strlen (buffer) - 1);
printf ("%s\n", buffer);

The output produced by this program looks like:

hello
hello, wo

void * bcopy (void *from, const void *to, size_t size) Function
This is a partially obsolete alternative for memmove, derived from BSD. Note that it is
not quite equivalent to memmove, because the arguments are not in the same order.



The GNU C Library

void * bzero (void *block, size_t size) Function
This is a partially obsolete alternative for memset, derived from BSD. Note that it is
not as general as memset, because the only value it can store is zero.

5.5 String/Array Comparison

You can use the functions in this section to perform comparisons on the contents of strings and
arrays. As well as checking for equality, these functions can also be used as the ordering functions
for sorting operations. See Chapter 8 [Searching and Sorting], page 107, for an example of this.

Unlike most comparison operations in C, the string comparison functions return a nonzero value
if the strings are not equivalent rather than if they are. The sign of the value indicates the relative
ordering of the first characters in the strings that are not equivalent: a negative value indicates
that the first string is “less” than the second, while a positive value indicates that the first string

is “greater”.

If you are using these functions only to check for equality, you might find it makes for a cleaner
program to hide them behind a macro definition, like this:

#define str_eq(sl,s2) (!strcmp ((s1),(s2)))

All of these functions are declared in the header file ‘string.h’.

int memcmp (const void *al, const void *a2, size_t size) Function
The function memcmp compares the size bytes of memory beginning at al against the size
bytes of memory beginning at a2. The value returned has the same sign as the difference
between the first differing pair of bytes (interpreted as unsigned char objects, then
promoted to int).

If the contents of the two blocks are equal, memcmp returns 0.

On arbitrary arrays, the memcmp function is mostly useful for testing equality. It usually isn’t
meaningful to do byte-wise ordering comparisons on arrays of things other than bytes. For example,
a byte-wise comparison on the bytes that make up floating-point numbers isn’t likely to tell you
anything about the relationship between the values of the floating-point numbers.



Chapter 5: String and Array Utilities

You should also be careful about using memcmp to compare objects that can contain “holes”, such
as the padding inserted into structure objects to enforce alignment requirements, extra space at the
end of unions, and extra characters at the ends of strings whose length is less than their allocated
size. The contents of these “holes” are indeterminate and may cause strange behavior when per-
forming byte-wise comparisons. For more predictable results, perform an explicit component-wise
comparison.

For example, given a structure type definition like:

struct foo
{
unsigned char tag;
union

{
double £f;
long i;
char *p;
} value;

};

you are better off writing a specialized comparison function to compare struct foo objects instead
of comparing them with memcmp.

int strcmp (const char *sl, const char *s2) Function
The strcmp function compares the string s1 against s2, returning a value that has the
same sign as the difference between the first differing pair of characters (interpreted as
unsigned char objects, then promoted to int).

If the two strings are equal, strcmp returns O.

A consequence of the ordering used by strcmp is that if s1 is an initial substring of s2,
then sl is considered to be “less than” s2.

int strcasecmp (const char *sl, const char *s2) Function
This function is like strcmp, except that differences in case are ignored.

strcasecmp is derived from BSD.



The GNU C Library

int strncasecmp (const char *sl, const char *s2, size_t n) Function
This function is like strncmp, except that differences in case are ignored.

strncasecmp is a GNU extension.

int strncmp (const char *sl, const char *s2, size_t size) Function
This function is the similar to strcmp, except that no more than size characters are
compared. In other words, if the two strings are the same in their first size characters,

the return value is zero.

Here are some examples showing the use of strcmp and strncmp. These examples assume the
use of the ASCII character set. (If some other character set—say, EBCDIC—is used instead, then
the glyphs are associated with different numeric codes, and the return values and ordering may

differ.)

strcmp ("hello", "hello")

=0 /* These two strings are the same. */
strcmp ("hello", "Hello")

= 32 /* Comparisons are case-sensitive. */
strcmp ("hello", "world")

= =15 /* The character *h’ comes before *w’. */
strcmp ("hello", "hello, world")

= -44 /* Comparing a null character against a comma. */
strncmp ("hello", "hello, world"", 5)

=0 /* The initial 5 characters are the same. */
strncmp ("hello, world", "hello, stupid world!!!", 5)

=0 /* The initial 5 characters are the same. */

int bemp (const void *al, const void *a2, size_t size) Function
This is an obsolete alias for memcmp, derived from BSD.

5.6 Collation Functions

In some locales, the conventions for lexicographic ordering differ from the strict numeric ordering
of character codes. For example, in Spanish most glyphs with diacritical marks such as accents are
not considered distinct letters for the purposes of collation. On the other hand, the two-character
sequence ‘11’ is treated as a single letter that is collated immediately after ‘1’.



Chapter 5: String and Array Utilities

You can use the functions strcoll and strxfrm (declared in the header file ‘string.h’) to
compare strings using a collation ordering appropriate for the current locale. The locale used by
these functions in particular can be specified by setting the locale for the LC_COLLATE category; see
Chapter 7 [Locales], page 97.

In the standard C locale, the collation sequence for strcoll is the same as that for strcmp.

Effectively, the way these functions work is by applying a mapping to transform the characters
in a string to a byte sequence that represents the string’s position in the collating sequence of the
current locale. Comparing two such byte sequences in a simple fashion is equivalent to comparing
the strings with the locale’s collating sequence.

The function strcoll performs this translation implicitly, in order to do one comparison. By
contrast, strxfrm performs the mapping explicitly. If you are making multiple comparisons using
the same string or set of strings, it is likely to be more efficient to use strxfrm to transform all the
strings just once, and subsequently compare the transformed strings with strcmp.

int strcoll (const char *slI, const char *s2) Function
The strcoll function is similar to strcmp but uses the collating sequence of the current
locale for collation (the LC_COLLATE locale).

Here is an example of sorting an array of strings, using strcoll to compare them. The actual
sort algorithm is not written here; it comes from gsort (see Section 8.3 [Array Sort Function],
page 108). The job of the code shown here is to say how to compare the strings while sorting them.
(Later on in this section, we will show a way to do this more efficiently using strxfrm.)

/* This is the comparison function used with gqsort. */
int
compare_elements (char **pl, char **p2)

{
}

return strcoll (*pl, *p2);
/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings (char **array, int nstrings)



The GNU C Library

{
/* Sort temp_array by comparing the strings. */
gsort (array, sizeof (char *),
nstrings, compare_elements) ;
}
size_t strxfrm (char *to, const char *from, size_t size) Function

The function strxfrm transforms string using the collation transformation determined
by the locale currently selected for collation, and stores the transformed string in the
array to. Up to size characters (including a terminating null character) are stored.

The behavior is undefined if the strings to and from overlap; see Section 5.4 [Copying
and Concatenation], page 67.

The return value is the length of the entire transformed string. This value is not affected
by the value of size, but if it is greater than size, it means that the transformed string
did not entirely fit in the array to. In this case, only as much of the string as actually
fits was stored. To get the whole transformed string, call strxfrm again with a bigger
output array.

The transformed string may be longer than the original string, and it may also be
shorter.

If size is zero, no characters are stored in to. In this case, strxfrm simply returns the
number of characters that would be the length of the transformed string. This is useful
for determining what size string to allocate. It does not matter what to is if size is
zero; to may even be a null pointer.

Here is an example of how you can use strxfrm when you plan to do many comparisons. It does
the same thing as the previous example, but much faster, because it has to transform each string
only once, no matter how many times it is compared with other strings. Even the time needed to
allocate and free storage is much less than the time we save, when there are many strings.

struct sorter { char *input; char *transformed; };

/* This is the comparison function used with gsort
to sort an array of struct sorter. */

int



Chapter 5: String and Array Utilities

compare_elements (struct sorter *pl, struct sorter *p2)
{

return strcmp (pl->transformed, p2->transformed) ;

}

/* This is the entry point—the function to sort
strings using the locale’s collating sequence. */

void
sort_strings_fast (char **array, int nstrings)
{

struct sorter temp_array[nstrings];

int i;

/* Set up temp_array. Each element contains
one input string and its transformed string. */
for (i = 0; i < nstrings; i++)
{

size_t length = strlen (array[i]) * 2;
temp_array[i] .input = arrayl[il;

/* Transform array[i].
First try a buffer probably big enough. */
while (1)
{
char xtransformed = (char *) xmalloc (length);
if (strxfrm (transformed, array[i], length) < length)
{
temp_array[i] .transformed = transformed;
break;
}
/* Try again with a bigger buffer. */
free (transformed);
length *= 2;

}

/* Sort temp_array by comparing transformed strings. */
gsort (temp_array, sizeof (struct sorter),
nstrings, compare_elements) ;

/* Put the elements back in the permanent array
in their sorted order. */
for (i = 0; i < nstrings; i++)
array[i] = temp_array[i].input;

/* Free the strings we allocated. */
for (i = 0; i < nstrings; i++)
free (temp_arrayl[i].transformed) ;



The GNU C Library

Compatibility Note: The string collation functions are a new feature of ANSI C. Older C dialects
have no equivalent feature.

5.7 Search Functions

This section describes library functions which perform various kinds of searching operations on
strings and arrays. These functions are declared in the header file ‘string.h’.

void * memchr (const void *block, int c, size_t size) Function
This function finds the first occurrence of the byte ¢ (converted to an unsigned char)
in the initial size bytes of the object beginning at block. The return value is a pointer
to the located byte, or a null pointer if no match was found.

char * strchr (const char *string, int c) Function
The strchr function finds the first occurrence of the character ¢ (converted to a char)
in the null-terminated string beginning at string. The return value is a pointer to the
located character, or a null pointer if no match was found.

For example,

strchr ("hello, world", ’1°)
= "llo, world"

strchr ("hello, world", ’7?)
= NULL

The terminating null character is considered to be part of the string, so you can use
this function get a pointer to the end of a string by specifying a null character as the
value of the ¢ argument.

char * strrchr (const char *string, int c) Function
The function strrchr is like strchr, except that it searches backwards from the end
of the string string (instead of forwards from the front).



Chapter 5: String and Array Utilities

For example,

strrchr ("hello, world", ’1°)
# Illdll

char * strstr (const char *haystack, const char *needle) Function
This is like strchr, except that it searches haystack for a substring needle rather than
just a single character. It returns a pointer into the string haystack that is the first
character of the substring, or a null pointer if no match was found. If needle is an
empty string, the function returns haystack.

For example,

strstr ("hello, world", "1")
= "llo, world"

strstr ("hello, world", "wo")
= "world"

void * memmem (const void *needle, size_t needle’len, Function
const void *haystack, size_t haystack len)
This is like strstr, but needle and haystack are byte arrays rather than null-terminated
strings. needle_len is the length of needle and haystack_len is the length of haystack.

This function is a GNU extension.

size_t strspn (const char *string, const char *skipset) Function
The strspn (“string span”) function returns the length of the initial substring of string
that consists entirely of characters that are members of the set specified by the string
skipset. The order of the characters in skipset is not important.

For example,

strspn ("hello, world", "abcdefghijklmnopqrstuvwxyz")
= 5



The GNU C Library

size_t strcspn (const char xstring, const char *stopset) Function
The strcspn (“string complement span”) function returns the length of the initial
substring of string that consists entirely of characters that are not members of the
set specified by the string stopset. (In other words, it returns the offset of the first
character in string that is a member of the set stopset.)

For example,

strcspn ("hello, world", " \t\m,.;!?")
= 5

char * strpbrk (const char *string, const char *stopset) Function
The strpbrk (“string pointer break”) function is related to strcspn, except that it
returns a pointer to the first character in string that is a member of the set stopset
instead of the length of the initial substring. It returns a null pointer if no such character

from stopset is found.
For example,

strpbrk ("hello, world", " \t\m,.;!?")
= ", world"

5.8 Finding Tokens in a String

It’s fairly common for programs to have a need to do some simple kinds of lexical analysis and
parsing, such as splitting a command string up into tokens. You can do this with the strtok
function, declared in the header file ‘string.h’.

char * strtok (char *newstring, const char *delimiters) Function
A string can be split into tokens by making a series of calls to the function strtok.

The string to be split up is passed as the newstring argument on the first call only. The
strtok function uses this to set up some internal state information. Subsequent calls
to get additional tokens from the same string are indicated by passing a null pointer
as the newstring argument. Calling strtok with another non-null newstring argument



Chapter 5: String and Array Utilities

reinitializes the state information. It is guaranteed that no other library function ever
calls strtok behind your back (which would mess up this internal state information).

The delimiters argument is a string that specifies a set of delimiters that may surround
the token being extracted. All the initial characters that are members of this set are
discarded. The first character that is not a member of this set of delimiters marks the
beginning of the next token. The end of the token is found by looking for the next
character that is a member of the delimiter set. This character in the original string
newstring is overwritten by a null character, and the pointer to the beginning of the
token in newstring is returned.

On the next call to strtok, the searching begins at the next character beyond the one
that marked the end of the previous token. Note that the set of delimiters delimiters
do not have to be the same on every call in a series of calls to strtok.

If the end of the string newstring is reached, or if the remainder of string consists only
of delimiter characters, strtok returns a null pointer.

Warning: Since strtok alters the string it is parsing, you always copy the string to a temporary
buffer before parsing it with strtok. If you allow strtok to modify a string that came from another
part of your program, you are asking for trouble; that string may be part of a data structure that
could be used for other purposes during the parsing, when alteration by strtok makes the data
structure temporarily inaccurate.

The string that you are operating on might even be a constant. Then when strtok tries to
modify it, your program will get a fatal signal for writing in read-only memory. See Section 21.2.1
[Program Error Signals|, page 406.

This is a special case of a general principle: if a part of a program does not have as its purpose
the modification of a certain data structure, then it is error-prone to modify the data structure
temporarily.

The function strtok is not reentrant. See Section 21.4.6 [Nonreentrancy|, page 434, for a
discussion of where and why reentrancy is important.

Here is a simple example showing the use of strtok.

#include <string.h>
#include <stddef.h>



The GNU C Library

char string[] = "words separated by spaces -- and, punctuation!";

const char delimiters[] =" .,;:!-";

char *token;

token =

token
token
token
token
token

token =

strtok
strtok
strtok
strtok
strtok
strtok
strtok

(string, delimiters);

(NULL,
(NULL,
(NULL,
(NULL,
(NULL,
(NULL,

delimiters);
delimiters);
delimiters);
delimiters);
delimiters);
delimiters);

/*
/*
/*
/*
/*
/*
/*

token =
token =

token

token =

token
token

token =

"words" */
"separated" */
Ilbyll */

"spaces" */
"and" */
"punctuation" */
NULL */



Chapter 6: Extended Characters

6 Extended Characters

A number of languages use character sets that are larger than the range of values of type char.
Japanese and Chinese are probably the most familiar examples.

The GNU C library includes support for two mechanisms for dealing with extended character
sets: multibyte characters and wide characters. This chapter describes how to use these mecha-
nisms, and the functions for converting between them.

The behavior of the functions in this chapter is affected by the current locale for character
classification—the LC_CTYPE category; see Section 7.3 [Locale Categories], page 98. This choice of
locale selects which multibyte code is used, and also controls the meanings and characteristics of
wide character codes.

6.1 Introduction to Extended Characters

You can represent extended characters in either of two ways:

e As Multibyte characters which can be embedded in an ordinary string, an array of char objects.
Their advantage is that many programs and operating systems can handle occasional multibyte
characters scattered among ordinary ASCII characters, without any change.

e As wide characters, which are like ordinary characters except that they occupy more bits. The

wide character data type, wchar_t, has a range large enough to hold extended character codes
as well as old-fashioned ASCII codes.

An advantage of wide characters is that each character is a single data object, just like ordinary
ASCII characters. There are a few disadvantages:

e FEach existing program must be modified and recompiled to make it use wide characters.

e Files of wide characters cannot be read by programs that expect ordinary characters.

Typically, you use the multibyte character representation as part of the external program in-
terface, such as reading or writing text to files. However, it’s usually easier to perform internal
manipulations on strings containing extended characters on arrays of wchar_t objects, since the
uniform representation makes most editing operations easier. If you do use multibyte characters
for files and wide characters for internal operations, you need to convert between them when you
read and write data.



The GNU C Library

If your system supports extended characters, then it supports them both as multibyte characters
and as wide characters. The library includes functions you can use to convert between the two
representations. These functions are described in this chapter.

6.2 Locales and Extended Characters

A computer system can support more than one multibyte character code, and more than one
wide character code. The user controls the choice of codes through the current locale for character
classification (see Chapter 7 [Locales], page 97). Each locale specifies a particular multibyte char-
acter code and a particular wide character code. The choice of locale influences the behavior of the
conversion functions in the library.

Some locales support neither wide characters nor nontrivial multibyte characters. In these
locales, the library conversion functions still work, even though what they do is basically trivial.

If you select a new locale for character classification, the internal shift state maintained by these
functions can become confused, so it’s not a good idea to change the locale while you are in the
middle of processing a string.

6.3 Multibyte Characters

In the ordinary ASCII code, a sequence of characters is a sequence of bytes, and each character
is one byte. This is very simple, but allows for only 256 distinct characters.

In a multibyte character code, a sequence of characters is a sequence of bytes, but each character
may occupy one or more consecutive bytes of the sequence.

There are many different ways of designing a multibyte character code; different systems use
different codes. To specify a particular code means designating the basic byte sequences—those
which represent a single character—and what characters they stand for. A code that a computer
can actually use must have a finite number of these basic sequences, and typically none of them is
more than a few characters long.

These sequences need not all have the same length. In fact, many of them are just one byte
long. Because the basic ASCII characters in the range from 0 to 0177 are so important, they stand
for themselves in all multibyte character codes. That is to say, a byte whose value is 0 through



Chapter 6: Extended Characters

0177 is always a character in itself. The characters which are more than one byte must always start
with a byte in the range from 0200 through 0377.

The byte value 0 can be used to terminated a string, just as it is often used in a string of ASCII
characters.

Specifying the basic byte sequences that represent single characters automatically gives meanings
to many longer byte sequences, as more than one character. For example, if the two byte sequence
0205 049 stands for the Greek letter alpha, then 0205 049 065 must stand for an alpha followed
by an ‘A’ (ASCII code 065), and 0205 049 0205 049 must stand for two alphas in a row.

If any byte sequence can have more than one meaning as a sequence of characters, then the
multibyte code is ambiguous—and no good. The codes that systems actually use are all unambigu-
ous.

In most codes, there are certain sequences of bytes that have no meaning as a character or
characters. These are called invalid.

The simplest possible multibyte code is a trivial one:

The basic sequences consist of single bytes.

This particular code is equivalent to not using multibyte characters at all. It has no invalid

sequences. But it can handle only 256 different characters.

Here is another possible code which can handle 9376 different characters:

The basic sequences consist of

e single bytes with values in the range 0 through 0237.

e two-byte sequences, in which both of the bytes have values in the range from 0240
through 0377.

This code or a similar one is used on some systems to represent Japanese characters. The invalid
sequences are those which consist of an odd number of consecutive bytes in the range from 0240
through 0377.



The GNU C Library

Here is another multibyte code which can handle more distinct extended characters—in fact,
almost thirty million:

The basic sequences consist of

e single bytes with values in the range 0 through 0177.

e sequences of up to four bytes in which the first byte is in the range from 0200
through 0237, and the remaining bytes are in the range from 0240 through 0377.

In this code, any sequence that starts with a byte in the range from 0240 through 0377 is invalid.

And here is another variant which has the advantage that removing the last byte or bytes from
a valid character can never produce another valid character. (This property is convenient when
you want to search strings for particular characters.)

The basic sequences consist of

e single bytes with values in the range 0 through 0177.

e two-byte sequences in which the first byte is in the range from 0200 through 0207,
and the second byte is in the range from 0240 through 0377.

e three-byte sequences in which the first byte is in the range from 0210 through
0217, and the other bytes are in the range from 0240 through 0377.

e four-byte sequences in which the first byte is in the range from 0220 through 0227,
and the other bytes are in the range from 0240 through 0377.

The list of invalid sequences for this code is long and not worth stating in full; examples of invalid
sequences include 0240 and 0220 0300 065.

The number of possible multibyte codes is astronomical. But a given computer system will
support at most a few different codes. (One of these codes may allow for thousands of different
characters.) Another computer system may support a completely different code. The library
facilities described in this chapter are helpful because they package up the knowledge of the details
of a particular computer system’s multibyte code, so your programs need not know them.

You can use special standard macros to find out the maximum possible number of bytes in a
character in the currently selected multibyte code with MB_CUR_MAX, and the maximum for any
multibyte code supported on your computer with MB_LEN_MAX.



Chapter 6: Extended Characters

int MB_LEN_MAX Macro

This is the maximum length of a multibyte character for any supported locale. It is
defined in ‘1imits.h’.

int MB_.CUR_MAX Macro
This macro expands into a (possibly non-constant) positive integer expression that is
the maximum number of bytes in a multibyte character in the current locale. The value
is never greater than MB_LEN_MAX.

MB_CUR_MAX is defined in ‘stdlib.h’.

Normally, each basic sequence in a particular character code stands for one character, the same
character regardless of context. Some multibyte character codes have a concept of shift state;
certain codes, called shift sequences, change to a different shift state, and the meaning of some or
all basic sequences varies according to the current shift state. In fact, the set of basic sequences
might even be different depending on the current shift state. See Section 6.9 [Shift State], page 94,
for more information on handling this sort of code.

What happens if you try to pass a string containing multibyte characters to a function that
doesn’t know about them? Normally, such a function treats a string as a sequence of bytes, and
interprets certain byte values specially; all other byte values are “ordinary”. As long as a multibyte
character doesn’t contain any of the special byte values, the function should pass it through as if
it were several ordinary characters.

For example, let’s figure out what happens if you use multibyte characters in a file name. The
functions such as open and unlink that operate on file names treat the name as a sequence of
byte values, with ‘/’ as the only special value. Any other byte values are copied, or compared, in
sequence, and all byte values are treated alike. Thus, you may think of the file name as a sequence
of bytes or as a string containing multibyte characters; the same behavior makes sense equally
either way, provided no multibyte character contains a ‘/’.

6.4 Wide Character Introduction

Wide characters are much simpler than multibyte characters. They are simply characters with
more than eight bits, so that they have room for more than 256 distinct codes. The wide character
data type, wchar_t, has a range large enough to hold extended character codes as well as old-
fashioned ASCII codes.



The GNU C Library

An advantage of wide characters is that each character is a single data object, just like ordinary
ASCII characters. Wide characters also have some disadvantages:

e A program must be modified and recompiled in order to use wide characters at all.

e Files of wide characters cannot be read by programs that expect ordinary characters.

Wide character values 0 through 0177 are always identical in meaning to the ASCII character
codes. The wide character value zero is often used to terminate a string of wide characters, just as
a single byte with value zero often terminates a string of ordinary characters.

wchar_t Data Type
This is the “wide character” type, an integer type whose range is large enough to
represent all distinct values in any extended character set in the supported locales. See
Chapter 7 [Locales], page 97, for more information about locales. This type is defined
in the header file ‘stddef .h’.

If your system supports extended characters, then each extended character has both a wide
character code and a corresponding multibyte basic sequence.

In this chapter, the term code is used to refer to a single extended character object to emphasize
the distinction from the char data type.

6.5 Conversion of Extended Strings

The mbstowcs function converts a string of multibyte characters to a wide character array. The
wcstombs function does the reverse. These functions are declared in the header file ‘stdlib.h’.

In most programs, these functions are the only ones you need for conversion between wide strings
and multibyte character strings. But they have limitations. If your data is not null-terminated or
is not all in core at once, you probably need to use the low-level conversion functions to convert
one character at a time. See Section 6.7 [Converting One Char], page 90.

size_t mbstowcs (wchar_t *wstring, const char *string, size_t size) Function
The mbstowcs (“multibyte string to wide character string”) function converts the null-
terminated string of multibyte characters string to an array of wide character codes,



Chapter 6: Extended Characters

storing not more than size wide characters into the array beginning at wstring. The
terminating null character counts towards the size, so if size is less than the actual
number of wide characters resulting from string, no terminating null character is stored.

The conversion of characters from string begins in the initial shift state.

If an invalid multibyte character sequence is found, this function returns a value of -1.
Otherwise, it returns the number of wide characters stored in the array wstring. This
number does not include the terminating null character, which is present if the number
is less than size.

Here is an example showing how to convert a string of multibyte characters, allocating
enough space for the result.

wchar_t *
mbstowcs_alloc (char *string)
{
int size = strlen (string) + 1;
wchar_t *buffer = (wchar_t) xmalloc (size * sizeof (wchar_t));

size = mbstowcs (buffer, string, size);
if (size < 0)
return NULL;
return (wchar_t) xrealloc (buffer, (size + 1) * sizeof (wchar_t));

}

size_t wcstombs (char *string, const wchar_t wstring, size_t size) Function
The wcstombs (“wide character string to multibyte string”) function converts the null-
terminated wide character array wstring into a string containing multibyte characters,
storing not more than size bytes starting at string, followed by a terminating null
character if there is room. The conversion of characters begins in the initial shift state.

The terminating null character counts towards the size, so if size is less than or equal
to the number of bytes needed in wstring, no terminating null character is stored.

If a code that does not correspond to a valid multibyte character is found, this function
returns a value of -1. Otherwise, the return value is the number of bytes stored in the
array string. This number does not include the terminating null character, which is
present if the number is less than size.



The GNU C Library

6.6 Multibyte Character Length

This section describes how to scan a string containing multibyte characters, one character at
a time. The difficulty in doing this is to know how many bytes each character contains. Your
program can use mblen to find this out.

int mblen (const char *string, size_t size) Function
The mblen function with non-null string returns the number of bytes that make up the
multibyte character beginning at string, never examining more than size bytes. (The
idea is to supply for size the number of bytes of data you have in hand.)

The return value of mblen distinguishes three possibilities: the first size bytes at string
start with valid multibyte character, they start with an invalid byte sequence or just
part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mblen returns the number of bytes in that character
(always at least 1, and never more than size). For an invalid byte sequence, mblen
returns -1. For an empty string, it returns 0.

If the multibyte character code uses shift characters, then mblen maintains and updates
a shift state as it scans. If you call mblen with a null pointer for string, that initializes
the shift state to its standard initial value. It also returns nonzero if the multibyte
character code in use actually has a shift state. See Section 6.9 [Shift State], page 94.

The function mblen is declared in ‘stdlib.h’.

6.7 Conversion of Extended Characters One by One

You can convert multibyte characters one at a time to wide characters with the mbtowc function.
The wctomb function does the reverse. These functions are declared in ‘stdlib.h’.

int mbtowc (wchar_t *result, const char *string, size_t size) Function
The mbtowc (“multibyte to wide character”) function when called with non-null string
converts the first multibyte character beginning at string to its corresponding wide
character code. It stores the result in *result.



Chapter 6: Extended Characters

mbtowc never examines more than size bytes. (The idea is to supply for size the number
of bytes of data you have in hand.)

mbtowc with non-null string distinguishes three possibilities: the first size bytes at
string start with valid multibyte character, they start with an invalid byte sequence or
just part of a character, or string points to an empty string (a null character).

For a valid multibyte character, mbtowc converts it to a wide character and stores that
in *result, and returns the number of bytes in that character (always at least 1, and
never more than size).

For an invalid byte sequence, mbtowc returns -1. For an empty string, it returns 0,
also storing O in *result.

If the multibyte character code uses shift characters, then mbtowc maintains and up-
dates a shift state as it scans. If you call mbtowc with a null pointer for string, that
initializes the shift state to its standard initial value. It also returns nonzero if the
multibyte character code in use actually has a shift state. See Section 6.9 [Shift State],
page 94.

int wctomb (char *string, wchar_t wchar) Function
The wctomb (“wide character to multibyte”) function converts the wide character code
wchar to its corresponding multibyte character sequence, and stores the result in bytes
starting at string. At most MB_CUR_MAX characters are stored.

wctomb with non-null string distinguishes three possibilities for wchar: a valid wide
character code (one that can be translated to a multibyte character), an invalid code,
and 0.

Given a valid code, wctomb converts it to a multibyte character, storing the bytes
starting at string. Then it returns the number of bytes in that character (always at
least 1, and never more than MB_CUR_MAX).

If wchar is an invalid wide character code, wctomb returns -1. If wchar is 0, it returns

0, also storing 0 in *string.

If the multibyte character code uses shift characters, then wctomb maintains and up-
dates a shift state as it scans. If you call wctomb with a null pointer for string, that



The GNU C Library

initializes the shift state to its standard initial value. It also returns nonzero if the
multibyte character code in use actually has a shift state. See Section 6.9 [Shift State],

page 94.

Calling this function with a wchar argument of zero when string is not null has the side-
effect of reinitializing the stored shift state as well as storing the multibyte character 0

and returning 0.

6.8 Example of Character-by-Character Conversion

Here is an example that reads multibyte character text from descriptor input and writes the
corresponding wide characters to descriptor output. We need to convert characters one by one for
this example because mbstowcs is unable to continue past a null character, and cannot cope with
an apparently invalid partial character by reading more input.

int
file_mbstowcs (int input, int output)
{
char buffer[BUFSIZ + MB_LEN_MAX];
int filled = 0;
int eof = 0;

while (!eof)
{
int nread;
int nwrite;
char *inp = buffer;
wchar_t outbuf [BUFSIZ] ;
wchar_t *outp = outbuf;

/* Fill up the buffer from the input file. */
nread = read (input, buffer + filled, BUFSIZ);
if (nread < 0) {
perror ("read");
return 0;
}
/* If we reach end of file, make a note to read no more. */
if (nread == 0)
eof = 1;

/* filled is now the number of bytes in buffer. */
filled += nread;



Chapter 6: Extended Characters

/* Convert those bytes to wide characters—as many as we can. */
while (1)
{
int thislen = mbtowc (outp, inp, filled);
/* Stop converting at invalid character;
this can mean we have read just the first part
of a valid character. x*/
if (thislen == -1)
break;
/* Treat null character like any other,
but also reset shift state. */
if (thislen == 0) {
thislen = 1;
mbtowc (NULL, NULL, 0);
}
/* Advance past this character. */
inp += thislen;
filled -= thislen;
outp++;

}

/* Write the wide characters we just made. */
nwrite = write (output, outbuf,
(outp - outbuf) * sizeof (wchar_t));
if (nwrite < 0)
{
perror ("write");
return O;

}

/* See if we have a real invalid character. */
if ((eof && filled > 0) || filled >= MB_CUR_MAX)
{
error ("invalid multibyte character");
return 0O;

}

/* If any characters must be carried forward,
put them at the beginning of buffer. */
if (filled > 0)

memcpy (inp, buffer, filled);

}

return 1;

}



The GNU C Library

6.9 Multibyte Codes Using Shift Sequences

In some multibyte character codes, the meaning of any particular byte sequence is not fixed; it
depends on what other sequences have come earlier in the same string. Typically there are just a
few sequences that can change the meaning of other sequences; these few are called shift sequences
and we say that they set the shift state for other sequences that follow.

To illustrate shift state and shift sequences, suppose we decide that the sequence 0200 (just
one byte) enters Japanese mode, in which pairs of bytes in the range from 0240 to 0377 are single
characters, while 0201 enters Latin-1 mode, in which single bytes in the range from 0240 to 0377
are characters, and interpreted according to the ISO Latin-1 character set. This is a multibyte
code which has two alternative shift states (“Japanese mode” and “Latin-1 mode”), and two shift
sequences that specify particular shift states.

When the multibyte character code in use has shift states, then mblen, mbtowc and wctomb must
maintain and update the current shift state as they scan the string. To make this work properly,
you must follow these rules:

e Before starting to scan a string, call the function with a null pointer for the multibyte character
address—for example, mblen (NULL, 0). This initializes the shift state to its standard initial

value.

e Scan the string one character at a time, in order. Do not “back up” and rescan characters
already scanned, and do not intersperse the processing of different strings.

Here is an example of using mblen following these rules:

void
scan_string (char *s)
{
int length = strlen (s);

/* Initialize shift state. */
mblen (NULL, 0);



Chapter 6: Extended Characters

while (1)
{
int thischar = mblen (s, length);
/* Deal with end of string and invalid characters. */
if (thischar == 0)

break;
if (thischar == -1)
{
error ("invalid multibyte character");
break;
}

/* Advance past this character. */
s += thischar;
length -= thischar;

The functions mblen, mbtowc and wctomb are not reentrant when using a multibyte code that
uses a shift state. However, no other library functions call these functions, so you don’t have to
worry that the shift state will be changed mysteriously.



The GNU C Library



Chapter 7: Locales and Internationalization

7 Locales and Internationalization

Different countries and cultures have varying conventions for how to communicate. These con-
ventions range from very simple ones, such as the format for representing dates and times, to very
complex ones, such as the language spoken.

Internationalization of software means programming it to be able to adapt to the user’s favorite
conventions. In ANSI C, internationalization works by means of locales. Each locale specifies a
collection of conventions, one convention for each purpose. The user chooses a set of conventions
by specifying a locale (via environment variables).

All programs inherit the chosen locale as part of their environment. Provided the programs are
written to obey the choice of locale, they will follow the conventions preferred by the user.

7.1 What Effects a Locale Has

Each locale specifies conventions for several purposes, including the following;:

e What multibyte character sequences are valid, and how they are interpreted (see Chapter 6
[Extended Characters|, page 83).

e (lassification of which characters in the local character set are considered alphabetic, and
upper- and lower-case conversion conventions (see Chapter 4 [Character Handling], page 61).

e The collating sequence for the local language and character set (see Section 5.6 [Collation
Functions], page 74).

e Formatting of numbers and currency amounts.

e Formatting of dates and times (see Section 19.2.4 [Formatting Date and Time], page 380).

e What language to use for output, including error messages. (The C library doesn’t yet help
you implement this.)

e What language to use for user answers to yes-or-no questions.

e What language to use for more complex user input. (The C library doesn’t yet help you
implement this.)

Some aspects of adapting to the specified locale are handled automatically by the library sub-
routines. For example, all your program needs to do in order to use the collating sequence of the
chosen locale is to use strcoll or strxfrm to compare strings.



The GNU C Library

Other aspects of locales are beyond the comprehension of the library. For example, the library
can’t automatically translate your program’s output messages into other languages. The only way
you can support output in the user’s favorite language is to program this more or less by hand.
(Eventually, we hope to provide facilities to make this easier.)

This chapter discusses the mechanism by which you can modify the current locale. The effects
of the current locale on specific library functions are discussed in more detail in the descriptions of
those functions.

7.2 Choosing a Locale

The simplest way for the user to choose a locale is to set the environment variable LANG. This
specifies a single locale to use for all purposes. For example, a user could specify a hypothetical
locale named ‘espana-castellano’ to use the standard conventions of most of Spain.

The set of locales supported depends on the operating system you are using, and so do their
names. We can’t make any promises about what locales will exist, except for one standard locale
called ‘C’ or ‘POSIX’.

A user also has the option of specifying different locales for different purposes—in effect, choosing
a mixture of two locales.

For example, the user might specify the locale ‘espana-castellano’ for most purposes, but
specify the locale ‘usa-english’ for currency formatting. This might make sense if the user is a
Spanish-speaking American, working in Spanish, but representing monetary amounts in US dollars.

Note that both locales ‘espana-castellano’ and ‘usa-english’, like all locales, would include
conventions for all of the purposes to which locales apply. However, the user can choose to use each
locale for a particular subset of those purposes.

7.3 Categories of Activities that Locales Affect

The purposes that locales serve are grouped into categories, so that a user or a program can
choose the locale for each category independently. Here is a table of categories; each name is both
an environment variable that a user can set, and a macro name that you can use as an argument
to setlocale.



Chapter 7: Locales and Internationalization

LC_COLLATE

This category applies to collation of strings (functions strcoll and strxfrm); see
Section 5.6 [Collation Functions|, page 74.

LC_CTYPE This category applies to classification and conversion of characters; see Chapter 4
[Character Handling], page 61.

LC_MONETARY

This category applies to formatting monetary values; see Section 7.6 [Numeric Format-
ting], page 102.

LC_NUMERIC

This category applies to formatting numeric values that are not monetary; see Sec-
tion 7.6 [Numeric Formatting], page 102.

LC_TIME This category applies to formatting date and time values; see Section 19.2.4 [Formatting
Date and Time], page 380.

LC_ALL This is not an environment variable; it is only a macro that you can use with setlocale
to set a single locale for all purposes.

LANG If this environment variable is defined, its value specifies the locale to use for all purposes
except as overridden by the variables above.

7.4 How Programs Set the Locale

A C program inherits its locale environment variables when it starts up. This happens auto-
matically. However, these variables do not automatically control the locale used by the library
functions, because ANSI C says that all programs start by default in the standard ‘C’ locale. To
use the locales specified by the environment, you must call setlocale. Call it as follows:

setlocale (LC_ALL, "");

to select a locale based on the appropriate environment variables.

You can also use setlocale to specify a particular locale, for general use or for a specific
category.

The symbols in this section are defined in the header file ‘locale.h’.



100 The GNU C Library

char * setlocale (int category, const char *locale) Function
The function setlocale sets the current locale for category category to locale.

If category is LC_ALL, this specifies the locale for all purposes. The other possible
values of category specify an individual purpose (see Section 7.3 [Locale Categories],
page 98).

You can also use this function to find out the current locale by passing a null pointer
as the locale argument. In this case, setlocale returns a string that is the name of
the locale currently selected for category category.

The string returned by setlocale can be overwritten by subsequent calls, so you should
make a copy of the string (see Section 5.4 [Copying and Concatenation], page 67) if
you want to save it past any further calls to setlocale. (The standard library is
guaranteed never to call setlocale itself.)

You should not modify the string returned by setlocale. It might be the same string
that was passed as an argument in a previous call to setlocale.

When you read the current locale for category LC_ALL, the value encodes the entire
combination of selected locales for all categories. In this case, the value is not just a
single locale name. In fact, we don’t make any promises about what it looks like. But
if you specify the same “locale name” with LC_ALL in a subsequent call to setlocale,
it restores the same combination of locale selections.

When the locale argument is not a null pointer, the string returned by setlocale
reflects the newly modified locale.

If you specify an empty string for locale, this means to read the appropriate environment
variable and use its value to select the locale for category.

If you specify an invalid locale name, setlocale returns a null pointer and leaves the
current locale unchanged.

Here is an example showing how you might use setlocale to temporarily switch to a new locale.

#include <stddef.h>
#include <locale.h>
#include <stdlib.h>



Chapter 7: Locales and Internationalization 101

#include <string.h>

void

with_other_locale (char *new_locale,
void (*subroutine) (int),
int argument)

char *o0ld_locale, *saved_locale;

/* Get the name of the current locale. */
old_locale = setlocale (LC_ALL, NULL);

/* Copy the name so it won’t be clobbered by setlocale. */
saved_locale = strdup (old_locale);
if (old_locale == NULL)

fatal ("Out of memory");

/* Now change the locale and do some stuff with it. */
setlocale (LC_ALL, new_locale);
(*subroutine) (argument) ;

/* Restore the original locale. */
setlocale (LC_ALL, saved_locale);
free (saved_locale);

Portability Note: Some ANSI C systems may define additional locale categories. For portability,
assume that any symbol beginning with ‘L.C_’" might be defined in ‘locale.h’.

7.5 Standard Locales

The only locale names you can count on finding on all operating systems are these three standard
ones:

"c" This is the standard C locale. The attributes and behavior it provides are specified in
the ANSI C standard. When your program starts up, it initially uses this locale by
default.

"POSIX"  This is the standard POSIX locale. Currently, it is an alias for the standard C locale.

n The empty name stands for a site-specific default locale. It’s supposed to be a good
default for the machine on which the program is running.



102 The GNU C Library

Defining and installing named locales is normally a responsibility of the system administrator
at your site (or the person who installed the GNU C library). Some systems may allow users to
create locales, but we don’t discuss that here.

If your program needs to use something other than the ‘C’ locale, it will be more portable if you
use the whatever locale the user specifies with the environment, rather than trying to specify some
non-standard locale explicitly by name. Remember, different machines might have different sets of
locales installed.

7.6 Numeric Formatting

When you want to format a number or a currency amount using the conventions of the current
locale, you can use the function localeconv to get the data on how to do it. The function
localeconv is declared in the header file ‘locale.h’.

struct lconv * localeconv (void) Function
The localeconv function returns a pointer to a structure whose components contain
information about how numeric and monetary values should be formatted in the current
locale.

You shouldn’t modify the structure or its contents. The structure might be overwritten
by subsequent calls to localeconv, or by calls to setlocale, but no other function in
the library overwrites this value.

struct lconv Data Type
This is the data type of the value returned by localeconv.

If a member of the structure struct lconv has type char, and the value is CHAR_MAX, it means
that the current locale has no value for that parameter.

7.6.1 Generic Numeric Formatting Parameters

These are the standard members of struct 1conv; there may be others.



Chapter 7: Locales and Internationalization 103

char *decimal_point

char *mon_decimal_point

These are the decimal-point separators used in formatting non-monetary and monetary
quantities, respectively. In the ‘C’ locale, the value of decimal_point is ".", and the
value of mon_decimal_point is "".

char *thousands_sep
char *mon_thousands_sep

These are the separators used to delimit groups of digits to the left of the decimal point
in formatting non-monetary and monetary quantities, respectively. In the ‘C’ locale,
both members have a value of "" (the empty string).

char *grouping

char *mon_grouping
These are strings that specify how to group the digits to the left of the decimal point.
grouping applies to non-monetary quantities and mon_grouping applies to monetary
quantities. Use either thousands_sep or mon_thousands_sep to separate the digit
groups.

Each string is made up of decimal numbers separated by semicolons. Successive num-
bers (from left to right) give the sizes of successive groups (from right to left, starting
at the decimal point). The last number in the string is used over and over for all the
remaining groups.

If the last integer is -1, it means that there is no more grouping—or, put another way,
any remaining digits form one large group without separators.

For example, if grouping is "4;3;2", the number 123456787654321 should be grouped
into ‘12’, ‘34, ‘66°, ‘78, ‘765’, ‘4321°. This uses a group of 4 digits at the end, preceded
by a group of 3 digits, preceded by groups of 2 digits (as many as needed). With a
separator of ‘,’, the number would be printed as ‘12,34,56,78,765,4321’.

A value of "3" indicates repeated groups of three digits, as normally used in the U.S.

In the standard ‘C’ locale, both grouping and mon_grouping have a value of "". This
value specifies no grouping at all.

char int_frac_digits
char frac_digits

These are small integers indicating how many fractional digits (to the right of the
decimal point) should be displayed in a monetary value in international and local
formats, respectively. (Most often, both members have the same value.)

In the standard ‘C’ locale, both of these members have the value CHAR_MAX, meaning
“unspecified”. The ANSI standard doesn’t say what to do when you find this the value;
we recommend printing no fractional digits. (This locale also specifies the empty string
for mon_decimal_point, so printing any fractional digits would be confusing!)



104 The GNU C Library

7.6.2 Printing the Currency Symbol

These members of the struct lconv structure specify how to print the symbol to identify a
monetary value—the international analog of ‘$’ for US dollars.

Each country has two standard currency symbols. The local currency symbol is used commonly
within the country, while the international currency symbol is used internationally to refer to that
country’s currency when it is necessary to indicate the country unambiguously.

For example, many countries use the dollar as their monetary unit, and when dealing with
international currencies it’s important to specify that one is dealing with (say) Canadian dollars
instead of U.S. dollars or Australian dollars. But when the context is known to be Canada, there
is no need to make this explicit—dollar amounts are implicitly assumed to be in Canadian dollars.

char *currency_symbol
The local currency symbol for the selected locale.

In the standard ‘C’ locale, this member has a value of "" (the empty string), meaning
“unspecified”. The ANSI standard doesn’t say what to do when you find this value;
we recommend you simply print the empty string as you would print any other string
found in the appropriate member.

char *int_curr_symbol
The international currency symbol for the selected locale.

The value of int_curr_symbol should normally consist of a three-letter abbreviation
determined by the international standard ISO 4217 Codes for the Representation of
Currency and Funds, followed by a one-character separator (often a space).

In the standard ‘C’ locale, this member has a value of "" (the empty string), meaning
“unspecified”. We recommend you simply print the empty string as you would print
any other string found in the appropriate member.

char p_cs_precedes
char n_cs_precedes

These members are 1 if the currency_symbol string should precede the value of a
monetary amount, or 0 if the string should follow the value. The p_cs_precedes
member applies to positive amounts (or zero), and the n_cs_precedes member applies

to negative amounts.

In the standard ‘C’ locale, both of these members have a value of CHAR_MAX, meaning
“unspecified”. The ANSI standard doesn’t say what to do when you find this value,
but we recommend printing the currency symbol before the amount. That’s right for
most countries. In other words, treat all nonzero values alike in these members.



Chapter 7: Locales and Internationalization 105

The POSIX standard says that these two members apply to the int_curr_symbol as
well as the currency_symbol. The ANSI C standard seems to imply that they should
apply only to the currency_symbol—so the int_curr_symbol should always preceed
the amount.

We can only guess which of these (if either) matches the usual conventions for printing
international currency symbols. Our guess is that they should always preceed the
amount. If we find out a reliable answer, we will put it here.

char p_sep_by_space
char n_sep_by_space

These members are 1 if a space should appear between the currency_symbol string
and the amount, or 0 if no space should appear. The p_sep_by_space member applies
to positive amounts (or zero), and the n_sep_by_space member applies to negative
amounts.

In the standard ‘C’ locale, both of these members have a value of CHAR_MAX, meaning
“unspecified”. The ANSI standard doesn’t say what you should do when you find this
value; we suggest you treat it as one (print a space). In other words, treat all nonzero
values alike in these members.

These members apply only to currency_symbol. When you use int_curr_symbol,
you never print an additional space, because int_curr_symbol itself contains the ap-
propriate separator.

The POSIX standard says that these two members apply to the int_curr_symbol
as well as the currency_symbol. But an example in the ANSI C standard clearly
implies that they should apply only to the currency_symbol—that the int_curr_
symbol contains any appropriate separator, so you should never print an additional
space.

Based on what we know now, we recommend you ignore these members when printing
international currency symbols, and print no extra space.

7.6.3 Printing the Sign of an Amount of Money

These members of the struct lconv structure specify how to print the sign (if any) in a mon-
etary value.

char *positive_sign

char *negative_sign
These are strings used to indicate positive (or zero) and negative (respectively) mone-
tary quantities.



106 The GNU C Library

In the standard ‘C’ locale, both of these members have a value of "" (the empty string),
meaning “unspecified”.

The ANSI standard doesn’t say what to do when you find this value; we recommend
printing positive_sign as you find it, even if it is empty. For a negative value, print
negative_sign as you find it unless both it and positive_sign are empty, in which
case print ‘-’ instead. (Failing to indicate the sign at all seems rather unreasonable.)
char p_sign_posn
char n_sign_posn
These members have values that are small integers indicating how to position the sign
for nonnegative and negative monetary quantities, respectively. (The string used by
the sign is what was specified with positive_sign or negative_sign.) The possible
values are as follows:

0 The currency symbol and quantity should be surrounded by parentheses.
1 Print the sign string before the quantity and currency symbol.

2 Print the sign string after the quantity and currency symbol.

3 Print the sign string right before the currency symbol.

4 Print the sign string right after the currency symbol.

CHAR_MAX “Unspecified”. Both members have this value in the standard ‘C’ locale.

The ANSI standard doesn’t say what you should do when the value is CHAR_MAX. We
recommend you print the sign after the currency symbol.

It is not clear whether you should let these members apply to the international currency format
or not. POSIX says you should, but intuition plus the examples in the ANSI C standard suggest
you should not. We hope that someone who knows well the conventions for formatting monetary
quantities will tell us what we should recommend.



Chapter 8: Searching and Sorting 107

8 Searching and Sorting

This chapter describes functions for searching and sorting arrays of arbitrary objects. You pass
the appropriate comparison function to be applied as an argument, along with the size of the objects
in the array and the total number of elements.

8.1 Defining the Comparison Function

In order to use the sorted array library functions, you have to describe how to compare the
elements of the array.

To do this, you supply a comparison function to compare two elements of the array. The
library will call this function, passing as arguments pointers to two array elements to be compared.
Your comparison function should return a value the way strcmp (see Section 5.5 [String/Array
Comparison], page 72) does: negative if the first argument is “less” than the second, zero if they
are “equal”, and positive if the first argument is “greater”.

Here is an example of a comparison function which works with an array of numbers of type
double:

int
compare_doubles (const double *a, const double *b)
{
double temp = *a - *b;
if (temp > 0)
return 1;
else if (temp < 0)
return -1;
else
return O;

The header file ‘std1ib.h’ defines a name for the data type of comparison functions. This is a
GNU extension and thus defined only if you request the GNU extensions.

int comparison_fn_t (const void *, const void *);



108 The GNU C Library

8.2 Array Search Function

To search a sorted array for an element matching the key, use the bsearch function. The
prototype for this function is in the header file ‘stdlib.h’.

void * bsearch (const void *key, const void *array, size_t count, Function
size_t size, comparison_fn_t compare)
The bsearch function searches the sorted array array for an object that is equivalent
to key. The array contains count elements, each of which is of size size.

The compare function is used to perform the comparison. This function is called with
two pointer arguments and should return an integer less than, equal to, or greater than
zero corresponding to whether its first argument is considered less than, equal to, or
greater than its second argument. The elements of the array must already be sorted
in ascending order according to this comparison function.

The return value is a pointer to the matching array element, or a null pointer if no
match is found. If the array contains more than one element that matches, the one
that is returned is unspecified.

This function derives its name from the fact that it is implemented using the binary
search.

8.3 Array Sort Function

To sort an array using an arbitrary comparison function, use the gsort function. The prototype
for this function is in ‘stdlib.h’.

void gsort (void *array, size_t count, size_t size, comparison_fn_t Function
compare)
The gsort function sorts the array array. The array contains count elements, each of
which is of size size.

The compare function is used to perform the comparison on the array elements. This
function is called with two pointer arguments and should return an integer less than,
equal to, or greater than zero corresponding to whether its first argument is considered
less than, equal to, or greater than its second argument.



Chapter 8: Searching and Sorting 109

Warning: If two objects compare as equal, their order after sorting is unpredictable.
That is to say, the sorting is not stable. This can make a difference when the comparison
considers only part of the elements. Two elements with the same sort key may differ
in other respects.

If you want the effect of a stable sort, you can get this result by writing the comparison
function so that, lacking other reason distinguish between two elements, it compares
them by their addresses.

Here is a simple example of sorting an array of doubles in numerical order, using the
comparison function defined above (see Section 8.1 [Comparison Functions], page 107):

{
double *array;
int size;

gsort (array, size, sizeof (double), compare_doubles);

}

The gsort function derives its name from the fact that it was originally implemented
using the algorithm “quick sort”.

8.4 Searching and Sorting Example

Here is an example showing the use of gsort and bsearch with an array of structures. The
objects in the array are sorted by comparing their name fields with the strcmp function. Then, we
can look up individual objects based on their names.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* Define an array of critters to sort. */

struct critter
char *name;
char *species;

};



110 The GNU C Library

struct critter muppets[]=

{
{"Kermit", "frog"},
{IlPiggyll, Ilpigll}’
{"Gonzo", "whatever"},
{"Fozzie", "bear"},
{nsa_mn’ Ileaglell}’
{"Robin", "fI'Og"},
{"Animal", "animal"},
{"Camilla", "chicken"},
{"Sweetums", "monster"},
{"Dr. Strangepork", "pig"},
{"Link Hogthrob", "pig"},
{"ZOOt", "human"},
{"Dr. Bunsen Honeydew", "human"},
{"Beaker", "human"},
{"Swedish Chef", "human"}};

int count = sizeof (muppets) / sizeof (struct critter);

/* This is the comparison function used for sorting and searching. */

int
critter_cmp (const struct critter *cl, const struct critter *c2)
{
return strcmp (cl->name, c2->name);
}

/* Print information about a critter. */

void
print_critter (const struct critter *c)
{
printf ("%s, the %s\n", c->name, c->species);

}



Chapter 8: Searching and Sorting 111

/* Do the lookup into the sorted array. */

void
find_critter (char *name)
{
struct critter target, *result;
target.name = name;
result = bsearch (&target, muppets, count, sizeof (struct critter),
critter_cmp);
if (result)
print_critter (result);
else
printf ("Couldn’t find %s.\n", name);
}

/* Main program. */

int
main (void)
{

int i;

for (i = 0; i < count; i++)
print_critter (&muppets[i]);
printf ("\n");

gsort (muppets, count, sizeof (struct critter), critter_cmp);
for (i = 0; i < count; i++)
print_critter (&muppetsl[il);
printf ("\n");
find_critter ("Kermit");
find_critter ("Gonzo");

find_critter ("Janice");

return 0O;

The output from this program looks like:

Animal, the animal
Beaker, the human
Camilla, the chicken



112 The GNU C Library

Dr. Bunsen Honeydew, the human
Dr. Strangepork, the pig
Fozzie, the bear

Gonzo, the whatever
Kermit, the frog

Link Hogthrob, the pig
Piggy, the pig

Robin, the frog

Sam, the eagle

Swedish Chef, the human
Sweetums, the monster
Zoot, the human

Kermit, the frog
Gonzo, the whatever
Couldn’t find Janice.



Chapter 9: Pattern Matching 113

9 Pattern Matching

The GNU C Library provides pattern matching facilities for two kinds of patterns: regular
expressions and file-name wildcards.

9.1 Wildcard Matching

This section describes how to match a wildcard pattern against a particular string. The result
is a yes or no answer: does the string fit the pattern or not. The symbols described here are all
declared in ‘fnmatch.h’.

int fnmatch (const char *pattern, const char *string, int flags) Function
This function tests whether the string string matches the pattern pattern. It returns 0
if they do match; otherwise, it returns the nonzero value FNM_NOMATCH. The arguments
pattern and string are both strings.

The argument flags is a combination of flag bits that alter the details of matching. See
below for a list of the defined flags.

In the GNU C Library, fnmatch cannot experience an “error’—it always returns an
answer for whether the match succeeds. However, other implementations of fnmatch
might sometimes report “errors”. They would do so by returning nonzero values that
are not equal to FNM_NOMATCH.

These are the available flags for the flags argument:

FNM_FILE_NAME
Treat the ‘/’ character specially, for matching file names. If this flag is set, wildcard
constructs in pattern cannot match ‘/’ in string. Thus, the only way to match ‘/’ is
with an explicit ‘/’ in pattern.

FNM_PATHNAME
This is an alias for FNM_FILE_NAME:; it comes from POSIX.2. We don’t recommend this
name because we don’t use the term “pathname” for file names.

FNM_PERIOD
Treat the ‘.’ character specially if it appears at the beginning of string. If this flag is
set, wildcard constructs in pattern cannot match ‘.’ as the first character of string.



114 The GNU C Library

If you set both FNM_PERIOD and FNM_FILE_NAME, then the special treatment applies to
‘.’ following ¢/’ as well as to ‘.’ at the beginning of string.

FNM_NOESCAPE

Don’t treat the ‘\’ character specially in patterns. Normally, ‘\’ quotes the following
character, turning off its special meaning (if any) so that it matches only itself. When
quoting is enabled, the pattern ‘\?’ matches only the string ‘?’, because the question
mark in the pattern acts like an ordinary character.

If you use FNM_NOESCAPE, then ‘\’ is an ordinary character.
FNM_LEADING_DIR

Ignore a trailing sequence of characters starting with a ‘/’ in string; that is to say, test
whether string starts with a directory name that pattern matches.

If this flag is set, either ‘foo*’ or ‘foobar’ as a pattern would match the string
‘foobar/frobozz’.

FNM_CASEFOLD

Ignore case in comparing string to pattern.

9.2 Globbing

The archetypal use of wildcards is for matching against the files in a directory, and making a
list of all the matches. This is called globbing.

You could do this using fnmatch, by reading the directory entries one by one and testing each one
with fnmatch. But that would be slow (and complex, since you would have to handle subdirectories
by hand).

The library provides a function glob to make this particular use of wildcards convenient. glob
and the other symbols in this section are declared in ‘glob.h’.

9.2.1 Calling glob

The result of globbing is a vector of file names (strings). To return this vector, glob uses a
special data type, glob_t, which is a structure. You pass glob the address of the structure, and it
fills in the structure’s fields to tell you about the results.



Chapter 9: Pattern Matching 115

glob_t Data Type
This data type holds a pointer to a word vector. More precisely, it records both the
address of the word vector and its size.

gl_pathc The number of elements in the vector.
gl_pathv The address of the vector. This field has type char *x.

gl_offs  The offset of the first real element of the vector, from its nominal address
in the gl_pathv field. Unlike the other fields, this is always an input to
glob, rather than an output from it.

If you use a nonzero offset, then that many elements at the beginning of
the vector are left empty. (The glob function fills them with null pointers.)

The gl_offs field is meaningful only if you use the GLOB_DOOFFS flag.
Otherwise, the offset is always zero regardless of what is in this field, and
the first real element comes at the beginning of the vector.

int glob (const char *pattern, int flags, int (*errfunc) (const char Function
xfilename, int error-code), glob_t *vector ptr)
The function glob does globbing using the pattern pattern in the current directory. It
puts the result in a newly allocated vector, and stores the size and address of this vector
into *vector-ptr. The argument flags is a combination of bit flags; see Section 9.2.2
[Flags for Globbing], page 116, for details of the flags.

The result of globbing is a sequence of file names. The function glob allocates a string
for each resulting word, then allocates a vector of type char ** to store the addresses
of these strings. The last element of the vector is a null pointer. This vector is called
the word vector.

To return this vector, glob stores both its address and its length (number of elements,
not counting the terminating null pointer) into *vector-ptr.

Normally, glob sorts the file names alphabetically before returning them. You can turn
this off with the flag GLOB_NOSORT if you want to get the information as fast as possible.
Usually it’s a good idea to let glob sort them—if you process the files in alphabetical
order, the users will have a feel for the rate of progress that your application is making.

If glob succeeds, it returns 0. Otherwise, it returns one of these error codes:



116

The GNU C Library

GLOB_ABORTED

There was an error opening a directory, and you used the flag GLOB_ERR or
your specified errfunc returned a nonzero value.

GLOB_NOMATCH

The pattern didn’t match any existing files. If you use the GLOB_NOCHECK
flag, then you never get this error code, because that flag tells glob to
pretend that the pattern matched at least one file.

GLOB_NOSPACE

It was impossible to allocate memory to hold the result.

In the event of an error, glob stores information in *vector-ptr about all the matches

it has found so far.

9.2.2 Flags for Globbing

This section describes the flags that you can specify in the flags argument to glob. Choose the

flags you want, and combine them with the C operator |.

GLOB_APPEND

Append the words from this expansion to the vector of words produced by previous calls
to glob. This way you can effectively expand several words as if they were concatenated
with spaces between them.

In order for appending to work, you must not modify the contents of the word vector
structure between calls to glob. And, if you set GLOB_DOOFFS in the first call to glob,
you must also set it when you append to the results.

GLOB_DOOFFS

GLOB_ERR

Leave blank slots at the beginning of the vector of words. The gl_offs field says how
many slots to leave. The blank slots contain null pointers.

Give up right away and report an error if there is any difficulty reading the directories
that must be read in order to expand pattern fully. Such difficulties might include a
directory in which you don’t have the requisite access. Normally, glob tries its best to
keep on going despite any errors, reading whatever directories it can.

You can exercise even more control than this by specifying an error-handler function
errfunc when you call glob. If errfunc is nonzero, then glob doesn’t give up right away
when it can’t read a directory; instead, it calls errfunc with two arguments, like this:



Chapter 9: Pattern Matching 117

GLOB_MARK

(*errfunc) (filename, error-code)
The argument filename is the name of the directory that glob couldn’t open or couldn’t
read, and error-code is the errno value that was reported to glob.

If the error handler function returns nonzero, then glob gives up right away. Otherwise,
it continues.

If the pattern matches the name of a directory, append ¢/’ to the directory’s name
when returning it.

GLOB_NOCHECK

If the pattern doesn’t match any file names, return the pattern itself as if it were a file
name that had been matched. (Normally, when the pattern doesn’t match anything,
glob returns that there were no matches.)

GLOB_NOSORT

Don’t sort the file names; return them in no particular order. (In practice, the order
will depend on the order of the entries in the directory.) The only reason not to sort is
to save time.

GLOB_NOESCAPE

Don’t treat the ‘\’ character specially in patterns. Normally, ‘\’ quotes the following
character, turning off its special meaning (if any) so that it matches only itself. When
quoting is enabled, the pattern ‘\?’ matches only the string ‘?’, because the question
mark in the pattern acts like an ordinary character.

If you use GLOB_NOESCAPE, then ‘\’ is an ordinary character.

glob does its work by calling the function fnmatch repeatedly. It handles the flag
GLOB_NQESCAPE by turning on the FNM_NOESCAPE flag in calls to fnmatch.

9.3 Regular Expression Matching

The GNU C library supports two interfaces for matching regular expressions. One is the standard
POSIX.2 interface, and the other is what the GNU system has had for many years.

Both interfaces are declared in the header file ‘regex.h’. If you define _GNU_SOURCE, then the
GNU functions, structures and constants are declared. Otherwise, only the POSIX names are

declared.



118 The GNU C Library

9.3.1 POSIX Regular Expression Compilation

Before you can actually match a regular expression, you must compile it. This is not true
compilation—it produces a special data structure, not machine instructions. But it is like ordinary
compilation in that its purpose is to enable you to “execute” the pattern fast. (See Section 9.3.3
[Matching POSIX Regexps|, page 120, for how to use the compiled regular expression for matching.)

There is a special data type for compiled regular expressions:

regex_t Data Type
This type of object holds a compiled regular expression. It is actually a structure. It
has just one field that your programs should look at:

re_nsub  This field holds the number of parenthetical subexpressions in the regular
expression that was compiled.

There are several other fields, but we don’t describe them here, because only the
functions in the library should use them.

After you create a regex_t object, you can compile a regular expression into it by calling

regcomp.

int regcomp (regex_t *compiled, const char *pattern, int cflags) Function
The function regcomp “compiles” a regular expression into a data structure that you
can use with regexec to match against a string. The compiled regular expression
format is designed for efficient matching. regcomp stores it into *compiled.

It’s up to you to allocate an object of type regex_t and pass its address to regcomp.

The argument cflags lets you specify various options that control the syntax and se-
mantics of regular expressions. See Section 9.3.2 [Flags for POSIX Regexps|, page 120.

If you use the flag REG_NOSUB, then regcomp omits from the compiled regular expres-
sion the information necessary to record how subexpressions actually match. In this
case, you might as well pass 0 for the matchptr and nmatch arguments when you call
regexec.



Chapter 9: Pattern Matching 119

If you don’t use REG_NOSUB, then the compiled regular expression does have the capacity
to record how subexpressions match. Also, regcomp tells you how many subexpressions
pattern has, by storing the number in compiled->re_nsub. You can use that value to
decide how long an array to allocate to hold information about subexpression matches.

regcomp returns O if it succeeds in compiling the regular expression; otherwise, it
returns a nonzero error code (see the table below). You can use regerror to produce
an error message string describing the reason for a nonzero value; see Section 9.3.6
[Regexp Cleanup]|, page 123.

Here are the possible nonzero values that regcomp can return:

REG_BADBR
There was an invalid ‘\{...\}’ construct in the regular expression. A wvalid ‘\{...\}’
construct must contain either a single number, or two numbers in increasing order
separated by a comma.

REG_BADPAT
There was a syntax error in the regular expression.

REG_BADRPT

A repetition operator such as ‘?’ or ‘*’ appeared in a bad position (with no preceding
subexpression to act on).

REG_ECOLLATE

The regular expression referred to an invalid collating element (one not defined in the
current locale for string collation). See Section 7.3 [Locale Categories], page 98.

REG_ECTYPE

The regular expression referred to an invalid character class name.
REG_EESCAPE

The regular expression ended with ‘\’.
REG_ESUBREG

There was an invalid number in the ‘\digit’ construct.
REG_EBRACK

There were unbalanced square brackets in the regular expression.
REG_EPAREN

An extended regular expression had unbalanced parentheses, or a basic regular expres-
sion had unbalanced ‘\ (" and ‘\)’.

REG_EBRACE

The regular expression had unbalanced ‘\{’ and ‘\}’.



120 The GNU C Library

REG_ERANGE
One of the endpoints in a range expression was invalid.
REG_ESPACE

regcomp or regexec ran out of memory.

9.3.2 Flags for POSIX Regular Expressions

These are the bit flags that you can use in the cflags operand when compiling a regular expression

with regcomp.

REG_EXTENDED

Treat the pattern as an extended regular expression, rather than as a basic regular

expression.
REG_ICASE

Ignore case when matching letters.
REG_NOSUB

Don’t bother storing the contents of the matches_ptr array.
REG_NEWLINE

Treat a newline in string as dividing string into multiple lines, so that ‘¢’ can match
before the newline and ‘~’ can match after. Also, don’t permit ‘.’ to match a newline,
and don’t permit ‘[~...]’ to match a newline.

Otherwise, newline acts like any other ordinary character.

9.3.3 Matching a Compiled POSIX Regular Expression

Once you have compiled a regular expression, as described in Section 9.3.1 [POSIX Regexp
Compilation], page 118, you can match it against strings using regexec. A match anywhere inside
the string counts as success, unless the regular expression contains anchor characters (‘*’ or ‘§$’).

int regexec (regex_t *compiled, char *string, size_t nmatch, Function
regmatch_t matchptr [|, int eflags)
This function tries to match the compiled regular expression *compiled against string.

regexec returns O if the regular expression matches; otherwise, it returns a nonzero

value. See the table below for what nonzero values mean. You can use regerror



Chapter 9: Pattern Matching 121

to produce an error message string describing the reason for a nonzero value; see
Section 9.3.6 [Regexp Cleanup], page 123.

The argument eflags is a word of bit flags that enable various options.

If you want to get information about what part of string actually matched the regular
expression or its subexpressions, use the arguments matchptr and nmatch. Otherwise,
pass 0 for nmatch, and NULL for matchptr. See Section 9.3.4 [Regexp Subexpressions],
page 121.

You must match the regular expression with the same set of current locales that were in effect

when you compiled the regular expression.
The function regexec accepts the following flags in the eflags argument:

REG_NOTBOL
Do not regard the beginning of the specified string as the beginning of a line; more
generally, don’t make any assumptions about what text might precede it.
REG_NOTEOL
Do not regard the end of the specified string as the end of a line; more generally, don’t
make any assumptions about what text might follow it.

Here are the possible nonzero values that regexec can return:

REG_NOMATCH
The pattern didn’t match the string. This isn’t really an error.
REG_ESPACE

regcomp or regexec ran out of memory.

9.3.4 Subexpressions Match Results

When regexec matches parenthetical subexpressions of pattern, it records which parts of string
they match. It returns that information by storing the offsets into an array whose elements are
structures of type regmatch_t. The first element of the array records the part of the string that
matched the entire regular expression. Each other element of the array records the beginning and
end of the part that matched a single parenthetical subexpression.



122 The GNU C Library

regmatch_t Data Type
This is the data type of the matcharray array that you pass to regexec. It containes
two structure fields, as follows:

rm_so The offset in string of the beginning of a substring. Add this value to
string to get the address of that part.
rm_eo The offset in string of the end of the substring.
regoff_t Data Type

regoff_t is an alias for another signed integer type. The fields of regmatch_t have
type regoff_t.

The regmatch_t elements correspond to subexpressions positionally; the first element records
where the first subexpression matched, the second element records the second subexpression, and
so on. The order of the subexpressions is the order in which they begin.

When you call regexec, you specify how long the matchptr array is, with the nmatch argument.
This tells regexec how many elements to store. If the actual regular expression has more than
nmatch subexpressions, then you won’t get offset information about the rest of them. But this
doesn’t alter whether the pattern matches a particular string or not.

If you don’t want regexec to return any information about where the subexpressions matched,
you can either supply 0 for nmatch, or use the flag REG_NOSUB when you compile the pattern with
regcomp.

9.3.5 Complications in Subexpression Matching

Sometimes a subexpression matches a substring of no characters. This happens when ‘f\ (o*\)’
matches the string ‘fum’. (It really matches just the ‘f’.) In this case, both of the offsets identify
the point in the string where the null substring was found. In this example, the offsets are both 1.

Sometimes the entire regular expression can match without using some of its subexpressions at
all—for example, when ‘ba\ (na\)*’ matches the string ‘ba’, the parenthetical subexpression is not
used. When this happens, regexec stores -1 in both fields of the element for that subexpression.



Chapter 9: Pattern Matching 123

Sometimes matching the entire regular expression can match a particular subexpression more
than once—for example, when ‘ba\ (na\) *’ matches the string ‘bananana’, the parenthetical subex-
pression matches three times. When this happens, regexec usually stores the offsets of the last
part of the string that matched the subexpression. In the case of ‘bananana’, these offsets are 6
and 8.

But the last match is not always the one that is chosen. It’s more accurate to say that the
last opportunity to match is the one that takes precedence. What this means is that when one
subexpression appears within another, then the results reported for the inner subexpression re-
flect whatever happened on the last match of the outer subexpression. For an example, consider
‘\ (ba\ (na\)*s \)’ matching the string ‘bananas bas ’. The last time the inner expression actually
matches is near the end of the first word. But it is considered again in the second word, and fails
to match there. regexec reports nonuse of the “na” subexpression.

Another place where this rule applies is when ‘\ (ba\(na\)*s \ |nefer\(ti\)* \)*’ matches
‘bananas nefertiti’. The “na” subexpression does match in the first word, but it doesn’t match in
the second word because the other alternative is used there. Once again, the second repetition of the
outer subexpression overrides the first, and within that second repetition, the “na” subexpression
is not used. So regexec reports nonuse of the “na” subexpression.

9.3.6 POSIX Regexp Matching Cleanup

When you are finished using a compiled regular expression, you can free the storage it uses by
calling regfree.

void regfree (regex_t *compiled) Function
Calling regfree frees all the storage that *compiled points to. This includes various
internal fields of the regex_t structure that aren’t documented in this manual.

regfree does not free the object *compiled itself.

You should always free the space in a regex_t structure with regfree before using the structure
to compile another regular expression.

When regcomp or regexec reports an error, you can use the function regerror to turn it into
an error message string.



124 The GNU C Library

size_t regerror (int errcode, regex_t *compiled, char *buffer, Function
size_t length)
This function produces an error message string for the error code errcode, and stores
the string in length bytes of memory starting at buffer. For the compiled argument,
supply the same compiled regular expression structure that regcomp or regexec was
working with when it got the error. Alternatively, you can supply NULL for compiled;
you will still get a meaningful error message, but it might not be as detailed.

If the error message can’t fit in length bytes (including a terminating null character),
then regerror truncates it. The string that regerror stores is always null-terminated
even if it has been truncated.

The return value of regerror is the minimum length needed to store the entire error
message. If this is less than length, then the error message was not truncated, and you
can use it. Otherwise, you should call regerror again with a larger buffer.

char *get_regerror (int errcode, regex_t *compiled)

{
size_t length = regerror (errcode, compiled, NULL, 0);
char *buffer = xmalloc (length);
(void) regerror (errcode, compiled, buffer, length);
return buffer;

}

9.4 Shell-Style Word Expansion

Word expansion means the process of splitting a string into words and substituting for variables,
commands, and wildcards just as the shell does.

For example, when you write ‘1s -1 foo.c’, this string is split into three separate words—‘1s’,

‘-1’ and ‘foo.c’. This is the most basic function of word expansion.

When you write ‘1s *.c’, this can become many words, because the word ‘*.c’ can be replaced
with any number of file names. This is called wildcard expansion, and it is also a part of word
expansion.

When you use ‘echo $PATH’ to print your path, you are taking advantage of variable substitution,
which is also part of word expansion.



Chapter 9: Pattern Matching 125

Ordinary programs can perform word expansion just like the shell by calling the library function
wordexp.

9.4.1 The Stages of Word Expansion

When word expansion is applied to a sequence of words, it performs the following transformations
in the order shown here:

1. Tilde expansion: Replacement of ‘“foo’ with the name of the home directory of ‘foo’.
2. Next, three different transformations are applied in the same step, from left to right:

e Variable substitution: The substitution of environment variables for references such as
‘$foo’.

4

e Command substitution: Replacement of constructs such as ‘“cat foo‘’ or ‘$(cat foo)’

with the output from the inner command.

e Arithmetic expansion: Replacement of constructs such as ‘¢ (($x-1))’ with the result of
the arithmetic computation.

3. Field splitting: subdivision of the text into words.

Wildcard expansion: The replacement of a construct such as ‘*.c’ with a list of ¢. ¢’ file names.
Wildcard expansion applies to an entire word at a time, and replaces that word with 0 or more
file names that are themselves words.

5. Quote removal: The deletion of string-quotes, now that they have done their job by inhibiting
the above transformations when appropriate.

For the details of these transformations, and how to write the constructs that use them, see
The BASH Manual (to appear).

9.4.2 Calling wordexp

All the functions, constants and data types for word expansion are declared in the header file
‘wordexp.h’.

Word expansion produces a vector of words (strings). To return this vector, wordexp uses a
special data type, wordexp_t, which is a structure. You pass wordexp the address of the structure,
and it fills in the structure’s fields to tell you about the results.



126 The GNU C Library

wordexp_t Data Type
This data type holds a pointer to a word vector. More precisely, it records both the
address of the word vector and its size.

we_wordc The number of elements in the vector.
we_wordv The address of the vector. This field has type char *x*.

we_offs  The offset of the first real element of the vector, from its nominal address
in the we_wordv field. Unlike the other fields, this is always an input to
wordexp, rather than an output from it.

If you use a nonzero offset, then that many elements at the beginning of the
vector are left empty. (The wordexp function fills them with null pointers.)

The we_offs field is meaningful only if you use the WRDE_DOOFFS flag.
Otherwise, the offset is always zero regardless of what is in this field, and
the first real element comes at the beginning of the vector.

int wordexp (const char *words, wordexp_t *word-vector-ptr, int Function
flags)
Perform word expansion on the string words, putting the result in a newly allocated
vector, and store the size and address of this vector into *word-vector-ptr. The argu-
ment flags is a combination of bit flags; see Section 9.4.3 [Flags for Wordexp|, page 127,
for details of the flags.

You shouldn’t use any of the characters ‘|&;<>’ in the string words unless they are
quoted; likewise for newline. If you use these characters unquoted, you will get the
WRDE_BADCHAR error code. Don’t use parentheses or braces unless they are quoted or
part of a word expansion construct. If you use quotation characters ‘>"¢’, they should
come in pairs that balance.

The results of word expansion are a sequence of words. The function wordexp allocates
a string for each resulting word, then allocates a vector of type char ** to store the
addresses of these strings. The last element of the vector is a null pointer. This vector
is called the word vector.

To return this vector, wordexp stores both its address and its length (number of ele-
ments, not counting the terminating null pointer) into *word-vector-ptr.

If wordexp succeeds, it returns 0. Otherwise, it returns one of these error codes:



Chapter 9: Pattern Matching 127

WRDE_BADCHAR
The input string words contains an unquoted invalid character such as ‘|’.
WRDE_BADVAL

The input string refers to an undefined shell variable, and you used the
flag WRDE_UNDEF to forbid such references.

WRDE_CMDSUB
The input string uses command substitution, and you used the flag WRDE_
NOCMD to forbid command substitution.

WRDE_NOSPACE
It was impossible to allocate memory to hold the result. In this case,

wordexp can store part of the results—as much as it could allocate room
for.

WRDE_SYNTAX

There was a syntax error in the input string. For example, an unmatched
quoting character is a syntax error.

void wordfree (wordexp_t *word-vector-ptr) Function
Free the storage used for the word-strings and vector that *word-vector-ptr points to.
This does not free the structure *word-vector-ptr itself—only the other data it points
to.

9.4.3 Flags for Word Expansion

This section describes the flags that you can specify in the flags argument to wordexp. Choose
the flags you want, and combine them with the C operator |.

WRDE_APPEND
Append the words from this expansion to the vector of words produced by previous
calls to wordexp. This way you can effectively expand several words as if they were
concatenated with spaces between them.
In order for appending to work, you must not modify the contents of the word vector
structure between calls to wordexp. And, if you set WRDE_DOOFFS in the first call to
wordexp, you must also set it when you append to the results.

WRDE_DOOFFS
Leave blank slots at the beginning of the vector of words. The we_offs field says how
many slots to leave. The blank slots contain null pointers.



128 The GNU C Library

WRDE_NOCMD

Don’t do command substitution; if the input requests command substitution, report
an error.

WRDE_REUSE

Reuse a word vector made by a previous call to wordexp. Instead of allocating a new
vector of words, this call to wordexp will use the vector that already exists (making it
larger if necessary).

WRDE_SHOWERR

Do show any error messages printed by commands run by command substitution. More
precisely, allow these commands to inherit the standard error output stream of the
current process. By default, wordexp gives these commands a standard error stream
that discards all output.

WRDE_UNDEF

If the input refers to a shell variable that is not defined, report an error.

9.4.4 wordexp Example

Here is an example of using wordexp to expand several strings and use the results to run a shell
command. It also shows the use of WRDE_APPEND to concatenate the expansions and of wordfree
to free the space allocated by wordexp.

int
expand_and_execute (const char *program, const char *options)
{

wordexp_t result;

pid_t pid

int status, i;

/* Expand the string for the program to run. */
switch (wordexp (program, &result, 0))
{
case 0: /* Successful. =*/
break;
case WRDE_NOSPACE:
/* If the error was WRDE_NOSPACE,
then perhaps part of the result was allocated. */
wordfree (&result);
default: /* Some other error. */
return -1;

}



Chapter 9: Pattern Matching 129

/* Expand the strings specified for the arguments. */
for (i = 0; args[i]; i++)

{
if (wordexp (optiomns, &result, WRDE_APPEND))
{
wordfree (&result);
return -1;
}
}

pid = fork ();
if (pid == 0)
{
/* This is the child process. Execute the command. */
execv (result.we_wordv[0], result.we_wordv);
exit (EXIT_FAILURE);
}
else if (pid < 0)
/* The fork failed. Report failure. */
status = -1;
else
/* This is the parent process. Wait for the child to complete. */
if (waitpid (pid, &status, 0) != pid)
status = -1;

wordfree (&result);
return status;

In practice, since wordexp is executed by running a subshell, it would be faster to do this by
concatenating the strings with spaces between them and running that as a shell command using
‘sh -c’.



130 The GNU C Library



Chapter 10: Input/Output Overview 131

10 Input/Output Overview

Most programs need to do either input (reading data) or output (writing data), or most fre-
quently both, in order to do anything useful. The GNU C library provides such a large selection of
input and output functions that the hardest part is often deciding which function is most appro-
priate!

This chapter introduces concepts and terminology relating to input and output. Other chapters
relating to the GNU I/O facilities are:

e Chapter 11 [I/O on Streams|, page 139, which covers the high-level functions that operate on
streams, including formatted input and output.

e Chapter 12 [Low-Level I/O], page 203, which covers the basic I/O and control functions on file
descriptors.

e Chapter 13 [File System Interface], page 233, which covers functions for operating on directories
and for manipulating file attributes such as access modes and ownership.

e Chapter 14 [Pipes and FIFOs|, page 263, which includes information on the basic interprocess
communication facilities.

e Chapter 15 [Sockets|, page 269, covering a more complicated interprocess communication fa-
cility with support for networking.

e Chapter 16 [Low-Level Terminal Interface], page 321, which covers functions for changing how
input and output to terminal or other serial devices are processed.

10.1 Input/Output Concepts

Before you can read or write the contents of a file, you must establish a connection or communi-
cations channel to the file. This process is called opening the file. You can open a file for reading,
writing, or both.

The connection to an open file is represented either as a stream or as a file descriptor. You
pass this as an argument to the functions that do the actual read or write operations, to tell them
which file to operate on. Certain functions expect streams, and others are designed to operate on
file descriptors.

When you have finished reading to or writing from the file, you can terminate the connection
by closing the file. Once you have closed a stream or file descriptor, you cannot do any more input
or output operations on it.



132 The GNU C Library

10.1.1 Streams and File Descriptors

When you want to do input or output to a file, you have a choice of two basic mechanisms for
representing the connection between your program and the file: file descriptors and streams. File
descriptors are represented as objects of type int, while streams are represented as FILE * objects.

File descriptors provide a primitive, low-level interface to input and output operations. Both
file descriptors and streams can represent a connection to a device (such as a terminal), or a pipe
or socket for communicating with another process, as well as a normal file. But, if you want to do
control operations that are specific to a particular kind of device, you must use a file descriptor; there
are no facilities to use streams in this way. You must also use file descriptors if your program needs
to do input or output in special modes, such as nonblocking (or polled) input (see Section 12.10
[File Status Flags], page 224).

Streams provide a higher-level interface, layered on top of the primitive file descriptor facilities.
The stream interface treats all kinds of files pretty much alike—the sole exception being the three
styles of buffering that you can choose (see Section 11.17 [Stream Buffering], page 189).

The main advantage of using the stream interface is that the set of functions for performing
actual input and output operations (as opposed to control operations) on streams is much richer
and more powerful than the corresponding facilities for file descriptors. The file descriptor interface
provides only simple functions for transferring blocks of characters, but the stream interface also
provides powerful formatted input and output functions (printf and scanf) as well as functions
for character- and line-oriented input and output.

Since streams are implemented in terms of file descriptors, you can extract the file descriptor
from a stream and perform low-level operations directly on the file descriptor. You can also initially
open a connection as a file descriptor and then make a stream associated with that file descriptor.

In general, you should stick with using streams rather than file descriptors, unless there is
some specific operation you want to do that can only be done on a file descriptor. If you are
a beginning programmer and aren’t sure what functions to use, we suggest that you concentrate
on the formatted input functions (see Section 11.11 [Formatted Input], page 173) and formatted
output functions (see Section 11.9 [Formatted Output], page 150).

If you are concerned about portability of your programs to systems other than GNU, you should
also be aware that file descriptors are not as portable as streams. You can expect any system running
ANSI C to support streams, but non-GNU systems may not support file descriptors at all, or may



Chapter 10: Input/Output Overview 133

only implement a subset of the GNU functions that operate on file descriptors. Most of the file
descriptor functions in the GNU library are included in the POSIX.1 standard, however.

10.1.2 File Position

One of the attributes of an open file is its file position that keeps track of where in the file the
next character is to be read or written. In the GNU system, the file position is simply an integer
representing the number of bytes from the beginning of the file.

The file position is normally set to the beginning of the file when it is opened, and each time a
character is read or written, the file position is incremented. In other words, access to the file is
normally sequential.

Ordinary files permit read or write operations at any position within the file. Some other kinds
of files may also permit this. Files which do permit this are sometimes referred to as random-access
files. You can change the file position using the fseek function on a stream (see Section 11.15 [File
Positioning], page 186) or the 1seek function on a file descriptor (see Section 12.2 [I/O Primitives],
page 206). If you try to change the file position on a file that doesn’t support random access, you
get an error.

Streams and descriptors that are opened for append access are treated specially for output:
output to such files is always appended sequentially to the end of the file, regardless of the file
position. But, the file position is still used to control where in the file reading is done.

If you think about it, you’ll realize that several programs can read a given file at the same time.
In order for each program to be able to read the file at its own pace, each program must have its
own file pointer, which is not affected by anything the other programs do.

In fact, each opening of a file creates a separate file position. Thus, if you open a file twice even
in the same program, you get two streams or descriptors with independent file positions.

By contrast, if you open a descriptor and then duplicate it to get another descriptor, these two
descriptors share the same file position: changing the file position of one descriptor will affect the
other.



134 The GNU C Library

10.2 File Names

In order to open a connection to a file, or to perform other operations such as deleting a file, you
need some way to refer to the file. Nearly all files have names that are strings—even files which are
actually devices such as tape drives or terminals. These strings are called file names. You specify
the file name to say which file you want to open or operate on.

This section describes the conventions for file names and how the operating system works with
them.

10.2.1 Directories

In order to understand the syntax of file names, you need to understand how the file system is
organized into a hierarchy of directories.

A directory is a file that contains information to associate other files with names; these associ-
ations are called links or directory entries. Sometimes, people speak of “files in a directory”, but
in reality, a directory only contains pointers to files, not the files themselves.

The name of a file contained in a directory entry is called a file name component. In general, a
file name consists of a sequence of one or more such components, separated by the slash character
(‘//7). A file name which is just one component names a file with respect to its directory. A file
name with multiple components names a directory, and then a file in that directory, and so on.

Some other documents, such as the POSIX standard, use the term pathname for what we call
a file name, and either filename or pathname component for what this manual calls a file name
component. We don’t use this terminology because a “path” is something completely different (a
list of directories to search), and we think that “pathname” used for something else will confuse
users. We always use “file name” and “file name component” (or sometimes just “component”,
where the context is obvious) in GNU documentation.

You can find more detailed information about operations on directories in Chapter 13 [File
System Interface|, page 233.



Chapter 10: Input/Output Overview 135

10.2.2 File Name Resolution

A file name counsists of file name components separated by slash (‘/’) characters. On the systems
that that GNU library supports, multiple successive ‘/’ characters are equivalent to a single ‘/’
character.

The process of determining what file a file name refers to is called file name resolution. This
is performed by examining the components that make up a file name in left-to-right order, and
locating each successive component in the directory named by the previous component. Of course,
each of the files that are referenced as directories must actually exist, be directories instead of
regular files, and have the appropriate permissions to be accessible by the process; otherwise the
file name resolution fails.

If a file name begins with a ‘/’, the first component in the file name is located in the root
directory of the process. Such a file name is called an absolute file name.

Otherwise, the first component in the file name is located in the current working directory (see
Section 13.1 [Working Directory], page 233). This kind of file name is called a relative file name.

The file name components ‘.’ (“dot”) and ..’ (“dot-dot”) have special meanings. Every direc-

tory has entries for these file name components. The file name component ‘.’ refers to the directory
itself, while the file name component ‘. .’ refers to its parent directory (the directory that contains
the link for the directory in question).

Here are some examples of file names:

‘/a’ The file named ‘a’, in the root directory.
‘/a/v’ The file named ‘b’, in the directory named ‘a’ in the root directory.
‘a’ The file named ‘a’, in the current working directory.

‘/a/./b’  This is the same as ‘/a/b’.
‘ol The file named ‘a’, in the current working directory.

‘../a’ The file named ‘a’, in the parent directory of the current working directory.

A file name that names a directory may optionally end in a ‘/’. You can specify a file name of
¢/’ to refer to the root directory, but the empty string is not a meaningful file name. If you want
to refer to the current working directory, use a file name of *.” or *./’.



136 The GNU C Library

Unlike some other operating systems, the GNU system doesn’t have any built-in support for file
types (or extensions) or file versions as part of its file name syntax. Many programs and utilities use
conventions for file names—for example, files containing C source code usually have names suffixed
with ‘.c’—but there is nothing in the file system itself that enforces this kind of convention.

10.2.3 File Name Errors

Functions that accept file name arguments usually detect these errno error conditions relating
to file name syntax. These errors are referred to throughout this manual as the usual file name

syntax errors.

EACCES The process does not have search permission for a directory component of the file name.
ENAMETOOLONG

This error is used when either the the total length of a file name is greater than PATH_
MAX, or when an individual file name component has a length greater than NAME_MAX.
See Section 27.6 [Limits for Files|, page 553.

In the GNU system, there is no imposed limit on overall file name length, but some file
systems may place limits on the length of a component.

ENQENT This error is reported when a file referenced as a directory component in the file name
doesn’t exist.

ENOTDIR A file that is referenced as a directory component in the file name exists, but it isn’t a
directory.

10.2.4 Portability of File Names

The rules for the syntax of file names discussed in Section 10.2 [File Names|, page 134, are the
rules normally used by the GNU system and by other POSIX systems. However, other operating
systems may use other conventions.

There are two reasons why it can be important for you to be aware of file name portability
issues:

e If your program makes assumptions about file name syntax, or contains embedded literal file
name strings, it is more difficult to get it to run under other operating systems that use different

syntax conventions.



Chapter 10: Input/Output Overview 137

e FEven if you are not concerned about running your program on machines that run other op-
erating systems, it may still be possible to access files that use different naming conventions.
For example, you may be able to access file systems on another computer running a different
operating system over a network, or read and write disks in formats used by other operating
systems.

The ANSI C standard says very little about file name syntax, only that file names are strings. In
addition to varying restrictions on the length of file names and what characters can validly appear
in a file name, different operating systems use different conventions and syntax for concepts such
as structured directories and file types or extensions. Some concepts such as file versions might be
supported in some operating systems and not by others.

The POSIX.1 standard allows implementations to put additional restrictions on file name syntax,
concerning what characters are permitted in file names and on the length of file name and file name
component strings. However, in the GNU system, you do not need to worry about these restrictions;
any character except the null character is permitted in a file name string, and there are no limits
on the length of file name strings.



138 The GNU C Library



Chapter 11: Input/Output on Streams 139

11 Input/Output on Streams

This chapter describes the functions for creating streams and performing input and output
operations on them. As discussed in Chapter 10 [I/O Overview|, page 131, a stream is a fairly
abstract, high-level concept representing a communications channel to a file, device, or process.

11.1 Streams

For historical reasons, the type of the C data structure that represents a stream is called FILE
rather than “stream”. Since most of the library functions deal with objects of type FILE *, some-
times the term file pointer is also used to mean “stream”. This leads to unfortunate confusion
over terminology in many books on C. This manual, however, is careful to use the terms “file” and
“stream” only in the technical sense.

The FILE type is declared in the header file ‘stdio.h’.

FILE Data Type
This is the data type is used to represent stream objects. A FILE object holds all of
the internal state information about the connection to the associated file, including
such things as the file position indicator and buffering information. Each stream also
has error and end-of-file status indicators that can be tested with the ferror and feof
functions; see Section 11.13 [EOF and Errors], page 184.

FILE objects are allocated and managed internally by the input/output library functions. Don’t
try to create your own objects of type FILE; let the library do it. Your programs should deal only
with pointers to these objects (that is, FILE * values) rather than the objects themselves.

11.2 Standard Streams

When the main function of your program is invoked, it already has three predefined streams
open and available for use. These represent the “standard” input and output channels that have
been established for the process.

These streams are declared in the header file ‘stdio.h’.



140 The GNU C Library

FILE * stdin Macro
The standard input stream, which is the normal source of input for the program.

FILE * stdout Macro
The standard output stream, which is used for normal output from the program.

FILE * stderr Macro
The standard error stream, which is used for error messages and diagnostics issued by

the program.

In the GNU system, you can specify what files or processes correspond to these streams using
the pipe and redirection facilities provided by the shell. (The primitives shells use to implement
these facilities are described in Chapter 13 [File System Interface], page 233.) Most other operating
systems provide similar mechanisms, but the details of how to use them can vary.

It is probably not a good idea to close any of the standard streams. But you can use freopen
to get te effect of closing one and reopening it. See Section 11.3 [Opening Streams|, page 140.

11.3 Opening Streams

Opening a file with the fopen function creates a new stream and establishes a connection between
the stream and a file. This may involve creating a new file.

Everything described in this section is declared in the header file ‘stdio.h’.

FILE * fopen (const char *filename, const char *opentype) Function
The fopen function opens a stream for I/O to the file filename, and returns a pointer

to the stream.

The opentype argument is a string that controls how the file is opened and specifies
attributes of the resulting stream. It must begin with one of the following sequences
of characters:

r Open an existing file for reading only.



Chapter 11: Input/Output on Streams 141

W Open the file for writing only. If the file already exists, it is truncated to
zero length. Otherwise a new file is created.

a Open file for append access; that is, writing at the end of file only. If the file
already exists, its initial contents are unchanged and output to the stream
is appended to the end of the file. Otherwise, a new, empty file is created.

‘r+’ Open existing file for both reading and writing. The initial contents of the
file are unchanged and the initial file position is at the beginning of the
file.

‘w+’ Open file for both reading and writing. If the file already exists, it is

truncated to zero length. Otherwise, a new file is created.

‘at+’ Open or create file for both reading and appending. If the file exists, its
initial contents are unchanged. Otherwise, a new file is created. The initial
file position for reading might be at either the beginning or end of the file,
but output is always appended to the end of the file.

As you can see, ‘+’ requests a stream that can do both input and output. When using
such a stream, you must call £f1lush (see Section 11.17 [Stream Buffering], page 189) or
a file positioning function such as fseek (see Section 11.15 [File Positioning], page 186)
when switching from reading to writing or vice versa. Otherwise, internal buffers might
not be emptied properly.

The GNU C library defines one additional character for use in opentype: the character
‘x’ insists on creating a new file—if a file filename already exists, fopen fails rather
than opening it. This is equivalent to the 0_EXCL option to the open function (see
Section 12.10 [File Status Flags|, page 224).

The character ‘D’ in opentype has a standard meaning; it requests a binary stream
rather than a text stream. But this makes no difference in POSIX systems (including
the GNU system). If both ‘4’ and ‘D’ are specified, they can appear in either order.
See Section 11.14 [Binary Streams|, page 185.

Any other characters in opentype are simply ignored. They may be meaningful in other
systems.

If the open fails, fopen returns a null pointer.



142

The GNU C Library

You can have multiple streams (or file descriptors) pointing to the same file open at the same

time.

If you do only input, this works straightforwardly, but you must be careful if any output

streams are included. See Section 12.5 [Stream/Descriptor Precautions], page 213. This is equally

true whether the streams are in one program (not usual) or in several programs (which can easily

happen). It may be advantageous to use the file locking facilities to avoid simultaneous access. See
Section 12.11 [File Locks], page 226.

int FOPEN_MAX Macro

FILE

The value of this macro is an integer constant expression that represents the minimum
number of streams that the implementation guarantees can be open simultaneously.
The value of this constant is at least eight, which includes the three standard streams
stdin, stdout, and stderr.

* freopen (const char *filename, const char *opentype, FILE Function
*stream)

This function is like a combination of fclose and fopen. It first closes the stream

referred to by stream, ignoring any errors that are detected in the process. (Because

errors are ignored, you should not use freopen on an output stream if you have actually

done any output using the stream.) Then the file named by filename is opened with

mode opentype as for fopen, and associated with the same stream object stream.

If the operation fails, a null pointer is returned; otherwise, freopen returns stream.

The main use of freopen is to connect a standard stream such as stdir with a file
of your own choice. This is useful in programs in which use of a standard stream for
certain purposes is hard-coded.

11.4 Closing Streams

When a stream is closed with fclose, the connection between the stream and the file is cancelled.

After

you have closed a stream, you cannot perform any additional operations on it any more.

int fclose (FILE *stream) Function

This function causes stream to be closed and the connection to the corresponding file
to be broken. Any buffered output is written and any buffered input is discarded. The
fclose function returns a value of 0 if the file was closed successfully, and EOF if an
error was detected.



Chapter 11: Input/Output on Streams 143

It is important to check for errors when you call fclose to close an output stream,
because real, everyday errors can be detected at this time. For example, when fclose
writes the remaining buffered output, it might get an error because the disk is full.
Even if you you know the buffer is empty, errors can still occur when closing a file if
you are using NFS.

The function fclose is declared in ‘stdio.h’.

If the main function to your program returns, or if you call the exit function (see Section 22.3.1
[Normal Termination|, page 476), all open streams are automatically closed properly. If your
program terminates in any other manner, such as by calling the abort function (see Section 22.3.4
[Aborting a Program|, page 479) or from a fatal signal (see Chapter 21 [Signal Handling], page 403),
open streams might not be closed properly. Buffered output may not be flushed and files may not
be complete. For more information on buffering of streams, see Section 11.17 [Stream Buffering],
page 189.

11.5 Simple Output by Characters or Lines

This section describes functions for performing character- and line-oriented output. Largely for
historical compatibility, there are several variants of these functions, but as a matter of style (and
for simplicity!) we suggest you stick with using fputc and fputs, and perhaps putc and putchar.

These functions are declared in the header file ‘stdio.h’.

int fputc (int ¢, FILE *stream) Function
The fputc function converts the character ¢ to type unsigned char, and writes it to
the stream stream. EOF is returned if a write error occurs; otherwise the character c is
returned.

int putc (int c, FILE *stream) Function
This is just like fputc, except that most systems implement it as a macro, making it
faster. One consequence is that it may evaluate the stream argument more than once.

int putchar (int c) Function
The putchar function is equivalent to fputc with stdout as the value of the stream

argument.



144 The GNU C Library

int fputs (const char *s, FILE *stream) Function
The function fputs writes the string s to the stream stream. The terminating null
character is not written. This function does not add a newline character, either. It
outputs only the chars in the string.

This function returns EOF if a write error occurs, and otherwise a non-negative value.
For example:

fputs ("Are ", stdout);
fputs ("you ", stdout);
fputs ("hungry?\n", stdout);

outputs the text ‘Are you hungry?’ followed by a newline.

int puts (const char xs) Function
The puts function writes the string s to the stream stdout followed by a newline. The
terminating null character of the string is not written.

int putw (int w, FILE xstream) Function
This function writes the word w (that is, an int) to stream. It is provided for compat-
ibility with SVID, but we recommend you use furite instead (see Section 11.12 [Block
Input/Output], page 183).

11.6 Character Input

This section describes functions for performing character- and line-oriented input. Again, there
are several variants of these functions, some of which are considered obsolete stylistically. It’s
suggested that you stick with fgetc, getline, and maybe getc, getchar and fgets.

These functions are declared in the header file ‘stdio.h’.

int fgetc (FILE *stream) Function
This function reads the next character as an unsigned char from the stream stream
and returns its value, converted to an int. If an end-of-file condition or read error

occurs, EQOF is returned instead.



Chapter 11: Input/Output on Streams 145

int getc (FILE *stream) Function
This is just like fgetc, except that it is permissible (and typical) for it to be imple-
mented as a macro that evaluates the stream argument more than once.

int getchar (void) Function
The getchar function is equivalent to fgetc with stdin as the value of the stream
argument.

Here is an example of a function that does input using fgetc. It would work just as well using
getc instead, or using getchar () instead of fgetc (stdin).

int
y_or_n_p (const char *question)
{
fputs (question, stdout);
while (1) {
int c, answer;
/* Write a space to separate answer from question. */
fputc (° ’, stdout);
/* Read the first character of the line.
This should be the answer character, but might not be. */
¢ = tolower (fgetc (stdin));
answer = c;
/* Discard rest of input line. */
while (¢ !'= ’\n’)
c = fgetc (stdin);
/* Obey the answer if it was valid. */

if (answer == ’y’)
return 1;

if (answer == ’n’)
return O;

/* Answer was invalid: ask for valid answer. */
fputs ("Please answer y or n:", stdout);

int getw (FILE *stream) Function
This function reads a word (that is, an int) from stream. It’s provided for compat-
ibility with SVID. We recommend you use fread instead (see Section 11.12 [Block
Input/Output], page 183).



146 The GNU C Library

11.7 Line-Oriented Input

Since many programs interpret input on the basis of lines, it’s convenient to have functions to

read a line of text from a stream.

Standard C has functions to do this, but they aren’t very safe: null characters and even (for
gets) long lines can confuse them. So the GNU library provides the nonstandard getline function
that makes it easy to read lines reliably.

Another GNU extension, getdelim, generalizes getline. It reads a delimited record, defined
as everything through the next occurrence of a specified delimeter character.

All these functions are declared in ‘stdio.h’.

ssize_t getline (char **lineptr, size_t *n, FILE *stream) Function
This function reads an entire line from stream, storing the text (including the newline
and a terminating null character) in a buffer and storing the buffer address in *lineptr.

Before calling getline, you should place in *lineptr the address of a buffer *n bytes
long. If this buffer is long enough to hold the line, getline stores the line in this
buffer. Otherwise, getline makes the buffer bigger using realloc, storing the new
buffer address back in *lineptr and the increased size back in *n.

In either case, when getline returns, *lineptr is a char * which points to the text of
the line.

When getline is successful, it returns the number of characters read (including the
newline, but not including the terminating null). This value enables you to distinguish
null characters that are part of the line from the null character inserted as a terminator.

This function is a GNU extension, but it is the recommended way to read lines from a
stream. The alternative standard functions are unreliable.

If an error occurs or end of file is reached, getline returns -1.



Chapter 11: Input/Output on Streams

ssize_t getdelim (char **lineptr, size_t *n, int delimiter, FILE

char

char

*stream)
This function is like getline except that the character which tells it to stop reading
is not necessarily newline. The argument delimeter specifies the delimeter character;
getdelim keeps reading until it sees that character (or end of file).

The text is stored in lineptr, including the delimeter character and a terminating null.
Like getline, getdelim makes lineptr bigger if it isn’t big enough.

147

Function

* fgets (char *s, int count, FILE *stream) Function

The fgets function reads characters from the stream stream up to and including a
newline character and stores them in the string s, adding a null character to mark
the end of the string. You must supply count characters worth of space in s, but the
number of characters read is at most count — 1. The extra character space is used to
hold the null character at the end of the string.

If the system is already at end of file when you call fgets, then the contents of the
array s are unchanged and a null pointer is returned. A null pointer is also returned if
a read error occurs. Otherwise, the return value is the pointer s.

Warning: If the input data has a null character, you can’t tell. So don’t use fgets
unless you know the data cannot contain a null. Don’t use it to read files edited by the
user because, if the user inserts a null character, you should either handle it properly
or print a clear error message. We recommend using getline instead of fgets.

* gets (char *s) Deprecated function

The function gets reads characters from the stream stdin up to the next newline
character, and stores them in the string s. The newline character is discarded (note
that this differs from the behavior of fgets, which copies the newline character into
the string).

Warning: The gets function is very dangerous because it provides no protection against
overflowing the string s. The GNU library includes it for compatibility only. You should
always use fgets or getline instead.



148 The GNU C Library

11.8 Unreading

In parser programs it is often useful to examine the next character in the input stream without
removing it from the stream. This is called “peeking ahead” at the input because your program
gets a glimpse of the input it will read next.

Using stream I/O, you can peek ahead at input by first reading it and then unreading it (also
called pushing it back on the stream). Unreading a character makes it available to be input again
from the stream, by the next call to fgetc or other input function on that stream.

11.8.1 What Unreading Means

Here is a pictorial explanation of unreading. Suppose you have a stream reading a file that
contains just six characters, the letters ‘foobar’. Suppose you have read three characters so far.
The situation looks like this:

so the next input character will be ‘b’.

If instead of reading ‘b’ you unread the letter ‘o’, you get a situation like this:

so that the next input characters will be ‘o’ and ‘b’.

If you unread ‘9’ instead of ‘0’, you get this situation:



Chapter 11: Input/Output on Streams 149

so that the next input characters will be ‘9’ and ‘b’.

11.8.2 Using ungetc To Do Unreading

The function to unread a character is called ungetc, because it reverses the action of fgetc.

int ungetc (int c, FILE *stream) Function
The ungetc function pushes back the character ¢ onto the input stream stream. So
the next input from stream will read ¢ before anything else.

The character that you push back doesn’t have to be the same as the last character
that was actually read from the stream. In fact, it isn’t necessary to actually read any
characters from the stream before unreading them with ungetc! But that is a strange
way to write a program; usually ungetc is used only to unread a character that was
just read from the same stream.

The GNU C library only supports one character of pushback—in other words, it does
not work to call ungetc twice without doing input in between. Other systems might
let you push back multiple characters; then reading from the stream retrieves the
characters in the reverse order that they were pushed.

Pushing back characters doesn’t alter the file; only the internal buffering for the stream
is affected. If a file positioning function (such as fseek or rewind; see Section 11.15 [File
Positioning], page 186) is called, any pending pushed-back characters are discarded.

Unreading a character on a stream that is at end of file clears the end-of-file indicator for
the stream, because it makes the character of input available. Reading that character
will set the end-of-file indicator again.

Here is an example showing the use of getc and ungetc to skip over whitespace characters.
When this function reaches a non-whitespace character, it unreads that character to be seen again
on the next read operation on the stream.

#include <stdio.h>

void
skip_whitespace (FILE *stream)



150 The GNU C Library

int c;

do
/* No need to check for EOF because it is not
isspace, and ungetc ignores EOF. */
c = getc (stream);

while (isspace (c));

ungetc (c, stream);

11.9 Formatted Output

The functions described in this section (printf and related functions) provide a convenient way
to perform formatted output. You call printf with a format string or template string that specifies
how to format the values of the remaining arguments.

Unless your program is a filter that specifically performs line- or character-oriented processing,
using printf or one of the other related functions described in this section is usually the easiest
and most concise way to perform output. These functions are especially useful for printing error
messages, tables of data, and the like.

11.9.1 Formatted Output Basics

The printf function can be used to print any number of arguments. The template string argu-
ment you supply in a call provides information not only about the number of additional arguments,
but also about their types and what style should be used for printing them.

Ordinary characters in the template string are simply written to the output stream as-is, while
conversion specifications introduced by a ‘%’ character in the template cause subsequent arguments
to be formatted and written to the output stream. For example,

int pct = 37;

char filename[] = "foo.txt";

printf ("Processing of ‘¥%s’ is %d)% finished.\nPlease be patient.\n",
filename, pct);

produces output like



Chapter 11: Input/Output on Streams 151

Processing of ‘foo.txt’ is 37), finished.
Please be patient.

This example shows the use of the ‘%d’ conversion to specify that an int argument should be
printed in decimal notation, the ‘%4s’ conversion to specify printing of a string argument, and the
‘%%’ conversion to print a literal ‘%4’ character.

There are also conversions for printing an integer argument as an unsigned value in octal,
decimal, or hexadecimal radix (‘%0’, ‘%hu’, or ‘%x’, respectively); or as a character value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’ conversion
or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses either ‘/e’ or ‘%f’
format, depending on what is more appropriate for the magnitude of the particular number.

You can control formatting more precisely by writing modifiers between the ‘)’ and the char-
acter that indicates which conversion to apply. These slightly alter the ordinary behavior of the
conversion. For example, most conversion specifications permit you to specify a minimum field
width and a flag indicating whether you want the result left- or right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary depending on
the particular conversion. They're all described in more detail in the following sections. Don’t
worry if this all seems excessively complicated at first; you can almost always get reasonable free-
format output without using any of the modifiers at all. The modifiers are mostly used to make
the output look “prettier” in tables.

11.9.2 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can appear
in a printf template string.

Characters in the template string that are not part of a conversion specification are printed
as-is to the output stream. Multibyte character sequences (see Chapter 6 [Extended Characters],
page 83) are permitted in a template string.

The conversion specifications in a printf template string have the general form:

% flags width | . precision | type conversion



152 The GNU C Library

For example, in the conversion specifier ‘%-10.814d’, the ‘-’ is a flag, ‘10’ specifies the field width,
the precision is ‘8’, the letter ‘1’ is a type modifier, and ‘d’ specifies the conversion style. (This
particular type specifier says to print a long int argument in decimal notation, with a minimum
of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘4’ character followed in
sequence by:

e Zero or more flag characters that modify the normal behavior of the conversion specification.

e An optional decimal integer specifying the minimum field width. If the normal conversion

produces fewer characters than this, the field is padded with spaces to the specified width.
This is a minimum value; if the normal conversion produces more characters than this, the
field is not truncated. Normally, the output is right-justified within the field.
The GNU library’s version of printf also allows you to specify a field width of ‘*’. This means
that the next argument in the argument list (before the actual value to be printed) is used as
the field width. The value must be an int. Other C library versions may not recognize this
syntax.

e An optional precision to specify the number of digits to be written for the numeric conversions.

If the precision is specified, it consists of a period (‘.’) followed optionally by a decimal integer
(which defaults to zero if omitted).
The GNU library’s version of printf also allows you to specify a precision of ‘*’. This means
that the next argument in the argument list (before the actual value to be printed) is used
as the precision. The value must be an int. If you specify ‘*’ for both the field width and
precision, the field width argument precedes the precision argument. Other C library versions
may not recognize this syntax.

e An optional type modifier character, which is used to specify the data type of the corresponding
argument if it differs from the default type. (For example, the integer conversions assume a
type of int, but you can specify ‘h’, ‘1’, or ‘L’ for other integer types.)

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the different
conversion specifiers. See the descriptions of the individual conversions for information about the
particular options that they use.

11.9.3 Table of Output Conversions

Here is a table summarizing what all the different conversions do:



Chapter 11: Input/Output on Streams 153

‘%d’, “/.i,

6700’

C%u’

(%Z’

GZX” L%X’

‘%f’

czea’ ‘%E’

(O/og” “/oG,

(%CJ
(%S’
nyop’

C%n’

(%m’

(%%J

Print an integer as a signed decimal number. See Section 11.9.4 [Integer Conversions,
page 154, for details. ‘%d’ and ‘%1’ are synonymous for output, but are different when
used with scanf for input (see Section 11.11.3 [Table of Input Conversions|, page 176).

Print an integer as an unsigned octal number. See Section 11.9.4 [Integer Conversions],
page 154, for details.

Print an integer as an unsigned decimal number. See Section 11.9.4 [Integer Conver-
sions|, page 154, for details.

Print an integer as an unsigned decimal number, assuming it was passed with type
size_t. See Section 11.9.4 [Integer Conversions|, page 154, for details.

Print an integer as an unsigned hexadecimal number. ‘)x’ uses lower-case letters and
‘%X’ uses upper-case. See Section 11.9.4 [Integer Conversions|, page 154, for details.

Print a floating-point number in normal (fixed-point) notation. See Section 11.9.5
[Floating-Point Conversions|, page 156, for details.

Print a floating-point number in exponential notation. ‘/%e’ uses lower-case letters and
‘%E’ uses upper-case. See Section 11.9.5 [Floating-Point Conversions|, page 156, for
details.

Print a floating-point number in either normal or exponential notation, whichever is
more appropriate for its magnitude. ‘%g’ uses lower-case letters and ‘%G’ uses upper-
case. See Section 11.9.5 [Floating-Point Conversions]|, page 156, for details.

Print a single character. See Section 11.9.6 [Other Output Conversions], page 157.
Print a string. See Section 11.9.6 [Other Output Conversions], page 157.
Print the value of a pointer. See Section 11.9.6 [Other Output Conversions], page 157.

Get the number of characters printed so far. See Section 11.9.6 [Other Output Con-
versions|, page 157. Note that this conversion specification never produces any output.

Print the string corresponding to the value of errno. See Section 11.9.6 [Other Output
Conversions|, page 157.

Print a literal ‘%’ character. See Section 11.9.6 [Other Output Conversions|, page 157.

If the syntax of a conversion specification is invalid, unpredictable things will happen, so don’t

do this. If there aren’t enough function arguments provided to supply values for all the conversion

specifications in the template string, or if the arguments are not of the correct types, the results are

unpredictable. If you supply more arguments than conversion specifications, the extra argument

values are simply ignored; this is sometimes useful.



154 The GNU C Library

11.9.4 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘ho’, ‘%u’, ‘%x’, ‘4X’, and ‘%Z’ conversion

specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an int argument as a signed decimal
number; while ‘%0’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal, or hexadecimal
number (respectively). The ‘%X’ conversion specification is just like ‘%x’ except that it uses the
characters ‘ABCDEF’ as digits instead of ‘abcdef’. ‘%Z’ is like ‘%u’ but expects an argument of type

size_t.
The following flags are meaningful:

- Left-justify the result in the field (instead of the normal right-justification).
+ For the signed ‘%d’ and ‘%1’ conversions, print a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus or minus
sign, prefix it with a space character instead. Since the ‘+’ flag ensures that the result
includes a sign, this flag is ignored if you supply both of them.

’, as if by increasing the

‘& For the /0’ conversion, this forces the leading digit to be ‘0O
precision. For ‘%x’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to the result.

This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any indication
‘

of sign or base. This flag is ignored if the ‘-’ flag is also specified, or if a precision is

specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading zeros are
produced if necessary. If you don’t specify a precision, the number is printed with as many digits
as it needs. If you convert a value of zero with an explicit precision of zero, then no characters at
all are produced.

Without a type modifier, the corresponding argument is treated as an int (for the signed
conversions ‘%1’ and ‘%d’) or unsigned int (for the unsigned conversions ‘%0’, ‘%u’, ‘%x’, and ‘%X’).
Recall that since printf and friends are variadic, any char and short arguments are automatically
converted to int by the default argument promotions. For arguments of other integer types, you
can use these modifiers:



Chapter 11: Input/Output on Streams 155

‘n’ Specifies that the argument is a short int or unsigned short int, as appropriate.
A short argument is converted to an int or unsigned int by the default argument
promotions anyway, but the ‘h’ modifier says to convert it back to a short again.

‘v Specifies that the argument is a long int or unsigned long int, as appropriate.

‘v’ Specifies that the argument is a long long int. (This type is an extension supported
by the GNU C compiler. On systems that don’t support extra-long integers, this is the
same as long int.)

The modifiers for argument type are not applicable to ‘%Z’, since the sole purpose of ‘%Z’ is to
specify the data type size_t.

Here is an example. Using the template string:

|%56d1%-5d1%+5d|%+-5d 1% 5d1%05d1%5.0d1%5.2d1%d|\n"

to print numbers using the different options for the ‘%d’ conversion gives results like:

| olo | +0[+0 | 01000001 | 00lol
| 111 | +1]+1 | 1100001 | 1] 01]1]
| -11-1 | -1]-1 | -1|-0001] -1 -01]-1]|
I

100000/100000|+100000| 100000 |100000|100000|100000|100000 |

In particular, notice what happens in the last case where the number is too large to fit in the
minimum field width specified.

Here are some more examples showing how unsigned integers print under various format options,
using the template string:

" %5ul %50 | %5x | %5X | %#50 | %#5x | %#5X | %#10.8x| \n"

| 0l 0l 0l 0l 0l 0x0| 0X0|0x00000000 |
| 1] 1] 1] 1] 01| 0x1| 0X1]|0x00000001]|
[1000001303240|186a0|186A0|0303240|0x1862a0|0X186A0|0x000186a0 |



156 The GNU C Library

11.9.5 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’, ‘%e’,
‘%E’, ‘%hg’, and ‘%G’ conversions.

The ‘%4f’ conversion prints its argument in fixed-point notation, producing output of the form
[-]ddd . ddd, where the number of digits following the decimal point is controlled by the precision
you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of the form
[-]d.ddde[+]|-]dd. Again, the number of digits following the decimal point is controlled by the
precision. The exponent always contains at least two digits. The ‘4E’ conversion is similar but the
exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘e’ or ‘4E’ (respectively) if the
exponent would be less than -4 or greater than or equal to the precision; otherwise they use the
“%f’ style. Trailing zeros are removed from the fractional portion of the result and a decimal-point
character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:

= Left-justify the result in the field. Normally the result is right-justified.
‘4 Always include a plus or minus sign in the result.

If the result doesn’t start with a plus or minus sign, prefix it with a space instead. Since
the ‘+’ flag ensures that the result includes a sign, this flag is ignored if you supply
both of them.

‘& Specifies that the result should always include a decimal point, even if no digits follow
it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after the decimal
point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign. This flag

4

is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’, ‘%e’, and
‘4E’ conversions. For these conversions, the default is 6. If the precision is explicitly 0, this has
the rather strange effect of suppressing the decimal point character entirely! For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print; if 0 or not specified, it is
treated like a value of 1.



Chapter 11: Input/Output on Streams 157

Without a type modifier, the floating-point conversions use an argument of type double. (By
the default argument promotions, any float arguments are automatically converted to double.)
The following type modifier is supported:

‘v’ An uppercase ‘L’ specifies that the argument is a long double.

Here are some examples showing how numbers print using the various floating-point conversions.

All of the numbers were printed using this template string:

"1%12.4f|%12.4e|%12.4g|\n"

Here is the output:

I 0.0000] 0.0000e+00]| 0l
I 1.0000| 1.0000e+00]| 1l
I -1.0000| -1.0000e+00]| -1
I 100.0000| 1.0000e+02| 100|
| 1000.0000| 1.0000e+03| 1000
| 10000.0000| 1.0000e+04| le+04|
| 12345.0000| 1.2345e+04| 1.234e+04|
| 100000.0000| 1.0000e+05| 1e+05|
| 123456.0000| 1.2346e+05| 1.234e+05]|

Notice how the ‘%g’ conversion drops trailing zeros.

11.9.6 Other Output Conversions
This section describes miscellaneous conversions for printf.

The ‘/ic’ conversion prints a single character. The int argument is first converted to an unsigned
char. The ‘-’ flag can be used to specify left-justification in the field, but no other flags are defined,
and no precision or type modifier can be given. For example:

printf ("%chcheheche", *h?, ’e’, 217, 17, ’0’);



158 The GNU C Library

prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be of type char x*.
A precision can be specified to indicate the maximum number of characters to write; otherwise

characters in the string up to but not including the terminating null character are written to the
3

output stream. The ‘-’ flag can be used to specify left-justification in the field, but no other flags

or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere .

If you accidentally pass a null pointer as the argument for a ‘%s’ conversion, the GNU library
prints it as ‘(null)’. We think this is more useful than crashing. But it’s not good practice to pass
a null argument intentionally.

The ‘/%m’ conversion prints the string corresponding to the error code in errno. See Section 2.3
[Error Messages|, page 25. Thus:

fprintf (stderr, "can’t open ‘%s’: /m\n", filename);

is equivalent to:

fprintf (stderr, "can’t open ‘Ys’: %s\n", filename, strerror (errno));

The ‘%m’ conversion is a GNU C library extension.

The ‘%p’ conversion prints a pointer value. The corresponding argument must be of type void
*. In practice, you can use any type of pointer.

In the GNU system, non-null pointers are printed as unsigned integers, as if a ‘%#x’ conversion
were used. Null pointers print as ‘(nil)’. (Pointers might print differently in other systems.)

For example:



Chapter 11: Input/Output on Streams 159

printf ("%p", "testing");
prints ‘0x’ followed by a hexadecimal number—the address of the string constant "testing". It
does not print the word ‘testing’.

You can supply the ‘=’ flag with the ‘%p’ conversion to specify left-justification, but no other
flags, precision, or type modifiers are defined.

The ‘%n’ conversion is unlike any of the other output conversions. It uses an argument which
must be a pointer to an int, but instead of printing anything it stores the number of characters
printed so far by this call at that location. The ‘h’ and ‘1’ type modifiers are permitted to specify
that the argument is of type short int * or long int * instead of int *, but no flags, field width,
or precision are permitted.

For example,

int nchar;
printf ("%d %s¥n\n", 3, "bears", &nchar);

prints:

3 bears

and sets nchar to 7, because ‘3 bears’ is seven characters.

The ‘%%’ conversion prints a literal ‘4’ character. This conversion doesn’t use an argument, and
no flags, field width, precision, or type modifiers are permitted.

11.9.7 Formatted Output Functions

This section describes how to call printf and related functions. Prototypes for these functions
are in the header file ‘stdio.h’.



160 The GNU C Library

int printf (const char *template, ...) Function
The printf function prints the optional arguments under the control of the template
string template to the stream stdout. It returns the number of characters printed, or
a negative value if there was an output error.

int fprintf (FILE *stream, const char *template, ...) Function
This function is just like printf, except that the output is written to the stream stream
instead of stdout.

int sprintf (char *s, const char *template, ...) Function
This is like printf, except that the output is stored in the character array s instead of
written to a stream. A null character is written to mark the end of the string.

The sprintf function returns the number of characters stored in the array s, not
including the terminating null character.

The behavior of this function is undefined if copying takes place between objects that
overlap—for example, if s is also given as an argument to be printed under control of
the ‘%s’ conversion. See Section 5.4 [Copying and Concatenation], page 67.

Warning: The sprintf function can be dangerous because it can potentially output
more characters than can fit in the allocation size of the string s. Remember that the
field width given in a conversion specification is only a minimum value.

To avoid this problem, you can use snprintf or asprintf, described below.

int snprintf (char *s, size_t size, const char *template, ...) Function
The snprintf function is similar to sprintf, except that the size argument specifies
the maximum number of characters to produce. The trailing null character is counted
towards this limit, so you should allocate at least size characters for the string s.

The return value is the number of characters stored, not including the terminating null.
If this value equals size, then there was not enough space in s for all the output. You
should try again with a bigger output string. Here is an example of doing this:



Chapter 11: Input/Output on Streams 161

/* Construct a message describing the value of a variable

char =*

whose name is name and whose value is value. */

make_message (char *name, char *value)

{

/* Guess we need no more than 100 chars of space. */
int size = 100;

char *buffer = (char *) xmalloc (size);

while (1)

/* Try to print in the allocated space. */
int nchars = snprintf (buffer, size,
"value of %s is %s", name, value);

/* If that worked, return the string. */
if (nchars < size)

return buffer;
/* Else try again with twice as much space. */
size *= 2;

buffer = (char *) xrealloc (size, buffer);

In practice, it is often easier just to use asprintf, below.

11.9.8 Dynamically Allocating Formatted Output

The functions in this section do formatted output and place the results in dynamically allocated

memory.

int asprintf (char **ptr, const char *template, ...) Function

This function is similar to sprintf, except that it dynamically allocates a string (as

with malloc; see Section 3.3 [Unconstrained Allocation], page 30) to hold the output,

instead of putting the output in a buffer you allocate in advance. The ptr argument

should be the address of a char * object, and asprintf stores a pointer to the newly

allocated string at that location.



162 The GNU C Library

Here is how to use asprint to get the same result as the snprintf example, but more

easily:
/* Construct a message describing the value of a variable
whose name is name and whose value is value. */

char *

make_message (char *name, char *value)

{
char *result;
asprintf (&result, "value of %s is %s", name, value);
return result;

}

int obstack_printf (struct obstack *obstack, const char *template, Function

)

This function is similar to asprintf, except that it uses the obstack obstack to allocate
the space. See Section 3.4 [Obstacks], page 40.

The characters are written onto the end of the current object. To get at them, you must
finish the object with obstack_finish (see Section 3.4.6 [Growing Objects], page 46).

11.9.9 Variable Arguments Output Functions

The functions vprintf and friends are provided so that you can define your own variadic printf-
like functions that make use of the same internals as the built-in formatted output functions.

The most natural way to define such functions would be to use a language construct to say,
“Call printf and pass this template plus all of my arguments after the first five.” But there is no
way to do this in C, and it would be hard to provide a way, since at the C language level there is
no way to tell how many arguments your function received.

Since that method is impossible, we provide alternative functions, the vprintf series, which lets
you pass a va_list to describe “all of my arguments after the first five.”

Before calling vprintf or the other functions listed in this section, you must call va_start (see
Section A.2 [Variadic Functions|, page 564) to initialize a pointer to the variable arguments. Then
you can call va_arg to fetch the arguments that you want to handle yourself. This advances the
pointer past those arguments.



Chapter 11: Input/Output on Streams 163

Once your va_list pointer is pointing at the argument of your choice, you are ready to call
vprintf. That argument and all subsequent arguments that were passed to your function are used
by vprintf along with the template that you specified separately.

In some other systems, the va_list pointer may become invalid after the call to vprintf, so you
must not use va_arg after you call vprintf. Instead, you should call va_end to retire the pointer
from service. However, you can safely call va_start on another pointer variable and begin fetching
the arguments again through that pointer. Calling vfprintf does not destroy the argument list of
your function, merely the particular pointer that you passed to it.

The GNU library does not have such restrictions. You can safely continue to fetch arguments
from a va_list pointer after passing it to vprintf, and va_end is a no-op.

Prototypes for these functions are declared in ‘stdio.h’.

int vprintf (const char *template, va_list ap) Function
This function is similar to printf except that, instead of taking a variable number of
arguments directly, it takes an argument list pointer ap.

int vfprintf (FILE *stream, const char *template, va_list ap) Function
This is the equivalent of fprintf with the variable argument list specified directly as
for vprintf.

int vsprintf (char *s, const char *template, va_list ap) Function
This is the equivalent of sprintf with the variable argument list specified directly as
for vprintf.

int vsnprintf (char *s, size_t size, const char *template, va_list Function
ap)
This is the equivalent of snprintf with the variable argument list specified directly as
for vprintf.

int vasprintf (char **ptr, const char *template, va_list ap) Function
The vasprintf function is the equivalent of asprintf with the variable argument list
specified directly as for vprintf.



164 The GNU C Library

int obstack _vprintf (struct obstack *obstack, const char Function
*template, va_list ap)
The obstack_vprintf function is the equivalent of obstack_printf with the variable
argument list specified directly as for vprintf.

Here’s an example showing how you might use vfprintf. This is a function that prints error
messages to the stream stderr, along with a prefix indicating the name of the program (see
Section 2.3 [Error Messages|, page 25, for a description of program_invocation_short_name).

#include <stdio.h>
#include <stdarg.h>

void
eprintf (char *template, ...)
{

va_list ap;

extern char *program_invocation_short_name;

fprintf (stderr, "¥%s: ", program_invocation_short_name) ;
va_start (ap, count);
vifprintf (stderr, template, ap);

va_end (ap);

You could call eprintf like this:

eprintf ("file ‘Js’ does not exist\n", filename);

11.9.10 Parsing a Template String

You can use the function parse_printf_format to obtain information about the number and
types of arguments that are expected by a given template string. This function permits interpreters
that provide interfaces to printf to avoid passing along invalid arguments from the user’s program,
which could cause a crash.

All the symbols described in this section are declared in the header file ‘printf.h’.



Chapter 11: Input/Output on Streams 165

size_t parse_printf format (const char *template, size_t n, int Function
*argtypes)
This function returns information about the number and types of arguments expected
by the printf template string template. The information is stored in the array
argtypes; each element of this array describes one argument. This information is en-
coded using the various ‘PA_’ macros, listed below.

The n argument specifies the number of elements in the array argtypes. This is the
most elements that parse_printf_format will try to write.

parse_printf_format returns the total number of arguments required by template. If
this number is greater than n, then the information returned describes only the first n
arguments. If you want information about more than that many arguments, allocate
a bigger array and call parse_printf_format again.

The argument types are encoded as a combination of a basic type and modifier flag bits.

int PA_ FLAG_MASK Macro
This macro is a bitmask for the type modifier flag bits. You can write the expres-
sion (argtypes[i] & PA_FLAG_MASK) to extract just the flag bits for an argument, or
(argtypes[i] & "PA_FLAG_MASK) to extract just the basic type code.

Here are symbolic constants that represent the basic types; they stand for integer values.

PA_INT This specifies that the base type is int.
PA_CHAR  This specifies that the base type is int, cast to char.
PA_STRING

This specifies that the base type is char *, a null-terminated string.
PA_POINTER

This specifies that the base type is void *, an arbitrary pointer.
PA_FLOAT This specifies that the base type is float.
PA_DOUBLE

This specifies that the base type is double.

PA_LAST  You can define additional base types for your own programs as offsets from PA_LAST.
For example, if you have data types ‘foo’ and ‘bar’ with their own specialized printf
conversions, you could define encodings for these types as:



166 The GNU C Library

#define PA_FO0 PA_LAST
#tdefine PA_BAR (PA_LAST + 1)

Here are the flag bits that modify a basic type. They are combined with the code for the basic
type using inclusive-or.

PA_FLAG_PTR

If this bit is set, it indicates that the encoded type is a pointer to the base type, rather
than an immediate value. For example, ‘PA_INT|PA_FLAG_PTR’ represents the type
‘int *’,

PA_FLAG_SHORT

If this bit is set, it indicates that the base type is modified with short. (This corre-
sponds to the ‘h’ type modifier.)

PA_FLAG_LONG
If this bit is set, it indicates that the base type is modified with long. (This corresponds
to the ‘1’ type modifier.)

PA_FLAG_LONG_LONG
If this bit is set, it indicates that the base type is modified with long long. (This
corresponds to the ‘L’ type modifier.)

PA_FLAG_LONG_DOUBLE

This is a synonym for PA_FLAG_LONG_LONG, used by convention with a base type of
PA_DOUBLE to indicate a type of long double.

11.9.11 Example of Parsing a Template String

Here is an example of decoding argument types for a format string. We assume this is part of an
interpreter which contains arguments of type NUMBER, CHAR, STRING and STRUCTURE (and perhaps
others which are not valid here).

/* Test whether the nargs specified objects
in the vector args are valid
for the format string format:
if so, return 1.
If not, return 0 after printing an error message. */

int
validate_args (char *format, int nargs, OBJECT *args)



Chapter 11: Input/Output on Streams 167

int nelts = 20;
int *argtypes;
int nwanted;

/* Get the information about the arguments. */
while (1) {
argtypes = (int *) alloca (nelts * sizeof (int));
nwanted = parse_printf_format (string, nelts, argtypes);
if (nwanted <= nelts)
break;
nelts *= 2;

}

/* Check the number of arguments. */

if (nwanted > nargs) {
error ("too few arguments (at least %d required)", nwanted);
return O;

}

/* Check the C type wanted for each argument
and see if the object given is suitable. */
for (i = 0; i < nwanted; i++) {
int wanted;

if (argtypes[i] & PA_FLAG_PTR)
wanted = STRUCTURE;

else
switch (argtypes[i] & “PA_FLAG_MASK) {
case PA_INT:

case PA_FLOAT:
case PA_DOUBLE:
wanted = NUMBER;
break;
case PA_CHAR:
wanted = CHAR;
break;
case PA_STRING:
wanted = STRING;
break;
case PA_POINTER:
wanted = STRUCTURE;
break;
}
if (TYPE (args[i]) != wanted) {
error ("type mismatch for arg number %d", i);
return O;
}
}

return 1;



168 The GNU C Library

11.10 Customizing printf

The GNU C library lets you define your own custom conversion specifiers for printf template
strings, to teach printf clever ways to print the important data structures of your program.

The way you do this is by registering the conversion with register_printf_function; see
Section 11.10.1 [Registering New Conversions], page 168. One of the arguments you pass to this
function is a pointer to a handler function that produces the actual output; see Section 11.10.3
[Defining the Output Handler], page 170, for information on how to write this function.

You can also install a function that just returns information about the number and type of
arguments expected by the conversion specifier. See Section 11.9.10 [Parsing a Template String],
page 164, for information about this.

The facilities of this section are declared in the header file ‘printf.h’.

Portability Note: The ability to extend the syntax of printf template strings is a GNU exten-
sion. ANSI standard C has nothing similar.

11.10.1 Registering New Conversions

The function to register a new output conversion is register_printf_function, declared in
‘printf.h’.

int register_printf_function (int spec, printf_function Function
handler function, printf_arginfo_function arginfo function)
This function defines the conversion specifier character spec. Thus, if spec is ’q?, it
defines the conversion ‘%q’.

The handler_function is the function called by printf and friends when this conver-
sion appears in a template string. See Section 11.10.3 [Defining the Output Handler|,
page 170, for information about how to define a function to pass as this argument. If
you specify a null pointer, any existing handler function for spec is removed.



Chapter 11: Input/Output on Streams 169

The arginfo_function is the function called by parse_printf_format when this con-
version appears in a template string. See Section 11.9.10 [Parsing a Template String],
page 164, for information about this.

Normally, you install both functions for a conversion at the same time, but if you
are never going to call parse_printf_format, you do not need to define an arginfo
function.

The return value is 0 on success, and -1 on failure (which occurs if spec is out of range).

You can redefine the standard output conversions, but this is probably not a good idea
because of the potential for confusion. Library routines written by other people could
break if you do this.

11.10.2 Conversion Specifier Options

If you define a meaning for ‘%q’, what if the template contains ‘%4+Sq’ or ‘%-#q’? To implement
a sensible meaning for these, the handler when called needs to be able to get the options specified
in the template.

Both the handler_function and arginfo_function arguments to register_printf_function ac-
cept an argument of type struct print_info, which contains information about the options ap-
pearing in an instance of the conversion specifier. This data type is declared in the header file
‘printf.h’.

struct printf_info Type
This structure is used to pass information about the options appearing in an instance of
a conversion specifier in a printf template string to the handler and arginfo functions
for that specifier. It contains the following members:

int prec This is the precision specified. The value is -1 if no precision was specified.
If the precision was given as ‘¥’ the printf_info structure passed to the
handler function contains the actual value retrieved from the argument
list. But the structure passed to the arginfo function contains a value of
INT_MIN, since the actual value is not known.

int width This is the minimum field width specified. The value is 0 if no width was
specified. If the field width was given as ‘*’, the printf_info structure



170

The GNU C Library

passed to the handler function contains the actual value retrieved from the

argument list. But the structure passed to the arginfo function contains a

value of INT_MIN, since the actual value is not known.

char spec

This is the conversion specifier character specified. It’s stored in the struc-

ture so that you can register the same handler function for multiple char-

acters, but still have a way to tell them apart when the handler function

is called.
unsigned int is_long_double

This is a boolean that is true if the
unsigned int is_short

This is a boolean that is true if the
unsigned int is_long

This is a boolean that is true if the
unsigned int alt

This is a boolean that is true if the
unsigned int space

This is a boolean that is true if the
unsigned int left

This is a boolean that is true if the
unsigned int showsign

This is a boolean that is true if the

‘L’ type modifier was specified.

‘h’ type modifier was specified.

‘1’ type modifier was specified.

‘4’ flag was specified.

‘7’ flag was specified.

‘-’ flag was specified.

‘+’ flag was specified.

char pad This is the character to use for padding the output to the minimum field

width. The value is 0’ if the ‘0’ flag was specified, and ’ ’ otherwise.

11.10.3 Defining the Output Handler

to register_printf_function.

Now let’s look at how to define the handler and arginfo functions which are passed as arguments

You should define your handler functions with a prototype like:

int function (FILE *stream, const struct printf_info *info,

va_list *ap_pointer)



Chapter 11: Input/Output on Streams 171

The stream argument passed to the handler function is the stream to which it should write
output.

The info argument is a pointer to a structure that contains information about the various
options that were included with the conversion in the template string. You should not modify
this structure inside your handler function. See Section 11.10.2 [Conversion Specifier Options],
page 169, for a description of this data structure.

The ap_pointer argument is used to pass the tail of the variable argument list containing the
values to be printed to your handler. Unlike most other functions that can be passed an explicit
variable argument list, this is a pointer to a va_list, rather than the va_list itself. Thus, you
should fetch arguments by means of va_arg (type, *ap_pointer).

(Passing a pointer here allows the function that calls your handler function to update its own va_
list variable to account for the arguments that your handler processes. See Section A.2 [Variadic
Functions], page 564.)

The return value from your handler function should be the number of argument values that it
processes from the variable argument list. You can also return a value of -1 to indicate an error.

printf_function Data Type
This is the data type that a handler function should have.

If you are going to use parse_printf_format in your application, you should also define a func-
tion to pass as the arginfo_function argument for each new conversion you install with register_
printf_function.

You should define these functions with a prototype like:

int function (const struct printf_info *info,
size_t n, int *argtypes)

The return value from the function should be the number of arguments the conversion expects,
up to a maximum of n. The function should also fill in the argtypes array with information about
the types of each of these arguments. This information is encoded using the various ‘PA_’ macros.

(You will notice that this is the same calling convention parse_printf_format itself uses.)



172 The GNU C Library

printf_arginfo_function Data Type
This type is used to describe functions that return information about the number and
type of arguments used by a conversion specifier.

11.10.4 printf Extension Example

Here is an example showing how to define a printf handler function. This program defines a
data structure called a Widget and defines the ‘%W’ conversion to print information about Widget *
arguments, including the pointer value and the name stored in the data structure. The ‘%W’ con-
version supports the minimum field width and left-justification options, but ignores everything
else.

#include <stdio.h>
#include <printf.h>
#include <stdarg.h>

typedef struct
{

char *name;

} Widget;
int
print_widget (FILE *stream, const struct printf_info *info, va_list *app)
{

Widget *w;

char *buffer;

int len;

/* Format the output into a string. */
w = va_arg (*app, Widget *);
len = asprintf (&buffer, "<Widget ’%p: %s>", w, w->name);
if (len == -1)
return -1;

/* Pad to the minimum field width and print to the stream. */
len = fprintf (stream, "%xs",

(info->left ? - info->width : info->width),

buffer);

/* Clean up and return. */
free (buffer);
return len;

}



Chapter 11: Input/Output on Streams 173

int
main (void)

{
/* Make a widget to print. */
Widget mywidget;
mywidget.name = "mywidget";

/* Register the print function for widgets. */
register_printf_function (’W’, print_widget, NULL); /* No arginfo. */

/* Now print the widget. */

printf ("[%W[\n", &mywidget);
printf ("[%35WI\n", &mywidget) ;
printf ("|%-35W|\n", &mywidget);

return O;

The output produced by this program looks like:

|<Widget Oxffeffb7c: mywidget>|
| <Widget Oxffeffb7c: mywidget>|
|<Widget Oxffeffb7c: mywidget> |

11.11 Formatted Input

The functions described in this section (scanf and related functions) provide facilities for for-
matted input analogous to the formatted output facilities. These functions provide a mechanism
for reading arbitrary values under the control of a format string or template string.

11.11.1 Formatted Input Basics

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are read
under the control of a template string. While the syntax of the conversion specifications in the
template is very similar to that for printf, the interpretation of the template is oriented more
towards free-format input and simple pattern matching, rather than fixed-field formatting. For
example, most scanf conversions skip over any amount of “white space” (including spaces, tabs,
and newlines) in the input file, and there is no concept of precision for the numeric input conversions
as there is for the corresponding output conversions. Ordinarily, non-whitespace characters in the



174 The GNU C Library

template are expected to match characters in the input stream exactly, but a matching failure is
distinct from an input error on the stream.

Another area of difference between scanf and printf is that you must remember to supply
pointers rather than immediate values as the optional arguments to scanf; the values that are read
are stored in the objects that the pointers point to. Even experienced programmers tend to forget
this occasionally, so if your program is getting strange errors that seem to be related to scanf, you
might want to double-check this.

When a matching failure occurs, scanf returns immediately, leaving the first non-matching
character as the next character to be read from the stream. The normal return value from scanf
is the number of values that were assigned, so you can use this to determine if a matching error
happened before all the expected values were read.

The scanf function is typically used for things like reading in the contents of tables. For
example, here is a function that uses scanf to initialize an array of double:

void
readarray (double *array, int n)
{
int i;
for (i=0; i<n; i++)
if (scanf (" %1f", &(arrayl[i])) !'= 1)
invalid_input_error ();

The formatted input functions are not used as frequently as the formatted output functions.
Partly, this is because it takes some care to use them properly. Another reason is that it is difficult
to recover from a matching error.

If you are trying to read input that doesn’t match a single, fixed pattern, you may be better
off using a tool such as Bison to generate a parser, rather than using scanf. For more information
about this, see section “Bison” in The Bison Reference Manual.

11.11.2 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.



Chapter 11: Input/Output on Streams 175

Any whitespace character (as defined by the isspace function; see Section 4.1 [Classification
of Characters], page 61) in the template causes any number of whitespace characters in the input
stream to be read and discarded. The whitespace characters that are matched need not be exactly
the same whitespace characters that appear in the template string. For example, write ¢ , ’ in the
template to recognize a comma with optional whitespace before and after.

Other characters in the template string that are not part of conversion specifications must match
characters in the input stream exactly; if this is not the case, a matching failure occurs.

The conversion specifications in a scanf template string have the general form:

% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘4’ character followed in
sequence by:

e An optional flag character ‘*¥’, which says to ignore the text read for this specification. When
scanf finds a conversion specification that uses this flag, it reads input as directed by the rest
of the conversion specification, but it discards this input, does not use a pointer argument, and

does not increment the count of successful assignments.

e An optional flag character ‘a’

(valid with string conversions only) which requests allocation
of a buffer long enough to store the string in. See Section 11.11.6 [Dynamic String Input],

page 180.

e An optional decimal integer that specifies the maximum field width. Reading of characters from
the input stream stops either when this maximum is reached or when a non-matching character
is found, whichever happens first. Most conversions discard initial whitespace characters (those
that don’t are explicitly documented), and these discarded characters don’t count towards the
maximum field width. Most input conversions store a null character to mark the end of the
input; the maximum field width does not include this terminator.

e An optional type modifier character. For example, you can specify a type modifier of ‘1’ with
integer conversions such as ‘%d’ to specify that the argument is a pointer to a long int rather
than a pointer to an int.

A character that specifies the conversion to be applied.



176

The GNU C Library

The exact options that are permitted and how they are interpreted vary between the different

conversion specifiers. See the descriptions of the individual conversions for information about the

particular options that they allow.

11.11.3 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

(%d’

C%i’

6700’

(O/ou’

(%X” C%X,

Matches an optionally signed integer written in decimal. See Section 11.11.4 [Numeric
Input Conversions], page 177.

Matches an optionally signed integer in any of the formats that the C language defines
for specifying an integer constant. See Section 11.11.4 [Numeric Input Conversions],
page 177.

Matches an unsigned integer in octal radix. See Section 11.11.4 [Numeric Input Con-
versions|, page 177.

Matches an unsigned integer in decimal radix. See Section 11.11.4 [Numeric Input
Conversions|, page 177.

Matches an unsigned integer in hexadecimal radix. See Section 11.11.4 [Numeric Input
Conversions|, page 177.

c%ea’ c%fa’ n%ga’ ‘%E’, ‘%G’

(O/os’

(% [’

C%C’

nyop’

(O/on’

(%%’

Matches an optionally signed floating-point number. See Section 11.11.4 [Numeric
Input Conversions|, page 177.

Matches a string of non-whitespace characters. See Section 11.11.5 [String Input Con-
versions|, page 178.

Matches a string of characters that belong to a specified set. See Section 11.11.5 [String
Input Conversions], page 178.

Matches a string of one or more characters; the number of characters read is controlled
by the maximum field width given for the conversion. See Section 11.11.5 [String Input
Conversions|, page 178.

Matches a pointer value in the same implementation-defined format used by the ‘%p’
output conversion for printf. See Section 11.11.7 [Other Input Conversions|, page 181.

This conversion doesn’t read any characters; it records the number of characters read
so far by this call. See Section 11.11.7 [Other Input Conversions], page 181.

This matches a literal ‘)4’ character in the input stream. No corresponding argument
is used. See Section 11.11.7 [Other Input Conversions|, page 181.



Chapter 11: Input/Output on Streams 177

If the syntax of a conversion specification is invalid, the behavior is undefined. If there aren’t
enough function arguments provided to supply addresses for all the conversion specifications in the
template strings that perform assignments, or if the arguments are not of the correct types, the
behavior is also undefined. On the other hand, extra arguments are simply ignored.

11.11.4 Numeric Input Conversions
This section describes the scanf conversions for reading numeric values.

The ‘%d’ conversion matches an optionally signed integer in decimal radix. The syntax that is
recognized is the same as that for the strtol function (see Section 18.7.1 [Parsing of Integers],
page 366) with the value 10 for the base argument.

The ‘%i’ conversion matches an optionally signed integer in any of the formats that the C
language defines for specifying an integer constant. The syntax that is recognized is the same as
that for the strtol function (see Section 18.7.1 [Parsing of Integers], page 366) with the value 0
for the base argument.

For example, any of the strings ‘10’, ‘Oxa’, or ‘012’ could be read in as integers under the ‘}%i’
conversion. Each of these specifies a number with decimal value 10.

The “%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hexadecimal
radices, respectively. The syntax that is recognized is the same as that for the strtoul function
(see Section 18.7.1 [Parsing of Integers|, page 366) with the appropriate value (8, 10, or 16) for the
base argument.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase or
lowercase letters to be used as digits.

The default type of the corresponding argument for the %d and %i conversions is int *, and
unsigned int * for the other integer conversions. You can use the following type modifiers to
specify other sizes of integer:

‘h’ Specifies that the argument is a short int * or unsigned short int *.
‘v Specifies that the argument is a long int * or unsigned long int *.
‘n Specifies that the argument is a long long int * or unsigned long long int *. (The

long long type is an extension supported by the GNU C compiler. For systems that
don’t provide extra-long integers, this is the same as long int.)



178 The GNU C Library

All of the ‘%e’, ‘%E’, ‘%g’, ‘%hE’, and ‘%G’ input conversions are interchangeable. They all match
an optionally signed floating point number, in the same syntax as for the strtod function (see
Section 18.7.2 [Parsing of Floats], page 368).

For the floating-point input conversions, the default argument type is float *. (This is different
from the corresponding output conversions, where the default type is double; remember that float
arguments to printf are converted to double by the default argument promotions, but float *
arguments are not promoted to double *.) You can specify other sizes of float using these type

modifiers:
‘v Specifies that the argument is of type double *.
‘v’ Specifies that the argument is of type long double *.

11.11.5 String Input Conversions

This section describes the scanf input conversions for reading string and character values: ‘%s’,
‘%[, and ‘%c’.

You have two options for how to receive the input from these conversions:

e Provide a buffer to store it in. This is the default. You should provide an argument of type
char *.

Warning: To make a robust program, you must make sure that the input (plus its terminating
null) cannot possibly exceed the size of the buffer you provide. In general, the only way to
do this is to specify a maximum field width one less than the buffer size. If you provide the
buffer, always specify a maximum field width to prevent overflow.

e Ask scanf to allocate a big enough buffer, by specifying the ‘a’ flag character. This is a GNU
extension. You should provide an argument of type char ** for the buffer address to be stored
in. See Section 11.11.6 [Dynamic String Input], page 180.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum, the
default is 1. This conversion doesn’t append a null character to the end of the text it reads. It
also does not skip over initial whitespace characters. It reads precisely the next n characters, and
fails if it cannot get that many. Since there is always a maximum field width with ‘)%c’ (whether
specified, or 1 by default), you can always prevent overflow by making the buffer long enough.



Chapter 11: Input/Output on Streams 179

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and discards initial
whitespace, but stops when it encounters more whitespace after having read something. Tt stores
a null character at the end of the text that it reads.

For example, reading the input:

hello, world

with the conversion ‘%10¢’ produces " hello, wo", but reading the same input with the conversion
‘%10s’ produces "hello,".

Warning: If you do not specify a field width for ‘)%s’, then the number of characters read is
limited only by where the next whitespace character appears. This almost certainly means that
invalid input can make your program crash—which is a bug.

To read in characters that belong to an arbitrary set of your choice, use the ‘%[’ conversion.
You specify the set between the ‘[’ character and a following ‘]’ character, using the same syntax
used in regular expressions. As special cases:

e A literal ‘]’ character can be specified as the first character of the set.

e An embedded ‘-’ character (that is, one that is not the first or last character of the set) is used
to specify a range of characters.

i~

e If a caret character immediately follows the initial ‘[’, then the set of allowed input char-

acters is the everything except the characters listed.

The ‘%[’ conversion does not skip over initial whitespace characters.

Here are some examples of ‘%[’ conversions and what they mean:

‘%25[1234567890]1°

Matches a string of up to 25 digits.
‘%25[1[1° Matches a string of up to 25 square brackets.
‘%25 [ \f\n\r\t\v]’

Matches a string up to 25 characters long that doesn’t contain any of the standard
whitespace characters. This is slightly different from ‘%s’, because if the input begins



180 The GNU C Library

with a whitespace character, ‘% [’ reports a matching failure while ‘%s’ simply discards
the initial whitespace.

‘%25 [a-z]’

Matches up to 25 lowercase characters.

One more reminder: the ‘%s’ and ‘%[’ conversions are dangerous if you don’t specify a maximum
width or use the ‘a’ flag, because input too long would overflow whatever buffer you have provided
for it. No matter how long your buffer is, a user could supply input that is longer. A well-written
program reports invalid input with a comprehensible error message, not with a crash.

11.11.6 Dynamically Allocating String Conversions

A GNU extension to formatted input lets you safely read a string with no maximum size. Using
this feature, you don’t supply a buffer; instead, scanf allocates a buffer big enough to hold the
data and gives you its address. To use this feature, write ‘a’ as a flag character, as in ‘}as’ or
‘%hal[0-9a-z]".

The pointer argument you supply for where to store the input should have type char **. The
scanf function allocates a buffer and stores its address in the word that the argument points to.
You should free the buffer with free when you no longer need it.

Here is an example of using the ‘a’ flag with the ‘4[...]’ conversion specification to read a
“variable assignment” of the form ‘variable = value’.

char *variable, *value;

if (2 > scanf ("%ala-zA-Z0-9] = %al[~\n]\n",
&variable, &value))
{
invalid_input_error Q) ;
return O;

}



Chapter 11: Input/Output on Streams 181

11.11.7 Other Input Conversions

This section describes the miscellaneous input conversions.

The ‘%p’ conversion is used to read a pointer value. It recognizes the same syntax as is used
by the ‘%p’ output conversion for printf. The corresponding argument should be of type void #*x*;
that is, the address of a place to store a pointer.

The resulting pointer value is not guaranteed to be valid if it was not originally written during
the same program execution that reads it in.

The ‘%n’ conversion produces the number of characters read so far by this call. The corresponding
argument should be of type int *. This conversion works in the same way as the ‘%4n’ conversion
for printf; see Section 11.9.6 [Other Output Conversions|, page 157, for an example.

The ‘/%n’ conversion is the only mechanism for determining the success of literal matches or
conversions with suppressed assignments. If the ‘/%n’ follows the locus of a matching failure, then
no value is stored for it since scanf returns before processing the ‘%n’. If you store -1 in that
argument slot before calling scanf, the presence of -1 after scanf indicates an error occurred
before the ‘/n’ was reached.

Finally, the ‘%%’ conversion matches a literal ‘)’ character in the input stream, without using an
argument. This conversion does not permit any flags, field width, or type modifier to be specified.

11.11.8 Formatted Input Functions

Here are the descriptions of the functions for performing formatted input. Prototypes for these
functions are in the header file ‘stdio.h’.

int scanf (const char *template, ...) Function
The scanf function reads formatted input from the stream stdin under the control of
the template string template. The optional arguments are pointers to the places which
receive the resulting values.

The return value is normally the number of successful assignments. If an end-of-file
condition is detected before any matches are performed (including matches against
whitespace and literal characters in the template), then EOF is returned.



182 The GNU C Library

int fscanf (FILE *stream, const char *template, ...) Function
This function is just like scanf, except that the input is read from the stream stream
instead of stdin.

int sscanf (const char *s, const char *template, ...) Function
This is like scanf, except that the characters are taken from the null-terminated string
s instead of from a stream. Reaching the end of the string is treated as an end-of-file
condition.

The behavior of this function is undefined if copying takes place between objects that
overlap—for example, if s is also given as an argument to receive a string read under

control of the ‘)s’ conversion.

11.11.9 Variable Arguments Input Functions

The functions vscanf and friends are provided so that you can define your own variadic scanf-
like functions that make use of the same internals as the built-in formatted output functions. These
functions are analogous to the vprintf series of output functions. See Section 11.9.9 [Variable
Arguments Output], page 162, for important information on how to use them.

Portability Note: The functions listed in this section are GNU extensions.

int vscanf (const char *template, va_list ap) Function
This function is similar to scanf except that, instead of taking a variable number of
arguments directly, it takes an argument list pointer ap of type va_list (see Section A.2
[Variadic Functions], page 564).

int vfscanf (FILE *stream, const char *template, va_list ap) Function
This is the equivalent of fscanf with the variable argument list specified directly as
for vscanf.

int vsscanf (const char *s, const char *template, va_list ap) Function

This is the equivalent of sscanf with the variable argument list specified directly as
for vscanf.



Chapter 11: Input/Output on Streams 183

11.12 Block Input/Output

This section describes how to do input and output operations on blocks of data. You can use
these functions to read and write binary data, as well as to read and write text in fixed-size blocks
instead of by characters or lines.

Binary files are typically used to read and write blocks of data in the same format as is used
to represent the data in a running program. In other words, arbitrary blocks of memory—mnot just
character or string objects—can be written to a binary file, and meaningfully read in again by the
same program.

Storing data in binary form is often considerably more efficient than using the formatted I/O
functions. Also, for floating-point numbers, the binary form avoids possible loss of precision in the
conversion process. On the other hand, binary files can’t be examined or modified easily using many
standard file utilities (such as text editors), and are not portable between different implementations
of the language, or different kinds of computers.

These functions are declared in ‘stdio.h’.

size_t fread (void *data, size_t size, size_t count, FILE *stream) Function
This function reads up to count objects of size size into the array data, from the stream
stream. It returns the number of objects actually read, which might be less than count
if a read error occurs or the end of the file is reached. This function returns a value of
zero (and doesn’t read anything) if either size or count is zero.

If fread encounters end of file in the middle of an object, it returns the number of
complete objects read, and discards the partial object. Therefore, the stream remains
at the actual end of the file.

size_t fwrite (const void *data, size_t size, size_t count, FILE Function
*stream)
This function writes up to count objects of size size from the array data, to the stream
stream. The return value is normally count, if the call succeeds. Any other value
indicates some sort of error, such as running out of space.



184 The GNU C Library

11.13 End-Of-File and Errors

Many of the functions described in this chapter return the value of the macro EOF to indicate
unsuccessful completion of the operation. Since EOF is used to report both end of file and random
errors, it’s often better to use the feof function to check explicitly for end of file and ferror to
check for errors. These functions check indicators that are part of the internal state of the stream
object, indicators set if the appropriate condition was detected by a previous I/O operation on that
stream.

These symbols are declared in the header file ‘stdio.h’.

int EOF Macro
This macro is an integer value that is returned by a number of functions to indicate an
end-of-file condition, or some other error situation. With the GNU library, EQOF is -1.
In other libraries, its value may be some other negative number.

void clearerr (FILE xstream) Function
This function clears the end-of-file and error indicators for the stream stream.

The file positioning functions (see Section 11.15 [File Positioning], page 186) also clear
the end-of-file indicator for the stream.

int feof (FILE *stream) Function
The feof function returns nonzero if and only if the end-of-file indicator for the stream
stream is set.

int ferror (FILE *stream) Function
The ferror function returns nonzero if and only if the error indicator for the stream
stream is set, indicating that an error has occurred on a previous operation on the

stream.

In addition to setting the error indicator associated with the stream, the functions that operate
on streams also set errno in the same way as the corresponding low-level functions that operate on
file descriptors. For example, all of the functions that perform output to a stream—such as fputc,
printf, and fflush—are implemented in terms of write, and all of the errno error conditions
defined for write are meaningful for these functions. For more information about the descriptor-
level I/O functions, see Chapter 12 [Low-Level I/0], page 203.



Chapter 11: Input/Output on Streams 185

11.14 Text and Binary Streams

The GNU system and other POSIX-compatible operating systems organize all files as uniform
sequences of characters. However, some other systems make a distinction between files containing
text and files containing binary data, and the input and output facilities of ANSI C provide for
this distinction. This section tells you how to write programs portable to such systems.

When you open a stream, you can specify either a text stream or a binary stream. You indicate
that you want a binary stream by specifying the ‘b’ modifier in the opentype argument to fopen;
see Section 11.3 [Opening Streams|, page 140. Without this option, fopen opens the file as a text
stream.

Text and binary streams differ in several ways:

e The data read from a text stream is divided into lines which are terminated by newline (’\n?)
characters, while a binary stream is simply a long series of characters. A text stream might
on some systems fail to handle lines more than 254 characters long (including the terminating
newline character).

e On some systems, text files can contain only printing characters, horizontal tab characters,
and newlines, and so text streams may not support other characters. However, binary streams
can handle any character value.

e Space characters that are written immediately preceeding a newline character in a text stream
may disappear when the file is read in again.

e More generally, there need not be a one-to-one mapping between characters that are read from
or written to a text stream, and the characters in the actual file.

Since a binary stream is always more capable and more predictable than a text stream, you
might wonder what purpose text streams serve. Why not simply always use binary streams? The
answer is that on these operating systems, text and binary streams use different file formats, and
the only way to read or write “an ordinary file of text” that can work with other text-oriented
programs is through a text stream.

In the GNU library, and on all POSIX systems, there is no difference between text streams and
binary streams. When you open a stream, you get the same kind of stream regardless of whether
you ask for binary. This stream can handle any file content, and has none of the restrictions that
text streams sometimes have.



186 The GNU C Library

11.15 File Positioning

The file position of a stream describes where in the file the stream is currently reading or writing.
I/O on the stream advances the file position through the file. In the GNU system, the file position
is represented as an integer, which counts the number of bytes from the beginning of the file. See
Section 10.1.2 [File Position], page 133.

During I/O to an ordinary disk file, you can change the file position whenever you wish, so as
to read or write any portion of the file. Some other kinds of files may also permit this. Files which
support changing the file position are sometimes referred to as random-access files.

You can use the functions in this section to examine or modify the file position indicator asso-
ciated with a stream. The symbols listed below are declared in the header file ‘stdio.h’.

long int ftell (FILE *stream) Function
This function returns the current file position of the stream stream.

This function can fail if the stream doesn’t support file positioning, or if the file position
can’t be represented in a long int, and possibly for other reasons as well. If a failure
occurs, a value of -1 is returned.

int fseek (FILE *stream, long int offset, int whence) Function
The fseek function is used to change the file position of the stream stream. The value
of whence must be one of the constants SEEK_SET, SEEK_CUR, or SEEK_END, to indicate
whether the offset is relative to the beginning of the file, the current file position, or
the end of the file, respectively.

This function returns a value of zero if the operation was successful, and a nonzero
value to indicate failure. A successful call also clears the end-of-file indicator of stream
and discards any characters that were “pushed back” by the use of ungetc.

fseek either flushes any buffered output before setting the file position or else remem-
bers it so it will be written later in its proper place in the file.

Portability Note: In non-POSIX systems, ftell and fseek might work reliably only on binary
streams. See Section 11.14 [Binary Streams|, page 185.



Chapter 11: Input/Output on Streams 187

The following symbolic constants are defined for use as the whence argument to fseek. They
are also used with the 1seek function (see Section 12.2 [I/O Primitives|, page 206) and to specify
offsets for file locks (see Section 12.7 [Control Operations|, page 219).

int SEEK SET Macro
This is an integer constant which, when used as the whence argument to the fseek
function, specifies that the offset provided is relative to the beginning of the file.

int SEEK_CUR Macro
This is an integer constant which, when used as the whence argument to the fseek
function, specifies that the offset provided is relative to the current file position.

int SEEK_END Magcro
This is an integer constant which, when used as the whence argument to the fseek
function, specifies that the offset provided is relative to the end of the file.

void rewind (FILE *stream) Function
The rewind function positions the stream stream at the begining of the file. It is
equivalent to calling fseek on the stream with an offset argument of OL and a whence
argument of SEEK_SET, except that the return value is discarded and the error indicator
for the stream is reset.

These three aliases for the ‘SEEK_...” constants exist for the sake of compatibility with older
BSD systems. They are defined in two different header files: ‘fcntl.h’ and ‘sys/file.h’.

L_SET An alias for SEEK_SET.
L_INCR An alias for SEEK_CUR.
L_XTND An alias for SEEK_END.

11.16 Portable File-Position Functions

On the GNU system, the file position is truly a character count. You can specify any character
count value as an argument to fseek and get reliable results for any random access file. However,
some ANSI C systems do not represent file positions in this way.



188 The GNU C Library

On some systems where text streams truly differ from binary streams, it is impossible to represent
the file position of a text stream as a count of characters from the beginning of the file. For example,
the file position on some systems must encode both a record offset within the file, and a character
offset within the record.

As a consequence, if you want your programs to be portable to these systems, you must observe
certain rules:

e The value returned from ftell on a text stream has no predictable relationship to the number
of characters you have read so far. The only thing you can rely on is that you can use it
subsequently as the offset argument to fseek to move back to the same file position.

e In a call to fseek on a text stream, either the offset must either be zero; or whence must be
SEEK_SET and the offset must be the result of an earlier call to ftell on the same stream.

e The value of the file position indicator of a text stream is undefined while there are characters
that have been pushed back with ungetc that haven’t been read or discarded. See Section 11.8
[Unreading], page 148.

But even if you observe these rules, you may still have trouble for long files, because ftell and
fseek use a long int value to represent the file position. This type may not have room to encode
all the file positions in a large file.

So if you do want to support systems with peculiar encodings for the file positions, it is better to
use the functions fgetpos and fsetpos instead. These functions represent the file position using
the data type fpos_t, whose internal representation varies from system to system.

These symbols are declared in the header file ‘stdio.h’.

fpos_t Data Type
This is the type of an object that can encode information about the file position of a
stream, for use by the functions fgetpos and fsetpos.

In the GNU system, fpos_t is equivalent to off_t or long int. In other systems, it
might have a different internal representation.



Chapter 11: Input/Output on Streams 189

int fgetpos (FILE *stream, fpos_t *position) Function
This function stores the value of the file position indicator for the stream stream in the
fpos_t object pointed to by position. If successful, fgetpos returns zero; otherwise it
returns a nonzero value and stores an implementation-defined positive value in errno.

int fsetpos (FILE *stream, const fpos_t position) Function
This function sets the file position indicator for the stream stream to the position po-
sition, which must have been set by a previous call to fgetpos on the same stream. If
successful, fsetpos clears the end-of-file indicator on the stream, discards any charac-
ters that were “pushed back” by the use of ungetc, and returns a value of zero. Oth-
erwise, fsetpos returns a nonzero value and stores an implementation-defined positive
value in errno.

11.17 Stream Buffering

Characters that are written to a stream are normally accumulated and transmitted asyn-
chronously to the file in a block, instead of appearing as soon as they are output by the application
program. Similarly, streams often retrieve input from the host environment in blocks rather than
on a character-by-character basis. This is called buffering.

If you are writing programs that do interactive input and output using streams, you need to
understand how buffering works when you design the user interface to your program. Otherwise,
you might find that output (such as progress or prompt messages) doesn’t appear when you intended
it to, or that input typed by the user is made available by lines instead of by single characters, or
other unexpected behavior.

This section deals only with controlling when characters are transmitted between the stream
and the file or device, and not with how things like echoing, flow control, and the like are handled
on specific classes of devices. For information on common control operations on terminal devices,
see Chapter 16 [Low-Level Terminal Interface], page 321.

You can bypass the stream buffering facilities altogether by using the low-level input and output
functions that operate on file descriptors instead. See Chapter 12 [Low-Level I/0], page 203.

11.17.1 Buffering Concepts

There are three different kinds of buffering strategies:



190 The GNU C Library

e Characters written to or read from an unbuffered stream are transmitted individually to or
from the file as soon as possible.

e Characters written to or read from a line buffered stream are transmitted to or from the file
in blocks when a newline character is encountered.

e Characters written to or read from a fully buffered stream are transmitted to or from the file
in blocks of arbitrary size.

Newly opened streams are normally fully buffered, with one exception: a stream connected to
an interactive device such as a terminal is initially line buffered. See Section 11.17.3 [Controlling
Buffering], page 191, for information on how to select a different kind of buffering.

The use of line buffering for interactive devices implies that output messages ending in a newline
will appear immediately—which is usually what you want. Output that doesn’t end in a newline
might or might not show up immediately, so if you want them to appear immediately, you should
flush buffered output explicitly with fflush, as described in Section 11.17.2 [Flushing Buffers],
page 190.

Line buffering is a good default for terminal input as well, because most interactive programs
read commands that are normally single lines. The program should be able to execute each line
right away. A line buffered stream permits this, whereas a fully buffered stream would always read
enough text to fill the buffer before allowing the program to read any of it. Line buffering also fits
in with the usual input-editing facilities of most operating systems, which work within a line of
input.

Some programs need an unbuffered terminal input stream. These include programs that read
single-character commands (like Emacs) and programs that do their own input editing (such as
those that use readline). In order to read a character at a time, it is not enough to turn off
buffering in the input stream; you must also turn off input editing in the operating system. This
requires changing the terminal mode (see Section 16.4 [Terminal Modes]|, page 323). If you want
to change the terminal modes, you have to do this separately—merely using an unbuffered stream
does not change the modes.

11.17.2 Flushing Buffers

Flushing output on a buffered stream means transmitting all accumulated characters to the file.
There are many circumstances when buffered output on a stream is flushed automatically:



Chapter 11: Input/Output on Streams 191

e When you try to do output and the output buffer is full.
e When the stream is closed. See Section 11.4 [Closing Streams]|, page 142.

e When the program terminates by calling exit. See Section 22.3.1 [Normal Termination],
page 476.

e When a newline is written, if the stream is line buffered.

e Whenever an input operation on any stream actually reads data from its file.

If you want to flush the buffered output at another time, call fflush, which is declared in the
header file ‘stdio.h’.

int fllush (FILE *stream) Function
This function causes any buffered output on stream to be delivered to the file. If stream

is a null pointer, then fflush causes buffered output on all open output streams to be
flushed.

This function returns EOF if a write error occurs, or zero otherwise.

Compatibility Note: Some brain-damaged operating systems have been known to be so thor-
oughly fixated on line-oriented input and output that flushing a line buffered stream causes a
newline to be written! Fortunately, this “feature” seems to be becoming less common. You do not
need to worry about this in the GNU system.

11.17.3 Controlling Which Kind of Buffering

After opening a stream (but before any other operations have been performed on it), you can
explicitly specify what kind of buffering you want it to have using the setvbuf function.

The facilities listed in this section are declared in the header file ‘stdio.h’.

int setvbuf (FILE *stream, char *buf, int mode, size_t size) Function
This function is used to specify that the stream stream should have the buffering mode
mode, which can be either _IOFBF (for full buffering), _IOLBF (for line buffering), or
_IONBF (for unbuffered input/output).



192 The GNU C Library

If you specify a null pointer as the buf argument, then setvbuf allocates a buffer itself
using malloc. This buffer will be freed when you close the stream.

Otherwise, buf should be a character array that can hold at least size characters. You
should not free the space for this array as long as the stream remains open and this
array remains its buffer. You should usually either allocate it statically, or malloc (see
Section 3.3 [Unconstrained Allocation], page 30) the buffer. Using an automatic array
is not a good idea unless you close the file before exiting the block that declares the
array.

While the array remains a stream buffer, the stream I/O functions will use the buffer
for their internal purposes. You shouldn’t try to access the values in the array directly
while the stream is using it for buffering.

The setvbuf function returns zero on success, or a nonzero value if the value of mode
is not valid or if the request could not be honored.

int IOFBF Macro
The value of this macro is an integer constant expression that can be used as the mode
argument to the setvbuf function to specify that the stream should be fully buffered.

int IOLBF Magcro
The value of this macro is an integer constant expression that can be used as the mode
argument to the setvbuf function to specify that the stream should be line buffered.

int IONBF Macro
The value of this macro is an integer constant expression that can be used as the mode
argument to the setvbuf function to specify that the stream should be unbuffered.

int BUFSIZ Macro
The value of this macro is an integer constant expression that is good to use for the
size argument to setvbuf. This value is guaranteed to be at least 256.

The value of BUFSIZ is chosen on each system so as to make stream I/O efficient. So
it is a good idea to use BUFSIZ as the size for the buffer when you call setvbuf.



Chapter 11: Input/Output on Streams 193

Actually, you can get an even better value to use for the buffer size by means of
the fstat system call: it is found in the st_blksize field of the file attributes. See
Section 13.8.1 [Attribute Meanings|, page 246.

Sometimes people also use BUFSIZ as the allocation size of buffers used for related
purposes, such as strings used to receive a line of input with fgets (see Section 11.6
[Character Input], page 144). There is no particular reason to use BUFSIZ for this
instead of any other integer, except that it might lead to doing I/O in chunks of an
efficient size.

void setbuf (FILE *stream, char *buf) Function
If buf is a null pointer, the effect of this function is equivalent to calling setvbuf with
a mode argument of _TONBF. Otherwise, it is equivalent to calling setvbuf with buf,
and a mode of _I0FBF and a size argument of BUFSIZ.

The setbuf function is provided for compatibility with old code; use setvbuf in all
new programs.

void setbuffer (FILE *stream, char *buf, size_t size) Function
If buf is a null pointer, this function makes stream unbuffered. Otherwise, it makes
stream fully buffered using buf as the buffer. The size argument specifies the length
of buf.

This function is provided for compatibility with old BSD code. Use setvbuf instead.

void setlinebuf (FILE *stream) Function
This function makes stream be line buffered, and allocates the buffer for you.

This function is provided for compatibility with old BSD code. Use setvbuf instead.

11.18 Temporary Files

If you need to use a temporary file in your program, you can use the tmpfile function to open
it. Or you can use the tmpnam function make a name for a temporary file and then open it in the
usual way with fopen.

These facilities are declared in the header file ‘stdio.h’.



194 The GNU C Library

FILE * tmpfile (void) Function
This function creates a temporary binary file for update mode, as if by calling fopen
with mode "wb+". The file is deleted automatically when it is closed or when the
program terminates. (On some other ANSI C systems the file may fail to be deleted if
the program terminates abnormally).

char * tmpnam (char *result) Function
This function constructs and returns a file name that is a valid file name and that does
not name any existing file. If the result argument is a null pointer, the return value
is a pointer to an internal static string, which might be modified by subsequent calls.
Otherwise, the result argument should be a pointer to an array of at least L_tmpnam
characters, and the result is written into that array.

It is possible for tmpnam to fail if you call it too many times. This is because the fixed
length of a temporary file name gives room for only a finite number of different names.
If tmpnam fails, it returns a null pointer.

int L_tmpnam Macro
The value of this macro is an integer constant expression that represents the minimum
allocation size of a string large enough to hold the file name generated by the tmpnam

function.

int TMP_MAX Macro
The macro TMP_MAX is a lower bound for how many temporary names you can create
with tmpnam. You can rely on being able to call tmpnam at least this many times before
it might fail saying you have made too many temporary file names.

With the GNU library, you can create a very large number of temporary file names—if
you actually create the files, you will probably run out of disk space before you run out
of names. Some other systems have a fixed, small limit on the number of temporary
files. The limit is never less than 25.

char * tempnam (const char *dir, const char *prefix) Function
This function generates a unique temporary filename. If prefix is not a null pointer,
up to five characters of this string are used as a prefix for the file name.

The directory prefix for the temporary file name is determined by testing each of the
following, in sequence. The directory must exist and be writable.



Chapter 11: Input/Output on Streams 195

The environment variable TMPDIR, if it is defined.

e The dir argument, if it is not a null pointer.

The value of the P_tmpdir macro.

e The directory ‘/tmp’.

This function is defined for SVID compatibility.

char * P_tmpdir SVID Macro
This macro is the name of the default directory for temporary files.

11.19 Other Kinds of Streams

The GNU library provides ways for you to define additional kinds of streams that do not nec-
essarily correspond to an open file.

One such type of stream takes input from or writes output to a string. These kinds of streams
are used internally to implement the sprintf and sscanf functions. You can also create such a
stream explicitly, using the functions described in Section 11.19.1 [String Streams|, page 195.

More generally, you can define streams that do input/output to arbitrary objects using functions
supplied by your program. This protocol is discussed in Section 11.19.3 [Custom Streams], page 199.

Portability Note: The facilities described in this section are specific to GNU. Other systems or
C implementations might or might not provide equivalent functionality.

11.19.1 String Streams

The fmemopen and open_memstream functions allow you to do I/O to a string or memory buffer.
These facilities are declared in ‘stdio.h’.

FILE * fmemopen (void *buf, size_t size, const char *opentype) Function
This function opens a stream that allows the access specified by the opentype argument,
that reads from or writes to the buffer specified by the argument buf. This array must
be at least size bytes long.



196 The GNU C Library

If you specify a null pointer as the buf argument, fmemopen dynamically allocates (as
with malloc; see Section 3.3 [Unconstrained Allocation], page 30) an array size bytes
long. This is really only useful if you are going to write things to the buffer and then
read them back in again, because you have no way of actually getting a pointer to the
buffer (for this, try open_memstream, below). The buffer is freed when the stream is
open.

The argument opentype is the same as in fopen (See Section 11.3 [Opening Streams],
page 140). If the opentype specifies append mode, then the initial file position is set
to the first null character in the buffer. Otherwise the initial file position is at the
beginning of the buffer.

When a stream open for writing is flushed or closed, a null character (zero byte) is
written at the end of the buffer if it fits. You should add an extra byte to the size
argument to account for this. Attempts to write more than size bytes to the buffer
result in an error.

For a stream open for reading, null characters (zero bytes) in the buffer do not count as
“end of file”. Read operations indicate end of file only when the file position advances
past size bytes. So, if you want to read characters from a null-terminated string, you
should supply the length of the string as the size argument.

Here is an example of using fmemopen to create a stream for reading from a string:

#include <stdio.h>
static char buffer[] = "foobar";

int
main (void)
{
int ch;
FILE *stream;

stream = fmemopen (buffer, strlen (buffer), "r");
while ((ch = fgetc (stream)) != EOF)

printf ("Got %c\n", ch);
fclose (stream);

return 0;



Chapter 11: Input/Output on Streams

This program produces the following output:

FILE

Got
Got
Got
Got
Got
Got

H ® o" 0O O H

197

* open_memstream (char *xptr, size_t *sizeloc) Function

This function opens a stream for writing to a buffer. The buffer is allocated dynamically
(as with malloc; see Section 3.3 [Unconstrained Allocation|, page 30) and grown as
necessary.

When the stream is closed with fclose or flushed with £ff1lush, the locations ptr and
sizeloc are updated to contain the pointer to the buffer and its size. The values thus
stored remain valid only as long as no further output on the stream takes place. If you
do more output, you must flush the stream again to store new values before you use
them again.

A null character is written at the end of the buffer. This null character is not included
in the size value stored at sizeloc.

You can move the stream’s file position with fseek (see Section 11.15 [File Positioning],
page 186). Moving the file position past the end of the data already written fills the
intervening space with zeroes.

Here is an example of using open_memstream:

#include <stdio.h>

int

main (void)

{
char *bp;
size_t size;
FILE *stream;



198 The GNU C Library

stream = open_memstream (&bp, &size);
fprintf (stream, "hello");

fflush (stream);

printf ("buf = %s, size = %d\n", bp, size);
fprintf (stream, ", world");

fclose (stream);

printf ("buf = %s, size = %d\n", bp, size);

return 0O;

This program produces the following output:

buf
buf

‘hello’, size = 5
‘hello, world’, size = 12

11.19.2 Obstack Streams

You can open an output stream that puts it data in an obstack. See Section 3.4 [Obstacks],
page 40.

FILE * open_obstack_stream (struct obstack *obstack) Function
This function opens a stream for writing data into the obstack obstack. This starts an
object in the obstack and makes it grow as data is written (see Section 3.4.6 [Growing
Objects], page 46).

Calling £flush on this stream updates the current size of the object to match the
amount of data that has been written. After a call to fflush, you can examine the
object temporarily.

You can move the file position of an obstack stream with fseek (see Section 11.15 [File
Positioning], page 186). Moving the file position past the end of the data written fills
the intervening space with zeros.

To make the object permanent, update the obstack with ff1lush, and then use obstack_
finish to finalize the object and get its address. The following write to the stream
starts a new object in the obstack, and later writes add to that object until you do
another fflush and obstack_finigh.



Chapter 11: Input/Output on Streams 199

But how do you find out how long the object is? You can get the length in bytes by
calling obstack_object_size (see Section 3.4.8 [Status of an Obstack], page 49), or
you can null-terminate the object like this:

obstack_1igrow (obstack, 0);

Whichever one you do, you must do it before calling obstack_finish. (You can do
both if you wish.)

Here is a sample function that uses open_obstack_stream:

char *
make_message_string (const char *a, int b)

{
FILE *stream = open_obstack_stream (&message_obstack) ;
output_task (stream);
fprintf (stream, ": ");
fprintf (stream, a, b);
fprintf (stream, "\n");
fclose (stream);
obstack_lgrow (&message_obstack, 0);
return obstack_finish (&message_obstack);

11.19.3 Programming Your Own Custom Streams

This section describes how you can make a stream that gets input from an arbitrary data source
or writes output to an arbitrary data sink programmed by you. We call these custom streams.

11.19.3.1 Custom Streams and Cookies

Inside every custom stream is a special object called the cookie. This is an object supplied by
you which records where to fetch or store the data read or written. It is up to you to define a data
type to use for the cookie. The stream functions in the library never refer directly to its contents,
and they don’t even know what the type is; they record its address with type void *.

To implement a custom stream, you must specify how to fetch or store the data in the specified
place. You do this by defining hook functions to read, write, change “file position”, and close the



200 The GNU C Library

stream. All four of these functions will be passed the stream’s cookie so they can tell where to fetch
or store the data. The library functions don’t know what’s inside the cookie, but your functions
will know.

When you create a custom stream, you must specify the cookie pointer, and also the four hook
functions stored in a structure of type struct cookie_io_functions.

These facilities are declared in ‘stdio.h’.

struct cookie_io_functions Data Type
This is a structure type that holds the functions that define the communications pro-
tocol between the stream and its cookie. It has the following members:

cookie_read_function *read

This is the function that reads data from the cookie. If the value is a null
pointer instead of a function, then read operations on ths stream always
return EQF.

cookie_write_function *write

This is the function that writes data to the cookie. If the value is a null
pointer instead of a function, then data written to the stream is discarded.

cookie_seek_function *seek

This is the function that performs the equivalent of file positioning on the
cookie. If the value is a null pointer instead of a function, calls to fseek
on this stream return an ESPIPE error.

cookie_close_function *close

This function performs any appropriate cleanup on the cookie when closing
the stream. If the value is a null pointer instead of a function, nothing
special is done to close the cookie when the stream is closed.

FILE * fopencookie (void *cookie, const char *opentype, struct Function
cookie_functions iofunctions)
This function actually creates the stream for communicating with the cookie using the
functions in the io_functions argument. The opentype argument is interpreted as for
fopen; see Section 11.3 [Opening Streams|, page 140. (But note that the “truncate on
open” option is ignored.) The new stream is fully buffered.



Chapter 11: Input/Output on Streams 201

The fopencookie function returns the newly created stream, or a null pointer in case
of an error.

11.19.3.2 Custom Stream Hook Functions

Here are more details on how you should define the four hook functions that a custom stream
needs.

You should define the function to read data from the cookie as:

ssize_t reader (void *cookie, void *buffer, size_t size)

This is very similar to the read function; see Section 12.2 [I/O Primitives|, page 206. Your

function should transfer up to size bytes into the buffer, and return the number of bytes read, or
zero to indicate end-of-file. You can return a value of -1 to indicate an error.

You should define the function to write data to the cookie as:

ssize_t writer (void *cookie, const void *buffer, size_t size)

This is very similar to the write function; see Section 12.2 [I/O Primitives], page 206. Your

function should transfer up to size bytes from the buffer, and return the number of bytes written.
You can return a value of -1 to indicate an error.

You should define the function to perform seek operations on the cookie as:

int seeker (void *cookie, fpos_t *position, int whence)

For this function, the position and whence arguments are interpreted as for fgetpos; see Sec-

tion 11.16 [Portable Positioning], page 187. In the GNU library, fpos_t is equivalent to off_t or
long int, and simply represents the number of bytes from the beginning of the file.



202 The GNU C Library

After doing the seek operation, your function should store the resulting file position relative to
the beginning of the file in position. Your function should return a value of 0 on success and -1 to

indicate an error.

You should define the function to do cleanup operations on the cookie appropriate for closing
the stream as:

int cleaner (void *cookie)

Your function should return -1 to indicate an error, and 0 otherwise.

cookie_read_function Data Type
This is the data type that the read function for a custom stream should have. If you
declare the function as shown above, this is the type it will have.

cookie_write_function Data Type
The data type of the write function for a custom stream.

cookie_seek_function Data Type
The data type of the seek function for a custom stream.

cookie_close_function Data Type
The data type of the close function for a custom stream.



Chapter 12: Low-Level Input/Output 203

12 Low-Level Input/Output

This chapter describes functions for performing low-level input/output operations on file de-
scriptors. These functions include the primitives for the higher-level I/O functions described in
Chapter 11 [I/O on Streams], page 139, as well as functions for performing low-level control oper-
ations for which there are no equivalents on streams.

Stream-level I/O is more flexible and usually more convenient; therefore, programmers generally
use the descriptor-level functions only when necessary. These are some of the usual reasons:

e For reading binary files in large chunks.
e For reading an entire file into core before parsing it.

e To perform operations other than data transfer, which can only be done with a descriptor.
(You can use fileno to get the descriptor corresponding to a stream.)

e To pass descriptors to a child process. (The child can create its own stream to use a descriptor
that it inherits, but cannot inherit a stream directly.)

12.1 Opening and Closing Files

This section describes the primitives for opening and closing files using file descriptors. The
open and creat functions are declared in the header file ‘fcntl.h’, while close is declared in
‘unistd.h’.

int open (const char *filename, int flags[, mode_t mode]) Function
The open function creates and returns a new file descriptor for the file named by
filename. Initially, the file position indicator for the file is at the beginning of the file.
The argument mode is used only when a file is created, but it doesn’t hurt to supply
the argument in any case.

The flags argument controls how the file is to be opened. This is a bit mask; you create

Ll,

the value by the bitwise OR of the appropriate parameters (using the
C).

operator in

The flags argument must include exactly one of these values to specify the file access
mode:



204 The GNU C Library

0_RDONLY Open the file for read access.
0_WRONLY Open the file for write access.
0_RDWR Open the file for both reading and writing.

The flags argument can also include any combination of these flags:

0_APPEND If set, then all write operations write the data at the end of the file,
extending it, regardless of the current file position.

0_CREAT  If set, the file will be created if it doesn’t already exist.

0_EXCL If both 0_CREAT and 0_EXCL are set, then open fails if the specified file
already exists.

0_NOCTTY If filename names a terminal device, don’t make it the controlling terminal
for the process. See Chapter 24 [Job Control], page 495, for information
about what it means to be the controlling terminal.

0_NONBLOCK

This sets nonblocking mode. This option is usually only useful for special
files such as FIFOs (see Chapter 14 [Pipes and FIFOs|, page 263) and
devices such as terminals. Normally, for these files, open blocks until the
file is “ready”. If 0_NONBLOCK is set, open returns immediately.

The 0_NONBLOCK bit also affects read and write: It permits them to return
immediately with a failure status if there is no input immediately available
(read), or if the output can’t be written immediately (write).

0_TRUNC  If the file exists and is opened for write access, truncate it to zero length.
This option is only useful for regular files, not special files such as directories
or FIFOs.

For more information about these symbolic constants, see Section 12.10 [File Status
Flags|, page 224.

The normal return value from open is a non-negative integer file descriptor. In the
case of an error, a value of -1 is returned instead. In addition to the usual file name
syntax errors (see Section 10.2.3 [File Name Errors|, page 136), the following errno
error conditions are defined for this function:

EACCES The file exists but is not readable/writable as requested by the flags argu-

ment.



Chapter 12: Low-Level Input/Output

EEXIST
EINTR

EISDIR
EMFILE
ENFILE

ENOENT
ENOSPC

ENXIO

EROFS

Both 0_CREAT and 0_EXCL are set, and the named file already exists.

The open operation was interrupted by a signal. See Section 21.5 [Inter-
rupted Primitives], page 438.

The flags argument specified write access, and the file is a directory.

The process has too many files open.

The entire system, or perhaps the file system which contains the directory,
cannot support any additional open files at the moment. (This problem
cannot happen on the GNU system.)

The named file does not exist, but 0_CREAT is not specified.

The directory or file system that would contain the new file cannot be
extended, because there is no disk space left.

0_NONBLOCK and O_WRONLY are both set in the flags argument, the file
named by filename is a FIFO (see Chapter 14 [Pipes and FIFOs], page 263),
and no process has the file open for reading.

The file resides on a read-only file system and any of 0_WRONLY, O_RDWR,
0_CREAT, and O_TRUNC are set in the flags argument.

The open function is the underlying primitive for the fopen and freopen functions,

that create streams.

int creat (const char *filename, mode_t mode)

This function is obsolete. The call

creat (filename, mode)

is equivalent to

open (filename, 0_WRONLY | O_CREAT | O_TRUNC, mode)

int close (int filedes)

The function close closes the file descriptor filedes. Closing a file has the following

consequences:

e The file descriptor is deallocated.

205

Obsolete function

Function



206 The GNU C Library

e Any record locks owned by the process on the file are unlocked.

e When all file descriptors associated with a pipe or FIFO have been closed, any
unread data is discarded.

The normal return value from close is 0; a value of -1 is returned in case of failure.
The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file descriptor.

EINTR The call was interrupted by a signal. See Section 21.5 [Interrupted Primi-
tives|, page 438. Here’s an example of how to handle EINTR properly:

TEMP_FAILURE_RETRY (close (desc));

To close a stream, call fclose (see Section 11.4 [Closing Streams], page 142) instead of trying
to close its underlying file descriptor with close. This flushes any buffered output and updates the
stream object to indicate that it is closed.

12.2 Input and Output Primitives

This section describes the functions for performing primitive input and output operations on file
descriptors: read, write, and 1seek. These functions are declared in the header file ‘unistd.h’.

ssize_t Data Type
This data type is used to represent the sizes of blocks that can be read or written in a
single operation. It is similar to size_t, but must be a signed type.

ssize_t read (int filedes, void *buffer, size_t size) Function
The read function reads up to size bytes from the file with descriptor filedes, storing
the results in the buffer. (This is not necessarily a character string and there is no
terminating null character added.)

The return value is the number of bytes actually read. This might be less than size;
for example, if there aren’t that many bytes left in the file or if there aren’t that many
bytes immediately available. The exact behavior depends on what kind of file it is.
Note that reading less than size bytes is not an error.



Chapter 12: Low-Level Input/Output

A value of zero indicates end-of-file (except if the value of the size argument is also

zero). This is not considered an error. If you keep calling read while at end-of-file, it

will keep returning zero and doing nothing else.

If read returns at least one character, there is no way you can tell whether end-of-file

was reached. But if you did reach the end, the next read will return zero.

In case of an error, read returns -1. The following errno error conditions are defined

for this function:

EAGAIN

EBADF
EINTR

EIO

Normally, when no input is immediately available, read waits for some
input. But if the 0_NONBLOCK flag is set for the file (see Section 12.10 [File
Status Flags], page 224), read returns immediately without reading any
data, and reports this error.

Compatibility Note: Most versions of BSD Unix use a different error code
for this: EWOULDBLOCK. In the GNU library, EWOULDBLOCK is an alias for
EAGAIN, so it doesn’t matter which name you use.

On some systems, reading a large amount of data from a character special
file can also fail with EAGAIN if the kernel cannot find enough physical
memory to lock down the user’s pages. This is limited to devices that
transfer with direct memory access into the user’s memory, which means
it does not include terminals, since they always use separate buffers inside
the kernel.

The filedes argument is not a valid file descriptor.

read was interrupted by a signal while it was waiting for input. See Sec-
tion 21.5 [Interrupted Primitives|, page 438.

For many devices, and for disk files, this error code indicates a hardware

€rror.

EIO0 also occurs when a background process tries to read from the control-
ling terminal, and the normal action of stopping the process by sending it a
SIGTTIN signal isn’t working. This might happen if signal is being blocked
or ignored, or because the process group is orphaned. See Chapter 24 [Job
Control], page 495, for more information about job control, and Chapter 21
[Signal Handling], page 403, for information about signals.

The read function is the underlying primitive for all of the functions that read from

streams, such as fgetc.

207



208 The GNU C Library

ssize_t write (int filedes, const void *buffer, size_t size) Function
The write function writes up to size bytes from buffer to the file with descriptor filedes.
The data in buffer is not necessarily a character string and a null character output like
any other character.

The return value is the number of bytes actually written. This is normally the same
as size, but might be less (for example, if the physical media being written to fills up).

In the case of an error, write returns -1. The following errno error conditions are
defined for this function:

EAGAIN Normally, write blocks until the write operation is complete. But if the
O_NONBLOCK flag is set for the file (see Section 12.7 [Control Operations],
page 219), it returns immediately without writing any data, and reports
this error. An example of a situation that might cause the process to block
on output is writing to a terminal device that supports flow control, where
output has been suspended by receipt of a STOP character.

Compatibility Note: Most versions of BSD Unix use a different error code
for this: EWOULDBLOCK. In the GNU library, EWOULDBLOCK is an alias for
EAGAIN, so it doesn’t matter which name you use.

On some systems, writing a large amount of data from a character special
file can also fail with EAGAIN if the kernel cannot find enough physical
memory to lock down the user’s pages. This is limited to devices that
transfer with direct memory access into the user’s memory, which means

it does not include terminals, since they always use separate buffers inside

the kernel.
EBADF The filedes argument is not a valid file descriptor.
EFBIG The size of the file is larger than the implementation can support.
EINTR The write operation was interrupted by a signal while it was blocked

waiting for completion. See Section 21.5 [Interrupted Primitives], page 438.

EIO For many devices, and for disk files, this error code indicates a hardware
€rror.

EIO also occurs when a background process tries to write to the controlling
terminal, and the normal action of stopping the process by sending it a
SIGTTOU signal isn’t working. This might happen if the signal is being
blocked or ignored. See Chapter 24 [Job Control], page 495, for more
information about job control, and Chapter 21 [Signal Handling], page 403,
for information about signals.

ENOSPC The device is full.



Chapter 12: Low-Level Input/Output 209

EPIPE This error is returned when you try to write to a pipe or FIFO that isn’t
open for reading by any process. When this happens, a SIGPIPE signal is
also sent to the process; see Chapter 21 [Signal Handling], page 403.

Unless you have arranged to prevent EINTR failures, you should check errno after each
failing call to write, and if the error was EINTR, you should simply repeat the call. See
Section 21.5 [Interrupted Primitives|, page 438. The easy way to do this is with the
macro TEMP_FAILURE_RETRY, as follows:

nbytes = TEMP_FAILURE_RETRY (write (desc, buffer, count));

The write function is the underlying primitive for all of the functions that write to
streams, such as fputc.

12.3 Setting the File Position of a Descriptor

Just as you can set the file position of a stream with fseek, you can set the file position of a
descriptor with 1seek. This specifies the position in the file for the next read or write operation.
See Section 11.15 [File Positioning], page 186, for more information on the file position and what
it means.

To read the current file position value from a descriptor, use 1seek (desc, 0, SEEK_CUR).

off_t Iseek (int filedes, off_t offset, int whence) Function
The 1seek function is used to change the file position of the file with descriptor filedes.

The whence argument specifies how the offset should be interpreted in the same way as
for the fseek function, and can be one of the symbolic constants SEEK_SET, SEEK_CUR,
or SEEK_END.

SEEK_SET Specifies that whence is a count of characters from the beginning of the
file.

SEEK_CUR Specifies that whence is a count of characters from the current file position.
This count may be positive or negative.



210 The GNU C Library

SEEK_END Specifies that whence is a count of characters from the end of the file. A
negative count specifies a position within the current extent of the file;
a positive count specifies a position past the current end. If you set the
position past the current end, and actually write data, you will extend the
file with zeros up to that position.

The return value from lseek is normally the resulting file position, measured in bytes
from the beginning of the file. You can use this feature together with SEEK_CUR to read
the current file position.

You can set the file position past the current end of the file. This does not by itself
make the file longer; lseek never changes the file. But subsequent output at that
position will extend the file’s size.

If the file position cannot be changed, or the operation is in some way invalid, 1seek
returns a value of -1. The following errno error conditions are defined for this function:

EBADF The filedes is not a valid file descriptor.
EINVAL The whence argument value is not valid, or the resulting file offset is not
valid.

ESPIPE The filedes corresponds to a pipe or FIFO, which cannot be positioned.
(There may be other kinds of files that cannot be positioned either, but
the behavior is not specified in those cases.)

The 1seek function is the underlying primitive for the fseek, ftell and rewind func-
tions, which operate on streams instead of file descriptors.

You can have multiple descriptors for the same file if you open the file more than once, or
if you duplicate a descriptor with dup. Descriptors that come from separate calls to open have
independent file positions; using 1seek on one descriptor has no effect on the other. For example,



Chapter 12: Low-Level Input/Output 211

int di, d2;
char buf[4];

dl = open ("foo", O_RDONLY);
d2 = open ("foo", O_RDONLY);
lseek (d1, 1024, SEEK_SET);
read (d2, buf, 4);

will read the first four characters of the file ‘foo’. (The error-checking code necessary for a real
program has been omitted here for brevity.)

By contrast, descriptors made by duplication share a common file position with the original
descriptor that was duplicated. Anything which alters the file position of one of the duplicates,
including reading or writing data, affects all of them alike. Thus, for example,

int di, d2, d3;

char bufi[4], buf2[4];

dl = open ("foo", O_RDONLY);
d2 = dup (d1);

d3 = dup (d2);

lseek (d3, 1024, SEEK_SET);
read (d1, bufl, 4);

read (d2, buf2, 4);

will read four characters starting with the 1024’th character of ‘foo’, and then four more characters
starting with the 1028’th character.

off t Data Type
This is an arithmetic data type used to represent file sizes. In the GNU system, this is
equivalent to fpos_t or long int.

These three aliases for the ‘SEEK_..." constants exist for the sake of compatibility with older
BSD systems. They are defined in two different header files: ‘fcntl.h’ and ‘sys/file.h’.

L_SET An alias for SEEK_SET.
L_INCR An alias for SEEK_CUR.



212 The GNU C Library

L_XTND An alias for SEEK_END.

12.4 Descriptors and Streams

Given an open file descriptor, you can create a stream for it with the fdopen function. You can
get the underlying file descriptor for an existing stream with the fileno function. These functions
are declared in the header file ‘stdio.h’.

FILE * fdopen (int filedes, const char *opentype) Function
The fdopen function returns a new stream for the file descriptor filedes.

The opentype argument is interpreted in the same way as for the fopen function (see
Section 11.3 [Opening Streams|, page 140), except that the ‘b’ option is not permitted,;
this is because GNU makes no distinction between text and binary files. Also, "w" and
"w+" do not cause truncation of the file; these have affect only when opening a file, and
in this case the file has already been opened. You must make sure that the opentype
argument matches the actual mode of the open file descriptor.

The return value is the new stream. If the stream cannot be created (for example, if
the modes for the file indicated by the file descriptor do not permit the access specified
by the opentype argument), a null pointer is returned instead.

For an example showing the use of the fdopen function, see Section 14.1 [Creating a Pipe],
page 263.

int fileno (FILE *stream) Function
This function returns the file descriptor associated with the stream stream. If an error
is detected (for example, if the stream is not valid) or if stream does not do I/0 to a
file, fileno returns -1.

There are also symbolic constants defined in ‘unistd.h’ for the file descriptors belonging to the
standard streams stdin, stdout, and stderr; see Section 11.2 [Standard Streams], page 139.

STDIN_FILENO

This macro has value 0, which is the file descriptor for standard input.



Chapter 12: Low-Level Input/Output 213

STDOUT_FILENO
This macro has value 1, which is the file descriptor for standard output.
STDERR_FILENO

This macro has value 2, which is the file descriptor for standard error output.

12.5 Precautions for Mixing Streams and Descriptors

You can have multiple file descriptors and streams (let’s call both streams and descriptors
“channels” for short) connected to the same file, but you must take care to avoid confusion between
channels. There are two cases to consider: linked channels that share a single file position value,
and independent channels that have their own file positions.

It’s best to use just one channel in your program for actual data transfer to any given file, except
when all the access is for input. For example, if you open a pipe (something you can only do at the
file descriptor level), either do all I/O with the descriptor, or construct a stream from the descriptor
with fdopen and then do all I/O with the stream.

12.5.1 Linked Channels

Channels that come from a single opening share the same file position; we call them linked
channels. Linked channels result when you make a stream from a descriptor using fdopen, when
you get a descriptor from a stream with fileno, and when you copy a descriptor with dup or dup2.
For files that don’t support random access, such as terminals and pipes, all channels are effectively
linked. On random-access files, all append-type output streams are effectively linked to each other.

If you have been using a stream for I/O, and you want to do I/O using another channel (either
a stream or a descriptor) that is linked to it, you must first clean up the stream that you have been
using. See Section 12.5.3 [Cleaning Streams|, page 214.

Terminating a process, or executing a new program in the process, destroys all the streams in
the process. If descriptors linked to these streams persist in other processes, their file positions
become undefined as a result. To prevent this, you must clean up the streams before destroying
them.



214 The GNU C Library

12.5.2 Independent Channels

When you open channels (streams or descriptors) separately on a seekable file, each channel has
its own file position. These are called independent channels.

The system handles each channel independently. Most of the time, this is quite predictable and
natural (especially for input): each channel can read or write sequentially at its own place in the
file. The precautions you should take are these:

e You should clean an output stream after use, before doing anything else that might read or
write from the same part of the file.

¢ You should clean an input stream before reading data that may have been modified using an
independent channel. Otherwise, you might read obsolete data that had been in the stream’s
buffer.

If you do output to one channel at the end of the file, this will certainly leave the other inde-
pendent channels positioned somewhere before the new end. If you want them to output at the
end, you must set their file positions to end of file, first. (This is not necessary if you use an
append-type descriptor or stream; they always output at the current end of the file.) In order to
make the end-of-file position accurate, you must clean the output channel you were using, if it is a
stream. (This is necessary even if you plan to use an append-type channel next.)

It’s impossible for two channels to have separate file pointers for a file that doesn’t support
random access. Thus, channels for reading or writing such files are always linked, never indepen-
dent. Append-type channels are also always linked. For these channels, follow the rules for linked
channels; see Section 12.5.1 [Linked Channels|, page 213.

12.5.3 Cleaning Streams

On the GNU system, you can clean up any stream with fclean:

int fclean (stream) Function
Clean up the stream stream so that its buffer is empty. If stream is doing output,
force it out. If stream is doing input, give the data in the buffer back to the system,
arranging to reread it.



Chapter 12: Low-Level Input/Output 215

On other systems, you can use fflush to clean a stream in most cases.

You can skip the fclean or fflush if you know the stream is already clean. A stream is clean
whenever its buffer is empty. For example, an unbuffered stream is always clean. An input stream
that is at end-of-file is clean. A line-buffered stream is clean when the last character output was a

newline.

There is one case in which cleaning a stream is impossible on most systems. This is when the
stream is doing input from a file that is not random-access. Such streams typically read ahead,
and when the file is not random access, there is no way to give back the excess data already read.
When an input stream reads from a random-access file, fflush does clean the stream, but leaves
the file pointer at an unpredictable place; you must set the file pointer before doing any further
I/O. On the GNU system, using fclean avoids both of these problems.

Closing an output-only stream also does fflush, so this is a valid way of cleaning an output
stream. On the GNU system, closing an input stream does fclean.

You need not clean a stream before using its descriptor for control operations such as setting
terminal modes; these operations don’t affect the file position and are not affected by it. You can
use any descriptor for these operations, and all channels are affected simultaneously. However, text
already “output” to a stream but still buffered by the stream will be subject to the new terminal
modes when subsequently flushed. To make sure “past” output is covered by the terminal settings
that were in effect at the time, flush the output streams for that terminal before setting the modes.
See Section 16.4 [Terminal Modes], page 323.

12.6 Waiting for Input or Output

Sometimes a program needs to accept input on multiple input channels whenever input arrives.
For example, some workstations may have devices such as a digitizing tablet, function button box,
or dial box that are connected via normal asynchronous serial interfaces; good user interface style
requires responding immediately to input on any device. Another example is a program that acts
as a server to several other processes via pipes or sockets.

You cannot normally use read for this purpose, because this blocks the program until input is
available on one particular file descriptor; input on other channels won’t wake it up. You could set
nonblocking mode and poll each file descriptor in turn, but this is very inefficient.



216 The GNU C Library

A better solution is to use the select function. This blocks the program until input or output
is ready on a specified set of file descriptors, or until timer expires, whichever comes first. This
facility is declared in the header file ‘sys/types.h’.

The file descriptor sets for the select function are specified as fd_set objects. Here is the
description of the data type and some macros for manipulating these objects.

fd_set Data Type
The fd_set data type represents file descriptor sets for the select function. It is
actually a bit array.

int FD_SETSIZE Magcro
The value of this macro is the maximum number of file descriptors that a £d_set object
can hold information about. On systems with a fixed maximum number, FD_SETSIZE
is at least that number. On some systems, including GNU, there is no absolute limit
on the number of descriptors open, but this macro still has a constant value which
controls the number of bits in an fd_set.

void FD_ZERO (fd_set *set) Macro
This macro initializes the file descriptor set set to be the empty set.

void FD_SET (int filedes, fd_set *set) Macro
This macro adds filedes to the file descriptor set set.

void FD_CLR (int filedes, fd_set *set) Macro
This macro removes filedes from the file descriptor set set.

int FD_ISSET (int filedes, £d_set *set) Macro
This macro returns a nonzero value (true) if filedes is a member of the the file descriptor
set set, and zero (false) otherwise.

Next, here is the description of the select function itself.

int select (int nfds, fd_set *read fds, £d_set *writefds, £d_set Function
xexcept fds, struct timeval *timeout)
The select function blocks the calling process until there is activity on any of the
specified sets of file descriptors, or until the timeout period has expired.



Chapter 12: Low-Level Input/Output 217

The file descriptors specified by the read_fds argument are checked to see if they are
ready for reading; the write_fds file descriptors are checked to see if they are ready for
writing; and the except_fds file descriptors are checked for exceptional conditions. You
can pass a null pointer for any of these arguments if you are not interested in checking
for that kind of condition.

“Exceptional conditions” does not mean errors—errors are reported immediately when
an erroneous system call is executed, and do not constitute a state of the descriptor.
Rather, they include conditions such as the presence of an urgent message on a socket.
(See Chapter 15 [Sockets], page 269, for information on urgent messages.)

The select function checks only the first nfds file descriptors. The usual thing is to
pass FD_SETSIZE as the value of this argument.

The timeout specifies the maximum time to wait. If you pass a null pointer for this
argument, it means to block indefinitely until one of the file descriptors is ready. Other-
wise, you should provide the time in struct timeval format; see Section 19.2.2 [High-
Resolution Calendar], page 375. Specify zero as the time (a struct timeval containing
all zeros) if you want to find out which descriptors are ready without waiting if none
are ready.

The normal return value from select is the total number of ready file descriptors in
all of the sets. Each of the argument sets is overwritten with information about the
descriptors that are ready for the corresponding operation. Thus, to see if a particular
descriptor desc has input, use FD_ISSET (desc, read’fds) after select returns.

If select returns because the timeout period expires, it returns a value of zero.

Any signal will cause select to return immediately. So if your program uses signals,
you can’t rely on select to keep waiting for the full time specified. If you want to be
sure of waiting for a particular amount of time, you must check for EINTR and repeat
the select with a newly calculated timeout based on the current time. See the example
below. See also Section 21.5 [Interrupted Primitives], page 438.

If an error occurs, select returns -1 and does not modify the argument file descriptor
sets. The following errno error conditions are defined for this function:

EBADF One of the file descriptor sets specified an invalid file descriptor.



218 The GNU C Library

EINTR The operation was interrupted by a signal. See Section 21.5 [Interrupted
Primitives], page 438.

EINVAL The timeout argument is invalid; one of the components is negative or too
large.

Portability Note: The select function is a BSD Unix feature.

Here is an example showing how you can use select to establish a timeout period for reading
from a file descriptor. The input_timeout function blocks the calling process until input is available
on the file descriptor, or until the timeout period expires.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>

int
input_timeout (int filedes, unsigned int seconds)
{

fd_set set;

struct timeval timeout;

/* Initialize the file descriptor set. */
FD_ZERO (&set);
FD_SET (filedes, &set);

/* Initialize the timeout data structure. */
timeout.tv_sec = seconds;
timeout.tv_usec = 0;

/* select returns 0 if timeout, 1 if input available, -1 if error. */
return TEMP_FAILURE_RETRY (select (FD_SETSIZE, &set, NULL, NULL, &timeout));
}

int

main (void)

{
fprintf (stderr, "select returned %d.\n", input_timeout (STDIN_FILENQ, 5));
return 0;

}

There is another example showing the use of select to multiplex input from multiple sockets
in Section 15.8.7 [Server Example], page 303.



Chapter 12: Low-Level Input/Output

12.7 Control Operations on Files

This section describes how you can perform various other operations on file descriptors, such
as inquiring about or setting flags describing the status of the file descriptor, manipulating record

locks, and the like. All of these operations are performed by the function fcntl.

The second argument to the fcntl function is a command that specifies which operation to
perform. The function and macros that name various flags that are used with it are declared in
the header file ‘fcntl.h’. (Many of these flags are also used by the open function; see Section 12.1

[Opening and Closing Files|, page 203.)

int fentl (int filedes, int command, ...)

The fcntl function performs the operation specified by command on the file descriptor

filedes. Some commands require additional arguments to be supplied. These additional

arguments and the return value and error conditions are given in the detailed descrip-

tions of the individual commands.

Briefly, here is a list of what the various commands are.

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETLK
F_SETLK
F_SETLKW

F_GETOWN

F_SETOWN

Duplicate the file descriptor (return another file descriptor pointing to the
same open file). See Section 12.8 [Duplicating Descriptors|, page 220.

Get flags associated with the file descriptor. See Section 12.9 [Descriptor
Flags|, page 222.

Set flags associated with the file descriptor. See Section 12.9 [Descriptor
Flags|, page 222.

Get flags associated with the open file. See Section 12.10 [File Status
Flags|, page 224.

Set flags associated with the open file. See Section 12.10 [File Status Flags],
page 224.

Get a file lock. See Section 12.11 [File Locks|, page 226.

Set or clear a file lock. See Section 12.11 [File Locks]|, page 226.

Like F_SETLK, but wait for completion. See Section 12.11 [File Locks],
page 226.

Get process or process group ID to receive SIGIO signals. See Section 12.12

[Interrupt Input], page 231.

Set process or process group ID to receive SIGIO signals. See Section 12.12
[Interrupt Input], page 231.

Function



220 The GNU C Library

12.8 Duplicating Descriptors

You can duplicate a file descriptor, or allocate another file descriptor that refers to the same
open file as the original. Duplicate descriptors share one file position and one set of file status flags
(see Section 12.10 [File Status Flags|, page 224), but each has its own set of file descriptor flags
(see Section 12.9 [Descriptor Flags|, page 222).

The major use of duplicating a file descriptor is to implement redirection of input or output:
that is, to change the file or pipe that a particular file descriptor corresponds to.

You can perform this operation using the fcntl function with the F_DUPFD command, but there
are also convenient functions dup and dup2 for duplicating descriptors.

The fcntl function and flags are declared in ‘fcntl.h’, while prototypes for dup and dup2 are
in the header file ‘unistd.h’.

int dup (int old) Function
This function copies descriptor old to the first available descriptor number (the first
number not currently open). It is equivalent to fcntl (old, F_DUPFD, 0).

int dup2 (int old, int new) Function
This function copies the descriptor old to descriptor number new.

If old is an invalid descriptor, then dup2 does nothing; it does not close new. Otherwise,
the new duplicate of old replaces any previous meaning of descriptor new, as if new
were closed first.

If old and new are different numbers, and old is a valid descriptor number, then dup?2
is equivalent to:

close (new);
fcntl (old, F_DUPFD, new)

However, dup2 does this atomically; there is no instant in the middle of calling dup?2
at which new is closed and not yet a duplicate of old.



Chapter 12: Low-Level Input/Output 221

int F_ DUPFD Macro
This macro is used as the command argument to fcntl, to copy the file descriptor
given as the first argument.

The form of the call in this case is:

fcntl (old, F_DUPFD, next_filedes)

The next_filedes argument is of type int and specifies that the file descriptor returned
should be the next available one greater than or equal to this value.

The return value from fcntl with this command is normally the value of the new
file descriptor. A return value of -1 indicates an error. The following errno error
conditions are defined for this command:

EBADF The old argument is invalid.
EINVAL The next_filedes argument is invalid.

EMFILE There are no more file descriptors available—your program is already using
the maximum.

ENFILE is not a possible error code for dup2 because dup2 does not create a new opening
of a file; duplicate descriptors do not count toward the limit which ENFILE indicates.
EMFILE is possible because it refers to the limit on distinct descriptor numbers in use
in one process.

Here is an example showing how to use dup2 to do redirection. Typically, redirection of the
standard streams (like stdin) is done by a shell or shell-like program before calling one of the
exec functions (see Section 23.5 [Executing a File], page 485) to execute a new program in a child
process. When the new program is executed, it creates and initializes the standard streams to point
to the corresponding file descriptors, before its main function is invoked.

So, to redirect standard input to a file, the shell could do something like:

pid = fork O;



222 The GNU C Library

if (pid == 0)
{
char *filename;
char *program;
int file;

file = TEMP_FAILURE_RETRY (open (filename, O_RDONLY));
dup2 (file, STDIN_FILENOQ);

TEMP_FAILURE_RETRY (close (file));

execv (program, NULL);

There is also a more detailed example showing how to implement redirection in the context of
a pipeline of processes in Section 24.6.3 [Launching Jobs], page 503.

12.9 File Descriptor Flags

File descriptor flags are miscellaneous attributes of a file descriptor. These flags are associated
with particular file descriptors, so that if you have created duplicate file descriptors from a single
opening of a file, each descriptor has its own set of flags.

Currently there is just one file descriptor flag: FD_CLOEXEC, which causes the descriptor to be
closed if you use any of the exec... functions (see Section 23.5 [Executing a File|, page 485).

The symbols in this section are defined in the header file ‘fcntl.h’.

int F_. GETFD Macro
This macro is used as the command argument to fcntl, to specify that it should return
the file descriptor flags associated with the filedes argument.

The normal return value from fcntl with this command is a nonnegative number which
can be interpreted as the bitwise OR of the individual flags (except that currently there
is only one flag to use).

In case of an error, fcntl returns —1. The following errno error conditions are defined
for this command:

EBADF The filedes argument is invalid.



Chapter 12: Low-Level Input/Output 223

int F_.SETFD Macro
This macro is used as the command argument to fcntl, to specify that it should set
the file descriptor flags associated with the filedes argument. This requires a third int
argument to specify the new flags, so the form of the call is:

fcntl (filedes, F_SETFD, new_flags)

The normal return value from fcntl with this command is an unspecified value other
than -1, which indicates an error. The flags and error conditions are the same as for
the F_GETFD command.

The following macro is defined for use as a file descriptor flag with the fcntl function. The
value is an integer constant usable as a bit mask value.

int FD_CLOEXEC Macro
This flag specifies that the file descriptor should be closed when an exec function
is invoked; see Section 23.5 [Executing a File], page 485. When a file descriptor is
allocated (as with open or dup), this bit is initially cleared on the new file descriptor,
meaning that descriptor will survive into the new program after exec.

If you want to modify the file descriptor flags, you should get the current flags with F_GETFD
and modify the value. Don’t assume that the flag listed here is the only ones that are implemented;
your program may be run years from now and more flags may exist then. For example, here is a
function to set or clear the flag FD_CLOEXEC without altering any other flags:

/* Set the FD_CLOEXEC flag of desc if value is nonzero,
or clear the flag if value is 0.
Return 0 on success, or -1 on error with errno set. */

int
set_cloexec_flag (int desc, int value)



224 The GNU C Library

int oldflags = fcntl (desc, F_GETFD, 0);
/* If reading the flags failed, return error indication now.
if (oldflags < 0)

return oldflags;
/* Set just the flag we want to set. */
if (value !'= 0)

oldflags |= FD_CLOEXEC;
else

oldflags &= “FD_CLOEXEC;
/* Store modified flag word in the descriptor. */
return fcntl (desc, F_SETFD, oldflags);

12.10 File Status Flags

File status flags are used to specify attributes of the opening of a file. Unlike the file descriptor
flags discussed in Section 12.9 [Descriptor Flags], page 222, the file status flags are shared by
duplicated file descriptors resulting from a single opening of the file.

The file status flags are initialized by the open function from the flags argument of the open
function. Some of the flags are meaningful only in open and are not remembered subsequently;
many of the rest cannot subsequently be changed, though you can read their values by examining
the file status flags.

A few file status flags can be changed at any time using fcntl. These include O_APPEND and
0_NONBLOCK.

The symbols in this section are defined in the header file ‘fcntl.h’.

int F.GETFL Macro
This macro is used as the command argument to fcntl, to read the file status flags
for the open file with descriptor filedes.

The normal return value from fcntl with this command is a nonnegative number which
can be interpreted as the bitwise OR of the individual flags. The flags are encoded like
the flags argument to open (see Section 12.1 [Opening and Closing Files], page 203),
but only the file access modes and the 0_APPEND and O_NONBLOCK flags are meaningful
here. Since the file access modes are not single-bit values, you can mask off other bits
in the returned flags with 0_ACCMODE to compare them.



Chapter 12: Low-Level Input/Output 225

In case of an error, fcntl returns -1. The following errno error conditions are defined
for this command:

EBADF The filedes argument is invalid.

int F_ SETFL Magcro
This macro is used as the command argument to fcntl, to set the file status flags for
the open file corresponding to the filedes argument. This command requires a third
int argument to specify the new flags, so the call looks like this:

fcntl (filedes, F_SETFL, new_flags)

You can’t change the access mode for the file in this way; that is, whether the file
descriptor was opened for reading or writing. You can only change the 0_APPEND and
0_NONBLOCK flags.

The normal return value from fcntl with this command is an unspecified value other
than -1, which indicates an error. The error conditions are the same as for the F_GETFL
command.

The following macros are defined for use in analyzing and constructing file status flag values:

0_APPEND The bit that enables append mode for the file. If set, then all write operations write
the data at the end of the file, extending it, regardless of the current file position.
0_NONBLOCK
The bit that enables nonblocking mode for the file. If this bit is set, read requests on
the file can return immediately with a failure status if there is no input immediately
available, instead of blocking. Likewise, write requests can also return immediately
with a failure status if the output can’t be written immediately.

O0_NDELAY This is a synonym for 0_NONBLOCK, provided for compatibility with BSD.

int O_ ACCMODE Macro
This macro stands for a mask that can be bitwise-ANDed with the file status flag value
to produce a value representing the file access mode. The mode will be 0_RDONLY,
0_WRONLY, or O_RDWR.



226 The GNU C Library

0_RDONLY Open the file for read access.
0_WRONLY Open the file for write access.
0_RDWR Open the file for both reading and writing.

If you want to modify the file status flags, you should get the current flags with F_GETFL and
modify the value. Don’t assume that the flags listed here are the only ones that are implemented;
your program may be run years from now and more flags may exist then. For example, here is a
function to set or clear the flag 0_NONBLOCK without altering any other flags:

/* Set the 0_NONBLOCK flag of desc if value is nonzero,
or clear the flag if value is 0.

Return 0 on success, or -1 on error with errno set. */

int
set_nonblock_flag (int desc, int value)
{
int oldflags = fcntl (desc, F_GETFL, 0);
/* If reading the flags failed, return error indication now. */
if (oldflags < 0)
return oldflags;
/* Set just the flag we want to set. */
if (value != 0)
oldflags |= O_NONBLOCK;
else
oldflags &= “0_NONBLOCK;
/* Store modified flag word in the descriptor. */
return fcntl (desc, F_SETFL, oldflags);

12.11 File Locks

The remaining fcntl commands are used to support record locking, which permits multiple
cooperating programs to prevent each other from simultaneously accessing parts of a file in error-
prone ways.



Chapter 12: Low-Level Input/Output 227

An exclusive or write lock gives a process exclusive access for writing to the specified part of
the file. While a write lock is in place, no other process can lock that part of the file.

A shared or read lock prohibits any other process from requesting a write lock on the specified
part of the file. However, other processes can request read locks.

The read and write functions do not actually check to see whether there are any locks in place.
If you want to implement a locking protocol for a file shared by multiple processes, your application
must do explicit fcntl calls to request and clear locks at the appropriate points.

Locks are associated with processes. A process can only have one kind of lock set for each byte
of a given file. When any file descriptor for that file is closed by the process, all of the locks that
process holds on that file are released, even if the locks were made using other descriptors that
remain open. Likewise, locks are released when a process exits, and are not inherited by child
processes created using fork (see Section 23.4 [Creating a Process|, page 483).

When making a lock, use a struct flock to specify what kind of lock and where. This data
type and the associated macros for the fcntl function are declared in the header file ‘fcntl.h’.

flock struct Type
This structure is used with the fcntl function to describe a file lock. It has these
members:

short int 1_type
Specifies the type of the lock; one of F_RDLCK, F_WRLCK, or F_UNLCK.
short int 1_whence

This corresponds to the whence argument to fseek or 1seek, and specifies
what the offset is relative to. Its value can be one of SEEK_SET, SEEK_CUR,
or SEEK_END.

off_t 1_start

This specifies the offset of the start of the region to which the lock applies,
and is given in bytes relative to the point specified by 1_whence member.

off_t 1_len

This specifies the length of the region to be locked. A value of 0 is treated
specially; it means the region extends to the end of the file.



228 The GNU C Library

pid_t 1_pid

This field is the process ID (see Section 23.2 [Process Creation Concepts|,
page 482) of the process holding the lock. It is filled in by calling fcntl
with the F_GETLK command, but is ignored when making a lock.

int F.GETLK Macro
This macro is used as the command argument to fcntl, to specify that it should
get information about a lock. This command requires a third argument of type
struct flock * to be passed to fcntl, so that the form of the call is:

fcntl (filedes, F_GETLK, lockp)

If there is a lock already in place that would block the lock described by the Ilockp
argument, information about that lock overwrites *lockp. Existing locks are not re-
ported if they are compatible with making a new lock as specified. Thus, you should
specify a lock type of F_WRLCK if you want to find out about both read and write locks,
or F_RDLCK if you want to find out about write locks only.

There might be more than one lock affecting the region specified by the lockp argument,
but fcntl only returns information about one of them. The 1_whence member of the
lockp structure is set to SEEK_SET and the 1_start and 1_len fields set to identify the
locked region.

If no lock applies, the only change to the lockp structure is to update the 1_type to a
value of F_UNLCK.

The normal return value from fcntl with this command is an unspecified value other
than -1, which is reserved to indicate an error. The following errno error conditions
are defined for this command:

EBADF The filedes argument is invalid.

EINVAL Either the lockp argument doesn’t specify valid lock information, or the
file associated with filedes doesn’t support locks.



Chapter 12: Low-Level Input/Output

int F_.SETLK

229

Magcro

This macro is used as the command argument to fcntl, to specify that it should set

or clear a lock. This command requires a third argument of type struct flock * to

be passed to fcntl, so that the form of the call is:

fcntl (filedes, F_SETLK, lockp)

If the process already has a lock on any part of the region, the old lock on that part

is replaced with the new lock. You can remove a lock by specifying the a lock type of

F_UNLCK.

If the lock cannot be set, fcntl returns immediately with a value of -1. This function

does not block waiting for other processes to release locks. If fcntl succeeds, it return

a value other than -1.

The following errno error conditions are defined for this function:

EACCES
EAGAIN

EBADF

EINVAL

ENOLCK

The lock cannot be set because it is blocked by an existing lock on the file.
Some systems use EAGAIN in this case, and other systems use EACCES; your
program should treat them alike, after F_SETLK.

Either: the filedes argument is invalid; you requested a read lock but the
filedes is not open for read access; or, you requested a write lock but the
filedes is not open for write access.

Either the lockp argument doesn’t specify valid lock information, or the
file associated with filedes doesn’t support locks.

The system has run out of file lock resources; there are already too many
file locks in place.

Well-designed file systems never report this error, because they have no
limitation on the number of locks. However, you must still take account of
the possibility of this error, as it could result from network access to a file
system on another machine.



230 The GNU C Library

int F_. SETLKW Macro
This macro is used as the command argument to fcntl, to specify that it should set
or clear a lock. It is just like the F_SETLK command, but causes the process to block
(or wait) until the request can be specified.

This command requires a third argument of type struct flock *, as for the F_SETLK

command.

The fcntl return values and errors are the same as for the F_SETLK command, but
these additional errno error conditions are defined for this command:

EINTR The function was interrupted by a signal while it was waiting. See Sec-
tion 21.5 [Interrupted Primitives], page 438.

EDEADLK A deadlock condition was detected. This can happen if two processes each
already controlling a locked region request a lock on the same region locked
by the other process.

The following macros are defined for use as values for the 1_type member of the flock structure.
The values are integer constants.

F_RDLCK  This macro is used to specify a read (or shared) lock.
F_WRLCK  This macro is used to specify a write (or exclusive) lock.

F_UNLCK  This macro is used to specify that the region is unlocked.

As an example of a situation where file locking is useful, consider a program that can be run
simultaneously by several different users, that logs status information to a common file. One
example of such a program might be a game that uses a file to keep track of high scores. Another
example might be a program that records usage or accounting information for billing purposes.

Having multiple copies of the program simultaneously writing to the file could cause the contents
of the file to become mixed up. But you can prevent this kind of problem by setting a write lock
on the file before actually writing to the file.

If the program also needs to read the file and wants to make sure that the contents of the file are
in a consistent state, then it can also use a read lock. While the read lock is set, no other process
can lock that part of the file for writing.



Chapter 12: Low-Level Input/Output 231

Remember that file locks are only a voluntary protocol for controlling access to a file. There is
still potential for access to the file by programs that don’t use the lock protocol.

12.12 Interrupt-Driven Input

If you set the FASYNC status flag on a file descriptor (see Section 12.10 [File Status Flags],
page 224), a SIGIO signal is sent whenever input or output becomes possible on that file descriptor.
The process or process group to receive the signal can be selected by using the F_SETOWN command
to the fcntl function. If the file descriptor is a socket, this also selects the recipient of SIGURG
signals that are delivered when out-of-band data arrives on that socket; see Section 15.8.8 [Out-of-
Band Datal, page 306.

If the file descriptor corresponds to a terminal device, then SIGIO signals are sent to the fore-
ground process group of the terminal. See Chapter 24 [Job Control], page 495.

The symbols in this section are defined in the header file ‘fcntl.h’.

int F. GETOWN Magcro
This macro is used as the command argument to fcntl, to specify that it should get
information about the process or process group to which SIGIO signals are sent. (For
a terminal, this is actually the foreground process group ID, which you can get using
tcgetpgrp; see Section 24.7.3 [Terminal Access Functions], page 518.)

The return value is interpreted as a process ID; if negative, its absolute value is the
process group ID.

The following errno error condition is defined for this command:
EBADF The filedes argument is invalid.

int F SETOWN Macro
This macro is used as the command argument to fcntl, to specify that it should set

the process or process group to which SIGIO signals are sent. This command requires
a third argument of type pid_t to be passed to fcntl, so that the form of the call is:

fcntl (filedes, F_SETOWN, pid)



232

The GNU C Library

The pid argument should be a process ID. You can also pass a negative number whose
absolute value is a process group ID.

The return value from fcntl with this command is -1 in case of error and some other
value if successful. The following errno error conditions are defined for this command:

EBADF The filedes argument is invalid.

ESRCH There is no process or process group corresponding to pid.



Chapter 13: File System Interface 233

13 File System Interface

This chapter describes the GNU C library’s functions for manipulating files. Unlike the input
and output functions described in Chapter 11 [I/O on Streams], page 139 and Chapter 12 [Low-
Level 1/0], page 203, these functions are concerned with operating on the files themselves, rather
than on their contents.

Among the facilities described in this chapter are functions for examining or modifying directo-
ries, functions for renaming and deleting files, and functions for examining and setting file attributes
such as access permissions and modification times.

13.1 Working Directory

Each process has associated with it a directory, called its current working directory or simply
working directory, that is used in the resolution of relative file names (see Section 10.2.2 [File Name
Resolution|, page 135).

When you log in and begin a new session, your working directory is initially set to the home
directory associated with your login account in the system user database. You can find any user’s
home directory using the getpwuid or getpwnam functions; see Section 25.12 [User Database],
page 533.

Users can change the working directory using shell commands like cd. The functions described
in this section are the primitives used by those commands and by other programs for examining
and changing the working directory.

Prototypes for these functions are declared in the header file ‘unistd.h’.

char * getcwd (char *buffer, size_t size) Function
The getcwd function returns an absolute file name representing the current working
directory, storing it in the character array buffer that you provide. The size argument
is how you tell the system the allocation size of buffer.

The GNU library version of this function also permits you to specify a null pointer for
the buffer argument. Then getcwd allocates a buffer automatically, as with malloc
(see Section 3.3 [Unconstrained Allocation], page 30). If the size is greater than zero,



234 The GNU C Library

then the buffer is that large; otherwise, the buffer is as large as necessary to hold the

result.

The return value is buffer on success and a null pointer on failure. The following errno
error conditions are defined for this function:

EINVAL The size argument is zero and buffer is not a null pointer.

ERANGE The size argument is less than the length of the working directory name.
You need to allocate a bigger array and try again.

EACCES Permission to read or search a component of the file name was denied.

Here is an example showing how you could implement the behavior of GNU’s getcwd (NULL, 0)
using only the standard behavior of getcwd:

char *
gnu_getcwd ()
{

int size = 100;
char *buffer = (char *) xmalloc (size);

while (1)
{
char *value = getcwd (buffer, size);
if (value != 0)
return buffer;
size *= 2;
free (buffer);
buffer = (char *) xmalloc (size);

See Section 3.3.2 [Malloc Examples|, page 32, for information about xmalloc, which is not a library
function but is a customary name used in most GNU software.

char * getwd (char *buffer) Function
This is similar to getcwd. The GNU library provides getwd for backwards compatibility
with BSD. The buffer should be a pointer to an array at least PATH_MAX bytes long.



Chapter 13: File System Interface 235

int chdir (const char xfilename) Function
This function is used to set the process’s working directory to filename.

The normal, successful return value from chdir is 0. A value of -1 is returned to
indicate an error. The errno error conditions defined for this function are the usual
file name syntax errors (see Section 10.2.3 [File Name Errors|, page 136), plus ENOTDIR
if the file filename is not a directory.

13.2 Accessing Directories

The facilities described in this section let you read the contents of a directory file. This is useful
if you want your program to list all the files in a directory, perhaps as part of a menu.

The opendir function opens a directory stream whose elements are directory entries. You use the
readdir function on the directory stream to retrieve these entries, represented as struct dirent
objects. The name of the file for each entry is stored in the d_name member of this structure. There
are obvious parallels here to the stream facilities for ordinary files, described in Chapter 11 [I/O

on Streams|, page 139.

13.2.1 Format of a Directory Entry

This section describes what you find in a single directory entry, as you might obtain it from a
directory stream. All the symbols are declared in the header file ‘dirent .h’.

struct dirent Data Type
This is a structure type used to return information about directory entries. It contains
the following fields:

char *d_name
This is the null-terminated file name component. This is the only field you
can count on in all POSIX systems.

ino_t d_fileno

This is the file serial number. For BSD compatibility, you can also refer to

this member as d_ino.



236 The GNU C Library

size_t d_namlen

This is the length of the file name, not including the terminating null
character.

This structure may contain additional members in the future.

When a file has multiple names, each name has its own directory entry. The only way
you can tell that the directory entries belong to a single file is that they have the same
value for the d_fileno field.

File attributes such as size, modification times, and the like are part of the file itself,
not any particular directory entry. See Section 13.8 [File Attributes], page 246.

13.2.2 Opening a Directory Stream

This section describes how to open a directory stream. All the symbols are declared in the
header file ‘dirent.h’.

DIR Data Type
The DIR data type represents a directory stream.

You shouldn’t ever allocate objects of the struct dirent or DIR data types, since the directory
access functions do that for you. Instead, you refer to these objects using the pointers returned by
the following functions.

DIR * opendir (const char *dirname) Function
The opendir function opens and returns a directory stream for reading the directory
whose file name is dirname. The stream has type DIR *.

If unsuccessful, opendir returns a null pointer. In addition to the usual file name
syntax errors (see Section 10.2.3 [File Name Errors|, page 136), the following errno
error conditions are defined for this function:

EACCES Read permission is denied for the directory named by dirname.

EMFILE The process has too many files open.



Chapter 13: File System Interface 237

ENFILE The entire system, or perhaps the file system which contains the directory,
cannot support any additional open files at the moment. (This problem
cannot happen on the GNU system.)

The DIR type is typically implemented using a file descriptor, and the opendir function
in terms of the open function. See Chapter 12 [Low-Level I/O], page 203. Directory
streams and the underlying file descriptors are closed on exec (see Section 23.5 [Exe-
cuting a File|, page 485).

13.2.3 Reading and Closing a Directory Stream

This section describes how to read directory entries from a directory stream, and how to close
the stream when you are done with it. All the symbols are declared in the header file ‘dirent.h’.

struct dirent * readdir (DIR *dirstream) Function
This function reads the next entry from the directory. It normally returns a pointer to
a structure containing information about the file. This structure is statically allocated
and can be rewritten by a subsequent call.

(3]

9

Portability Note: On some systems, readdir may not return entries for and ‘...

See Section 10.2.2 [File Name Resolution], page 135.

If there are no more entries in the directory or an error is detected, readdir returns a
null pointer. The following errno error conditions are defined for this function:

EBADF The dirstream argument is not valid.
int closedir (DIR *dirstream) Function

This function closes the directory stream dirstream. It returns 0 on success and -1 on
failure.

The following errno error conditions are defined for this function:

EBADF The dirstream argument is not valid.



238 The GNU C Library

13.2.4 Simple Program to List a Directory

Here’s a simple program that prints the names of the files in the current working directory:

#include <stddef.h>
#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>

int
main (void)
{

DIR *dp;

struct dirent *ep;

dp = opendir ("./");
if (dp != NULL)
{
while (ep = readdir (dp))
puts (ep->d_name);
(void) closedir (dp);
}
else
puts ("Couldn’t open the directory.");

return O;

}

The order in which files appear in a directory tends to be fairly random. A more useful program
would sort the entries (perhaps by alphabetizing them) before printing them; see Section 8.3 [Array
Sort Function], page 108

13.2.5 Random Access in a Directory Stream

This section describes how to reread parts of a directory that you have already read from an
open directory stream. All the symbols are declared in the header file ‘dirent.h’.

void rewinddir (DIR *dirstream) Function
The rewinddir function is used to reinitialize the directory stream dirstream, so that
if you call readdir it returns information about the first entry in the directory again.
This function also notices if files have been added or removed to the directory since it



Chapter 13: File System Interface 239

was opened with opendir. (Entries for these files might or might not be returned by
readdir if they were added or removed since you last called opendir or rewinddir.)

off_t telldir (DIR *dirstream) Function
The telldir function returns the file position of the directory stream dirstream. You
can use this value with seekdir to restore the directory stream to that position.

void seekdir (DIR *dirstream, off_t pos) Function
The seekdir function sets the file position of the directory stream dirstream to pos.
The value pos must be the result of a previous call to telldir on this particular stream;
closing and reopening the directory can invalidate values returned by telldir.

13.3 Hard Links

In POSIX systems, one file can have many names at the same time. All of the names are equally
real, and no one of them is preferred to the others.

To add a name to a file, use the 1ink function. (The new name is also called a hard link to the
file.) Creating a new link to a file does not copy the contents of the file; it simply makes a new
name by which the file can be known, in addition to the file’s existing name or names.

One file can have names in several directories, so the the organization of the file system is not
a strict hierarchy or tree.

Since a particular file exists within a single file system, all its names must be in directories in
that file system. link reports an error if you try to make a hard link to the file from another file
system.

The prototype for the 1ink function is declared in the he