LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 1 of 26

Title: A standard for Linux packages and version numbering

Authors: Roger Binns
Jim Winstead Jr.

Date: 24 August, 1993
Status: ALPHA
Summary

This document covers the specification for implementing packages and version numbering under
Linux

Enquiries to: Roger Binns
Jim Winstead Jr.

Approvals authority:
Name Date Approved
Roger Binns

Jim Winstead Jr.
HJ Lu

Distribution list:

The Unified Linux distribution and Linux packaging mailing list

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT

GENERAL RELEASE

Ref: LX/STD/001

Issue: 1
Page: 2 of 26

TABLE OF CONTENTS

0. DOCUMENT CONTROL ...ociiiiiiiiieiiiiie ettt
0.1. CroSS referenCesccovvviiiiiiiiiiiiiiii

0.2. Document PredeCessors.ccccccvvvviiiiiiiiiiiiiiiiiii

0.3. Document ACCEPLANCESeeevvierriiiiiiieeeieeeiiie e ee e

0.4. Changes foreCast...........ccccccvviiiiiiiii

0.4.1. Version NUMDErNGuuvvvrrrreiimmiiiiiiiiiiiiiiiinns

0.4.2. Packaging formatcccvvvvviviiiiiiiiiniiiiniinn.

0.4.3. Packaging commandsccceevevveviiiniinininns

0.5. Changes reCordccccvvviiiiiiiiiiiiiiiieeeeeeeeeee

0.6. Change and comment procedurecccccvvvvviiienennnnn.

0.7. Document introduCtionccevvviiiiiiiiiiiiiiiii

0.8. Electronic Mail ADdresses..........ccccccccvviiiiiiiiiin

L. GENERAL....ooiiit ettt e
1.1, SCOPE ..ttt

1.2, INtrodUCHiON....ccooii i

1.3, Terminology ...

2. VERSION NUMBERINGcutiiiiiiiiiee et
2.1, DeSCHPLON.....ccciiiiiiiiii

2.2, ReqUIrEMENISccoeiiiiiiiiiiiiiiiii e

2.3. Objectives and CONSLraiNtSccoevvviiiiiiiiiiiiiiiiee

2.4, Method adopted.........ovviiiiiiiiiiii

241, INtrodUCLIONcoevvviiiiiiiiiiii

2.4.2. VEISION....ccitiiiiiiiiiiiiiiiiii

243, Level..

2.4.4. INCIEMENL....ciiiieii i

Version 0 Level 5 Increment 52 Print Date 24 August, 1993

File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001

Issue: 1
GENERAL RELEASE Page: 3of 26

245, VErSION SING cooiiiiiiiiiiiiiiiiiiiiiieeeee e 11

2.5, APPLICALION ... 11
2.6. Example ProduCt HiSTOIY.........ccooiiiiiiiiiii 11
3. PACKAGES ...ttt ettt ke e e et e e e bt e e anbae e e e anreeae 12
3.1 DESCHPLON. .. 12
3.2, REQUIFEIMENES ...t 12
3.3, Objectives and CONSIIAINTSccoiviiiiiiiiiiiie e 12
3.4, Method @dOPLEA.......cooiiiiiiiiiii 12
3.4.1. EXiSting appliCatiONScccvvviiiiiiiiiiiiiiiiiiiii e 13

3.4.2. COMPIESSION .coeiiiiiiiiiiiiiiie ittt 13

3.4.3. ALOMIC UNIESIZE ..ceiiiiiiiiiiiiiiiiiii 13

3.4.4. Media SiZe reqUIrEMENTS.......ccciiiiiiiiiiiiiiiiiiiii e 13

345, LIMITALONScciiiiiiiiiiiiiiiiiii 13

3.4.6. Executables providedccccccciiiiiiiiiiiiiii 14

3.4.7. Libraries provided.........cccccvviiiiiiiiiiiii 14

3.4.8. File naming CONVENTIONSccoiiiiiiiiiiiiiiiiiiiiieeeeeeee e 14

4. PROGRAM SPECIFICATIONS ...ttt ittt ettt e et e e e s ante e e e s entae e e e annneeaeea 15
A1, PROAAU....cciiiiiiiiiiiii 15
4.1.1. INternal d@SCIIPLIONuuuuutiiritiiititebtbbbbbbbbbbb bbb eeeeeeeeeee 15

4.1.2. Command liN€ PAramMEterS.uuuuuuuuuurriiiiiiieiiirieeieeeeeeeeeeeeeeeeeeeeeeeeeeareee 15

4.2, PROM (e 16
4.2.1. INternal d@SCIIPLIONuvuuuiitiittitiitebbbbbbbbbbb bbb eeenee 16

4.2.2. Command liN€ PArameEterS.uuuuuuuuurriiiriiieiiirireeeeeereeeeeereeeeeeeeeeeeeaareee 16

4.3, PROINTO..coiiiiiiiiiiii 16
4.3.1. INternal deSCIIPLIONuuuuutiiiitiiiiitibtbbbbbbbbbb bbb eeeeeeeenee 16

4.3.2. Command liN€ PAramMEterS.uuuuuuuuurrriiiiiieiiirieerirereebeereeeeeeeeeeeeeeeaareee 17

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001

Issue: 1
GENERAL RELEASE Page: 4 of 26

A4, PROCNK oottt 17

4.4.1. INternal d@SCIIPLIONuuuuuutiiiitiiiiittbbibbbbbbbbbb bbb eeeeeeeeee 17

4.4.2. Command liN€ PAramMEterS.uuuuuuuuurrueiriiieiiirireiirerieeeereeeeeeeeeeeeeeeeareee 17

A5, PROMK oot 17

4.5.1. INternal deSCIIPLIONuuuuuriititiitiitbbibbbbbbbbbbb bbb ebeeeeeee 17

5. DIRECTORIES ...ttt ettt ettt e ettt e e e e a bt e e e ettt e e e en bt e e e atbe e e e s anbaeeesannneeeea 18
5.1, Package Programs.........ccouiiiiiiiiiiiiiiiieee e 18

5.2. Package configuration............cccccciiiiiiiii 18

5.3, Package files ... 18

B. FILE FORMAT S ... oottt ettt ettt e ettt e e e ekt e e e ettt e e e et be e e e s antbe e e e s asbneeeeantaeeesannneeaeas 19
6.1. Package file ... 19

B.1.1. OVEIVIEW ...coiiiiiiiiiiiiiiiieeeeee et 19

6.1.2. ldentifying header.........ccccccvviiiiiiiiii 19

6.1.3. Information file...........coovviiiiiiii 19

6.1.4. Readme file......cccccoiiiiiiiiiiiii 19

6.1.5. Map file .ccoovviiiiiiiiiiiiii 20

6.1.6. INStallation SCrPL.......covvviiiiiiiiiiii 20

6.1.7. Package fileS.......cccoiiiiiii 20

6.2. INformation file ... 20

6.3, Map file . 21

6.4. Prototype file......cooo 22

T EXAMPLE ...ttt ettt e e s bt e e e kb e e e s etae e e e anaeeaea 23
7.1, Package desSCription........ccoouiiiiiiiiiiiiiie e 23

7.2. Installation from ftp Site.........ooiiiiiiiii 26

7.2.1. Single package.........ccccovviiiiiiii 26

7.2.2. Multiple packages.........cccccoiiiiiiiiii 26

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 5 of 26
7.2.3. Direct onto Linux machine with ftpcccccoci 26

7.3. Multiple disks

Version 0 Level 5 Increment 52

Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT

GENERAL RELEASE

Ref: LX/STD/001
Issue: 1
Page: 6 of 26

0. DOCUMENT CONTROL

0.1. Cross references

None.

0.2. Document Predecessors

None.

0.3. Document Acceptances

None.

0.4. Changes forecast

0.4.1. Version numbering

The version numbering standard is viewed as complete. However, it will be necessary to
specify when it is appropriate to use it. This will be established from when the format

becomes used.

0.4.2. Packaging format

No major changes are expected to the packaging format. It is expected that a few specifics

of some flags might be changed.

0.4.3. Packaging commands

Once the packaging format and commands are established, a command will be added that

will allow the user to determine what package owns any particular file.

If there is sufficient demand, the package installation procedure will have an improved user
interface. This will have many repercussions, as the underlying install script will still need to

be usable.

The existing packaging commands may have their specifications improved so that they are

less ambiguous.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993

File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 7 of 26

0.5. Changes record

Date Change

30 October 1992 Added future directions section.
Modified map file format to use flags and types, rather than lots of different

types.

29 November 1992 | Cleaned it up for wider release

0.6. Change and comment procedure

For changes or comments to have an effect on this document, they must be submitted by electronic
mail to all of the authors. Each change or comment must specify the section number, the increment
of document referenced and a valid electronic mail return address.

Changes or comments that do not conform to the above may be ignored.

0.7. Document introduction

This document will become a standard for Linux via the procedures listed below. When it becomes a
standard, all producers of packages under Linux are expected to conform to it, although it will not be
enforced.

* The document will exist in alpha form until the authors are satisfied with the general content of the
document. A few selected people may be invited to participate in the later stages of this.

» The document will then be released as a final alpha, and announced to the general public.

» The responses from the final alpha release will be used to produce a beta, and provide a mailing
list of more general interested parties.

» Various beta releases will happen

* Afreezing of changes, other than corrections will happen

» After one final beta release, a final official distribution document will be produced. At this stage, it
will become a Linux standard.

0.8. Electronic Mail Addresses

This section lists the electronic mail addresses, and the period they are valid for, for all the people
mentioned within the document.

Roger Binns rogerb@x.co.uk
Jim Winstead Jr. jwinstea@jarthur.Claremont.EDU
HJ Lu hlu@eecs.wsu.edu

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 8 of 26

1. GENERAL

1.1. Scope

This document describes the design and implementation in the Linux environment of a standard for
version numbering, and a standard for software packages.

1.2. Introduction
This document records the main specification decisions taken, provides justification for them, and
provides an overview for implementation in the Linux environment. It is assumed that anyone making

a package is doing so as an official release. Thus, there are no restrictions on what can be done,
providing it is possible according to the specifications given in this document.

1.3. Terminology

package A collection of files that are an installable component of software
root A user with a numeric identifier of zero

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 9 of 26

2. VERSION NUMBERING

2.1. Description

A version numbering system is one that provides a mechanism for denoting the maturity, availability
of features, and age of a product. It dictates how a progression of changes in a product will be
denoted relative to the product.

2.2. Requirements

There is a big requirement for a consistent version numbering scheme under Linux. This has arisen
because of the vast number of packages that make up Linux. The packages come from many
vendors or authors, and usually have not been intended for Linux. This has led to Linux specific
versions of packages that are disjoint from the original package. The rapid advance in Linux has also
led to packages trailing behind the kernel release, which are then haphazardly updated.

The requirement is for a version numbering system that allows any Linux user to ascertain what the
maturity, availability of features, and age of a product is. There are three types of version numbering
that need to be active simultaneously:

* A major number giving an indication of alpha/beta/release status, that also indicates total or major
rewrites

* A minor number giving an indication of the availability of new features, and the stability of those
features within a major number release

* A patch number giving an indication of minor transient changes within a minor release

2.3. Objectives and constraints

The primary objective is to co-exist the three types of version numbering as listed above. As a direct
result of this, any user should be able to tell from the version numbering system what a release will
give him, and how important it is to him.

Because the products will usually have their own version numbering system, the Linux version
numbering will be kept in parallel with the product's own version.

Example:

The Gnu compiler will have two versions, a FSF version and a Linux version. An example
release would then be:

GCC 2.2.2 V3L5N16

2.4. Method adopted
The method adopted is to concatenate the three components together, to produce a version string.

Each component will have a set of rules as to how it changes. The version string, and associated
rules will be the same for all Linux products.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 10 of 26

2.4.1. Introduction

The version string will consist of a series of letters and digits. There will be no spaces within
the string, or leading or trailing spaces as part of the string. The letters will all be in upper
case, and only in the ASCII character set. The letter is specified as part of each component
of the version string. The digits will be in the ASCII character set, and must be between '0’
and '9' inclusive.

2.4.2. Version

This component of the version string gives an indication of alpha/beta/release status, and
also indicates total or major rewrites. It would correspond to the major version number in
other version numbering systems.

The character denoting this in the version string is 'V'. It is followed by one or more digits.
The digits comprise an integer, which is not padded to the left with zeros.

Example:

A product with a version number of five will constitute 'V5' to the version string. A product
with a version number of fifteen will constitute 'V15' to the version string.

An integer of zero will denote a product in alpha test. An integer of one will denote a product
in beta test. For each major or total rewrite, or changes that render the product incompatible
with previous releases, the version number will be incremented by one. The level and
increment integers will then be set to zero and zero respectively.

2.4.3. Level

This component of the version string gives an indication of the availability of new features,
and the stability of those features within a version release.

The character denoting this in the version string is 'L'. It is followed by one or more digits.
The digits comprise an integer, which is not padded to the left with zeros.

Example:

A product with a level number of five will constitute 'L5' to the version string. A product
with a level number of fifteen will constitute 'L15' to the version string.

The level numbering starts at zero, and is set to one with each new version release. When
new features are available, and have been tested, and have been unchanged for two
increments, except for bug fixes, they can be released. The form of the release is to
increment the level integer by one.

2.4.4. Increment
This component of the version string gives an indication of the minor changes, and testing of
additions within a level release. It would correspond to a patch level in other version

numbering systems.

The character denoting this in the version string is 'N'. It is followed by one or more digits.
The digits comprise an integer, which is not padded to the left with zeros.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 11 of 26

Example:

A product with an increment number of five will constitute ‘N5' to the version string. A
product with an increment number of fifteen will constitute 'N15' to the version string.

The increment numbering starts at zero, and is set to one with each new version release.
When minor changes or new features are available, but untested, they can be issued in an
increment. The form of the release is to increment the level integer by one.

The rules for increments are as follows:

* All patches and other minor changes are an increment release.

» Patches and changes must increase the increment number when made to avoid any
confusion whatsoever.

» For a feature to be integrated into a level, there must be an increment in which the
feature is described as not having any more changes. There must be a subsequent
increment with bug fixes for the feature. The following increment can constitute a new
level.

2.45. Version string

The version string will be formed by concatenating the version, level and increments as
specified above, conforming to the rules laid out in 2.4.1.

Example:

A product with a version number of 3, a level number of 7 and an increment of 50 will
produce a Linux version number of 'V3L7N50'.

2.5. Application
Version strings should be applied to complete packages. They should not be applied to single files
that are then grouped together. The group should have a version string in this case. If the package

producer wishes, the increment can be left out of the version string, in order to reduce space required
for example with filenames.

2.6. Example Product History

The table below shows the version string history of an imaginary product.

VOLONO VOLON1 VOLONZ2 VOLON3 VOL1N4
VOLINS VOLING VOLIN7 VOL2N8 VOL2N9
VOL3N10 VOL3N11 VOL3N12 VOL4N13 VOL4N14
V1LONO V1LON1 V1LON2 V1LON3 V1LON4
V1LINS V1LING V1L2N7 V2LONO V2LON1

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 12 of 26

3. PACKAGES

3.1. Description

A package is a collection of files, together with installation procedures that can be put on a system in
order to provide a software product.

3.2. Requirements

The requirement for a package specification is to produce a description of how packages will be
installed, removed, checked for accuracy of installation, and created. The specification will provide
sufficient detail for programs to be created that do all of the aforementioned activities.

Any user should be easily able to create packages, as well as ascertain information about installed
packages. However, only root must be able to install, or remove a package.

3.3. Objectives and constraints

Linux users have a large variety of methods of getting files onto their machines. Because of this,
packages should be usable under at least all of the methods listed below:

» tape cartridges

» floppy disks

» direct ftp to the machine

» ftp to another machine, and then one of the above
e cdrom

Some of these methods will require the package to exist on a different machine, under a different
operating system. Additionally, the package may be obtained on a medium that has a different
capacity to that which will be used to put the package on the Linux machine. The packages must be
installable from the secondary storage media listed, without it having to be copied to the hard disk
first.

Each package may have parts that can be optionally installed. The individual package must be able
to determine which parts to install, and which have been installed.

During package manipulation, no temporary files should be produced. This is to prevent packages
consuming more than the absolute minimum of disk space.

Packages should also be easily removable. This will allow users to upgrade to newer versions
properly, or not use the package or any of its files any more.

3.4. Method adopted

This section lists the various aspects of packages, and provides discussion, justification and decisions
for each.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 13 of 26

3.4.1. Existing applications

There currently exist a few applications that could be used to create packages. However,
none of them meets the requirements for packaging capabilities. Among the programs
considered were tar, cpio and zoo. These programs fail in the following requirements:

* None allow files to be easily removed (i.e. deinstall), without some extra action either by
the user, or some form of shell script

» They either do not store the userid at all, or store it as an integer, making the archives
non-portable between machines with different numbers for the same user

* None handle multiple parts and allow them to be placed in different locations, without
actions as mentioned above

* Only cpio can handle multi-volume packages directly

3.4.2. Compression

The package will be produced in an uncompressed format. There is certainly justification for
compressing it, as it will significantly reduce the time taken to distribute, and the space to
store a package.

The arguments against compression are stronger. Compression requires an atomic unit to
work on. The larger the unit, the better compression is obtained. There are also many
compression technologies around, which change over time, and may not be available on
some of the methods listed in 3.3. Thus, the package will be produced as one large atomic
unit.

This unit can then compressed as the user or archive maintainers see fit. The compress
program is recommended.

3.4.3. Atomic unit size
The package will be produced as one big file. The justification for this is that the user will
view a package as a single atomic unit. It will also alleviate problems of a user not obtaining
all the essential parts of a package, or different versions of each component.

3.4.4. Media size requirements
The package will not be broken up into media sizes. This is because packages can vary from
the very small (e.g. 50 kilobytes) to the very large (e.g. 5 megabytes). If a package is broken
into a particular media size, it may render it useless for other media sizes (e.g. 1.44MB disk is
not compatible with 1.2MB disk). The package may also travel along various media before
reaching the final system, and so each machine would require tools to break up, and put
together the package.

It is recommended that a portable tool be used if the package is larger than the media on
which it will be transported. The cpio program is recommended.

3.4.5. Limitations
Packages will be subject to the following limitations:

Maximum raw size 4 gigabytes

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001

Issue: 1
GENERAL RELEASE Page: 14 of 26
Maximum installed size available destination media space
Minimum raw size approx. 1 kilobyte
Minimum installed size 0 kilobytes

3.4.6. Executables provided

The following programs will be provided in order for a user to manipulate packages:

pkgadd - install a package/view uninstalled package
pkgrm - remove a package

pkgchk - checks accuracy of installation

pkginfo - provide information about an installed package

For the developer, the following program will be provided in order to produce packages:
pkgmk - produce a package
3.4.7. Libraries provided
A library will be provided that allows the following functions:
» utility functions, eg parsing version strings
* opening, reading and closing a map file

* opening, reading and closing an information file

The library will be called 1ibpackage.a, and will be located in /usr/1ib. A header file will
also be provided, called package . h, and will be located in /usr/include.

3.4.8. File naming conventions

Each package will have its package name with '.pkg' appended to it as the file name for the
package. This is to uniquely identify a package. The package name must only consist of the
letters lower case 'a’ to lower case 'z', and the digits '0' to '9' in the ASCII character set. They
can be in any order. The longest legal package name is 8 characters in order to remain
compatible with Linux file systems commonly used.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 15 of 26

4. PROGRAM SPECIFICATIONS

4.1. pkgadd

The pkgadd program will install one or more packages from standard input. It will be able to spawn
the necessary shell scripts from with the package. The program will refuse to run, unless it is running
as root.

4.1.1. Internal description

The pkgadd program reads its input stream, and installs the programs as defined within it.
There may be more than one package in the input stream. pkgadd will display the package
name, important details from the information file, and if it is installed already. It will allow the
user to view the package readme file before deciding if they want to install the package.

The program will extract the information file, the map file, and then the install script to the
directory as specified in 5.2. The information file will then be read, and all keywords will be
added to the environment, for the install script that is then invoked with the parameter
'‘preinstall’.

If the return code of the installation script is zero, installation continues. If it is one, the user
is queried as to whether they wish to continue. For any other values, the installation is
aborted, the package directory and all files within it are deleted.

The files will then be extracted according to the map file. The parts which are extracted are
determined by the PARTS keyword in the information file. If the PARTS keyword is blank, all
parts are installed. Note that part 0 is always extracted.

If a pathname as specified in the map file cannot be created, or already exists, the installation
is aborted. The pkgadd program must be capable of deleting all files it has installed so far.

When all files have been extracted, the information file will then be read, and all keywords will
be added to the environment, for the install script which is then invoked with the parameter
'‘postinstall’.
If the return code is zero, the value for the keyword STATUS is set to "Completely installed".
If the return code is one, the value for the keyword STATUS is set to "Partially installed”. For
all other return codes, the value for the keyword STATUS is set to "Improperly installed".
The INSTDATE keyword is set to the current date and time. The FILES keyword should be
modified to indicate various statistics about what has been installed. See the description of
the information file for more details.

4.1.2. Command line parameters

-l non-interactive list of package details in input stream

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 16 of 26

4.2. pkgrm

The pkgrm program will remove one or more packages. It will be able to spawn the necessary install
scripts from within the package. The program will refuse to run, unless it is running as root.

4.2.1. Internal description

The pkgrm program attempts to remove each package specified on its command line. The
first action is to query whether the user really wants to remove the package. On receiving
confirmation, all other packages are checked. If any specify this package in their USES or
REQUIRES keyword, the user will be told, and given another chance to confirm removal.
The information file will then be read, and all keywords will be added to the environment, for
the install script that is then invoked with the parameter 'preremove'.

If the return code is zero, the remove continues. If it is one, the user is queried if they really
want to continue. If it is any other value, the remove aborts.

The files that are in the parts as specified by the PARTS keyword are then removed from the
system. Any files that are 'shared' as described in the map file are left alone. If this will
cause problems with certain packages, they should avoid the use of shared files. If a file is
specified in the map file as being installed, but doesn't exist, the user should be notified, and
gueried whether they want to abort the remove, ignore the message for this file, or ignore the
message for all files. If they abort, the STATUS keyword is set to "incompletely removed".

Finally, the information file is read, and all keywords will be added to the environment, for the
install script that is then invoked with the parameter 'postremove'.

The return code of pkgrm is then the return code of the execution. The package directory
and its administrative files are deleted first.

4.2.2. Command line parameters

<none> help information is displayed

4.3. pkginfo

This program obtains information about a package. It will refuse to run if the -w parameter is given,
and it is not running as root.

4.3.1. Internal description

There are various actions the pkginfo program will perform on one or more packages. The
first is displaying information. For this, all the keywords that are mandatory in a package
information file, as well as some other useful ones, and their values are printed. If the
verbose flag (-v) was given, then all keywords that contain upper case letters, and their
associated values are given. If a package couldn't be found, then the return code is one, else
it is zero.

The second action is displaying a keyword from an information file. In this instance, the value
associated with the keyword is printed. If it cannot be found, nothing is printed. The return
code is zero if the package and keyword were found, one if the package but not the keyword
were found, and two for all other situations. This mode is intended for installation scripts to
find out information about other packages on the system.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 17 of 26

The third action is to write to a keyword in an information file. If the package cannot be
found, the return code is 1, and nothing further happens. If the package is found, the value is
changed if it already exists, or added if it doesn't. The return code is zero.

4.3.2. Command line parameters

The three forms have the following parameters:

information: [-v] package keyword:

read keyword: -r package keyword

write keyword: -w package keyword value
4.4, pkgchk

This program will check the accuracy of an installation. This will include checking all necessary files
are present, and have the correct attributes.

4.4.1. Internal description
The program will read through the map file for the package, and for all the parts present in the
PARTS keyword, will check each of the attributes for the file is correct, unless marked as

changeable.

If there is nothing wrong with the installation, the return code will be zero. If the package is
not found, it will be 1. For all other cases, it will be 2.

4.4.2. Command line parameters

The only parameter is a single package name.

4.5. pkgmk

This program will produce a package on its output stream. The current user and group id must be
able to read all files required to produce the package. It must be invoked from a directory containing
the pkginfo and pkgproto files for the package.

4.5.1. Internal description
The pkgmk program operates in two stages. The first stage is to read in the pkginfo file. All

required keywords should be present. If the following keywords are missing, they will be
added. If they already exist, the values will be changed to those indicated.

PSTAMP hostnameYYMMDDHHMMSS
INSTDATE Jan 01 1990 00:00

STATUS Uninstalled

FILES 00000

The program will then build up the map file using the prototype file. Internally, it will build a
list of files that will be streamed to produce the package output stream. After producing valid
pkgmap and pkginfo files, pkgmk will then produce the package streamed to standard output
when the program was invoked.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 18 of 26

5. DIRECTORIES

5.1. Package programs

The programs provided for package manipulation will be placed in /usr/bin. It will consist of one
file called pkg, with the following symbolic links: pkgmk, pkginfo, pkgadd, pkgrm, pkgchk.

5.2. Package configuration

The following parts of a package will be kept in /usr/spool/pkg/<package names, and will have
names as given.

Information file info

Map file map

Install script install

Additionally, a package installation script may save files such as configuration files in

/etc/save/<package names>. It could do this for example during preremove. On the next
postinstall, the files can be restored.

5.3. Package files

The files produced by installing the package will be placed in the directories as specified in the map
file, or if the files are relocatable in the location specified by the user. No other copies are kept.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 19 of 26

6. FILE FORMATS

6.1. Package file

6.1.1. Overview
A package will be a concatenation of the following parts:
* an identifying header
* the information file
* the readme file
* the map file
» the installation script
* each file as specified in the map

6.1.2. ldentifying header

The header will consist of a sequence of bytes as follows:

Bytes Content
Oto7 'LinuxPkg'
81to 17 The version string of pkgmk that

produced the program, padded to the
right with spaces

18t0 25 The package name according to the
naming conventions specified earlier,
padded to the right with spaces

6.1.3. Information file
The contents of the information file are specified elsewhere. Within the package, it is stored
as a sequence of bytes denoting the length in ASCII, a NULL character, and then a byte
stream of the file.

6.1.4. Readme file
This file can be displayed by the user prior to making the decision to install. It should contain
a very brief description of the package, together with a few major points, and an indication of

space requirements.

Within the package, it is stored as a sequence of bytes denoting the length in ASCII, a NULL
character, and then a byte stream of the file.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 20 of 26

6.1.5. Mapfile
The contents of the map file are specified elsewhere. Within the package, it is stored as a
sequence of bytes denoting the length in ASCII, a NULL character, and then a byte stream of
the file.

6.1.6. Installation Script
This script is invoked by the pkgadd and pkgrm commands. Within the package, it is stored
as a sequence of bytes denoting the length in ASCII, a NULL character, and then a byte
stream of the file.

6.1.7. Package files
The files in the rest of the package are in the rest of the raw package. The files are in order
as specified in the map file. Only files with physical data are present. This means that the

following types are not "d,x,l,p,c,b,s". Each file is stored as a sequence of bytes denoting the
length in ASCII, a NULL character, and then a byte stream of the file.

6.2. Information file
The information file is used to specify information about the product. Itis in the form:
keyword = "value"

The restrictions on the keyword is that it is at least 1 character long, and no more than 50 characters
long. The minimum length for a value is O characters, and the maximum length is 1024 characters.

The following keywords are specified. Case is significant. Any keyword with a * next to it is
mandatory.

Keyword Description

PKGINST* package name

NAME* free form text package name

CATEGORY* space delimited list of categories the package belongs to

ARCH* the architecture for which the binaries were compiled (e.g. i386, i486)
VERSION* major version number

LEVEL* level number

INCREMENT* increment number of package

REQUIRES a list of packages required for installation - this can be used to abort the

installation prior to reading the map file. It will also ensure that the user receives
a warning if they try to pkgrm the packages listed. The package names are
separated by white space.

USES a list of packages that it is desirable to have for installation. The user will be
notified of this if any listed are not present on the system. It will also ensure that
the user receives a warning if they try to pkgrm the packages listed. The
package names are separated by whitespace.

PRODUCER producer of package

SUPPORT email address for package support

PSTAMP* unique stamp for package producer to identify package
INSTDATE* date and time package installed

STATUS* the installation status of the package

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001

Issue: 1
GENERAL RELEASE Page: 21 of 26
PARTS* a space delimited list of parts installed
FILES* a list of integers with details about the installed package, each separated by

white space. The integers are number of installed pathnames, number of
shared pathnames, number of directories, nhumber of executables, number of
kilobytes used

In addition, a package may add its own keywords. These can be manipulated using the pkginfo
command. If you do not wish a keyword to be visible to users, even with a -v switch, make it entirely
lower case.

6.3. Map file

The map file is the main heart of a package. It gives details of each file in a package, and where and
how it should be installed. Lines starting with a hash sign '#' are comments. Note that any part of the
line can contain variables. These are as specified in the package information file, and are specified
as a dollar sign, an open round bracket, a sequence of digits and letters, and close round bracket.
Case is significant. The variable is expanded after the line is parsed, so it cannot contain more than
one component.

Each line starts with three components, separated with colons.

part ASCII digits denoting the part number of the file
type a set of letters denoting the file type, and optional flags
type flags meaning
<any> i only read this line during package installation
r only read this line during package removal
f a file
S shared - the file is only installed if the existing file is older.
This flag also implies the 'i’ flag, as it will not be removed
d a directory
X exclusive - the directory should contain ONLY files listed in
the package map file
I link
h the link is a hard link (i.e. the default is soft)
D device
b the device is a block device (i.e. the default is character)
p named pipe
R required - gives a package name and performs a

comparison on its version string.

pathname the name of the file
if the type is link, this field will be in the form of pathname=pathname
if the type is required, this field will be a package name

The rest of the line is dependent on the file type. Below is a list of components of the rest of the line,
which are separated by a colon.

Component Meaning
major major device number

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001

Issue: 1
GENERAL RELEASE Page: 22 of 26
minor minor device number
mode file permissions in octal
owner user id of file owner (in text)
group group id of file owner (in text)
size the size of the file in bytes
cksum a checksum of the file
modtime the last modification time of the file, in seconds since 1970

The following table lists the components used in each file type.

Major Minor Mode Owner Group Size Cksum Modtime

fl X X X X X X
p,d X X X
D X X X X X

However, for the required type 'R’, the remaining fields are an operator for comparison, and a version
string. The allowed boolean specifiers are >, <, =, >=, <=, . If the operator is not (!), the two
packages cannot co-exist. The version string should follow the standard laid out earlier in this
document.

If a component can change in time, the component can have a 'v' as the first character. If a group or
owner need an id starting with a 'v', the first character can be a space. The component must always
be present. Doing this will make pkgchk ignore the changed file attribute.

6.4. Prototype file

The prototype file is what the package producer uses to specify what files go into the package, and
what their entries will be in the map file.

It takes the following form. Any line starting with a comment or is blank is copied verbatim. a line
starts with anything except a full stop, the line is copied to the map file. Any fields with a question
mark in them will have it replaced with the value from an existing pathname. That means that if the
pathname has variable expansion, the variable must be present in the info file, and the field must
resolve to an existing pathname. It can be installed elsewhere by changing the value during the
preinstall phase.

If the line starts with a full stop, the next line must contain a file type. For each file that matches the
following file specification, a line is produced in the map file, with the $F replaced by the last
component of the file specification wildcard.

The following is a two line example:
src/xeyes/*.c
The special token '$F' expands to the last component of the file as specified in the line containing the
wildcard. The map file produced will then contain the following for those two lines:
srcedir) /xeyes/main.c:755:$ (srcuid) : $ (srcgrp) :123:456:789

1:£:5¢
1:f:$(sredir) /xeyes/graphics.c:755:3 (srcuid) :$ (srcgrp) :012:345:678
1:f:$(sredir) /xeyes/server.c:755:$ (srcuid) : $ (srcgrp) :912:345:678

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 23 of 26
7. EXAMPLE

This section shows an example package, and how it would be created. Also given are generic
examples of installing from some of the media supported.

7.

1. Package description

The package being simulated is a release of X-windows. It is in no way representative of the real X-
windows, but is used because it is familiar.

The package contains the following parts:

essential binaries, one set i386, one set i486 (compulsory)
fonts (75 dpi)

fonts (120 dpi) (must have one set of fonts)
demonstration clients (optional)

source for demonstration clients (optional)

other useful binaries (recommended)

The first step is to create a package information file:

PKGINST="xwindows"

NAME="X-Windows for Linux"
CATEGORY="system graphics"
ARCH="1386"

VERSION="1"

LEVEL="3"

INCREMENT="15"
SUPPORT="Xwin@support .xwin.bbs.edu"
PARTS=""

Having created an information file, a prototype file is needed. The file will look like the following:

#

package made 1992 05 27 on pandora@company.com

#
0
#

1

x windows for Linux

part 0 is required packages
:R:kernel :>=:V3L2N10

part 1 is essential binaries i386
src/bin/i386/essential/.*

#part 2 is essential binaries i486

2

#
3

3

#
4

src/bin/i486/essential/.*

part 3 is 75 dpi fonts
:d:/usr/1lib/X11/fonts/75dpi:755:bin:bin
fonts/75dpi/.*

part 4 is 120 dpi fonts
:d:/usr/1lib/X11/fonts/120dpi:755:bin:bin
fonts/120dpi/.*

Version 0 Level 5 Increment 52 Print Date 24 August, 1993

File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 24 of 26

part 5 is demonstration binaries
:d:$(clientbin) : 755:bin:bin
src/demos/bin/ . *

(G2l

part 6 is demonstration source
:d:$ (clientsrc) : 755:$srcuid: $srcgrp
src/demos/xeyes/.*\. [ch]

o H

part 7 is other useful binaries
src/bin/others/ . *

N
Fh
~
c
0]
&l
~
o
-
=}
~
be
=
[
~
)
e
|
Ul
an
o
-
[}
o
-
[a}
J
J
J

pkgmk will produce a map file like the following from the above prototype file. It is only shown as an
example, and the package producer will not normally have worry about map files.

x windows for Linux

package made 1992 05 27 on pandora@company.com
#

0

part 0 is required packages
:R:kernel :>=:V1L3N15

part 1 is essential binaries i386
:f:/usr/bin/X11/startx:1755:root :wheel:76587:786876:787
:f:/usr/bin/X11/xinit:1755: root :wheel:786:78687:763
:f:/usr/bin/X11/X386:1755: root :wheel :675:67567:76576

Lk~

part 2 is essential binaries 1486
:f:/usr/bin/X11/startx:1755:root :wheel:76587:786876:787
:f:/usr/bin/X11/xinit:1755: root :wheel:786:78687:763
:f:/usr/bin/X11/X386:1755: root :wheel :675:67567:76576

N NN 3

part 3 is 75dpi fonts
:d:/usr/1lib/X11/fonts/75dpi
:f:/usr/1ib/X11/fonts/75dpi/courier.fon:555:bin:bin:987436:54334:435

W W I

part 4 is 120dpi fonts
:d:/usr/1ib/X11/fonts/120dpi
:f;/usr/1ib/X11/fonts/120dpi/courier.fon:555:bin:bin:987436:54334:435

AN

t 5 is demonstration binaries
(clientbin) : 755:bin:bin
(
(
(

Q

clientbin) /xeyes:755:bin:bin:57684:12356754:56546
clientbin) /xclock:755:bin:bin:7678678:786786:786876
clientbin) /xmaze:755:bin:bin:657:756:546

[GRGREGREGES
Fh +h Hh QU0

r
$
$
$
$

t 6 is source for demonstration binaries
(clientsrc) : 755:% (srcuid) : $ (srcgrp)

$ (clientsrc) /xeyes:755:3$ (srcuid) : $ (srcgrp)

(clientsrc) /xeyes/xeyes.h:755:$ (srcuid) : $ (srcgrp) : 7856:576:4378
(

S

(

(

Q

r
:$
X
1S
:$ (clientsrc) /xeyes/xeyes.c:755:$ (srcuid) : $ (srcgrp) :879456:54897:5497
(clientsrc) /xmaze:755:$ (srcuid) : $ (srcgrp)
$ (clientsrc) /xmaze/xmaze.h:755:$ (srcuid) :$ (srcgrp) : 7856:576:4378
$ (clientsrc) /xmaze/xmaze.c:755:$ (srcuid) :$ (srcgrp) :879456:54897:5497

X:

A OYOYOYOYOY O H
Fh Q. Fh Hh Q) QuFD

part 7 is other useful binaries
:f:/usr/bin/X11/xhost:755:bin:bin:897:87897:3432

< 3

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1
GENERAL RELEASE Page: 25 of 26

7:f:/usr/bin/X11/xsetroot:755:bin:bin:8947:89798:9898

After creating the map file, an installation script is needed. This could be done in a C program, but |
have chosen to implement it as a Bourne shell script.

#! /bin/sh

case $1 in
preinstall)
code to ask which parts to install
echo "Do you want to use binaries compiled for the 4867 [YyNn]"
read answer
if [Sanswer == "y" -o Sanswer == "Y"]; then
pkginfo -w S$PKGINST ARCH 1486
pkginfo -w SPKGINST PARTS 1
else
pkginfo -w SPKGINST PARTS 2
fi
echo "Do you wish to use 75 dpi fonts? [YyNn]"
echo "75 dpi fonts are recommended on 14 inch monitors"
echo "up to 800x600. Otherwise 120 dpi fonts will be used."
read answer

if [Sanswer == "y" -o Sanswer == "Y"]; then

pkginfo -w $PKGINST PARTS " “pkginfo -r $PKGINST PARTS™ 3n
else

pkginfo -w S$PKGINST PARTS " “pkginfo -r $PKGINST PARTS~ 4"
fi

echo "Do you want some demonstration clients? [YyNn]"
read answer
if [Sanswer == "y" -o Sanswer == "Y"]; then
pkginfo -w $PKGINST PARTS " “pkginfo -r $PKGINST PARTS™ 5"
echo "Where do you want them installed (suggest /usr/local/bin)?"
read answer
pkginfo -w $PKGINST clientbin "S$answer™"
echo "Do you want the source for the clients? [YyNn]"
read answer
if [Sanswer == "y" -o Sanswer == "Y"]; then
pkginfo -w $PKGINST PARTS " “pkginfo -r $PKGINST PARTS™ 6"
echo "Where do you want them installed (suggest /usr/src/X1l/demos)?"
read answer
pkginfo -w $PKGINST clientsrc "S$Sanswer"
echo "What userid do you want the client source to have (suggest src)?"
read answer
pkginfo -w $PKGINST srcuid "S$Sanswer"
echo "What group id do you want the client source to have (suggest src)?"
read answer
pkginfo -w $PKGINST srcgrp "Sanswer"
fi
fi
echo "Do you want other clients (recomended)? [YyNn]"
read answer
if [Sanswer == "y" -o Sanswer == "Y"]; then
pkginfo -w $PKGINST PARTS " “pkginfo -r $PKGINST PARTS™ 7"
fi
exit 0 ;;
postinstall)
exit 0 ;;
preremove)
exit 0 ;;
postremove)
exit 0;;
esac

The final step is to run pkgmk. This needs to be in the same directory as the info, readme and
proto files.

linux% pkgmk | compress s>xwindows.pkg.Z

This final product can then be distributed as needed.

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

LINUX SPECIFICATION DOCUMENT Ref: LX/STD/001
Issue: 1

GENERAL RELEASE Page: 26 of 26

7.2. Installation from ftp site

7.2.1. Single package

This example shows how a package could be installed from an ftp site. The package is
assumed to be larger than the media available.

ftp> get gcc.pkg.Z

ﬁﬁix% cat gcc.pkg.Z | cpio ??? /dev/floppyO -

1inuxs cpio ??? /dev/fd0 - | uncompress | pkgadd
7.2.2. Multiple packages

This example shows how multiple packages could be installed from an ftp site. The
packages are assumed to be in a distribution of sizes from less than the media capacity to

more.
ftp> mget *.pkg.Z
unix$ zcat * . pkg.Z | compress | cpio ??? /dev/floppyO -
1inuxs cpio ??? /dev/fd0 - | uncompress | pkgadd
7.2.3. Direct onto Linux machine with ftp

This example shows a package being installed from an ftp site directly onto the local Linux
machine. It requires a named pipe, denoted here by the filename 'named.pipe'".

ftp> get package.pkg.Z named.pipe
on another virtual terminal:

linux% zcat named.pipe | pkgadd

7.3. Multiple disks

This subsection shows how a multiple disk, multiple package installation would be done. Current
examples of this are MCC-interim and SLS.

linux% cpio ??? /dev/fd0 - | uncompress | pkgadd

Version 0 Level 5 Increment 52 Print Date 24 August, 1993 File LINUXPKG.DOC

