
The Printing Cookbook

Updated 5 Sept 2003

Patrick A Powell

papowell@astart.com
AStArt Technologies

7330 Opportunity Road,
San Diego, CA 92111
Phone 858-874-6543

Fax 858-751-2435

The Printing Cookbook: Updated 5 Sept 2003
by Patrick A Powell

Copyright © 2001-2009 Patrick Powell

This is a set of Recipes for Printing, a set of procedures that can be used to set up and diagnose printing
in a range of system environments. The main emphasis will be on using the LPRng print spooler, either by
itself or with other print spooling systems.

Table of Contents
Preface ..vi

Acknowledgements... vi
Conventions .. vi
Disclaimer ... vi

1. Introduction - The Basics and Variations ...1

1.1. Checking the Printing System...3
1.2. Fixing the Problems ..4

2. Simple Spooling ...6

2.1. Setting Up The Print Queues..6
2.2. Diagnostics for Spooling Problems ...8
2.3. What Went Wrong With My Job?..11
2.4. Diagnostics for lpd Problems..14

3. Printers ..17

3.1. Interface..17
3.2. Parallel Port ..17
3.3. Network Ports ...19
3.4. Sending To SMB (Samba, Microsoft) Printer, Novell, Appletalk..21
3.5. Serial Port ...24

4. Printer Job Formats ...26

4.1. PostScript..26
4.2. PCL...29
4.3. Printer Job Language (PJL) and PostScript, PCL...30
4.4. Text Files...31
4.5. Magical Mystery Proprietary Format...31
4.6. Printing Test Pages ...33

5. Filters ...35

5.1. Writing Your Own Filter ...38
5.2. The LPRng IFHP Filter ...40
5.3. Taming the Wild Phaser Printer ..44

6. Banner Pages and Accounting ...46

6.1. Suppressing Banner Pages Using the Incoming Control Filter Facility46
6.2. Forcing Banner Pages ..47
6.3. Generating Banner Pages ..47
6.4. Accounting ..48
6.5. Accounting Gotchas..49
6.6. Accounting Including Banner Pages ...49

7. Printer Pools and Load Sharing ..51

7.1. Implementing Smart Load Balancing..52
7.2. Using :chooser Exit Codes..54

8. Wildcards, Bounce Queues, and Forwarding ..55

8.1. Bounce Queues ..55
8.2. Adding -Z Options Using Bounce Queues..55
8.3. Adding Options By Using The Incoming Control Filter Facility ...56

iii

9. Form Support and Hold Queues ...58

9.1. Hold Queues...58

10. Interfacing to Vintage, Legacy, and SunOS Print Spooler s..62

11. Managing Enterprise Level Printing Systems ...63

11.1. Templates and Standard Configurations...63
11.2. Master Print Servers, One User Printcap ...64
11.3. Master Print Servers, Local Spooling ...64
11.4. Master Print Servers, Selection by User ...64
11.5. The Great Grand Dad Of All Printcap Files ..65
11.6. Using Printcap Filters and Central Databases..65

12. LPRngTool ...67

A. LPRng ...70

A.1. Documentation ...70
A.2. Installation ..71
A.3. License ...71
A.4. Commercial Support...71
A.5. Web Site, FTP Site, and Mirrors ...71
A.6. Mailing List ...72
A.7. PGP Public Key ..72

B. References and Standards ..74

B.1. RFCs ..74
B.2. PostScript ...74
B.3. HP PCL 5..74
B.4. HP PJL ...74
B.5. PDF ..75

C. RFC 1179 - Line Printer Daemon Protocol ...76

C.1. Ports and Connections ...76
C.2. Protocol Requests and Replies ..78
C.3. Job Transfer..79
C.4. Data File Transfer ...81
C.5. Control File Contents..82
C.6. lpq Requests..84
C.7. lprm Requests ...84
C.8. LPC Requests ..85
C.9. Block Job Transfer ..87
C.10. Authenticated Transfer..87

iv

List of Tables
3-1. Network Print Server Configuration Information..20
C-1. RFC1179 Commands ...78
C-2. Control File Lines and Purpose ..82
C-3. LPC Commands ...85

v

Preface

A good cookbook will provide the reader not only with a set of recipes that sound delicious but also with a
set of instructions that will allow novices to experts to prepare them. Of course, there are cookbooks for
novices, cookbooks for experts, and then the gastronmic encyclopedias.

These Recipes for Printing are a collection of old favorites, not of the author, but of the hundreds of users
of LPRng and other print spooling systems. They are not a complete discussion of the printing haute
cuisine, but deal more with the preparation of the Minnesota Hot Dish. As I find from personal experience,
you need to make a casserole for a family dinner far more often than to prepare mijotée de lentilles au
lardons, dos de poisson-chat rôti, au vinaigre d’herbes for that one-time special dinner.

The various test files, scripts and examples in this document are also in the LPRng distribution in the
/LPRng-xxx/UTILS directory.

Enjoy! Bon Appetite!

Acknowledgements
I would like to thank all of the LPRng users who so relentlessly tried an incredible number of permutations
and combinations printers, software, and networks, and whose requests for just one more feature led to
the development of the LPRng software.

Conventions
Many examples will show commands run by ordinary or privleged users. The prompt character will
indicate the user:

User Prompt

Normal user host {20} % su

root host {2} #

Recipes and major examples will be show as:

Figure 1. lpq status

h110: {64} % lpq
Printer: lp@h110

Queue: no printable jobs in queue
Status: job ’cfA711h110.private’ removed at 17:11:43.919
Filter_status: done at 17:11:43.823

Smaller sets of code or commands will be shown as:

Queue: no printable jobs in queue

vi

Preface

Disclaimer
THIS DOCUMENTATION AND THE DESCRIBED SOFTWARE AND PROCEDURES IS PROVIDED BY
THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

vii

Chapter 1. Introduction - The Basics and Variations

Figure 1-1. Print Spooler Architecture

lpc

Program
or

File
lpr lpd Filter Printer

lpd Filter Printer

Printer

lpq
lprm

The LPRng print spooling system has the components shown in Figure 1-1. A program generates output
and pipes it to the lpr application or the lpr application is used to print a file. The lpr application connects
to the lpd print server over a network connection and then transfers the print job data and print options.
The lpd server will store the job information Figure 1-2 in a spool directory and when the output device is
available will transfer the job to the printing device.

Since the print job may not be in the appropriate format for the ouput device a filter program may be used
to prepare the output data or perform special operations on the output device. Alternatively, the print job
can be forwarded to another print spooler Figure 1-1, transferred directly to a TCP/IP network port.

Figure 1-2. Configuration Files

dfB001h114

/etc/lpd.conf

/etc/printcap

/etc/lpd.perms

lpd

Spool Directory: /var/spool/lpd/lp

lp
cfA001h114
dfA001h114
dfB001h114

Spool Directory: /var/spool/lpd/lp0

lp0
cfA001h114
dfA001h114

As shown in Figure 1-2, the LPRng print spooler uses the /etc/printcap , /etc/lpd.conf , and
/etc/lpd.perms , files to get its operational parameters. The the /etc/printcap file defines a set of
spool queues, each of which holds print jobs. A print job if transfered to the print server as a a control file
(cfAnnnHHHHHHH) and one or more data files (dfAnnnHHHHHHH dfBnnnHHHHHHH, etc). The information in the
control file is extracted and stored in the hold file (hfAnnn) for the job. The hold file contains information
such as the user name, file names, and printing options, while the data files contain the data to be printed.

1

Chapter 1. Introduction - The Basics and Variations

Figure 1-3. Printcap

Common configuration information
.common:sd=/var/spool/lpd/%P

:sh:mx=0:force_localhost

forward to remote spooler
lp:cm=Default Printer

:tc=.common
:lp=raw@10.0.0.1

legacy - :rp=raw:rm=10.0.0.1

lp0 - open a device
lp0|aliasforlp0:cm=Parallel Port Printer:\

:tc=.common:lp=/dev/lpt0:

lp1 - open a network connection
lp1:tc=.common:lp=10.0.0.14%9100

lp2 - run a program
lp2:tc=.common:lp=|/usr/local/bin/smbprint

The /etc/printcap file format is very simple in appearance but complex in information. By convention,
lines starting with # are comments; a printcap entry starts with the entry name followed by one or more
aliases, followed by options.

The :tc option specifies a printcap entry for inclusion; there can be more than one entry and they are
processed in order that they appear in the :tc list. The other options are processed after the :tc list; this
means that the printcap options overide the ones from the :tc list. If a entry name starts with a period (.),
then the LPRng system uses it only for :tc lists. This is similar to the use of hidden files, i.e. - files whose
names start with a period are not displayed by the ls command.

Figure 1-4. lpd.conf Defaults File

Purpose: always print banner, ignore lpr -h option
default ab@ (FLAG off)
Purpose: query accounting server when connected
default achk@ (FLAG off)
Purpose: accounting at end (see also af, la, ar, as)
default ae=jobend $H $n $P $k $b $t (STRING)
Purpose: name of accounting file (see also la, ar)
default af=acct (STRING)

Purpose: use long job number (0 - 999999) when a job is submit ted
default longnumber@ (FLAG off)
longnumber

The /etc/lpd.conf file can be used to override the set of default values for the print spooler or other
printing applications. By the way, all of the LPRng options and their default values are defined in this file in
the comments.

2

Chapter 1. Introduction - The Basics and Variations

Figure 1-5. lpd.perm Permissions File

ACCEPT SERVICE=C SERVER REMOTEUSER=root,papowell
ACCEPT SERVICE=C LPC=lpd,status,printcap
REJECT SERVICE=C
ACCEPT SERVICE=M SAMEHOST SAMEUSER
ACCEPT SERVICE=M SERVER REMOTEUSER=root
REJECT SERVICE=M
DEFAULT ACCEPT

The /etc/lpd.perms file (Figure 1-5) is used by lpd to determine who is allowed to perform various
operations. The format of this file is modelled on that of a packet filter . When a request is made, the file is
scanned for matches; each match sets a success or fail condition. The success or fail of the last match (or
the last default value) will determine whether or not to perform the operation.

Figure 1-6. Clients and Configuration Files

lpd

/etc/lpd.conf

${HOME}/.printcap

/etc/printcap

lpr
lprm
lpq
lpc

The LPRng client applications lpr , lprm , lpq , and lpc use the /etc/lpd.conf , /etc/printcap and
${HOME}/.printap files (if they exist) (Figure 1-6). The values in the ${HOME}/.printcap file are used to
override the values in the /etc/printcap file, and the first printcap entry in the ${HOME}/.printap file
becomes the default printer for the user (see Figure 1-7).

Figure 1-7. ${HOME}/.printcap Information

force your default printer
- forces first entry to be lp_out
lp_out:

send everything to your secret server

* :lp=%P@secret_server:force_localhost@

combine the two above:
lp| * :lp=%P@secret_server:force_localhost@

and of course, you can specify extra lpr options
for those special purpose printers and total abuse
landscape:lpr= -Zlandscape -Plp

3

Chapter 1. Introduction - The Basics and Variations

1.1. Checking the Printing System

Figure 1-8. Using checkpc

h110: {1} % su
Password:
h110# checkpc
h110# checkpd -V
LPRng-3.7.10, Copyright 1988-2001 Patrick Powell, <papowell@lprng.com>
Checking for configuration files ’/etc/lpd.conf’

found ’/etc/lpd.conf’, mod 0100644
Checking for printcap files ’/etc/printcap’

found ’/etc/printcap’, mod 0100644
DaemonUID 1, DaemonGID 1

Using Config file ’/etc/lpd.conf’
LPD lockfile ’/var/run/lpd.515’
...
Checking printer ’lp’

Checking directory: ’/var/spool/lpd/lp’
directory ’/var’
directory ’/var/spool’
directory ’/var/spool/lpd’
directory ’/var/spool/lpd/lp’

checking ’control.lp’ file
checking ’status.lp’ file
checking ’status’ file
checking ’log’ file
checking ’acct’ file

The checkpc utility will read and parse the printcap file. It will report a zillion errors if something is wrong.

1.2. Fixing the Problems

Figure 1-9. Using checkpc -f

h110: {1} % checkpc
Warning - bad directory - /var/spool/lpd/lp
Warning - Printer_DYN ’lp’ spool dir ’/var/spool/lpd/lp’ n eeds fixing
Warning - bad directory - /var/spool/lpd/lp0
Warning - Printer_DYN ’lp0’ spool dir ’/var/spool/lpd/lp0 ’ needs fixing
h110: {2} % su
Password:
h110# checkpc -f
Warning - changing ownership ’/var/spool/lpd/lp’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp0’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp0’ to 1/1
h110# exit
h110: {3} % checkpc
h110: {4} % checkpc

4

Chapter 1. Introduction - The Basics and Variations

The checkpc -f (-f for fix) will make checkpc attempt create missing files, set permissions, and take
basic corrective actions. If it fails, then you have probably a very bad /etc/printcap file.

5

Chapter 2. Simple Spooling

This section covers the basic facilities that you will probably encounter when trying to set up a print queue.
We will start with a basic print queue and then run through the setup steps.

Figure 2-1. Basic Printcap Entry

Common configuration information
.common:sd=/var/spool/lpd/%P

:sh:mx=0:force_localhost
lp:cm=Default Printer, Forward to remote

:tc=.common
:lp=raw@10.0.0.1

lp0 - open a device
lp0:cm=Parallel Port Printer

:tc=.common:lp=/dev/lpt0:

2.1. Setting Up The Print Queues

Figure 2-2. Run checkpc

h110: {1} % checkpc
Warning - bad directory - /var/spool/lpd/lp
Warning - Printer_DYN ’lp’ spool dir ’/var/spool/lpd/lp’ n eeds fixing
Warning - bad directory - /var/spool/lpd/lp0
Warning - Printer_DYN ’lp0’ spool dir ’/var/spool/lpd/lp0 ’ needs fixing
h110: {2} % su
Password:
h110# checkpc -f
Warning - changing ownership ’/var/spool/lpd/lp’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp0’ to 1/1
Warning - changing ownership ’/var/spool/lpd/lp0’ to 1/1
h110# exit
h110: {3} % checkpc
h110: {4} % checkpc

First, you run checkpc -f . This will tell you if something is wrong with the printcap.

Figure 2-3. Check for Running Server

h110: {5} % lpc lpd
Printer ’lp@localhost’ - cannot open connection - Connecti on refused
Make sure the remote host supports the LPD protocol
h110: {6} % su
Password:
h110# lpd
h110# lpc lpd
lpd server pid 6418 on h110.private
h110# exit

6

Chapter 2. Simple Spooling

exit
h110: {7} % lpc lpd
lpd server pid 6418 on h110.private

Next, you make sure the lpd server is running, and if it is not, then you restart it.

Figure 2-4. Run lpq

h110: {373} % lpq -a
Printer: lp@h110

Queue: no printable jobs in queue
Printer: lp0@h110

Queue: no printable jobs in queue

You now make sure that you can get the print queue status.

Figure 2-5. Run lpc

h110: {374} % lpc stop lp lp0
Printer: lp@h110
lp@h110.private: stopped
Printer: lp0@h110
lp0@h110.private: stopped
h110: {375} % lpq -a
Printer: lp@h110 (printing disabled)

Queue: no printable jobs in queue
Printer: lp0@h110 (printing disabled)

Queue: no printable jobs in queue

Use lpc to disable printing.

Figure 2-6. Run lpr

h110: {376} % echo hi >/tmp/hi
h110: {377} % lpr /tmp/hi
h110: {378} % lpq
Printer: lp@h110 (printing disabled)

Queue: 1 printable job
Server: no server active
Rank Owner/ID Class Job Files Size Time

1 papowell@h110+445 A 445 /tmp/hi 3 17:40:51
h110: {379} % lpr -Plp0 /tmp/hi
h110: {380} % lpq -Plp0
Printer: lp0@h110 (printing disabled)

Queue: 1 printable job
Server: no server active
Rank Owner/ID Class Job Files Size Time

1 papowell@h110+449 A 449 /tmp/hi 3 17:41:05

7

Chapter 2. Simple Spooling

Now try spooling a job.

Figure 2-7. Run lprm

h110: {381} % lprm
Printer lp@h110:

checking perms ’papowell@h110+445’
dequeued ’papowell@h110+445’

h110: {382} % lprm -Plp0
Printer lp0@h110:

checking perms ’papowell@h110+449’
dequeued ’papowell@h110+449’

Now try removing a job.

Figure 2-8. Enable Printing

h110: {383} % lpc enable lp lp0
Printer: lp@h110
lp@h110.private: enabled
Printer: lp0@h110
lp0@h110.private: enabled

Finally, enable printing.

2.2. Diagnostics for Spooling Problems

Figure 2-9. Using lpr -V

h110: {388} % lpr -V /tmp/hi
LPRng-3.7.10, Copyright 1988-2001 Patrick Powell, <papowell@lprng.com>
sending job ’papowell@h110+29’ to lp@localhost
connecting to ’localhost’, attempt 1
connected to ’localhost’
requesting printer lp@localhost
sending control file ’cfA029h110.private’ to lp@localhos t
completed sending ’cfA029h110.private’ to lp@localhost
sending data file ’dfA029h110.private’ to lp@localhost
completed sending ’dfA029h110.private’ to lp@localhost
done job ’papowell@h110+29’ transfer to lp@localhost

The first line of defense is to see what is happening when you try to spool a job. The lpr -V (-V for
Verbose) will show a simple high level trace.

Figure 2-10. The lpr Options

h110: {389} % lpr -=
lpr: Illegal option ’=’
Usage: lpr [-Pprinter[@host]] [-A] [-B] [-Cclass] [-Fform at] [-G] [-Jinfo]

[-(K|#)copies] [-Q] [-Raccountname] [-Ttitle] [-Uuser[@ host]] [-V]

8

Chapter 2. Simple Spooling

[-Zoptions] [-b] [-m mailaddr] [-h] [-i indent] [-l] [-w wid th] [-r]
[-Ddebugopt] [--] [filenames ...]

-A - use authentication specified by AUTH environment varia ble
-B - filter files and reduce job to single file before sending
-C class - job class
-D debugopt - debugging flags
-F format - job format

-b,-l - binary or literal format
c,d,f,g,l,m,p,t,v are also format options

-G - filter individual job files before sending
-J info - banner and job information
-K copies, -# copies - number of copies
-P printer[@host] - printer on host
-Q - put ’queuename’ in control file
-Raccntname - accounting information
-T title - title for ’pr’ (-p) formatting
-U username - override user name (restricted)
-V - Verbose information during spooling
-X path - user specified filter for job files
-Y - connect and send to TCP/IP port (direct mode)
-Z options - options to pass to filter
-h - no header or banner page
-i indent - indentation
-k - do not use tempfile when sending to server
-m mailaddr - mail final status to mailaddr
-r - remove files after spooling
-w width - width to use
-- - end of options, files follow
filename ’-’ reads from STDIN
PRINTER, LPDEST, NPRINTER, NGPRINTER environment variabl es set default printer.

LPRng-3.7.10, Copyright 1988-2001 Patrick Powell, <papowell@lprng.com>

Use the -= option to see the available options.

Figure 2-11. Debug Options

h110: {392} % lpr -D=
debug usage: -D [num | flag=num | flag=str | flag | flag@ | flag +N] *

flags recognized: network[+N,@], database[+N,@], lpr[+N ,@],
lpc[+N,@], lprm[+N,@], lpq[+N,@], log[+N,@],
test=num

The -D= option shows the debugging flags available.

Figure 2-12. The lpr -D1 Output

h110: {395} % lpr -D1 /tmp/hi >&/tmp/x
2001-10-18-05:29:05 [8052] Initialize: /dev/null fd 3
2001-10-18-05:29:05 [8052] initsetproctitle: using buil tin
2001-10-18-05:29:05 [8052] lpr Setup_uid: OriginalEUID 0 , OriginalRUID 1001
2001-10-18-05:29:05 [8052] lpr Setup_uid: OriginalEGID 1 001, OriginalRGID 1001
2001-10-18-05:29:05.761 [8052] lpr Setup_configuration : starting, Allow_getenv 0
2001-10-18-05:29:05.761 [8052] lpr Setup_configuration : Configuration file ’/etc/lpd.conf’

9

Chapter 2. Simple Spooling

2001-10-18-05:29:05.761 [8052] lpr Setup_configuration : Require_configfiles_DYN ’1’
2001-10-18-05:29:05.761 [8052] lpr Get_config: required ’1’, ’/etc/lpd.conf’
2001-10-18-05:29:05.762 h110 [8052] lpr

Get_local_host: ShortHost_FQDN=h110, FQDNHost_FQDN=h1 10.private
2001-10-18-05:29:05.763 h110 [8052] lpr

Is_server 0, DaemonUID 1, DaemonGID 1, UID 0, EUID 0, GID 1001 , EGID 1001
2001-10-18-05:29:05.763 h110 [8052] lpr

Setup_configuration: Host ’h110.private’, ShortHost ’h1 10’, user ’papowell’
...

The lpr -D1 (diagnostic level 1) shows a summary of the various steps taken to send the job. If you want
more detail, try lpr -D2 ; or even lpr -D3 ;.

Figure 2-13. Using lpr -Dnetwork

h110: {400} % lpr -Dnetwork /tmp/hi
lp: getconnection: START host localhost, timeout 10, conne ction_type 1
lp: getconnection: fqdn found localhost.my.domain, h_add r_list count 1
lp: Link_dest_port_num: port 515 = 515
lp: getconnection: AGAIN port 808, min 512, max 1023, count 0 , connects 0
lp: Link_dest_port_num: port 515 = 515
lp: getconnection: sock 3, src ip 127.0.0.1, port 808
lp: getconnection: dest ip 127.0.0.1, port 515
lp: getconnection: connection to ’localhost’ socket 3, err ormsg ’No Error’
lp: Link_send: host ’localhost’ socket 3, timeout 6000
lp: Link_send: str ’^Blp
’, count 4, ack 0xbfbfc3d0
lp: Link_send: final status NO ERROR
lp: Link_send: host ’localhost’ socket 3, timeout 6000
lp: Link_send: str ’^B142 cfA065h110.private
’, count 24, ack 0xbfbfbf90
lp: Link_send: final status NO ERROR
lp: Link_send: host ’localhost’ socket 3, timeout 6000
lp: Link_send: str ’Hh110.private
Ppapowell
J/tmp/hi
CA
Lpapowell
Apapowell@h110+65
D2001-10-18-05:34:18.939
Qlp
N/tmp/hi
fdfA065h110.private
UdfA065h110.private
’, count 143, ack 0xbfbfbf90
lp: Link_send: final status NO ERROR
lp: Link_send: host ’localhost’ socket 3, timeout 6000
lp: Link_send: str ’^C3 dfA065h110.private
’, count 22, ack 0xbfbfbf24
lp: Link_send: final status NO ERROR
lp: Link_send: host ’localhost’ socket 3, timeout 6000
lp: Link_send: str ”, count 1, ack 0xbfbfbf24
lp: Link_send: final status NO ERROR

10

Chapter 2. Simple Spooling

The lpr -Dnetwork (network diagnostic level 1) shows the network operations performed by lpr . If you
want more detail, try lpr -Dnetwork+2 or even lpr -Dnetwork+3 .

Figure 2-14. Debugging lpq

h110: {1} % lpq -=
lpq: Illegal option ’=’
usage: lpq [-aAclV] [-Ddebuglevel] [-Pprinter] [-tsleept ime]

-A - use authentication specified by AUTH environment varia ble
-a - all printers
-c - clear screen before update
-l - increase (lengthen) detailed status information

additional l flags add more detail.
-L - maximum detailed status information
-n linecount - linecount lines of detailed status informati on
-Ddebuglevel - debug level
-Pprinter - specify printer
-s - short (summary) format
-tsleeptime - sleeptime between updates
-V - print version information

h110: {2} % lpq -D1
2001-10-18-05:39:09 [8090] Initialize: /dev/null fd 3
2001-10-18-05:39:09 [8090] initsetproctitle: using buil tin
2001-10-18-05:39:09 [8090] lpq Setup_uid: OriginalEUID 0 , OriginalRUID 1001
...

h110: {3} % lpq -Dnetwork
lp: getconnection: START host localhost, timeout 10, conne ction_type 1
lp: getconnection: fqdn found localhost.my.domain, h_add r_list count 1
lp: Link_dest_port_num: port 515 = 515
lp: getconnection: AGAIN port 862, min 512, max 1023, count 0 , connects 0
lp: Link_dest_port_num: port 515 = 515
lp: getconnection: sock 3, src ip 127.0.0.1, port 862
...

The lpq , lprm , and lpc applications also support the -= and -D (debug) options.

2.3. What Went Wrong With My Job?

Figure 2-15. Basic lpq Information

h110: {1} % lpr /tmp/hi
h110: {1} % lpq
Printer: lp@h110

Queue: 1 printable job
Server: pid 8741 active
Unspooler: pid 8742 active
Status: processing ’dfA740h110.private’, size 3, format ’ f’,

IF filter ’ifhp’ at 08:16:58.465
Filter_status: code = 10003, ’Warming Up’ at 08:17:02.045

11

Chapter 2. Simple Spooling

Rank Owner/ID Class Job Files Size Time
active papowell@h110+740 A 740 /tmp/hi 3 08:16:58

The first thing to do is check the status of your job with lpq . This will show the current jobs in the queue
and lpd server. The Server value is the process that is responsible for sending jobs to the printer. It starts
the Unspooler process that does the actual transfer to the remote system. Each time a job is processed a
new Unspooler process is created. The Server process stays active until there is no further work to be
done for the print queue.

Figure 2-16. Using the lpq -l Option

h110: {2} % lpq -l
Printer: lp@h110

Queue: 1 printable job
Server: pid 8741 active
Unspooler: pid 8742 active
Status: printing job ’papowell@h110+740’ at 08:16:58.465
Status: processing ’dfA740h110.private’, size 3, format ’ f’,

IF filter ’ifhp’ at 08:16:58.465
Filter_status: getting end using ’pjl job/eoj’ at 08:16:59 .902
Filter_status: code = 10003, ’Warming Up’ at 08:17:02.045
Rank Owner/ID Class Job Files Size Time

active papowell@h110+740 A 740 /tmp/hi 3 08:16:58
h110: {3} % lpq -lll
Printer: lp@h110

Queue: 1 printable job
Server: pid 8741 active
Unspooler: pid 8742 active
Status: accounting at start at 08:16:58.455
Status: opening device ’h14%9100’ at 08:16:58.455
Status: printing job ’papowell@h110+740’ at 08:16:58.465
Status: processing ’dfA740h110.private’, size 3, format ’ f’,

IF filter ’ifhp’ at 08:16:58.465
Filter_status: data sent at 08:16:59.902
Filter_status: sent job file at 08:16:59.902
Filter_status: getting end using ’pjl job/eoj’ at 08:16:59 .902
Filter_status: code = 10003, ’Warming Up’ at 08:17:02.045
Rank Owner/ID Class Job Files Size Time

active papowell@h110+740 A 740 /tmp/hi 3 08:16:58

The lpq -l (longer) option increases the number of Status and Filter_status lines shown. These lines
come from the status.%P and status files in the spool queue. Adding more -l options increases the
amount of status shown.

Figure 2-17. Using the lpq -L Option

h110: {4} % lpq -L
Printer: lp@h110

Queue: 1 printable job
Server: pid 8741 active
Unspooler: pid 8742 active
Status: waiting for subserver to exit at 08:16:58.451

12

Chapter 2. Simple Spooling

Status: subserver pid 8742 starting at 08:16:58.455
Status: accounting at start at 08:16:58.455
Status: opening device ’h14%9100’ at 08:16:58.455
Status: printing job ’papowell@h110+740’ at 08:16:58.465
Status: processing ’dfA740h110.private’, size 3, format ’ f’,

IF filter ’ifhp’ at 08:16:58.465
.....

Filter_status: decoded job type ’PCL’ at 08:16:59.901
Filter_status: job type ’PCL’ at 08:16:59.901
Filter_status: transferring 3 bytes at 08:16:59.902
Filter_status: 100 percent done at 08:16:59.902
Filter_status: data sent at 08:16:59.902
Filter_status: sent job file at 08:16:59.902
Filter_status: getting end using ’pjl job/eoj’ at 08:16:59 .902
Filter_status: code = 10003, ’Warming Up’ at 08:17:02.045
.....

Rank Owner/ID Class Job Files Size Time
active papowell@h110+740 A 740 /tmp/hi 3 08:16:58

If you want to see LOTS of status, use lpq -L , which shows all the avilable status information.

Figure 2-18. Job Completion

h110: {5} % lpq
Printer: lp@h110

Queue: no printable jobs in queue
Status: job ’cfA740h110.private’ removed at 08:18:07.776
Filter_status: done at 08:18:07.756

h110: {6} % lpq -lll
Printer: lp@h110

Queue: no printable jobs in queue
Status: printing job ’papowell@h110+740’ at 08:16:58.465
Status: processing ’dfA740h110.private’, size 3, format ’ f’,

IF filter ’ifhp’ at 08:16:58.465
Status: IF filter ’ifhp’ filter finished at 08:18:07.757
Status: printing finished at 08:18:07.757
Status: accounting at end at 08:18:07.774
Status: finished ’papowell@h110+740’, status ’JSUCC’ at 0 8:18:07.774
Status: subserver pid 8742 exit status ’JSUCC’ at 08:18:07. 775
Status: lp@h110.private: job ’cfA740h110.private’ print ed at 08:18:07.775
Status: job ’cfA740h110.private’ removed at 08:18:07.776
Filter_status: transferring 3 bytes at 08:16:59.902
Filter_status: 100 percent done at 08:16:59.902
Filter_status: data sent at 08:16:59.902
Filter_status: sent job file at 08:16:59.902
Filter_status: getting end using ’pjl job/eoj’ at 08:16:59 .902
Filter_status: code = 10003, ’Warming Up’ at 08:17:02.045
Filter_status: end of job detected at 08:18:06.457
Filter_status: pagecounter 105341 after 1 attempts at 08:1 8:07.756
Filter_status: pagecounter 105341, pages 1 at 08:18:07.75 6
Filter_status: done at 08:18:07.756

13

Chapter 2. Simple Spooling

When your job is finished, you can use the lpq -lll options to see the final results of processing the job.

Figure 2-19. Summary Status Displays

h110: {7} % lpq -s
lp@h110 0 jobs
h110: {239} % lpq -s -a
lp@h110 0 jobs
lp0@h110 0 jobs (printing disabled)
h110: {8} % lpc status

Printer Printing Spooling Jobs Server Subserver Redirect S tatus/(Debug)
lp@h110 enabled enabled 0 none none
h110: {9} % lpc status all

Printer Printing Spooling Jobs Server Subserver Redirect S tatus/(Debug)
lp@h110 enabled enabled 0 none none
lp0@h110 disabled enabled 0 none none
h110: {10} % exit

The lpq -s (short status) shows a single summary line for status. Adding the -a (all queues) will print
information for all the print queues.

The lpc status command queries the lpd server and reports the status of the queues operated by the
lpd server. The lpd status all will show the status of all the print queues.

2.4. Diagnostics for lpd Problems

Figure 2-20. lpd Options

h110# lpd -=
lpd: Illegal option ’=’
usage: lpd [-FV] [-D dbg] [-L log]

Options
-D dbg - set debug level and flags

Example: -D10,remote=5
set debug level to 10, remote flag = 5

-F - run in foreground, log to STDERR
Example: -D10,remote=5

-L logfile - append log information to logfile
-V - show version info

h110# lpd -D=
debug usage: -D [num | flag=num | flag=str | flag | flag@ | flag +N] *

flags recognized: network[+N,@], database[+N,@], lpr[+N ,@],
lpc[+N,@], lprm[+N,@], lpq[+N,@], log[+N,@],
test=num

The lpd server can be started in debug mode. However, the amount of information produced can be
overwhelming. If you need to determine what is happening during initial connection, then you will have to
do this.

14

Chapter 2. Simple Spooling

Figure 2-21. Using lpd Debug Options

h110# lpd
h110# lpd -F -D1
2001-10-18-05:56:55 [8156] lpd Initialize: starting
...
2001-10-18-05:56:55.228 h110 [8156] lpd lpd: listening so cket fd -6
Fatal error - Another print spooler is using TCP printer

port, possibly lpd process ’8154’
2001-10-18-05:56:55.228 h110 [8156] lpd cleanup: done, ex it(1)
h110# killall lpd
h110# lpd -F -D1
2001-10-18-05:57:05 [8158] lpd Initialize: starting
...
2001-10-18-05:57:05.800 h110 [8159] Waiting lpd: LOOP STA RT
2001-10-18-05:57:05.800 h110 [8159] Waiting

lpd: starting select timeout ’yes’, 600 sec, max_socks 7

---- other window
h110: {5} % lpr /tmp/hi

2001-10-18-05:57:44.341 h110 [8159] Waiting
lpd: select returned 1, error ’No Error’

2001-10-18-05:57:44.342 h110 [8159] Waiting
lpd: fd 5 readable

2001-10-18-05:57:44.342 h110 [8159] Waiting lpd: connect ion fd 8
2001-10-18-05:57:44.351 h110 [8159] Waiting Start_worke r: fd 8

2001-10-18-05:57:44.356 h110 [8171] RECV lp: Fix_Rm_Rp_i nfo: printer name ’lp’
2001-10-18-05:57:44.356 h110 [8171] RECV Reset_config: s tarting
2001-10-18-05:57:44.361 h110 [8171] RECV

lp: Select_pc_info: looking for ’lp’, depth 0
...

This shows all of the information available about the printing operation. But it is jumbled all together.
Usually you want to see just the information about a single spool queue.

Figure 2-22. Debugging Spool Queue

Printcap:
lp:sd=/var/spool/lpd/%P

:db= DebugOptions
db=1 - output to device level 1,
db=lpc db=lpq db=lpr db=lprm

- incoming lpc, lpq, lpr, lprm operations

Spool Queue: /var/spool/lpd/lp
Default Files - created by checkpc

control.%P - queue control (enable, disable...)
acct - accounting
status - filter status
status.%P - queue status

15

Chapter 2. Simple Spooling

log - diagnostics

The checkpc program creates a standard set of files in each spool queue, including the log file. The
:db= DebugOptions enables debugging output for the specified operation. Information is sent to the log

file as soon as the print queue directory and debug flags for the spool queue are determined.

Figure 2-23. Setting Queue Debug Options

h110# vi /etc/printcap
set:

lp:...
:db=lpr

h110# lpc reread
lpd server pid 8200 on h110.private, sending SIGHUP

Edit the printcap. You can then use lpc reread to signal the lpd process to read the new /etc/printcap

file.

Figure 2-24. log File

2001-10-18-06:11:30.349 h110 [8216] RECV
lp: Receive_job: debug ’lpr’, Debug 0, DbgFlag 0x1000

2001-10-18-06:11:30.349 h110 [8216] RECV
lp: Receive_job: spooling_disabled 0

2001-10-18-06:11:30.349 h110 [8216] RECV
lp: Receive_job: sending 0 ACK for job transfer request

2001-10-18-06:11:30.349 h110 [8216] RECV
lp: Receive_job: from localhost.my.domain- getting file t ransfer line

2001-10-18-06:11:30.349 h110 [8216] RECV
lp: Receive_job: read from localhost.my.domain-

status 0 read 23 bytes ’^B131 cfA215h110.private’

You can now use the log file to see the individual queue operations. The size of the log file is determined
by the max_log_file_size (default is 1000Kbytes); when the log file exceeds this it is truncted to 25% of
its maximum length.

16

Chapter 3. Printers

Figure 3-1. Printer Types

Printers:
Cheap and Slow Ink Dispensers
Not So Cheap Fast Printers
Vintage Stuff On Sale
Legacy Junk You Are Stuck With

Your office mate has just purchased a nice new $99 ink-jet printer and wants to use it on his office desktop.
Your boss calls you in and tells you that the new PlattenPusher 5500 printer will arrive and it needs to be
operational ASAP. And finally, you pick up a really good bargin on a used HP4mPlus laser printer, which all
the folks on the LPRng mailing list recommend as the most reliable (and SLOW...) printer they ever used.

With your luck, probably all three happen on the same day. Welcome to the wonderful world of printers.

3.1. Interface

Figure 3-2. Interface Types

Connection:
Parallel port : write only (no status)

read/write (maybe you get status)
Serial port: read/write (status)
Network: serial port emulator

parallel port emulator
print spooler emulator
whacko interface

The type of interface on your printer is usually a function of the printer cost and speed. The low cost/low
speed printers usually have a parallel port interface, while the higher cost/higher speed printers usually
have both a parallel port and a network interface. Serial ports are usually found only on older model
printers or those which have very special facilities.

3.2. Parallel Port

Figure 3-3. Parallel Port

Write Only
lpd Filter Printer

/dev/lpt0

Some printers provide status information. In order to do this they need a bidirectional communications
channel. The parallel port interface found on the original X86 PC/XT/ATX systems was write only.
However, there were a couple of signals (OUT OF PAPER, ERROR, etc.) that provided status information to
the computer system. By monitoring these signals the host computer could tell the user that there were
problems with the printer. Fiendishly clever engineers discovered that they could use these signals to

17

Chapter 3. Printers

implement a bidirectional data channel over the parallel port. They could even put multiple devices (daisy
chained) on the parallel port. Needless to say, of the hundreds of companies that used bidirectional
parallel interfaces no two of them used the same method.

In a fit of desperation, the IEEE1284 standard (well, actually 3 standards) were developed to allow at least
some sort of general consensus on how a bidirectional parallel port should work.

If you are interested in the details about Parallel Ports, see http://www.fapo.com/1284int.htm for a nice
introduction, and the IEEE1394 Trade Association Home Page http://www.1394ta.com/
(http://www.1394ta.org/) for pointers to other information.

The good news is that if your printer is IEEE1284 compliant, then it has a functional bidirectional interface
that will return status and other information. The bad news, really bad news, and really really bad news is
a) there is no software level API for using bidirectionality; b) the parallel IO drivers that exist differ from
version to version; c) most of the time the status returned by the printer is useless anyways.

Given this set of problems I recommend that you:

• Put only one device (your printer) on each parallel port.

• Do not expect to get status information back from the printer.

Figure 3-4. Parallel Port Printcap

lp:lp=/dev/lpt0
:sd=/var/spool/lpd/%P

As shown in Figure 1-1, the printcap entry for a parallel port (without a filter) is really simple. If your printer
is offline or powered down, lpd will not be able to open the parallel port and you will see an endless list of
error messages in the status file.

Figure 3-5. Loading Linux Parallel Port Driver

[papowell@h112 papowell]$ su
Password:
[root@h112 papowell]# echo </dev/lp0
[root@h112 papowell]# cd /proc/sys/dev/parport/
[root@h112 parport]# ls default parport0
[root@h112 parport]# cd parport0
[root@h112 parport0]# ls autoprobe autoprobe0 autoprobe1 autoprobe2

autoprobe3 base-addr devices dma irq modes spintime
[root@h112 parport0]# cat autoprobe
CLASS:PRINTER; MODEL:DESKJET 670C;
MANUFACTURER:HEWLETT-PACKARD;
DESCRIPTION:Hewlett-Packard DeskJet 670C;
COMMAND SET:MLC,PCL,PML;

The Linux system uses loadable module drivers for the parallel ports and newer releases support the
IEEE1284 device probe functions. You can use the command shown in Figure 3-5 to load the modules;
the echo </dev/lp0 command tries to open the device in read mode, and then exits after reading

18

Chapter 3. Printers

nothing... which might suggest that you cannot get status from the device. If you have the /proc system
installed, then you can see what the IEEE1284 probe function returned.

Figure 3-6. Parallel Port Problems

One Interrupt per Output Character
- One Interrupt per Blocks of Characters (DMA)
- Hope that DMA works

May operate by polling
Don’t try to daisy chain devices

While you may think that you are getting a high throughput to the parallel port, in actual fact it may be very
slow. In the worst case you will get a an interrupt for every character output. Even worse, sometimes the
parallel port driver will spin block for a small period of time in the hopes that a character will be accepted
by the printer so it can send another one. Finally, while many users have successfully daisy chained
multiple devices, there is a resounding silence from them when asked about the success of simultaneous
use of the devices.

To add insult to injury, some systems do not even support interrupts with their parallel port hardware. To
do IO, they periodically poll the output device to see if it is ready to accept another character.

3.3. Network Ports

Figure 3-7. Network Ports

lp=host%port lp=10.0.0.1%9100

lpd

lpd Filter Printer

Printer

lp=queue@host lp=raw@10.0.0.1

Most devices that support a network connection do so by either providing support for a print spooler
interface (lpd) or by emulating a bidirectional connection to the printing device (socket or appsocket). If
your printer provides status reporting, it is strongly recommended that you use the socket interface. This
will allow you to monitor conditions reported by the printer.

Figure 3-8. Network Port Printcap

lp:lp=10.0.0.14%9100
:sd=/var/spool/lpd/%P

lp2:lp=raw@10.0.0.14
:sd=/var/spool/lpd/%P

19

Chapter 3. Printers

legacy :rp:rm support
:rp=raw:rm=10.0.0.14

The printcap for a network printer is shown in Figure 3-8. You can use the :rp:rm options if you want.

Figure 3-9. Benefits of Network Port Printcap

High Speed
Low Error Rate (+ Error Detection)
Long Distances
Very low system overhead

Network port printing is effectively the highest speed. The TCP/IP protocol provides both flow control and
error detection/correction. The printer and host system can be separated by quite large distances. Finally,
the overhead of the TCP/IP connection is very low in terms of hardware and software.

Figure 3-10. Network Print Server

ipaddr%9101

Print
Server

Port 1

port1@ipaddr

ipaddr%9100

Port 2

port2@ipaddr

If you have legacy systems that have serial or parallel ports, you can buy a Network Print Server box.
These have a network interface and one or more parallel or serial port interfaces.

Table 3-1. Network Print Server Configuration Information

Manufacturer Model RFC1179 Port Name
(rp=XXX)

Send to TCP port

Cannon Printer
(http://www.cannon.com/)

Cannon 460 PS, no hard
drive

xjdirect - Unknown if supported -

Cannon 460 PS hard
drive

xjprint - print
immediately,xjhold - print
later

- Unknown if supported -

Digital Products Inc.
(http://www.digprod.com/)

NETPrint Print Server PORTn, where n is port on
server

- Unknown if supported -

Electronics For Imaging
Inc. (http://www.efi.com/)

Fiery RIP i series normalq or urgentq - Unknown if supported -

Fiery RIP XJ series xjprint - Unknown if supported -

Fiery RIP XJ+ and SI
series

print_Model , e.g.
print_DocuColor

- Unknown if supported -

20

Chapter 3. Printers

Manufacturer Model RFC1179 Port Name
(rp=XXX)

Send to TCP port

Fiery models ZX2100,
ZX3300, X2, X2e

print - Unknown if supported -

Emulex Corp.
(http://www.emulex.com/)

NETJet/NETQue print
server

PASSTHRU - Unknown if supported -

Extended Systems Inc.
(http://www.extendsys.com/)

ExtendNet Print Server Printer n, where n is port
on server

- Unknown if supported -

Hewlett-Packard
(http://www.hp.com/)

JetDirect interface card raw 9100

Hewlett-Packard
(http://www.hp.com/)

JetDirect Multiport Server port 1 - raw1, port 2

- raw2, etc.

port 1 - 9100, port 2 -
9101, etc.

I-Data
(http://www.i-data.com/)

Easycom 10 Printserver par1 (parallel port 1) - Unknown if supported -

Easycom 100 Printserver LPDPRT1 - Unknown if supported -

IBM
(http://www.printers.ibm.com/)

Network Printer 12, 17,
24, and 24PS

PASS - Unknown if supported -

Lantronix
(http://www.lantronix.com/)

EPS1, EPS2 EPS_X_S1 (serial) port

1, EPS_X_P1 (parallel)

port 2 , etc.

3001 (port 1), 3002 (port
2), etc.

QMS
(http://www.qms.com/)

Various Models RAW 35 (AppSocket)

Tektronix
(http://www.tek.com/color_printers/)

Tektronix printer network
cards

PS (PostScript), PCL

(PCL), or
AUTO(Auto-selection
between PS, PCL, or
HPGL). Not reliable.

9100 (AppSocket on
some models)

Rose Electronics
(http://www.rosel.com)

Microserve Print Servers lp 9100

Xerox
(http://www.xerox.com/)

Models 4505, 4510, 4517,
4520

PASSTHRU 2501 (AppSocket on
some models)

Model 4512 PORT1 10001 (programmable)

Model N17 RAW 9100

Models N24 and N32 RAW 2000

Models 4900, 4915, 4925,
C55

PS 2000

Document Centre
DC220/230

lp - Unknown if supported -

All company, brand, and product names are properties of their respective owners.

21

Chapter 3. Printers

3.4. Sending To SMB (Samba, Microsoft) Printer, Novell, App letalk

Figure 3-11. Using Program To Send To Printer

Specific
lpd Filter Transfer

Program

Spooler
or

Printer

Package

There are a wide number of other print spooling systems that have been developed over the years. Most
of these use proprietary or arcane protocols to transfer files. These include the SMB protocol used by
Microsoft, the Novell print spooler support, and the Apple corporation Appletalk (Copyright, Trademarks
where applicable). These systems usually run on or with non-UNIX Operating Systems or on proprietary
hardware. But over the years packages have been developed to interface to these systems.

Figure 3-12. Protocols, Packages, and Transfer Programs

Protocol Package Transfer Program
SMB (CIFS) Samba smbclient + wrapper

WWW: http://www.samba.org
Novell Netware ncpfs (Linux) nprint + wrapper

FTP: ftp.gwdg.de/pub/linux/misc/ncpfs
(Also Linux Kernel Documentation/filesystems)

Appletalk CAPS pap + wrapper
WWW: http://sourceforge.net/projects/netatalk
WWW: http://www.umich.edu/~rsug/netatalk

Each of these programs will transfer a print job to a remote system.

Figure 3-13. Printcap For Transfer Programs

lp:
OR
:lp=|/usr/local/lib/filters/smbprint
OR
:lp=|/usr/local/lib/filters/ncpprint
OR
:lp=|/usr/local/lib/filters/atalkprint
and the magic happens here
:options=authfile="auth" host="h114" printer="lp" \

workgroup="ASTART"
or you can use
#:options=share="//h114/lp" workgroup="ASTART"
See the LPRng/UTILS directory

You can specify a program to do the transfer to the remote host. The program will connect to the remote
system and transfer STDIN to the printer. Errors will be written to STDERRand be put in the log by LPRng .

22

Chapter 3. Printers

Figure 3-14. Samba smbclient Wrapper

#!/bin/sh
configuration
smbclient=/usr/local/bin/smbclient

get options from $PRINTCAP_ENTRY environment variable
PATH=/bin:/usr/bin:/usr/local/bin
options=‘echo "${PRINTCAP_ENTRY}" | sed -n ’s/:options=/ /p’ ‘
echo OPTIONS $options >&2
if [-n "$options"] ; then

paranoia: $options=‘echo |perl -sp ’s/[^\w\s,-+%="\’]/ /’‘
eval dummy=v ‘echo $options‘;

fi

if ["$oldversion" != "" -a "$authfile" != "" -a -f "$authfile "] ; then
. $authfile;
$authfile=

fi

if ["$translate" = "yes"]; then
command="translate ; print -"

else
command="print -"

fi

if ["$share" = ""] ; then share="//$host/$printer" ; fi

echo $smbclient "$share" ${password:+password} -E \
${username:+-U} ${username:+username} ${hostip:+-I} \
$hostip -N ${workgroup:+-W} $workgroup \
${authfile:+-A} $authfile -c "$command" >&2

$smbclient "$share" ${password} -E \
${username:+-U} ${username} ${hostip:+-I} \
$hostip -N ${workgroup:+-W} $workgroup \
${authfile:+-A} $authfile -c "$command" >&2

The smbprint script is run with the $PRINTCAP_ENTRYenvironment variable set to the printcap (See
Figure 3-15). The value is scanned for the :options line and then this line is used with eval to set
variables. This is a slight security risk and you should not have any metacharacters in the options field, so
you can optionally strain them out or you can trust in your editting skills in the printcap.

Figure 3-15. $PRINTCAP_ENTRY

lp:
:lp=|/usr/local/lib/filters/smbprint
:options=authfile="auth" host="h114" printer="lp" work group="ASTART"

There older versions of the smbclient required the user name and password on the command line.
Unfortunately, the ps command would show the command line options, allowing users to see the
password. Newer versions can read username and password from an authentication file. We can use
either version by setting the oldversion option.

23

Chapter 3. Printers

Finally, we echo the command for logging purposes (note that $password is not displayed and then run
the smbclient command.

Figure 3-16. Novell and Appletalk Wrappers

ncpprint:
....
usercmd=""
if ["$username" != ""]; then

if ["$password" != ""]; then
usercmd="-U $username -P $password"

else
usercmd="-U $username -n"

fi
fi
nprint=/usr/bin/nprint -S $server -q $printer \

$usercmd -N - 2>/dev/null

atalkprint:
...
/usr/bin/pap -p "$username:$printer@$host"

This general template can also be used with the nprint command from the Novell Netware support
package to send files to a Novel Netware printers and the pap command from the Netatalk package.

3.5. Serial Port

Figure 3-17. Serial Port

Read Write
lpd Filter Printer

/dev/tty00

A serial line is usually bidirectional in operation, but there are very few printers that will return status
information. The most notable exception to this are PostScript printers. If you use a serial port printer, it
is absolutely essential that you implement flow control, and almost mandatory that you use hardware or
RTS-CTS (Request To Send and Clear To Send) flow control. Finally, you need to have the serial line
operate in RAWmode, so that the serial line driver does not abuse the output stream by introducing
extraneous CR-LF sequences, and changing control characters such as ESC(Escape) into ^E sequences.

Figure 3-18. Serial Port Printcap

lp:lp=/dev/tty00
:stty=raw crtscts 19200
:sd=/var/spool/lpd/%P
optional Open Read Write
#:rw

24

Chapter 3. Printers

The :stty=... option is used to set line characteristics and takes a subset of the stty application
parameters. You need to set the line speed and mode. If you need to get status information back from the
printer, you should add the :rw (Open Read-Write) flag.

As you might suspect, the serial port is limited by the line speed. In addition, it has a higher rate of errors
than you might expect. Most printers that use a serial port are for legacy purposes or have low speed and
low data transfer requirements.

25

Chapter 4. Printer Job Formats

Figure 4-1. Page Description Lanaguages

Printer Input File Formats:

Postscript (Level 1, 2, 3)
PCL (PCL 5)
Text (Really Legacy PCL)

PJL
Configuration Specification for Job

- PostScript or PCL or HPGL or ...

Magic Mystery Proprietary Format

Most printers will only print jobs that have a particular format. These formats are called Page Description
Languages. The most common are PostScript, PCL, and HPGL.

Figure 4-2. How To Identify Print Formats

Print Job Job Types
Start of File File Type

%! PostScript - Level Unknown
%!PS-Adobe-1.0 PostScript - Level 1.0
%!PS-Adobe-2.0 PostScript - Level 2.0
%!PS-Adobe-2.1 PostScript - Level 2.0
%!PS-Adobe-3.0 PostScript - Level 2.0
\033%-12345X@PJL HP Printer Job Language data
\033E\033 HP PCL printer data
This ... Text

The type of file can be identified by looking at the content near the start of the file. This is how the file
program determines the type of file Figure 1-1.

Figure 4-3. Using the file Application

h110: {1} % file *
Makefile: ASCII English text
atalkprint: Bourne shell script text executable
logo.gif: GIF image data, version 89a, 250 x 91,
one.pcl: HP PCL printer data
one.ps: PostScript document text conforming at level 3.0
one.pjl: HP Printer Job Language data
rewindstdin: ELF 32-bit LSB executable
testpage-a4.fig: FIG image text, version 3.1
testpage-a4.ps: PostScript document text conforming at le vel 2.0
testpage.fig: FIG image text, version 3.1

26

Chapter 4. Printer Job Formats

4.1. PostScript

Figure 4-4. One PostScript Page

%!PS-Adobe-3.0
%% one page (i.e. - a page with a 1 on it)
%%/Times-Roman
/Courier
findfont 200 scalefont setfont
72 300 moveto
(1) show
showpage

-- from PostScript Reference Manual 1986
Adobe (www.adobe.com)

This is an example of a PostScript File.

Figure 4-5. Generate One Page

h110: {1} % echo 1 |groff -Tps >/tmp/one.ps
h110: {2} % more /tmp/one.ps
%!PS-Adobe-3.0
%%Creator: groff version 1.16.1
%%CreationDate: Thu Oct 18 12:48:45 2001
%%DocumentNeededResources: font Times-Roman
%%DocumentSuppliedResources: procset grops 1.16 1
%%Pages: 1
%%PageOrder: Ascend
%%Orientation: Portrait
%%EndComments
%%BeginProlog
%%BeginResource: procset grops 1.16 1
/setpacking where{
pop
currentpacking
true setpacking
}if
/grops 120 dict dup begin
/SC 32 def
/A/show load def
/B{0 SC 3 -1 roll widthshow}bind def

The quick way to generate a test page is use groff . The groff -Tps outputs PostScript.

Figure 4-6. PostScript Document Structuring Conventions

Specifies how a PostScript print job should be formatted
Divides the job up into a prolog and body
The body contains pages

- each page is in an individual section

27

Chapter 4. Printer Job Formats

- each page is independant

Various Levels - 3.0 with PostScript Level 3, etc.

Most document generation systems produce PostScript that meets the PostScript Document Structuring
Convention. This allows you to massage PostScript Documents in several ways.

Figure 4-7. Tools for PostScript Document Manipulation

GhostScript - format conversion
WWW: http://www.ghostscript.com

PSUtils - utilities to massage PostScript by Angus Duggan
FTP: ftp://ftp.dcs.ed.ac.uk/pub/ajcd/
WWW: http://www.dcs.ed.ac.uk/home/ajcd/psutils/

psbook rearranges pages into signatures
psselect selects pages and page ranges
pstops performs general page rearrangement and selection
psnup put multiple pages per physical sheet of paper
psresize alter document paper size
epsffit fits an EPSF file to a given bounding box
getafm (sh) outputs PostScript to retrieve AFM file from pri nter
showchar (sh) outputs PostScript to draw a character with me tric info
fixdlsrps (perl) filter to fix DviLaser/PS output so that PS Utils works
fixfmps (perl) filter to fix framemaker documents so that ps select etc. work
fixmacps (perl) filter to fix Macintosh documents with sane r version of md
fixpsditps (perl) filter to fix Transcript psdit documents to work with PSUtils
fixpspps (perl) filter to fix PSPrint PostScript so that pss elect etc. work
fixscribeps (perl) filter to fix Scribe PostScript so that p sselect etc. work
fixtpps (perl) filter to fix Troff Tpscript documents
fixwfwps (perl) filter to fix Word for Windows documents for PSUtils
fixwpps (perl) filter to fix WordPerfect documents for PSUt ils
fixwwps (perl) filter to fix Windows Write documents for PSU tils
extractres (perl) filter to extract resources from PostScr ipt files
includeres (perl) filter to include resources into PostScr ipt files
psmerge (perl) hack script to merge multiple PostScript fil es

The combination of GhostScript and PSutils by Angus Duggan are a powerful combination.

Figure 4-8. Selection of Pages + 4up Printing

h110: {81} % psselect -p20-24 LPRng-HOWTO.ps | psnup -4 >p4u p.ps
[20] [21] [22] [23] [24] Wrote 5 pages, 38404 bytes
[1] [2] Wrote 2 pages, 42769 bytes

28

Chapter 4. Printer Job Formats

Figure 4-9. PostScript Output

Figure 4-10. End Of PostScript Job: ^D (CTRL-D)

^D is recognized as an ’end of job’
- causes reset of PostScript interpreter to defaults

^D%!PS-Adobe-3.0
...
^D

The Dreaded ^D at Start of Job - causes problems
Rest of job may be ignored!
Solution: strip off ^D at start

(ifhp = ps_eoj_at_start@)

The Dreaded ^D at End of Job - causes problems when
you are trying to massage postscript or append jobs
Solution: strip off ^D everywhere

(ifhp = ps_eoj_at_end@)

The ^D (CTRL-D) character is evil - it usually should not be put into raw files.

4.2. PCL

Figure 4-11. One PCL Page

^[E^[&u600D^[&l2A^[&l0O^[&l0E^[(0N^[(s1p0s0b4101T
^[(s24V^[* p655x942Y1^L^[E

Note: ^[is ESC or \033
^[E is ’reset printer configuration’

29

Chapter 4. Printer Job Formats

This is an example of a PCL file. Note that the file starts with ^[E , or the reset configuration string. All PCL
jobs should start with this so that the previous job does not cause a problem.

Figure 4-12. Generate One Page

h110: {1} % echo 1 | groff -Tlj4 >/tmp/one.pcl
h110: {2} % more
^[E^[&u600D^[&l2A^[&l0O^[&l0E^[(0N^[(s1p0s0b4101T

^[(s24V^[* p655x942Y1^L^[E

The quick way to generate a test page is use groff . The groff -Tlj4 outputs PCL level 5. Again, watch
out for the evil ^D (CTRL-D) characters.

4.3. Printer Job Language (PJL) and PostScript, PCL

Figure 4-13. PJL Example

^[%-12345X@PJL
@PJL RDYMSG DISPLAY = ":"
@PJL USTATUSOFF
@PJL USTATUS JOB = ON
@PJL USTATUS DEVICE = ON
@PJL USTATUS PAGE = ON
@PJL USTATUS TIMED = 10
@PJL ENTER LANGUAGE = POSTSCRIPT
^D%!
%!PS-Adobe-3.0
%% one page (i.e. - a page with a 1 on it)
%%/Times-Roman
/Courier
findfont 200 scalefont setfont
72 300 moveto
(1) show
showpage
^D^[%-12345X@PJL
@PJL RDYMSG DISPLAY = ":"
@PJL EOJ NAME = ":"
@PJL USTATUSOFF
@PJL USTATUS JOB = ON
@PJL USTATUS DEVICE = ON
@PJL USTATUS PAGE = ON
@PJL USTATUS TIMED = 10
@PJL RDYMSG DISPLAY = "Done: :"
^[%-12345X

Printer Job Language is used to set up configuration and other facilities for a printer. It can establish
defaults for printing and provide direction to the printer on how to handle job items not specified by the
PostScript or PCL language.

The PJL Reset command ^[%-12345X performs a Print Job lanaguage independent reset. This allows
PJL to be used with PostScript or PCL.

30

Chapter 4. Printer Job Formats

4.4. Text Files

Figure 4-14. Text Files and The Jaggies

Text
- usually ASCII characters

The Dreaded Jaggies

File:

This is what you
see on the printer

Printer output:

This is what you
see on the printer

Text is usually just ASCII characters. Unix lines are terminated with new line (NL or \012 , and when sent to
a printer result in The Jaggies. You need to have carriage returns (CRor \015 added to the file. You need
to fix this by one of several methods.

Figure 4-15. Fixing The Jaggies

Fixing The Jaggies:
Convert NL to CR/NL

Quick and Dirty
sed -e ’s/$/\r/’

OR
lpf (LPRng utility)

Make PCL Printer Interpret CR as CR/LF
^[E -> ^[E&k2G
Remove the PCL Reset and add the &k2G

(CR -> CR/LF command)

4.5. Magical Mystery Proprietary Format

Figure 4-16. Magical Mystery Formats

Magical Mystery Proprietary Format
- Usually a RASTER format

- legacy devices such as Versatek Plotters

- new super cheap InkJet Printers
The host system needs to do conversion to raster file

- Dirty Little Secret - some of these understand PCL Level 5
(monochrome) and are compatible with HP LaserJet 4.

31

Chapter 4. Printer Job Formats

You should try and see if your printer understands PCL. Try using GhostScript with the hpdj , ljet3 or
ljet4 .

Figure 4-17. GhostScript To The Rescue

h110: {64} % gs --help
AFPL Ghostscript 6.50 (2000-12-02)
Copyright (C) 2000 Aladdin Enterprises, Menlo Park, CA. All rights reserved.
Usage: gs [switches] [file1.ps file2.ps ...]
Most frequently used switches: (you can use # in place of =)

-dNOPAUSE no pause after page | -q ‘quiet’, fewer messages
-g <width>x <height> page size in pixels | -r <res> pixels/inch resolution
-sDEVICE= <devname> select device | -dBATCH exit after last file
-sOutputFile= <file> select output file: - for stdout, |command for pipe,

embed %d or %ld for page #
Input formats: PostScript PostScriptLevel1 PostScriptLe vel2 PDF

You can read PostScript level 1, 2, or PDF with this version of GhostScript.

Figure 4-18. GhostScript Devices

Available devices:
x11 bbox x11alpha x11cmyk x11cmyk2 x11cmyk4 x11cmyk8 x11gr ay2 x11gray4
x11mono x11rg16x x11rg32x atx23 atx24 atx38 deskjet djet50 0 fs600
laserjet ljetplus ljet2p ljet3 ljet3d ljet4 ljet4d lp2563 o ce9050 lj5mono
lj5gray epswrite pswrite pdfwrite pxlmono pxlcolor bit bit rgb bitcmyk
bmpmono bmpgray bmpsep1 bmpsep8 bmp16 bmp256 bmp16m bmp32b cgmmono cgm8
cgm24 jpeg jpeggray miff24 pcxmono pcxgray pcx16 pcx256 pcx 24b pcxcmyk
pcx2up pbm pbmraw pgm pgmraw pgnm pgnmraw ppm ppmraw pnm pnmraw pkm
pkmraw pksm pksmraw plan9bm pngmono pnggray png16 png256 pn g16m psmono
psgray psrgb faxg3 faxg32d faxg4 tiffcrle tiffg3 tiffg32d t iffg4 tifflzw
tiffpack tiff12nc tiff24nc appledmp iwhi iwlo iwlq bj10e bj 200 ccr
cdeskjet cdjcolor cdjmono cdj500 cdj550 declj250 dnj650c l j4dith pj pjxl
pjxl300 bjc600 bjc800 escp djet500c cljet5 cljet5pr cljet5 c lj3100sw
coslw2p coslwxl cp50 epson eps9mid eps9high ibmpro epsonc a p3250 st800
stcolor uniprint lj250 paintjet pjetxl hl7x0 imagen jetp38 52 lbp8 lips3
lp8000 m8510 necp6 lq850 lxm5700m oki182 okiibm photoex sj4 8 t4693d2
t4693d4 t4693d8 tek4696 cfax dfaxlow dfaxhigh cif inferno m grmono
mgrgray2 mgrgray4 mgrgray8 mgr4 mgr8 sgirgb sunhmono cdj85 0 hpdj pcl3
hpdjplus hpdjportable hpdj310 hpdj320 hpdj340 hpdj400 hpd j500 hpdj500c
hpdj510 hpdj520 hpdj540 hpdj550c hpdj560c hpdj600 hpdj660 c hpdj670c
hpdj680c hpdj690c hpdj850c hpdj855c hpdj870c hpdj890c hpd j1120c cdj970
stp nullpage

GhostScript converts PostScript to a wide range of output device formats. The interesting ones are ljet4 ,
lj5mono , hpdj , and so forth. These are Ink Jet printers with various strange behaviors.

32

Chapter 4. Printer Job Formats

Figure 4-19. GhostScript Support

http://www.ghostscript.com
http://www.cs.wisc.edu/~ghost
http://www.cs.wisc.edu/~ghost/doc/printer.htm
http://www.cs.wisc.edu/~ghost/doc/AFPL/devices.htm

The http://www.ghostscript.com site has links to just about everything concerned with GhostScript. the
http://www.cs.wisc.edu/~ghost site mirrors much of this information. The printer.htm
(http://www.cs.wisc.edu/~ghost/doc/printer.htm) and devices.htm
(http://www.cs.wisc.edu/~ghost/doc/AFPL/devices.htm) are good sources for information about printing.

4.6. Printing Test Pages

Figure 4-20. Printing Test Pages To Parallel Port

#!/bin/sh
for i in one.pcl one.pjl one.ps ; do

cat $i >/dev/lp0
done

The easiest way to print the test pages is to try them all. This is brutal, but you may need to do it at least
once.

Figure 4-21. Using Netcat (nc)

nc - Netcat by Mudge
http://www.avian.org/
ftp://ftp.lprng.com/pub/LPRng/TOOLS/netcat
#!/bin/sh
for i in one.pcl one.pjl one.ps ; do

nc -w10 10.0.0.14 9100 <$i
done

h110: {453} % sh -x /tmp/testnc
+ nc -w10 -v -v 10.0.0.14 9100
h14.private [10.0.0.14] 9100 (jetdirect) open
@PJL USTATUS DEVICE
CODE=10003
DISPLAY="02 WARMING UP"
ONLINE=TRUE

...
@PJL USTATUS TIMED
CODE=10001
DISPLAY="Done: papowell /"
ONLINE=TRUE

^C

33

Chapter 4. Printer Job Formats

Netcat is a handy tool for testing network connections to a printer. You can also use it as a port mapper
and find out what interesting ports are open on your print spooler box.

34

Chapter 5. Filters

Figure 5-1. Filters

Printerlpd Filter

A filter is responsible for converting the job data files to a format compatible with the printer, transfering the
job to the printer, and monitoring for any problems.

Figure 5-2. Filter Specification in Printcap Entry

LPRng
lp:

:filter=/.../filter

Legacy BSD (LPRng is backwards compatible)
lp:

file ’format’ is lower case letter X, filter is
’Xf’ option value, default format is ’f’ so default
filter is ’if’
:if=/.../filter
:hf=/.../filter

The legacy BSD printing system required you to specify a filter for all input types. LPRng uses :filter to
specify a default filter. Much more in line with modern printing.

Figure 5-3. Specifying Job Datafile Format

LPRng ’format’ selection:

h110: {295} % lpr -Fx /tmp/hi

Legacy BSD ’format’ selection:

h110: {295} % lpr -x /tmp/hi

Format ’b’ (Binary) or ’l’ (Literal)
for ’Passthrough’ Operation - format ’l’ is used

h110: {295} % lpr -l /tmp/hi
h110: {295} % lpr -b /tmp/hi

Control file example:
Hh110.private
J/tmp/hi
Lpapowell
N/tmp/hi
fdfA383h110.private <- first letter is format
UdfA383h110.private

35

Chapter 5. Filters

The lpr -Fx (Filter x) option allows you to specify the filter type. Which, of course, if you use the :filter

option is ignored. The Binary or Literal (-b or -l requests Pass Through treatment from the filter. The filter
is still used, but it is passed a special flag.

In the control file, lines starting with lower case letters specify a format and the data file to print with the
format.

Figure 5-4. Filter Execution Environment

lp:sd=/var/spool/lpd/%P
:filter=/filter
:lp=/dev/lp

Execution:
CWD is spool directory (/var/spool/lpd/lp)

Environment:
PATH=... - from /etc/lpd.conf

LD_LIBRARY_PATH=... - from /etc/lpd.conf

PRINTER=lp
PRINTCAP_ENTRY=lp: - printcap entry

:sd=/var/spool/lpd/lp with %P fixed up
:filter=/filter
:lp=/dev/lp

CONTROL=Aroot@h110+383 - job control file
CA
D2001-10-19-06:40:59.968
Hh110.private
J/tmp/hi
Lroot
Proot
Qlp
N/tmp/hi
fdfA383h110.private
UdfA383h110.private

HF=A=root@h110+383 - job control file
C=A
D=2001-10-19-06:40:59.968
H=h110.private
J=/tmp/hi
priority=B
transfername=cfA383h110.private

The PRINTCAP_PATHenvironment variable has new lines before every colon (:) so you can split it up easily
in the filter. See Figure 3-14 for an example of this use. The CONTROLvalue is the job control file. The
control file contains an image of the control file corresponding to the current job state. The HF value is the
current hold file contents. This contains detailed information about processing and other options used by
the lpd server. The output device is opened Read-Write if the :rw flag is set and it is a real device. Also,
if the output is a filter or network connection then then the output is Read-Write .

36

Chapter 5. Filters

Figure 5-5. Command Line Options

lp:sd=/var/spool/lpd/%P
:filter=/filter
:lp=/dev/lp

/filter <dfA383h110.private >/dev/lp
STDIN, STDOUT, STDERR to Filter_status

-CA -D2001-10-19-06:40:59.968 -Hh110.private -J/tmp/hi -Lroot -Qlp
From the control file

-Plp -Ff
Legacy and LPRng, -P printer, -F format

-n root -h h110.private -f dfA383h110.private
...

there are more lower case options than you want to think about

The filter command line options are really agressive due to history and feeping creaturism. All of the lines
in the control file with a capital letter are passed as shown, the -F is used for the print job format, and the
-c is set if the job format was l (Binary or Literal). The -f also is the name of the data file. STDIN is set to
the data file and STDOUTto the output device or network connection. Just to make life interesting, the name
of the accounting file (if it is specified in the printcap or if it has a default value) is passed as the last
parameter.

Figure 5-6. Filter Exit Codes

Exit Code Action
0 (JSUCC) Successful, send filter output to printer
1 (JFAIL) Failed, retry later
2 (JABORT) Failed, do not retry, and Abort printing
3 (JREMOVE) Remove job
4 (JHOLD) Set job HOLD flag

The filter program exit codes can be used to control how the job is processed. The JSUCC(0) value is the
normal successful exit code. The JFAIL (1) value is used to indicate some sort of temporary failure and
the job should be retried again. The JABORT(2) is more serious, and indicates some system error. The job
should not be retried and printing should stop. The JREMOVE(3) code simply removes the job. This is
useful if the job is unprintable. Finally, the JHOLDsets the job HOLDflag. The job will not be released for
printing until the lpc release command releases it.

Figure 5-7. Solid As A Rock Filter Operation

Filter:
- examines input format using file
- decides if file format is compatible with printer

if not, can run a conversion program to convert
the output.

- initializes printer by sending magic cookies to it
magic cookies depend on particular device, model, etc.

- transfers output to printer, optionally inserting variou s

37

Chapter 5. Filters

control codes, CR -> CR/LF
- if printer can reports status, then gets status as it does

the transfer operation.
- after transferring job, sends more magic cookies to tell

printer that job is over
- monitors printer for error status
- exits with an appropriate error code telling exactly what

problems (if any) were encountered.

This is what a real filter should do. Note that it appears to be obvious that you would need to do all this.

Figure 5-8. Solid As A Used Paper Coffee Filter Operation

Filter:
- Tosses job at GhostScript for conversion, sets

GhostScript output to STDOUT
- Returns GhostScript exit status

OK, I am being a bit harsh. But this is not too far from the truth. Most filter packages are somewhere
between the two extremes.

5.1. Writing Your Own Filter
If you want to write your own filter you can start with the following simple examples. In practice you have
two choices: Perl or sh . The first in a filter is to get the various environment and option values. We will
write a simple filter that converts PostScript files into 4 up PostScript files.

Figure 5-9. Filter Template in perl

#!/usr/bin/perl
use Getopt::Std;
my $debug = 0; # always... sigh...
my(%opt, @pc, %options);

get command line options
getopts(’A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:T:S:U: V:W:X:Y:Z:’
. ’a:b:cd:e:f:g:h:i:j:k:l:m:n:o:p:q:r:t:s:u:v:w:x:y: z:’, \%opt);
while(@ARGV){ $opt{acct} = pop @ARGV ; };

split up the PRINTCAP_ENTRY environment variable value
@pc = split /\n\s * :/s, ($ENV{PRINTCAP_ENTRY} || "");
shift @pc; # throw way first entry field, printer name
set the options
foreach (@pc){ # set the options values

if(/^(.+)=(. *)/){ $options{$1} = $2;
} elsif (/^(.+)@/){ $options{$1} = 0;
} else { $options{$_} = 1; }

}

if($debug){ # for those interested

38

Chapter 5. Filters

my $s = "";
foreach my $v (sort keys %options){ $s .= "$v=’$options{$v} ’,"; }
print STDERR "Printcap: ’$s’\n"; $s="";
foreach my $v (sort keys %opt){ $s .= "$v=’$opt{$v}’,"; }
print STDERR "Args: ’$s’\n";

}

This example shows how to get the various environment variables and command line options and put
them into handy hashes for easy access. You should note the special treatment of the -c option and the
arguments at the end of the command line. The last argument is the name of the accounting file (if any).

Figure 5-10. How To Determine The Type of Job File

my $file = ‘/usr/bin/file -‘; # we find the file type
chomp $file;
print STDERR "File: ’$file’\n" if $debug; # show the file typ e
sysseek STDIN,0,0 or die "cannot seek STDIN - $!"; # rewind to start of file
my $is_postscript = ($file =~ /PostScript/i);
print STDERR "Postscript: ’$is_postscript’\n" if $debug; # show the file type
if($is_postscript){

my $status = system "/usr/local/bin/psnup", "-4";
if($status){

print STDERR "psnup failed - $!\n";
exit 1;

}
exit 0;

}
while(<STDIN>){ print };
exit 0;

To determine the file type we use the file application. This reads the first part of the input file and then
writes out the determined file type on its STDOUT. We check to see if the file is a PostScript file and then
run the psnup command. If it is not, then we simply write copy STDIN to STDOUT.

Figure 5-11. Printcap for Filter

nup:force_localhost
:filter=/usr/local/libexec/filters/nup
:sd=/var/spool/lpd/%P
:lp=lp@localhost

(Don’t forget to run checkpc!)

We set make a printcap entry. Note the use of force_localhost to make sure that the print jobs are sent
to the right print queue! The filter output will then be sent to lp@localhost for final printing.

39

Chapter 5. Filters

Figure 5-12. Using Filter With $debug=1

Status: processing ’dfA946h110.private’, size 145, forma t ’f’,
IF filter ’nup’ at 07:27:30.938

Status: IF filter ’nup’ filter msg - ’Printcap: ’cm=’Class T est Printer 1’,....
Status: IF filter ’nup’ filter msg - ’Args: ’A=’papowell@h1 10+946’,C=’A’,....
Status: IF filter ’nup’ filter msg - ’File: ’standard input: PostScript document’

at 07:27:30.938
Status: IF filter ’nup’ filter msg - ’Postscript: ’1” at 07:2 7:30.938
Status: IF filter ’nup’ filter msg - ’Wrote 0 pages, 1775 byte s’ at 07:27:30.940
Status: IF filter ’nup’ filter finished at 07:27:30.941
Status: sending job ’papowell@h110+946’ to lp@localhost a t 07:27:30.943

Figure 5-12 shows the status output when we set the $debug=1 . This is recommended when you are
testing your filters.

Figure 5-13. Using Filter With $debug=0

Status: processing ’dfA021h110.private’, size 145, forma t ’f’,
IF filter ’nup’ at 07:38:22.416

Status: IF filter ’nup’ filter msg - ’Wrote 0 pages, 1775 byte s’
at 07:38:22.472

Status: IF filter ’nup’ filter finished at 07:38:22.473
Status: sending job ’papowell@h110+21’ to t6@localhost at 07:38:22.475

Figure 5-13 shows the status output when we set the $debug=0 . As you can see, it is less chatty and just
as informative to most users.

5.2. The LPRng IFHP Filter

Figure 5-14. ifhp

ifhp (IFHP)
part of the LPRng suite
separate from LPRng
not quite as strong as a brick,

but better than a wet paper coffee filter.

ifhp.conf contains printer configuration information

The ifhp filter is part of the LPRng family of programs. It is distributed separately because the release and
update times did not orginally match. The ifhp filter is intended for use with the LPRng software and
undergoes much of the same testing.

Figure 5-15. ifhp.conf Configuration Information

Supported Printers

default - HP 4M Plus, PostScript, PJL, PCL, status, pagec ount support
apple - PostScript printer, text to PS conversion, statu s, pagecount support

40

Chapter 5. Filters

postscript - PostScript printer, text to PS conversion, status, pagecount support
ps - PostScript printer, text to PS conversion, status, p agecount support
pcl - PCL only printer, no status
pcl_gs - HP Laserjet 4 PCL only printer, write only, no sta tus
hpiiisi - HP LaserJet III (PCL and PostScript Interprete r)

Each printer type has an entry in the ifhp.conf configuration file. For convenience these are put at the
start of the file.

Figure 5-16. Default Printer Magic Cookies

magic cookie definitions
[default]
printer capabilities
pjl # can do PJL
pcl # can do PCL 5
ps # can do PS
text # can do TEXT

status # returns status by default
sync # needs sync magic cookie sent
ps_sync=

serverdict begin 0 exitserver
statusdict begin false setenginesync end

PostScript sync magic cookie definition

definition of available user options
pjl_user_opts=[... simplex duplex ...]

magic cookie strings for use when PJL, PostScript or PCL fil e
pjl_duplex=@PJL SET DUPLEX = ON
ps_duplex= statusdict begin true setduplexmode false sett umble end
pcl_duplex=\033&l1S

Each printer has a configuration section where the printer capabilities are defined, the user options that
are available are specified, and the magic cookies that need to be sent to the printer to have the
operations happen are defined. The default entry species the set of defaults for all the printers.

Figure 5-17. PostScript Only Printer

a2ps_converter= /usr/local/bin/a2ps \%s{a2ps_options}
a2ps_options= -q -B -1 -M \%M{papersize} --borders=no -o-
gzip_decompress = /usr/bin/gzip -c -d

model for ’apple’, ’postscript’ or ’ps’
[apple postscript ps]
pjl@
pcl@
ps
text@
file_output_match = [

41

Chapter 5. Filters

* postscript * ps

* text * ps \%s{a2ps_converter}

* pdf * ps \%s{pdf2ps_converter}

* gzip_compressed * filter \%s{gzip_decompress}
]

do {
$file = (lc ‘ file - ‘) =~ s/[\s\n]/_/gs;
foreach $line (@file_output_match) {
last if globmatch($file, $line->[0]);
}
if($line->[2]){
run $file->[2] and convert input file to format
}
} while $line and $line->[1] != "filter"
outfile file format is $line->[1]

Here is an example of a PostScript only printer. The pjl@ pcl@ and text@ entries turn off PJL, PCL, and
TEXT for the printer.

The file_output_match entry is used to implement a simple conversion facility that will try to find a
conversion from one file type to another. It is deliberately simple minded, on the grounds that if you have a
special type that you need to do conversions for all the time then you better make sure you do it right.

Figure 5-18. Using the ifhp Filter

Printcap:

lp:sd=/var/spool/lpd/%P
:filter=/usr/local/lib/filters/ifhp
:lp=/dev/lp
a PostScript printer that does not return status
:ifhp= model=ps,status@

The :ifhp= option is used to pass options to ifhp. You can also use ifhp -Toption as well. In this
example we specify a PostScript printer that does not return status.

Figure 5-19. Example of ifhp Operation

h110: {205} % lpr /tmp/f.pdf
h110: {205} % lpq -L

Filter_status: using model ’DEFAULT’ at 09:36:36.475
Filter_status: pagecount using ’pjl info pagecount’ at 09: 36:36.477
Filter_status: setting up printer at 09:36:36.477
Filter_status: getting sync using ’pjl echo’ at 09:36:36.4 77
Filter_status: sync done at 09:36:38.335
Filter_status: pagecounter 105340 after 1 attempts at 09:3 6:38.349
Filter_status: pagecounter 105340 at 09:36:38.349
Filter_status: sending job file at 09:36:38.350
Filter_status: starting transfer at 09:36:38.350
Filter_status: file program = ’/usr/bin/file -’ at 09:36:3 8.350

42

Chapter 5. Filters

Filter_status: started FILE_UTIL- ’file’ at 09:36:38.351
Filter_status: file information = ’pdf_document,_versio n_1.2’ at 09:36:38.415
Filter_status: initial job type ’pdf_document,_version_ 1.2’ at 09:36:38.415
Filter_status: decoded job type ’POSTSCRIPT’ at 09:36:38. 415
Filter_status: job type ’POSTSCRIPT’, converter ’/usr/lo cal/bin/pdf2ps - -’

at 09:36:38.415
Filter_status: started CONVERTER- ’pdf2ps’ at 09:36:38.4 16
Filter_status: converter done, output 707742 bytes at 09:3 6:39.589
Filter_status: transferring 707742 bytes at 09:36:39.590
Filter_status: 26 percent done at 09:36:40.338
Filter_status: 52 percent done at 09:36:41.082
Filter_status: 78 percent done at 09:36:41.830
Filter_status: data sent at 09:36:44.501
Filter_status: sent job file at 09:36:44.501
Filter_status: getting end using ’pjl job/eoj’ at 09:36:44 .501
Filter_status: end of job detected at 09:43:50.268
Filter_status: pagecounter 105359 after 1 attempts at 09:4 3:51.503
Filter_status: pagecounter 105359, pages 19 at 09:43:51.5 04
Filter_status: done at 09:43:51.504

As you can see the information produced by the ifhp filter is more than adequate for tracing its steps. You
might want to try adding :ifhp=debug=1 , :ifhp=debug=2 , or even for the customary debugging
information.

Figure 5-20. Using -Z to Pass Options to ifhp

h110: {227} % lpr -Zlandscape,duplex,copies=3 /tmp/hi

Standard ifhp Options:

Paper/Media Selection:
a3, a4, a5, ledger, legal, letter
envelope, oversize, transparency
mediaselect=N

Input Selection:
inlower, inupper, manual

Output Selection:
outlower, outupper

Copies:
copies=N

Orientation:
landscape, portrait

Duplex:
duplex, duplexshort, simplex, lduplex, sduplex

Job formatting options are passed to ifhp using the lpr -Z . These are put into the control file with the -Z
option.

43

Chapter 5. Filters

Figure 5-21. Testing ifhp Operations

#!/bin/sh
sendhp.sh
cp /dev/null /tmp/log
cp /dev/null /tmp/out
IP=10.0.0.14
ifhp=/usr/libexec/filters/ifhp
$ifhp -Tdev=$IP%9100,trace,debug=4 </tmp/one.ps 2>&1 | tee /tmp/log
$ifhp -Tdev=$IP%9100,trace,debug=1,appsocket,status ,pagecount,waitend </tmp/one.ps 2>&1 | tee /tmp/log
$ifhp -Tdev=$IP%9100,trace,debug=1,pagecount_poll=2 </tmp/one.ps 2>&1 | tee /tmp/log
$ifhp -Tdev=/tmp/out,trace,model=hp5 </tmp/one.ps 2>&1 | tee /tmp/log

h110: {475} % sh /tmp/sendhp.sh
ifhp 06:48:04.430 [3438] main: using model ’hp5’
ifhp 06:48:04.433 [3438] Process_job: setting up printer
ifhp 06:48:04.433 [3438] Do_accounting: pagecounter 0
ifhp 06:48:04.434 [3438] Process_job: sending job file
ifhp 06:48:04.434 [3438] Send_job: starting transfer
ifhp 06:48:04.434 [3438] Send_job: initial job type ’POSTS CRIPT’
ifhp 06:48:04.434 [3438] Send_job: decoded job type ’POSTS CRIPT’
ifhp 06:48:04.434 [3438] Send_job: job type ’POSTSCRIPT’
ifhp 06:48:04.434 [3438] Send_job: transferring 145 bytes
ifhp 06:48:04.434 [3438] Send_job: 100 percent done
ifhp 06:48:04.434 [3438] Send_job: data sent
ifhp 06:48:04.434 [3438] Process_job: sent job file
ifhp 06:48:04.434 [3438] Do_accounting: pagecounter 0, pa ges 0
ifhp 06:48:04.434 [3438] Process_job: done

h110: {475} % more /tmp/out
^[%-12345X@PJL
@PJL RDYMSG DISPLAY = ":"
@PJL USTATUSOFF
@PJL USTATUS JOB = ON
...

You can test ifhp and see what it does by using the -T command line option. This is equivalent to using
the /etc/printcap ifhp option.

5.3. Taming the Wild Phaser Printer
There are several printers that have network interfaces but which require very special treatment. Among
these printers are the Tektronix Phaser printers, some legacy Xerox printers, and some plotters. These
devices require that the network connection be opened and closed multiple times when sending a job. In
order to handle this we have the filter open the connection. This type of operations is called the
appsocket protocol.

Figure 5-22. Phaser/Appsocket Support

Printcap:
lp:

44

Chapter 5. Filters

:lp=/dev/null
:filter=/.../ifhp
:ifhp=model=phaser # OR
:ifhp=appsocket,status,pagecount,waitend,dev=10.0.0 .14%9100

Offline Test:

IP=10.0.0.14
ifhp -Ttrace,debug=1,appsocket,status,pagecount,wait end,dev=10.0.0.14%9100

</tmp/one.ps 2>&1 | tee /tmp/log

You need to specify the remote host and port to use to the ifhp filter, as well as the appsocket option.
You should test this first using the offline test mode.

45

Chapter 6. Banner Pages and Accounting

Banner pages are usually a waste of paper unless you need to make sure that user jobs are separated
clearly. Even then, unless banner pages are on different stock or color they are usually ignored and thrown
away.

6.1. Suppressing Banner Pages Using the Incoming Control Fi lter Facility
Most users do not want banner pages, as they are a waste of paper. Some printers, especially the HP
family of printers, will generate a banner page when you send a job to them using the lpd protocol (i.e.
lp=port@host .

Figure 6-1. Changing JetDirect Configuration

h110: {492} % telnet 10.0.0.14
Trying 10.0.0.14...
Connected to h14.private.
Escape character is ’^]’.

Please type [Return] two times, to initialize telnet config uration
For HELP type "?"
> ?

===JetDirect Telnet Configuration===

Configured Parameters
IP Address : 10.0.0.14
Subnet Mask : 255.255.255.0
Default Gateway : 10.0.0.1
Syslog Server : 0.0.0.0
Idle Timeout : 121 Seconds
Banner : 1

> banner: 0
> quit

Your first line of defense is to try to disable banner printing by the printer. This can be done (for HP
Printers) as in Figure 6-1. Note that the user name and password are not set by default so effectively
anybody can modify your printer configuration.

Figure 6-2. Printcap Option :sh and lpr -h (No Header) Option

Printcap:
lp: ... :sh

Command line:
h110: {838} % lpr -h /tmp/hi

No ’L’ line in control file

46

Chapter 6. Banner Pages and Accounting

The banner printing is triggered by the L (Login name?) line in the control file. You can use the printcap
:sh (suppress header pages or banner pages) or the command line lpr -h option to prevent lpr from
putting this line into the control file.

Figure 6-3. Removing Banner Lines

Printcap:
lp:...
:incoming_control_filter=/.../nobanner

nobanner Script:

#!/usr/bin/perl
...
See Figure 5-9

read stdin
my($file);
$file = join "", <STDIN>;
$file =~ s/^L. * $/L/m;
print $file;
exit 0

The incoming_control_filter program is allowed to modify the control by replacing lines with new
control file lines. A control file line with no value following it, i.e. L, will cause the line to be removed. The
simple script shown above removes the L or print banner option line by removing the banner printing
information.

6.2. Forcing Banner Pages
The :ab (always print a banner page) is used by the lpd server to force banner page generation. Even if
the user tries to suppress it, it will still try to print a banner page.

Figure 6-4. Forcing Banner Pages

lp:...

lp:server
:ab # force a banner page on printing

6.3. Generating Banner Pages

Figure 6-5. Generating Banner Page

lp:
:of=/.../ifhp
:bp=/.../banner.ps # for banner at start
:be=/.../banner.ps # for banner at end

47

Chapter 6. Banner Pages and Accounting

:bs=/.../banner.ps # for banner at start

LPRng banner generators:
/usr/local/libexec/filters/psbanner - PostScript
/usr/local/libexec/filters/pclbanner - PCL
/usr/local/libexec/filters/lpbanner - Text

If you want to have a banner page printed you need to have two additional lpd facilities in the printcap
entry: a banner printing program (:bp=...) and a filter to handle banner printing (:of=...). The bp

causes the banner to be put at the start of the job, the be at the end of the job (overrides bp), and you can
use bs and be to have banners at both start and end of jobs.

The banner printing programs are run exactly as a normal filter program, and the output is used as the
banner to be printed. The LPRng psbanner , pclbanner , and lpbanner programs can be modified for
local use.

If your printer requires special setup or conditioning, then you will have to specify a filter for the banner
program. Historically this is done using the of option. This filter is started, the banner page sent to it, and
then the filter is suspended (don’t ask), the job is printed, and then the filter is restarted. Finally, if a banner
is needed at the end of the job it is generated and sent.

6.4. Accounting
For a detailed discussion of accounting, please consult the LPRng HOWTO documentation. We will briefly
cover some simple recipes for disaster here.

Figure 6-6. Basic Accounting Information

lp:
:af=acct # accounting file

or
:af=|/... # filter to run
:af=host%port # remote server to query

:as=jobstart $H $n $P $k $b $t # line to print
:as=/... # filter to run at start of job
:ae=jobend $H $n $P $k $b $t # line to print
:ae=/... # filter to run at start of job

:achk # check to see if allowed to print

The :af entry specifies either a file, a network connection, or a program to run. If a file, then accounting
information is written to the file; if a program, then the program is run; if a network connection then a
TCP/IP connection is made to the specified host and port. The :as and :ae entries specify the format of
the line to print or a program to run at the start and end of the job respectively.

Figure 6-7. Accounting File Information

jobstart ’-Hh110.private’ ’-npapowell’ ’-Pt1’ ’-kcfT456 h110.private’
’-b3’ ’-t2001-10-21-15:17:12.000’

jobend ’-Hh110.private’ ’-npapowell’ ’-Pt1’ ’-kcfT456h1 10.private’
’-b3’ ’-t2001-10-21-15:17:

48

Chapter 6. Banner Pages and Accounting

The accounting information provided by the lpd server is very basic and does not include page usage.
However, we can have the print filters write information to the file as well.

Figure 6-8. Filter Accounting Information

jobstart ’-Hh110.private’ ’-nroot’ ’-Plp’ ’-kcfA129h110 .private’
’-b48780’ ’-t2001-10-19-09:36:36.000’

filestart ’-q26132’ ’-p105340’ ’-t2001-10-19-09:36:38. 350’
’-Aroot@h110+129’ ’-nroot’ ’-Plp’

fileend ’-b19’ ’-T435’ ’-q26132’ ’-p105359’ ’-t2001-10-1 9-09:43:51.504’
’-Aroot@h110+129’ ’-nroot’ ’-Plp’

jobend ’-Hh110.private’ ’-nroot’ ’-Plp’ ’-kcfA129h110.p rivate’ ’-b48780’ ’-t2001-10-19-09:43:51.000’

The filestart and fileend lines were written by the ifhp filter. The -p (pagecounter) values are the
starting and ending values for the physical page counter on the printer. The -b value is the number of
pages used and the -T the number of seconds used.

Remember that ifhp can only get accurate page counting information if there is a physical page counter
and it can be accurately read. This requires a bidirectional network link. Parallel ports do not work . Also,
your printer must support either PJL or PostScript, and have a hardware page counter. Finally, the page
counter must be updated in a timely manner and reflect the number of pages used by each job.

The :achk checks to see if the user has permission to print. At the start of the job, if the accounting
destination is a program or network connection, after writing the information lpd reads a line from program
or connection. This line is used to determine if the user has permission to print. The return value can also
cause the job to be held or deleted.

6.5. Accounting Gotchas

Figure 6-9. Accounting Gotchas

jobstart ’-Hh110.private’ ’-nroot’ ’-Plp’ ’-kcfA129h110 .private’
’-b48780’ ’-t2001-10-19-09:36:36.000’

filestart ’-q26132’ ’-p105340’ ’-t2001-10-19-09:36:38. 350’
’-Aroot@h110+129’ ’-nroot’ ’-Plp’

jobstart ’-Hh110.private’ ’-nroot’ ’-Plp’ ’-kcfA129h110 .private’
’-b49780’ ’-t2001-10-19-09:36:36.000’

filestart ’-q27992’ ’-p105340’ ’-t2001-10-19-09:36:38. 350’
’-Aroot@h110+129’ ’-nroot’ ’-Plp’

Observe the accounting file in Figure 7-1. Clearly something has happened. The clever student (ummm...
user?) has killed off the printer just as his last page has come out. There is no usage line. You will have to
calculate usage based on the differences between the pagecounters at the start of each job.

Of course, this can also be the result of a printer failure, bad print job, etc. etc. etc. Not to mention elves.
Most student labs have lots of elves lurking in the background that cause endless headaches.

49

Chapter 6. Banner Pages and Accounting

6.6. Accounting Including Banner Pages

Figure 6-10. Accounting Using Banner Pages

lp:
:of=/.../ifhp
:...

The :of filter is used to print the banner pages. Now the information in the accounting file inclues the
banner pages as well as the job pages.

50

Chapter 7. Printer Pools and Load Sharing

Figure 7-1. Printer Pools and Load Sharing

All Queues on Same Server

lpr −Pmain main
:ss=s1,s2,s3 s1:

s2:

s2:

A printer pool does load sharing amoung a group of printers. When you send a job to the main spool
queue the job is then sent to the next available printer. If all of the printers are busy then the job is held in
the queue Figure 7-1.

Figure 7-2. Load Balancing Printcap

main:
:sd=/var/spool/lpd/%P:sv=sv1,sv2,sv3

sv1:
:sd=/var/spool/lpd/%P:ss=main:lp=...

sv2:
:sd=/var/spool/lpd/%P:ss=main:lp=...

sv3:
:sd=/var/spool/lpd/%P:ss=main:lp=...

The printcap for setting up spooling is shown in Figure 7-2. The :sv option marks this queue as the input
queue for load balancing and the :ss option specifies that this queue is the destination for load balancing.
The server queues must have an associated device and send the jobs to the associated device.

Figure 7-3. Load Balancing to Remote Queues

51

Chapter 7. Printer Pools and Load Sharing

Figure 7-4. Printcap for Chooser

main:
program to select destination
:chooser=/.../chooser
:destinations=s1@host1,s2@host2,s3@host3
You can even combine the two forms
sv=...

The :chooser value is an executable program that is provided a list of destinations, by using the
:destinations value in the $PRINTCAP_ENTRY. We will show how to use this in the next section.

7.1. Implementing Smart Load Balancing

Figure 7-5. Chooser Program Operation

In Perlish
@list = PC(’destination’); # get destination list
foreach $printer (@list) {

if(PrinterAvailable($printer){
print $printer . "\n";
last;

}
}

The PrinterAvailable function would determine the availability of the destination printer by an
appropriate method - lpq query, testing to see if a connection can be made to the device, etc.

If you specify a :chooser for a :sv type of load balance queue, then the chooser program can also be
used. Lets look at a simple chooser implementation.

Figure 7-6. Filter Template in Perl

#!/usr/bin/perl
use Getopt::Std;
my $debug = 1; # always... sigh...
my(%opt, @pc, %options);

get command line options
getopts(’A:B:C:D:E:F:G:H:I:J:K:L:M:N:O:P:Q:R:T:S:U: V:W:X:Y:Z:’
. ’a:b:cd:e:f:g:h:i:j:k:l:m:n:o:p:q:r:t:s:u:v:w:x:y: z:’, \%opt);
while(@ARGV){ $opt{acct} = pop @ARGV ; };

split up the PRINTCAP_ENTRY environment variable value
@pc = split /\n\s * :/s, ($ENV{PRINTCAP_ENTRY} || "");
shift @pc; # throw way first entry field, printer name
set the options
foreach (@pc){ # set the options values

if(/^(.+)=(. *)/){ $options{$1} = $2;
} elsif (/^(.+)@/){ $options{$1} = 0;
} else { $options{$_} = 1; }

52

Chapter 7. Printer Pools and Load Sharing

}

if($debug){ # for those interested
my $s = "";
foreach my $v (sort keys %options){ $s .= "$v=’$options{$v} ’,"; }
print STDERR "Printcap: ’$s’\n";
$s="";
foreach my $v (sort keys %opt){ $s .= "$v=’$opt{$v}’,"; }
print STDERR "Args: ’$s’\n";

}

This is the standard filter template. We use this almost everywhere.

Figure 7-7. Choosing A Destintation

my (@list, @destinations);
if($options{sv}){ # if we have :sv then we read them from STDI N

while(<STDIN>){ chomp; push @destinations, $_; }
} else { # else we use the ’destinations’ printcap value

@list = split /[,\s]+/, ($options{destinations} || "");
and we randomize - this is a bit of perl magic
while(@list){

push @destinations,(splice @list,rand(@list),1);
}

}
and we split the destinations up...
print STDERR "Destinations ’@destinations’\n" if $debug;
and now we search
my $lpq="/usr/bin/lpq";
foreach (@destinations){

my $status = "";
next if not $_;
run the lpq
eval { alarm(10); $status = ‘$lpq -s -P$_‘; }; alarm(0);
chomp $status;
print STDERR "STATUS ’$_’ $status\n" if $debug;;
we reject queues that are not suitable
next if($status =~ /disabled/ or $status != / 0 jobs /);
print STDERR "chose ’$_’ from @$destinations\n";
print $_;
last;

}

We first get the list of destinations - from STDIN if we have helping an :sv load balance queue, or from the
:destinations printcap entry. In the later case we randomize the list so that we spread the load over
different printers rather than sending to the first printer in the list. We then run a command or application
that gets the print queue status or whatever we need to decide if the printer is ready. Notice the timeouts.
This is usually not necessary but you might run into this problem some day. We then look at the status and
decide if we can use the printer.

53

Chapter 7. Printer Pools and Load Sharing

If no printer is available then nothing is printed on STDOUT, and the lpd process will wait until either a
printer becomes available or for a timeout specified by the :chooser_interval value (default 10 seconds)
in the printcap entry or /etc/lpd.conf file.

Normally, only the first job in the spool queue is checked to see if it can be printed. However, by setting the
:chooser_scan_queue flag to 1, all of the jobs waiting in the spool queue will be tested. This is useful
when you need to check both a job type and a printer to see they are compatible. However, this has the
effect of scanning the entire queue, which may be quite costly in compuation time.

7.2. Using :chooser Exit Codes

Figure 7-8. Chooser Exit Codes

Exit Code Action
0 (JSUCC) Use chooser output for destination

(No destination, retry later)
1 (JFAIL) Failed - retry later

(same as JSUCC, no destination)
2 (JABORT) Abort printing, wait for restart
3 (JREMOVE) Remove job
4 (JHOLD) Set job HOLD flag

The :chooser program exit codes can be used to control printing. The JHOLDand JREMOVEexit codes are
job specific; they can be used to hold or remove a job.

54

Chapter 8. Wildcards, Bounce Queues, and Forwarding

One of the things you might want to do is have a set of queues that massage the various jobs and then
send them to a destination printer.

Figure 8-1. Evil (BAD) Way

landscape:force_localhost
:ifhp=model=xx
:filter=/.../convert_to_landscape | /.../ifhp
:lp=10.0.0.14%9100

portrait:force_localhost
:ifhp=model=xx
:filter=/.../convert_to_landscape | /.../ifhp
:lp=10.0.0.14%9100

lp:tc=.common
:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

Each queue will now fight for a connection to the destination printer.

8.1. Bounce Queues

Figure 8-2. Not So Evil Way

landscape:tc=.common
:filter=/.../convert_to_landscape
:lp=lp@localhost

portrait:tc=.common
:filter=/.../convert_to_landscape
:lp=lp@localhost

lp:tc=.common
:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

You have various filters set up so that each queue does a conversion and then forwards it to the real
printer for output. No fighting. This method is called bounce queues as the job bounces through the
queues, getting modified at each stage.

55

Chapter 8. Wildcards, Bounce Queues, and Forwarding

8.2. Adding -Z Options Using Bounce Queues

Figure 8-3. Add Options Using :append_z

landscape:tc=.common
:append_z=landscape
:lp=lp@localhost

portrait:tc=.common
:append_z=portrait
:lp=lp@localhost

ifhp (or other) filter uses the -Z options
lp:tc=.common

:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

Now you can add one option at a time. But what if you want to do landscape and duplex mode at the same
time? You need to create a landscape_duplex queue. The combinations of options and the need to
remember their exact order becomes very unweildy.

8.3. Adding Options By Using The Incoming Control Filter Fac ility

Figure 8-4. Option Modification

.common=force_localhost:sd=/var/spool/lpd/%P:sh:mx= 0

lp|lp_ * # we recognize lp_xxxx for this filter
:tc=.common
:incoming_control_filter=/.../update_z
:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

-- for landscape:
h110: {838} % lpr -Plp_landscape

-> Control file: Zlandscape

-- for portrait
h110: {838} % lpr -Plp_portrait

-> Control file: Zlandscape

-- for landscape and duplex
h110: {838} % lpr -Plp_landscape_duplex -Zother

-> Control file: Zother,landscape,duplex

If you use a wildcard in the printer name or printer alias fields in the printcap file the LPRng code will first
try to match the printer name against the non-wildcard printer or aliases fields. If this fails it will then repeat

56

Chapter 8. Wildcards, Bounce Queues, and Forwarding

the search using a glob type match. The job is then put in the appropriate queue. The requested print
queue name is retained as Q (Queue) information and is passed as the -Q option to filters.

Figure 8-5. Incoming Control Filter

filter input: job control or job ticket

Xoldvalue
X=oldvalue

filter output:

X <- delete X option
X= <- delete X option
Xvalue <- set option X value
X=xxx <- alternative set option X value

When the job arrives its options can be modified by using the incoming_control_filter facility. The
specified filter or program reads the job control file on STDIN and writes fields to be modified on STDOUT.
One of the ways to modify the control file is to convert suffixes of the print queue name (i.e. - _option) to
-Z option values and append these to the Z line of the control file.

The -Q option or control file Q line is used to get the name of the print queue. The suffixes are then
processed in turn. You can either simply append them or have a hash translate these values.

The incoming_control_filter can also modify other information in the control or job ticket file
Figure 8-5. All of the standard control file options start with upper case letters followed immediately by
either the option value or an equals sign. Other options start with lower case letters and have a key=value

format. By writing new or modified option values its output, the incoming_control_filter can change
the options for the job. Changing the values for options that were not orginally part of the control file
information, i.e. - single upper case character names, is dangerous and the effects are unpredictible.

The incoming_control_filter can also modify the contents of the data files associated with a job.
While it cannot add data files to a job, it can modify the contents of a data file or remove data files. If the
size of a data file is set to 0, then the data file will be treated as removed from the job. If all of the data files
are removed from a job then an error will result.

57

Chapter 9. Form Support and Hold Queues

Sometimes jobs require a special setup on a printer, and jobs cannot be printed unless it is done. There
are several ways to handle this.

9.1. Hold Queues

Figure 9-1. Hold Queues

.common=force_localhost:sd=/var/spool/lpd/%P:sh:mx= 0

setup1:tc=.common
:ah # always hold incoming jobs
:lp=lp@localhost

setup2:tc=.common
:ah # always hold incoming jobs
:lp=lp@localhost

lp:tc=.common # print queue
:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

Figure 9-2. All Hold Queues

h110: {853} % lpq -Psetup1
Printer: setup1@h110 (dest t1@localhost) (autohold)

Queue: no printable jobs in queue
Printer: t1@h110 ’Test Printer 1’ (printing disabled)

Queue: no printable jobs in queue
h110: {854} % lpr -Psetup1 /tmp/hi
h110: {855} % lpq -Psetup1
Printer: setup1@h110 (dest t1@localhost) (autohold)

Queue: no printable jobs in queue
Holding: 1 held jobs in queue
Server: no server active
Rank Owner/ID Class Job Files Size Time

hold papowell@h110+356 A 356 /tmp/hi 3 15:02:50
Printer: t1@h110 ’Test Printer 1’ (printing disabled)

Queue: no printable jobs in queue

When we print jobs to a :ah or always hold queue, the job is not processed until released. We can release
one or all the jobs that are being held.

Figure 9-3. Releasing Jobs for Printing

h110: {856} % lpc release setup1 all
Printer: setup1@h110
setup1: selected ’papowell@h110+356’
setup1@h110.private: started
h110: {857} % lpq -Psetup1

58

Chapter 9. Form Support and Hold Queues

Printer: setup1@h110 (dest t1@localhost) (autohold)
Queue: no printable jobs in queue
Status: job ’cfA356h110.private’ removed at 15:03:49.053

Printer: t1@h110 ’Test Printer 1’ (printing disabled)
Queue: 1 printable job
Server: no server active
Rank Owner/ID Class Job Files Size Time

1 papowell@h110+356 A 356 /tmp/hi 3 15:03:49
h110: {858} %

We can release the jobs which are then forwarded to the main queue for printing.

We can also set up Time Release queues using the cron time scheduling system.

Figure 9-4. Releasing Jobs For Scheduled Print Run

Printcap:
nightrun:

:ah # always hold incoming jobs
:lp=lp@localhost

Crontab Entry To Release Jobs:

#minute hour mday month wday who command
1 3 * * * root /usr/sbin/lpc release nightrun all

You can also use the LPRng class facility. The lpr -Cclass option sets the Cclass line in the control file.
You can then use the lpc class facility to select job classes to print.

Figure 9-5. Using Job Classes

h110: {870} % lpc class t1 top,middle
Printer: t1@h110
classes printed ’top,middle’
t1@h110.private: class updated
h110: {871} % lpq
Printer: t1@h110 ’Test Printer 1’ (classes top,middle)

Queue: no printable jobs in queue
h110: {872} % lpr -Clow /tmp/a
h110: {873} % lpq
Printer: t1@h110 ’Test Printer 1’ (classes top,middle)

Queue: no printable jobs in queue
Holding: 1 held jobs in queue
Server: no server active
Rank Owner/ID Class Job Files Size Time

holdclass papowell@h110+451 L 451 /tmp/a 38404 15:16:39
h110: {874} % lpr -Ctop /tmp/hi
h110: {875} % lpq
Printer: t1@h110 ’Test Printer 1’ (classes top,middle)

Queue: no printable jobs in queue
Holding: 1 held jobs in queue
Server: no server active
Status: job ’cfT456h110.private’ removed at 15:17:12.932

59

Chapter 9. Form Support and Hold Queues

Rank Owner/ID Class Job Files Size Time
holdclass papowell@h110+451 L 451 /tmp/a 38404 15:16:39

You can specify a current list of classes to be printed using the lpc class command. As shown in
Figure 9-5. the jobs not in the current classes are held until explicitly released or until the class is
changed. You can disable the job class facility by setting the class to off .

Figure 9-6. Setting New Job Classes and Disabling Job Classe s

h110: {877} % lpc class t1 low
Printer: t1@h110
classes printed ’low’
t1@h110.private: class updated
h110: {879} % lpq -ll
Printer: t1@h110 ’Test Printer 1’ (classes low)

Queue: no printable jobs in queue
Status: finished ’papowell@h110+451’, status ’JSUCC’ at 1 5:22:03.178
Status: subserver pid 84477 exit status ’JSUCC’ at 15:22:03 .179
Status: t1@h110.private: job ’cfL451h110.private’ print ed at 15:22:03.180
Status: job ’cfL451h110.private’ removed at 15:22:03.181

h110: {39} % lpc class t1 off
Printer: t1@h110
all classes printed
t1@h110.private: class updated
h110: {40} % lpq
Printer: t1@h110 ’Test Printer 1’

Queue: no printable jobs in queue
Status: job ’cfL451h110.private’ removed at 15:22:03.181

You can also put a class value into the control file using the incoming_control_filter facility described
in Section 8.3.

Figure 9-7. Modifying Control File Using update_class

lp|lp_ * :tc=.common
:incoming_control_filter=/.../update_class
:ifhp=model=xx
:filter=/.../ifhp
:lp=10.0.0.14%9100

The :incoming_control_filter will now update the class to whatever you want.

Figure 9-8. The update_class Filter

#!/usr/bin/perl
...

See Figure 5-9

read stdin
my($file, $Copts, $Q);
$file = join "", <STDIN>;

60

Chapter 9. Form Support and Hold Queues

print STDERR "File ’$file’\n" if $debug;

first use command line Queue name, then control file Q
then the printer name, then control file P
$Q = $opt{Q}; ($Q) = $file =~ /^Q(. *)$/m if not $Q;
if no queue name fall back to printer name
$Q = $opt{P} if not $Q; ($Q) = $file =~ /^P(. *)$/m if not $Q;
$Q = "" if not $Q; # stupid -w... sigh...

get Copts
($Copts) = $file =~ /^C(. *)$/m;
$Copts = "" if not $Copts; # stupid -w ... sigh ...

print STDERR "Q ’$Q’, Copts ’$Copts’\n" if $debug;

now we split up the name and use as parameters for C option
while($Q =~ /_([^_]+)/g){
$Copts = $1;
}
print "Final ’$Copts’\n" if $debug;
if($Copts){

$file = "C$Copts\n" . $file if(not ($file =~ s/^C. * $/C$Copts/m));
}
print $file;
exit 0

61

Chapter 10. Interfacing to Vintage, Legacy, and SunOS Print
Spoolers

Some legacy, vintage, and other print spoolers do not meet the RFC1179 requirements, or accept only
control files with options used by the original BSD (1984 vintage) print spooler and only in the order used
by the original BSD (1984 vintage) print spooler. The :bk (Berkely Kompatible) option causes lpd to
generate control files compatible with this format. If you encounter problems with transferring files to these
systems, try using the :bk option first.

Figure 10-1. Using :bk (Berkeley Kompatible) Flag

lp:force_localhost@ # make control files berkeley
:bk
:lp=...

62

Chapter 11. Managing Enterprise Level Printing Systems

If you are doing management of more than 20 printers, then you already know the headaches. You need
to make the printers available to all/some/none of your users, each user has a different set of
requirements, and no two printers are the same. The following are some helpful suggestions and recipes
for managing printer information.

11.1. Templates and Standard Configurations

Figure 11-1. Templates in Printcaps

.common
:sh:sd=/var/spool/lpd/%P:force_localhost

.hplj4
:ifhp=model=hp4
:filter=/.../ifhp

server information
hp4:server:tc=.common,.hplj4

:lp=10.0.0.14%9100

#client information
hp4:client:lp=%P@server1

You should set up a standard set of templates to see what you have. You can then use lpc to see what the
printcap is.

Figure 11-2. Using lpc client all

.defaults
:ab@
...

.config

.all
:t1
:t2

#Printcap Information
t1|t1_ *

:filter=/usr/local/libexec/filters/ifhp
:lp=/var/tmp/t1_lp
:sd=/var/spool/lpd/%P

t2|Test Printer 2
:lf=log
:lp=t1@h110.private
:sd=/var/spool/lpd/%P

63

Chapter 11. Managing Enterprise Level Printing Systems

You can use lpc client all to see the printcap information as the LPRng clients would see it. This
allows you to check out the various printcaps before you use them. You can also use lpc server all to
see the printcap information as the lpd server would see it.

11.2. Master Print Servers, One User Printcap

Figure 11-3. Master User Printcap File, No Local Spooling

Just information for clients
list all of the printers for this server
lp1|lp2|.....

:client:lp=%Q@server1.private:force_localhost@
lp99|....

:client:lp=%Q@server2.private:force_localhost@

This will allow you to send jobs directly to the print server. You use the lp=%Q@server form for the
destination. Note that you will need LPRng version 3.8.0 or later for this to work.

11.3. Master Print Servers, Local Spooling

Figure 11-4. Master User Printcap File, Local Spooling

Just information for clients
list all of the printers for this server
lp1|lp2|.....

:client:lp=%Q@server1.private:force_localhost

lp99|....
:client:lp=%Q@server2.private:force_localhost

Observe that you have two queues, one per print server. You use the lp=%Q@server form of the
destination. Note that you will need LPRng version 3.8.0 or later for this to work.

11.4. Master Print Servers, Selection by User

Figure 11-5. Master User Printcap File, No Local Spooling

list all of the printers for this server
lp1|lp2|.....
OR
lp1| *

:client:lp=%Q@server1.private:force_localhost@
:oh= * .engineering.private

lp1|lp2|.....
OR

64

Chapter 11. Managing Enterprise Level Printing Systems

lp1| *
:client:lp=%Q@server2.private:force_localhost@
:oh= * .marketing.private

You can use the :oh= Pattern to select the set of printcap entries that can be used on a host. The Pattern
can be IP Address/netmask (10.0.0.0/24 or 10.0.0.0/255.255.255.0) or a wildcard match for the DNS
resovled host name (* .eng.private).

11.5. The Great Grand Dad Of All Printcap Files

Figure 11-6. All In One

list all of the printers for this server
lp1|lp2|.....

:client:lp=%Q@server1.private:force_localhost@
:oh= * .engineering.private

lp1|lp2|.....
:client:lp=%Q@server2.private:force_localhost@
:oh= * .marketing.private

lp1:server
:....

lp2:server
:....

Add all the printer information in as well. Huge printcap files. But very easy to manage. But how do you get
them to the user?

11.6. Using Printcap Filters and Central Databases

Figure 11-7. Printcap Path Configuration Information

/etc/lpd.conf:

Purpose: lpd printcap path
default lpd_printcap_path= (STRING)
Purpose: /etc/printcap files
default printcap_path= /etc/printcap (STRING)
printcap_path=|/usr/local/libexec/get_printcap

If the /etc/lpd.conf printcap_path value is a filter, then the LPRng application will write the name of
the requested printer to the STDIN of the filter program and expect to read one or more printcap entries
from STDOUT. If the printcap entry contains a :tc reference, then this entry will be looked up in turn.

Figure 11-8. Example of Returned Printcap Value

Configuration: printcap_path = |/usr/local/bin/get_lda p_pc

h110: {917} % lpr -Plp

65

Chapter 11. Managing Enterprise Level Printing Systems

Printcap access equivalent to Perlish:
$printcap = ‘echo lp | /usr/local/bin/get_ldap_pc‘

Configuration: lpd_printcap_path = |/usr/local/bin/get _lpd_ldap_pc
lpd server will do:
$printcap = ‘echo lp | /usr/local/bin/get_lpd_ldap_pc‘

The exercise of building the necessary LDAPdatabase, extracting the information in a printcap form using
the Perl

66

Chapter 12. LPRngTool

Figure 12-1. Starting Screen

Figure 12-2. Printcap Entry Selection

Figure 12-3. Add A Printer

67

Chapter 12. LPRngTool

Figure 12-4. Option Specification

Figure 12-5. Advanced Options

68

Chapter 12. LPRngTool

Figure 12-6. ifhp Options

Figure 12-7. Saving Printcap Entry

Figure 12-8. Checkpc Results

69

Appendix A. LPRng

The LPRng print spooler software was developed to be robust, reliable, secure, scalable, and portable. It
has been used since 1988 in extremely demanding academic printing environments such as University of
Minnesota, MIT, and Rutgers, commercial companies such as Dow Jones and Abbot Pharmaceuticals, as
well as being distributed with Linux, FreeBSD, and other systems. Each of these environments has a
unique set of problems, demanding various configuration and administrative capabilities. For example, the
simple single user system with a single or limited number of printers requires easy configuration and
simple diagnostic procedures, while the network based printing system requires highly robust error
logging, authentication, and failover support. LPRng provides a highly flexible configuration system that
allows it to perform optimally in all of these environments.

The LPRng software has three components: the lpd print spooler and the user client applications lpr , lpq ,
lprm , etc.; the IFHP print filter (ifhp) which is used to convert jobs into a suitable for a particular printer,
and the the LPRngTool Graphic User Interface (lprngtool) which provides a simple and easy to use
configuration and monitoring tool for the LPRng print spooler.

LPRng mimics many of the features of the vintage or legacy Berkeley (University of California - Berkeley)
Line Printer (LPR) package found on Berkeley derivatives of the Unix operating system. LPRng will print a
document with little or no knowledge of the content or special processing required to print the document
on a stand-alone machine or in a distributed printing environment. New (as compared to Berkeley LPR)
features include: lightweight lpr , lpc and lprm programs, dynamic redirection of print queues, automatic
job holding, highly verbose diagnostics, load balancing queues; enhanced security (SUID not required in
most environments), and easy configuration.

LPRng started life at the University of Waterloo in 1986 as PLP (Public Line Printer), a replacement for the
original BSD lpd code. This was a one-shot effort by the author, Patrick Powell, to develop freely
redistributed code without the restrictions of the BSD/AT&T license and would allow non-licensed sites to
fix and patch problems. From 1988 to 1992 individuals and groups added features, hacked, slashed, and
modified the PLP code, coordinated largely by Justin Mason (<jmason@iona.ie >) who started the LPRng
mailing list.

In 1992 while at San Diego State University Prof. Powell redesigned and reimplemented the PLP code
and named the result LPRng . The goals of the LPRng project were to build a server system that was as
close to user abuse proof as possible, that would provide services limited only by the inherent capacities
of the support system, RFC1179 compliant, and with extensive debugging capabilities to allow quick and
easy diagnostics of problems.

In 1999 the code base for LPRng was again reorganized in order to provide a common method for
running on non-UNIX platforms such as Microsoft Windows NT, Apple Rhapsody, and embedded systems.

As a side effect of this work, many security problems that could develop were identified and steps taken to
ensure that they were not present in LPRng . For example, LPRng clients such as lpr, lprm, lpc, and lpq
can run as ordinary users programs, the lpd server can run as a non-root user once a network port has
been opened, and all text formatting operations done by LPRng use a very restricted and highly secure
version of the snprintf function.

A.1. Documentation
The main LPRng documentation is the LPRng-HOWTO, which is available in several formats. Information
about LPRng and the latest release can be found on the LPRng web page

70

Appendix A. LPRng

http://www.lprng.com/LPRng.html

The ifhp documentation is the IFHP-HOWTO, which is available in the ifhp distribution. Information about
ifhp and the latest release can be found on the LPRng web page http://www.lprng.com/LPRng.html

There is also a mailing list at lprng@lprng.com (mailto:lprng-request@lprng.com?subject=subscribe). To
post to the list you must subscribe by sending send an email to lprng-request@lprng.com
(mailto:lprng-request@lprng.com?subject=subscribe), with the message subject or body containing the
word ‘subscribe’ or ‘help’.

Several presentations of LPRng and print spooling software have been made at the Large Installation
System Administrator (LISA) conferences. The presentation at the LISA 98 conference is in the
PowerPoint file LISA98.ppt in the LPRng distribution documentation.

A.2. Installation
It is recommended that installation be done from the source distribution, and that the files be put in the
/usr/bin , /usr/sbin , and /etc directories, as most existing applications require them there.

Get the source code distribution from the main LPRng site or one of the mirror sites show in Section A.5.
The install using:

%> gunzip -c LPRng-XXX.tgz | tar xvf -
%> cd LPRng-XXX

(You might want to read the README and INSTALL files)
%> ./configure --prefix=/usr --sysconfdir=/etc

#if your OS does not support shared libraries, use:
./configure --disable-shared --prefix=/usr --sysconfd ir=/etc

%> make clean all
%> su
password: xxxxx
#> make install

A.3. License
The LPRng Print Spooler and the ifhp Print Filter software are distributed under the GNU Public License
(GPL) and the Artistic License (license.txt). Users can choose to redistribute or use the software under a
license that is appropriate for their purpose. Other licenses and distribution agreements are available by
contacting AStArt Technologies (http://www.astart.com) for information.

A.4. Commercial Support
AStArt Technologies (http://www.astart.com) provides commercial support and enhancements for the
LPRng and other network software. AStArt provides network and system consulting services for UNIX
and NT systems, as well as real time and network software.

71

Appendix A. LPRng

A.5. Web Site, FTP Site, and Mirrors
Web Page: http://www.lprng.com

Main FTP Site:

ftp://ftp.lprng.com/pub/LPRng (US)

Mirrors:

ftp://ftp.cs.columbia.edu/pub/archives/pkg/LPRng (US)
ftp://ftp.cise.ufl.edu/pub/mirrors/LPRng (US)
ftp://ftp.cs.umn.edu/pub/LPRng (US)
ftp://uiarchive.uiuc.edu/pub/packages/LPRng (US)
ftp://ftp.sage-au.org.au/pub/printing/spooler/lprng/ (AU)
ftp://mirror.aarnet.edu.au/pub/LPRng/ (AU/NZ)
http://mirror.aarnet.edu.au/pub/LPRng/ (AU/NZ)
ftp://sunsite.ualberta.ca/pub/Mirror/LPRng (CA)
ftp://ftp.informatik.uni-hamburg.de/pub/os/unix/utils/LPRng (DE)
ftp://ftp.uni-paderborn.de/pub/unix/printer/LPRng (DE)
ftp://ftp.mono.org/pub/LPRng (UK)
ftp://ftp.iona.com/pub/plp/LPRng (IE)
ftp://uabgate.uab.ericsson.se/pub/unix/LPRng (SE)

A.6. Mailing List
To join the LPRng mailing list, please send mail to lprng-request@lprng.com (mailto:
lprng-request@lprng.com) with the word ’subscribe’ in the BODY.

The LPRng mailing list is archived on http://www.findmail.com/list/lprng

A.7. PGP Public Key
The LPRng distributions have an MD5 checksum calculated, which is then signed with a PGP public key.
Here is the key for validating the checksums:

Type Bits/KeyID Date User ID
pub 1024/00D95C9D 1997/01/31 Patrick A. Powell \

<papowell@lprng.com >

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3i

mQCNAzLygTQAAAEEANBW5fPYjN3wSAnP9xWOUc3CvsMUxjip0cN2sY5qrdoJyIhn
qbAspBopR+tGQfyp5T7C21yfWRRnfXmoJ3FVtgToAsJUYmzoSFY 08eDx+rmSqCLe
rdJjX8aG8jVXpGipEo9U4QsUK+OKzx3/y/OaK4cizoWqKvy1l4l EzDsA2VydAAUT
tCdQYXRyaWNrIEEuIFBvd2VsbCA8cGFwb3dlbGxAYXN0YXJ0LmNvbT6JAJUDBRA0
XonoiUTMOwDZXJ0BAQ2cBAC7zU9Fn3sC3x0USJ+3vjhg/qA+Gjb 5Fi1dJd4solc4
vJvtf0UL/1/rGipbR+A0XHpHzJUMP9ZfJzKZjaK/d0ZBNlS3i+J nypypeQiAqo9t
FV0OyUCwDfWybgAORuAa2V6UJnAhvj/7TpxMmCApolaIb4yFyKu nHa8aBxN+17Ro

72

Appendix A. LPRng

rrQlUGF0cmljayBBLiBQb3dlbGwgPHBhcG93ZWxsQHNkc3UuZWR 1PokAlQMFEDLy
gTSJRMw7ANlcnQEBYBYD/0zTeoiDNnI+NjaIei6+6z6oakqO70q FVx0FG3aP3kRH
WlDhdtFaAuaMRh+RItHfFfcHhw5K7jiJdgKiTgGfj5Vt3OdHYke eh/sddqgf9YnS
tpj0u5NfrotPTUw39n6YTgS5/aW0PQfO9dx7jVUcGeod1TGXTe9 mIhDMwDJI4J14
=3Zbp
-----END PGP PUBLIC KEY BLOCK-----

73

Appendix B. References and Standards

The following references and standards have been used in the development of the LPRng software.

B.1. RFCs
During the early development of the Internet developers did not want to go through the laborious process
of developing formal standards and applying to a standards body such as the EIA, IEEE, or ISO. Instead,
they called the standards documents they developed [Requests for Comments]. These soon became de
facto standards, and with the formal acceptance of the TCP/IP protocol as a network standard, de jure as
well.

You can get copies of the RFCs from literally hundreds of network sites, including http://www.isi.edu,
http://www.faqs.org/rfcs, NIS.NSF.NET (ftp://NIS.NSF.NET), RFC.JVNC.NET (ftp://RFC.JVNC.NET), or
FTP.ISI.EDU (ftp://FTP.ISI.EDU).

The [RFC1179 - Line Printer Daemon Protocol] describes the protocol used to transfer jobs from client
program to print server. See RFC1179 for more a discussion of this protocol and more details about the
RFC. The rfc1179.txt file is included in the LPRng distribution documentation.

B.2. PostScript
PostScript is one of the de facto standards for print jobs. The Adobe Corporation (http://www.adobe.com)
provides an excellent set of references for the PostScript language. They have made many of these
available for downloading from their web sites or have published them in book form.

The [PostScript Language Reference Manual] contains a great deal of technical information about the
PostScript Language, and is the language reference manual.

The [PostScript Language Tutorial and Cookbook] is a very nice and easy to read introduction to
PostScript programming, and has some very useful utilities. Combined with GhostScript and the gv
display program you can very easily learn to write your own small PostScript programs, and more
importantly, can learn to understand the contents of PostScript files.

The [PostScript Language Program Design] is the companion to the [PostScript Language Tutorial and
Cookbook], and has more complex examples of PostScript programs. More importantly, it also introduces,
although without explanation, the PostScript Document Structuring Conventions described in Appendix G
of the The [PostScript Language Reference Manual]. This alone makes it useful.

B.3. HP PCL 5
The Hewlett-Packard (HP) PCL Printer Language is the second de-facto standard for print jobs. Currently,
Hewlett-Packard makes documentation for PCL available through their [Developer Program]. You will need
to register and then search their site for the [PCL 5 Printer Language Reference Manual].

74

Appendix B. References and Standards

B.4. HP PJL
The Hewlett-Packard (HP) Printer Job Language is used to control various features of HP printers. The
[Printer Job Language Reference Manual] is also available from Hewlett-Packard (http://www.hp.com)
through their [Developer Program].

B.5. PDF
The Portable Document Format (pdf) was developed by Adobe to be a more useful method of distributing
documentation for view by online systems and software. The [Portable Document Format Reference
Manual] is available from Adobe (http://www.adobe.com). While pdf is not used directly as a print job
language, it is one of the more common formats for files that need to be printed. It can be converted to
PostScript by most pdf viewers such as GhostScript and Adobe Acrobat.

75

Appendix C. RFC 1179 - Line Printer Daemon Protocol

RFC1179 can be obtained from the LPRng distribution, in the LPRng_DOC/rfc1179 directory, or from one
of many sites which mirror the RFCs.

This RFC is an informational RFC, which means that the information in it is meant as a guide to users, and
not as a fixed standard. In addition, the RFC tried to document the behavior of the BSD lpd print server,
and left out many details dealing with error recover, error messages, extensions to the protocol, etc.

In this section, I will try to explain what RFC1179 specifies as a protocol, and many of the problems
encountered in trying to use it.

C.1. Ports and Connections
Options used:

• lpd_port= Port for lpd to accept connection

• originate_port= Ports to originate connections on

• reuse_addr FLAG Set SO_REUSEADDR flag on connection

• retry_econnrefused FLAG Retry on connect ECONNREFUSED error

• retry_nolink FLAG Retry on device open or connection ffailure

• socket_linger= socket linger timeout

RFC1179 requires that the lpd server listen for TCP/IP connections on port 515. This port is registered
with the Internet Naming Authority, and the /etc/services file or TCP/IP services database usually has
an entry:

printer 515/tcp spooler # line printer spooler

RFC1179 explicitly states that all connections to port 515 must originate from ports 721-731. The reason
for this restriction is due to the UNIX concept of reserved and privileged ports. By convention, ports in the
range 1-1023 can only bound by processes whose Effective User ID (EUID) is 0 (root). This, ordinary
users could not originate a connection from the reserved or privileged port range.

In a UNIX environment, this means that the user programs lpr , lpq , lprm , and lpc would have to be
SETUID root.

As experience has shown, for security purposes, the fewer programs that need to have privileged status,
the better. LPRng uses the lpd_port=printer configuration option to set the actual port to be use. By
default, this is port 515, but can be set to other values.

The restriction of originating ports to 721-731 causes another set of problems. Part of the TCP/IP protocol
is concerned with avoiding communications problems resulting from the arrival of old or stale packets.
When a connection between sourcehost, sourceport and desthost, destport is made, a set of
sequence numbers is established and used for sending and acknowledgement of data. When the
connection terminates, the TCP/IP protocol restricts the establishment of a new connection between

76

Appendix C. RFC 1179 - Line Printer Daemon Protocol

sourcehost, sourceport and desthost, destport for a period long enough for all stale packets to be
removed from the system. This is approximately 10 minutes long.

In order to simplify assignments of ports, timing out connections, and other matters, many TCP/IP
packages do keep track of explicit connections originating from a port, but simply prevent the port from
being reused for either origination or reception of a connection. They do, however, keep track of the active
connections to a port, and perform timeouts on these. This is usually much simpler to implement, as it can
be done with a list attached to the port.

This implementation method creates some problems when a large number of connections must be
originated from a relatively small number of port numbers. Observe what happens when host 1 tries to
send a large number of jobs to a server 2. The following connections are established and terminated: host

1, port 721 and host 2, port 515 host 1, port 722 and host 2, port 515 host 1, port 723

and host 2, port 515 host 1, port 724 and host 2, port 515 host 1, port 725 and host 2,

port 515 host 1, port 726 and host 2, port 515 host 1, port 727 and host 2, port 515 host

1, port 728 and host 2, port 515 host 1, port 729 and host 2, port 515 host 1, port 730

and host 2, port 515 host 1, port 731 and host 2, port 515

Now according to the RFC1179 rules and the TCP/IP protocol, we will have to wait until one of these
connections terminates before we can make another. On the originating system, if the TCP/IP
implementation does timeouts on the originating port, we will have to wait for the timeout to elapse before
we can make a new connection. Unfortunately, there is no way to find out what the status of the port is, so
we will have to try them each in turn until we get a successful connection.

The LPRng code has tried to provide several methods to deal with these problems. Firstly, the
originate_port=512 1023 option specifies the range of ports used to originate connections when the
software is running either as ROOT or SETUID root. By strict RFC1179 rules, this should be
originate_port=721 731 , but it turns out that most BSD lpd based implementations only check for a
reserved originating port. By using 512 ports we get a greatly reduced rate of errors due to lack of ports
due to pending timeouts.

However, on some systems which are acting as servers for a large number of printers even increasing this
port range is insufficient, and steps need to be taken use the originating port numbers more efficiently.
The Berkeley TCP/IP implementation getsockopt() and setsockopt() allows the user to manipulate
some of the underlying timeouts and options of the TCP/IP network. When a TCP/IP connection is
established, the setsockopt() facility can be used to set the SO_REUSEADDRflag on the connection. This
flag effectively sets the timeout value on the ports and connections to 0, allowing immediate reuse of the
ports. When done on an originating end of a connection, this will allow the originating port number to be
reused immediately.

It would appear that by setting SO_REUSEADDRon the originating end that we have solved our problems.
However, unless the destination end of the connection sets its SO_REUSEADDRflag on the connection, it will
still do a timeout. Thus when we try to make a connection from a port that was active within a short period
of time to the same host, then it will reject the connection until the timeout is over.

The reuse_addr flag (default off) forces the LPRng software to set the SO_REUSEADDRflag on originating
connections. As indicated, this will allow ports to be reused immediately for outgoing connections, rather
than waiting for a timeout.

While the reuse_addr flag usually allows us to reuse ports, there is still the problem of dealing with
connections failing due to the remote site rejecting the connection due to a pending timeout from a
previous connection. A careful study of the original BSD TCP/IP network code and of some others
indicates that when a connection fails due to a pending timeout, an ECONNREFUSED error code is

77

Appendix C. RFC 1179 - Line Printer Daemon Protocol

returned to a connect() system call. If this happens and we suspect that the remote site is rejecting the
connection due to a timeout problem, then we should retry making the connection but from a new port,
and continue retrying until all possible ports are used.

The retry_econnrefused (default on) flag is used to specify that we retry connections in this manner.
When this is set, a connection refused error causes the connection to be retried using a new port. This
will be repeated until all available ports have been tried.

When printing a job and the lpd server connection to a remote site or device open fails, the retry_nolink

(default on) will cause the attempt to be retried indefinitely. The combination of retry_econnrefused and
retry_nolink will provide robust connection attempts to remote systems.

While the above problems cause difficulties when making connections, there are also problems when
terminating connections. After closing a socket, the TCP/IP software will try to flush any pending data to
the destination. Unfortunately, on some systems it will only do this while the process is active. This has
caused problems on systems which terminate a process it has received an abnormal (signal caused)
termination.

The setsockopt() SO_LINGER option allows the user to specify that when a socket is closed normally,
that the process should block until pending data is flushed or for the socket_linger period. If
socket_linger is 0, then no SO_LINGER operation is done.

In summary, if you experience problems with connection failures due to port exhaustion, first try setting the
reuse_port flag, and you should see a reduction. Check to ensure that the retry_econnrefused and
retry_nolink flags are set, and the error code in the log and status files. If the failures continue, then the
problem is caused by the remote end having timeout limitations and there is little you can do except to set
a very long connect_retry interval, say connect_retry=120 (2 minutes).

C.2. Protocol Requests and Replies
Options used:

• remote_support= Remote operations supported

After a connection has been established, a request can be sent to the lpd server. The request consists of
a single octet indicating the request type, followed by the printer (or print queue) name, followed by a set
of options for the request, followed by a LF (line feed) character.

Table C-1. RFC1179 Commands

NNN RFC1179 Operation program

1 yes start print lpc

2 yes transfer a printer job lpr

3 yes print short form of queue
status

lpr

4 yes print long form of queue
status

lpr

78

Appendix C. RFC 1179 - Line Printer Daemon Protocol

NNN RFC1179 Operation program

5 yes remove jobs lprm

6 LPRng do control operation lpc

7 LPRng transfer a block format
print job

lpr

8 LPRng secure command transfer lpc

9 LPRng verbose status informationlpr

After the request has been sent, then a reply will be returned. In general the reply has the following form:

\000\n Success
\NNN\n Failure (NNN is error code)
text\n Text or status information

As can be seen, this protocol is extremely simple, but there are a set of problems due to the loosely
written language of RFC1179.

1. Firstly, while RFC1179 sets limits on the lengths of commands, it does not strictly set limits on the
characters set used in the commands. This can result in problems when trying to print status
information, headers on banners, and other details.

2. The original RFC1179 protocol did not provide any way to do remote control of queues or lpd servers.
This has been added to the protocol. As a side effect, if you try to use lpc to control a non-LPRng
printer, it will not work.

3. You can specify that a network printer is non-LPRng by using the remote_support=RQVMC option and
specify the operations supported by the printer. The letters R, Q, M, and C stand for lpr , lpq , lprm ,
and lpc operations respectively, and indicate that these are supported. If remote_support does not
allow a particular operation, then the LPRng software will not send a corresponding request to the
printer. For example, remote_support=R would restrict operations to spooling jobs only, and the
LPRng software would not query the printer for status.

C.3. Job Transfer
Options used:

• longnumber FLAG Long job number (6 digits)

• send_data_first FLAG Send data files first

• use_shorthost Use short hostname

79

Appendix C. RFC 1179 - Line Printer Daemon Protocol

A job transfer operation starts with a job transfer request, followed by several file transfer operations. At
the end of the file transfers, the connection should be closed.

A file transfer request has the form:

Command Purpose

\001\n abort

\002nnnn cfname control file transfer

\003nnnn dfname data file transfer

The abort operation is used to terminate job transfer and indicate that the job should not be processed for
printing. The connection will be closed and the partly transferred job will be discarded.

The control file and data file transfer commands have a length (in bytes) of the file and the name of the file
to be transferred. When the command is received, the server will reply with a status line:

Status Purpose

\000 Accepted, proceed

\nnn Rejected with error code

The reply is only a single octet. Some defective implementations of RFC1179 send a LF after the octet,
which makes life very difficult. LPRng makes an effort to detect these non-conforming RFC1179 systems
and will accept jobs from them. However, it will not send jobs to them.

If LPRng sends a reject code, as an extension to RFC1179 it also sends an error message. Note that the
values for error codes are not defined, nor are their causes. LPRng uses the following values for error
codes, which appear to be compatible with many, but not all, of the BSD lpd based systems:

Code Error

\000 Accepted, proceed

\001 Queue not accepting jobs

\002 Queue temporarily full, retry later

\003 Bad job format, do not retry

When the sender gets the reply indicating success, it sends the nnnn bytes of the control or data file,
followed by a \000 octet. The receiver will then reply as above; a single \000 octet indicating success.

The above procedure is carried out until all data files and the control file of a job are transferred.

RFC1179 is silent on the following issues:

1. When sending a job, do you send the control file first, followed by the data file(s), or the data files first?

80

Appendix C. RFC 1179 - Line Printer Daemon Protocol

2. When sending multiple jobs, can you send them on a single connection, or do you have to establish a
new connection for each job?

LPRng will accept jobs whether they are sent control or data files first. By default, it sends the control file
first, followed by the data file. If the destination system requires that the data files be sent first, the
send_data_first printcap option can be used to force data files to be sent first.

RFC1179 states that:

The name of the control file ... should start with ASCII "cfA", followed by a three digit job number, followed by the
host name which has constructed the control file.

The should in this wording indicates that this is simply a guideline, and that other formats are possible.
Some of the major problems with this format are as follows:

1. The restriction to 3 digits means that at most 1000 jobs can be in a queue. Strangely, some systems
generate far more than 1000 jobs a day, and need to archive them on a regular basis. The
longnumber option will allow LPRng to use a 6 digit job number for files in the print queue.

2. The host name format is not specified. Some implementations consider that this is the short host
name, while others think it is the fully qualified domain name (FQDN). LPRng , by default, will use the
FQDN host name. However, the use_shorthost option will force it to use short host names in control
and data files.

3. The cfA control file name was modified to allow the job priority to be used as the A letter of the control
file. By default, this is A (lowest, i.e. cfA) and but can range to Z (highest, i.e. cfZ). All known spoolers
except LPRng seem to ignore the actual value of the letter.

C.4. Data File Transfer
As mentioned before a data file is transferred using the command below.

Command Purpose

\003nnnn dfname data file transfer

From RFC1179:

The data file may contain any 8 bit values at all. The total number of bytes in the stream may be sent as the first
operand, otherwise the field should be cleared to 0. The name of the data file should start with ASCII "dfA". This
should be followed by a three digit job number. The job number should be followed by the host name which has
constructed the data file. Interpretation of the contents of the data file is determined by the contents of the
corresponding control file.

There are several surprises in RFC1179.

1. Apparently a job should only consist of a single data file. This is a severe limitation, and in fact the
BSD lpr and other print spoolers process jobs with multiple data files. By convention, these data files

81

Appendix C. RFC 1179 - Line Printer Daemon Protocol

have names of the form dfA , dfB , ... dfZ , dfa , dfz .

2. The RFC does not specify that the control file and data file job numbers must be identical. Most
implementations follow this convention, which simplifies life tremendously.

3. The RFC does not specify that the control file and data file job host names must be identical. Most
implementations follow this convention, which simplifies life tremendously.

4. A zero length data file does not cause a data transfer to take place. LPRng modifies this action to be
slightly different. When a zero length data file transfer is indicated, all of the input until the connection
is closed is used as the contents of the data file.

When piping into the lpr program, this can be very useful as it eliminates the need to create
temporary files on the local host. Note that some print spoolers do not use this interpretation, and this
option should be used carefully.

C.5. Control File Contents
The control file consists of a set of lines which either provide printing information or specify data files to be
printed. The information lines start with upper case letters or digits, while the data files lines start with
lower case letters. Here is a sample control file:

Hh4.private
J(stdin)
CA
Lpapowell
Apapowell@h4+955
Ppapowell
fdfA955h4.private
N(stdin)
UdfA955h4.private

The following are the letters and their meanings in the control file.

Table C-2. Control File Lines and Purpose

Letter Defined Purpose

A LPRng Identifier for job

C RFC1179 Class for banner page

H RFC1179 Host name

I RFC1179 Indent Printing

J RFC1179 Job name for banner page

L RFC1179 Print banner page

M RFC1179 Mail When Printed

N RFC1179 Name of source file

82

Appendix C. RFC 1179 - Line Printer Daemon Protocol

Letter Defined Purpose

P RFC1179 User identification

Q LPRng Queue name

R LPRng Accounting info

S RFC1179 Symbolic link data

T RFC1179 Title for pr

U RFC1179 Unlink data file

W RFC1179 Width of output

Z LPRng Filter options

1 RFC1179 troff R font

2 RFC1179 troff I font

3 RFC1179 troff B font

4 RFC1179 troff S font

c RFC1179 Plot CIF file

d RFC1179 Print DVI file

f RFC1179 Print formatted file

g RFC1179 Plot file

k RFC1179 Reserved for use by Kerberized
LPRng clients and servers.

l RFC1179 Print file leaving control characters

n RFC1179 Print ditroff output file

o RFC1179 Print Postscript output file

p RFC1179 Print file with ’pr’ format

t RFC1179 Print troff output file

v RFC1179 Print raster file

z RFC1179 Reserved for future use with the
Palladium print system.

The A (Identifier) line was introduced to record a unique system wide job identifier for LPRng submitted
jobs. This is basically formed from the user name, job number, and host at the time of submission. For
example: papowell@h4+955 is job number 995 submitted by papowell from host h4.

The C (Class) line is set by the lpr -C class option, and the value can be used to control printing. For
example, the lpc class zone command would restrict job printing to only jobs with class zone .

The H (hostname), P (username), and J (jobname) fields are used to identify the host and user which sent
the job, and to provide information to be displayed by lpq when reporting job status.

The L (print banner page) field is one that has caused many problems for users. RFC1179 indicates that
its presence causes the banner page to be printed, and its absence suppresses banner pages. The lpr

-h option suppresses putting this line into the control file. Usually the L field is a duplicate of the P field.

The M(mail information) field supplies a mail address for LPRng to send mail to when a job is completed.

83

Appendix C. RFC 1179 - Line Printer Daemon Protocol

The N (file name) field is usually provided to identify the file name corresponding to the data file. This can
be used to print names on page separators, etc. LPRng largely ignores this line.

The I (indent) and W(width) fields are supposed to specify a page indent and width for printing. These
fields are passed to filters if they are present.

The Q (queue name) field is an LPRng extension, and contains the name of the print queue the job was
originally sent to.

The R (accounting info) field was added by LPRng to allow a specified account to be billed for job printing.
The lpr -Rname option can be used to specify the accounting name.

The S (symbolic link) and U (unlink after printing) lines were used by the original BSD lpd print system to
control how it passed files to the print server. LPRng ignores these lines. In fact, it will remove S lines and
force the U lines to refer only to job data files. This closes a nasty security loophole on non-LPRng print
spoolers.

The T (pr job title) is used with the lpr -p operation to supply a banner to the pr program.

The Z (filter options) value is specified with lpr -Zoption and is passed to the data file filters during the
printing operation.

All of the lower case letters are reserved for format specifications for data files. In the control file, these are
followed by the name of the data file to which they correspond. While in principle different data files in the
control file can have different formats, this has not been implemented in any known spooling system.

C.6. lpq Requests
The RFC1179 protocol specifies that lpq print status requests can be sent to the lpd server. The lpq
requests have the format:

\003printer [id] * \n short
\004printer [id] * \n long
\009printer [id] * \n LPRng extension- verbose

The lpd print server will then return queue status and close the data connection.

RFC1179 does not state in any manner what the format of the queue status should be. Thus,
implementors have been free to augment or change the status as they like. Even the BSD lpq status
format has been changed from different versions.

The id values are used to select the jobs to be displayed. LPRng displays any job whose ID, hostname, or
user name information from the control file A, H, or P fields match any of the id values.

Note that since there is no identification of the information requestor, then restriction of information is
almost impossible.

84

Appendix C. RFC 1179 - Line Printer Daemon Protocol

C.7. lprm Requests
The RFC1179 protocol specifies that lprm job removal requests can be sent to the lpd server. The lpq
requests have the format:

\005printer user [id] * \n

The lpd print server will search the specified print queue and remove any job whose ID, hostname, or user
name information from the control file A, H, or P fields match any of the id values and for which the user
has permission to perform a removal operation.

Most RFC1179 compatible spoolers use the user information in the request as the name of the user which
spooled the job. However, in a network environment this is extremely easy to fabricate, and is at best a
weak type of authentication.

C.8. LPC Requests
LPRng has extended the RFC1179 protocol to allow queue and printer control commands to be sent to
the lpd server. The format of these commands are:

\006printer user key [options]

The following commands are supported.

Table C-3. LPC Commands

Command Operation

Command Operation

active [printer[@host]] check to see if server accepting connections

abort (printer[@host] | all) terminate server process printing job

disable (printer[@host] | all) disable queueing

debug (printer[@host] | all) debugparms set debug level for printer

enable (printer[@host] | all) enable queueing

hold (printer[@host] | all) (name[@host] |

job | all) *

hold job

holdall (printer[@host] | all) hold all jobs on

kill (printer[@host] | all) stop and restart server

lpd [printer[@host]] get lpd PID for server

lpq (printer[@host] | all) (name[@host] |

job | all) *

invoke lpq

85

Appendix C. RFC 1179 - Line Printer Daemon Protocol

Command Operation

lprm (printer[@host] | all)

(name[@host]|host|job| all) *

invoke lprm

move printer (user|jobid) * target move jobs to new queue

noholdall (printer[@host] | all) hold all jobs off

printcap (printer[@host] | all) report printcap values

quit exit LPC

redirect (printer[@host] | all)

(printer@host | off) *

redirect jobs

release (printer[@host] | all)

(name[@host] | job | all) *

release job

reread [printer[@host]] lpd reread database information

start (printer[@host] | all) start printing

status (printer[@host] | all) status of printers

stop (printer[@host] | all) stop printing

topq (printer[@host] | all) (name[@host] |

job | all) *

reorder job

defaultq default queue for lpd server

local (printer | all) client printcap and configuration information

server (printer | all) server printcap and configuration information

Many of these commands support extremely specialized operations for print queue management,
However, the following are the most commonly used and are supported by the BSD lpd print spooling
system as well:

• start, stop, enable, disable Start and stop will start and stop printing for a specified queue.
Enable and disable enable and disable sending and/or accepting jobs for the queue.

• abort, kill Abort will cause the process doing the actual job printing to be terminated. Kill does an
abort, and then restarts the printing process. These commands are used to restart a queue printing
after some disaster.

• topq Places selected jobs at the top of the print queue.

• status Shows a status display of the print spools on the server.

The following commands are extensions to the basic set provided by the BSD lpd system.

• lpq, lprm Invokes the lpq or lprm program from lpc. Useful when in the interactive mode.

• hold, holdall, release The hold command will cause the selected jobs to be held until released.
The holdall jobs sets all jobs submitted to the queue to be held until released. The release command

86

Appendix C. RFC 1179 - Line Printer Daemon Protocol

releases jobs for printing. If a job has had an error and is in the error state, the release command will
cause it to be reprinted.

• move, redirect The move command will move selected jobs to the specified spool queue. The
redirect command sends all jobs submitted to the queue to be sent to the specified queue.

• active, lpd, reread The active command will connect to the server for the printer. This is used to
check to see if non-LPRng print servers are active. The lpd command will connect to the server and get
the process id (PID) of the lpd server. The reread command causes a SIGHUP signal to be sent to the
lpd process, causing it to reread the lpd.conf , printcap , and lpd.perms files. This is done when
configuration information has been modified and the administrator wants to have the server use the new
information.

• debug This is a desperation facility for developers that allows dynamic enabling of debug information
generation. Not normally used in general operation.

• local, server These commands will print out the configuration information in the local lpd.conf

file, as well as the printcap information for the specified printers; client prints what the LPRng clients
(lpr, lpq, ...) would use while server prints what the LPRng server (lpd) would use if running on
this host. This is an extremely useful diagnostic tool for administrators. Not normally used in general
operation.

C.9. Block Job Transfer
Options used:

• send_block_format FLAG Transfer job as a block

In normal job transfer operations, the sender and receiver have a handshake interaction in order to
transfer a print job. Each file is sent individually. The send_block_format option forces a Block Job
Transfer operation. This causes the sender to transfer a single file containing all the job printing
information, including control file and data files.

The transfer command line has the form:

\007printer size\n

The receiver will return any acknowledgement of a single 0 octet, and then the size bytes of the job will be
transferred by the sender. At the end of the transfer a single 0 octet is added, and the receiver will indicate
success by returning a single 0 octet. Any other value returned by the receiver indicates an error condition.

The file transferred by the sender is simply the command lines that it would have normally sent for job
transfer, followed by the control or data file values.

87

Appendix C. RFC 1179 - Line Printer Daemon Protocol

C.10. Authenticated Transfer
RFC1179 does not provide any authentication or encryption mechanism for the transfer of jobs or
commands to the lpd print server. The Authenticated Transfer operation was added to allow an encrypted
or authenticated transfer of print jobs or commands.

Since there are various restrictions on the incorporation of authentication facilities into programs, LPRng
supports authentication by providing a simple interface to encryption programs.

The idea is that when authentication is required when sending a job, LPRng will generate a block transfer
job as described for the Block Job Transfer operation, and then invoke a set of programs to encryt and
transfer the file, and encrypt and transfer the returned status.

Similarly, when sending a command, the command information will be placed in a file and the encrypted
file will be transferred.

This technique means that the programs and support to do encryption are external to LPRng , and can
use any type of method that they choose to implement the secure and/or authenticated transfer.

88

