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Abstract. Management of modes and states is a wide, complex, and often underestimated part of 

systems engineering. As systems and missions become more complex, the potential combination of 

modes and states across system, subsystem, and component levels becomes exponential and difficult 

to master. This paper proposes a methodological approach for studying and integrating the impact of 

modes and states on the architecture definition. It establishes the concepts of configuration and 

situation as keys to analyzing these impacts.  

Introduction 

Most of systems development standards require that the system is described in its various phases, 

modes, and states. These concepts are however amongst the most ambiguous and the least understood 

ones in systems engineering. Several aspects have to be considered: 

 The specification of the expected functional behavior of the system in different contexts 

 The supervision of the expected functional behavior of the system and the detection of 

possible failures 

 The combinatory of the modes and states of the system and of its components 

 The possible dynamic reconfigurations to be performed during system operation, in particular 

in reaction to failures 

 The startup and stopping of the system and its components 

 Etc. 

The ability to accurately relate modes and states to the definition of the expected system functional 

behavior, the required performance specification, and to any element contributing to the system 

architecture is essential for the mutual understanding between the customer, the supplier, and more 

generally all the stakeholders involved in the system development.   

An extensive comparison between various pieces of literature in (Olver and Ryan, 2014) proves the 

various methodologies for states and modes do not provide a consistent understanding of what 

constitutes a state or a mode: definitions often contain circular references between “modes”, “states”, 
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and “conditions”.  Not only is there no consensus as to whether modes include states or states include 

modes, but there is also little guidance on the relationships between them.  

The mastering of modes and states is a very wide and complex topic, often underestimated. This 

paper only considers modes and states through the prism of their impacts on the definition of the 

system architecture. It does it in the context of the model-based engineering method Arcadia (Voirin, 

2010; Arcadia, 2014) and of its supporting modeling workbench Capella (Capella, 2014).  

Both Arcadia and Capella have been extensively used on various domains in all Thales Business 

Units worldwide for about ten years. Since both have been made open source in 2014, their usage 

outside Thales has significantly grown. The (intermediate) results presented in this paper are based on 

need capture and experimentations performed in the context of the Clarity collaborative project 

(Clarity Consortium, 2015). It thus reflects practices coming from a wide variety of domains such as 

avionics, radars, transportation, space, energy, etc.  

This paper describes the Arcadia definitions for modes and states, but more importantly, it elaborates 

on the engineering objectives related to modeling of modes and states. It describes the different kinds 

of analyses that are likely to be performed, explains the corresponding methodological approaches, 

and illustrates the way Capella supports them.    

Arcadia and Capella, quick overview 

Arcadia, the method. Arcadia (Voirin, 2010; Arcadia, 2014) is a comprehensive model-based 

engineering method devoted to systems, software, hardware architecture engineering. It describes the 

detailed reasoning to understand the real customer need, define and share the product architecture 

among all engineering stakeholders, early validate its design and justify it, ease and master 

integration, validation, and verification (IVV). Arcadia can be applied to complex system, equipment, 

software or hardware architecture definition, especially those dealing with strong constraints to be 

reconciled (cost, performance, safety, security, reuse, consumption, weight…). It is intended to be 

embraced by most stakeholders in system/product/software/hardware definition as well as by IVV 

actors, as their common engineering reference.  

 

Figure 1: Arcadia engineering perspectives 



 

Arcadia is now partially published and a full publication is on its way. Its large adoption in many 

different engineering contexts both in Thales and in other organizations witnesses of an 

industry-proven comprehensive method for systems engineering, adapting to each context in a 

dedicated manner, and yet being tooled by the same powerful tools capitalizing knowledge. 

Arcadia introduces several engineering perspectives and promotes a clear distinction between the 

expression of the need and the expression of the solution. It intensively relies on functional analysis, 

which is used in all perspectives (Figure 1).  Table 2 summarizes the objectives of each major Arcadia 

perspective.  

Table 2: Objectives of Arcadia engineering perspectives 

Operational Need Analysis 

The first step focuses on analyzing the customer needs and goals, expected missions and activities, far 

beyond system requirements. This analysis aims at ensuring adequate system definition with regard to its 

real operational use and IVVQ conditions. 

Outputs of this engineering phase mainly consist of an “operational architecture” which describes and 

structures the need in terms of actors/users, their operational capabilities and activities (including 

operational use scenarios with dimensioning parameters, and operational constraints such as safety, security, 

lifecycle, etc.). 

System Need Analysis 

This perspective focuses on the system itself, in order to define how it can satisfy the former operational 

needs, along with its expected behavior and qualities. The main goal at that point is to check the feasibility of 

customer requirements (cost, schedule, technology readiness, etc.) and if necessary, to provide means to 

renegotiate their content.  

Outputs of this engineering phase mainly consist of system functional need descriptions (functions, 

functional chains, and scenarios), interoperability and interaction with the users and external systems 

(functions, exchanges plus non-functional constraints). 

Logical Architecture 

(intermediate, conceptual solution) 

This perspective aims at building a coarse-grained component breakdown of the system which is unlikely to 

be challenged later in the development process. Starting from previous functional and non-functional 

analysis refined results (functions, interfaces, functional exchanges, behaviors…), build one or several 

decompositions of the system into logical components. The building process has to take into account 

architectural drivers and priorities, viewpoints and associated design rules, etc.  

All major (non-functional) constraints (safety, security, performance, IVV, cost, non-technical, Etc.) are 

taken into account and compared to each other so as to find the best trade-off. This approach is 

viewpoint-driven, where viewpoints formalize the way these constraints impact the system architecture. 

Outputs of this engineering phase consist of the selected logical architecture which is described by 

components and justified interfaces definition, scenarios, modes and states, formalization of all viewpoints 

and the way they are taken into account in the components design. Since the architecture has to be validated 

against the need analysis, links with requirements and operational scenarios are also to be produced. 

  



 

Physical Architecture 

(finalized solution, ready to develop) 

The physical architecture has the same intent as the logical architecture building, except that it defines the 

“final” architecture of the system at this level of engineering. Therefore, it introduces rationalization, 

architectural patterns, new technical services and components, and makes the logical architecture evolve 

according to implementation, technical and technological constraints and choices.  

The same viewpoint-driven approach as for logical architecture building is used. The model at that point is 

considered ready to develop by downstream engineering teams.  

Outputs of this engineering phase consist of the selected physical architecture which includes components to 

be produced, formalization of all viewpoints and the way they are taken into account in the components 

design. Links with requirements and operational scenarios are also produced. 

 

Capella, the associated modeling workbench. The open source, field-proven modeling workbench 

Capella has been developed both to guide users in applying the Arcadia method and to assist them in 

managing complexity of systems design with automated simplification mechanisms. A model is built 

for each Arcadia engineering perspective and end-users are guided by an embedded method explorer. 

All of these models are related by justification links and are processed as a whole for impact analysis.  

While hundreds of Thales engineers have been using Capella as their main daily design workbench 

for a few years already, the Clarity consortium has been able to grow an ecosystem around Capella 

(Clarity Consortium, 2015). Several major industrial organizations, tool providers, and consulting 

organizations have already joined the consortium. 

Modes, states (and configurations) in the literature 

As thoroughly explained in (Olver and Ryan, 2014) and (Wasson, 2011), the use of states and modes 

in formal systems engineering processes is wide, varied and inconsistent. The various methodologies 

for states and modes do not provide a consistent message or framework for what constitutes a state or 

a mode. Conflicting definitions in the literature prove that the distinction between modes and states is 

arbitrary. Two approaches closely related to architectural design are described hereunder.  

Modes in AADL. AADL (Architecture Analysis & Design Language is an ADL (Architecture 

Description Language) standardized as the SAE Standard AS-5506 and dedicated to embedded real 

time systems. (Feiler et al., 2006) provide the following definition for modes: 

“A mode is an explicitly defined configuration of contained components, connections, and property 

value associations. Modes represent alternative operational states of a system or component. For 

example, modes for a cruise control system may be {initialize, disengaged, engaged}, where each of 

these modes may involve different sets of processes, executing threads, or active connections (e.g., in 

the initialization mode there are no connections to sensors).” 

Modes in AADL can be used to represent alternative system configuration in a variety of ways. 

Among others, they can establish: 

 Alternative configurations of active components and connections and the transitions among 

these configurations. At the level of system and process, a mode represents possibly 

overlapping sets of active threads and port connections, and alternative configurations of 



 

execution platform components, as well as alternative bindings of application components to 

execution platform components. (Feiler et al., 2006) 

 Mode-specific properties for software or hardware components. This is a light way to change 

the value of some property according to the active mode of the system. These properties can 

be of very different kinds like for instance the period of a task, the precision of an algorithm or 

the frequency of a CPU. 

Modes and configurations in UML MARTE. The MARTE (Modeling and Analysis of Real-Time 

and Embedded Systems) UML profile (OMG, 2010) proposes an interesting definition of what a 

mode is: 

“An operational mode can represent different things: 

 An operational system (or subsystem) state that is managed by reconfiguration mechanisms 

(e.g., fault-tolerance management middleware) according to fault conditions. 

 A state of system operation with a given level of QoS that can be handled by resource 

management infrastructures (e.g., middleware that assign resources at run time according to 

load demand, timing constraints, or resource usage). 

 A phase of a system operation e.g., starting, stopping, launching, in a mission-critical 

aerospace system. 

A mode identifies an operational segment within the system execution that is characterized by a 

given configuration. The system configuration may be defined by a set of active system elements 

(e.g., application components, platform components, hardware resources), and/or by a set of 

operation parameters (e.g., QoS parameters or functional parameters).” 

 
Figure 3: Modes and configurations in MARTE UML Profile 

The concept of configuration, as illustrated by figure 3 extracted from the OMG specification, is a 

strong inspiration for the approaches described later in this paper. However, it is important to note 

that specification of modes is a very minor part of the standard (less than 5 pages in the 754 pages of 

the whole specification) and does not provide any methodological guidance. 



 

Modeling modes, states, configurations, and situations in Arcadia  

Definitions for modes and states 

The objective here is not to establish a universal reference for what a mode or what a state is. Instead, 

definitions are provided in the scope of the Arcadia method and in the context of the methodological 

guidance it provides on this topic. In Arcadia, modes and states are defined separately. There is no 

“inclusion” of modes within states or of states within modes.  

Mode. The definition of the expected behavior of the system (or of its actors, or of its components) in 

situations foreseen at design time is captured in the form of system modes. Each mode is mainly 

characterized by the expected functional content of the system in this mode. A mode can reflect 

various concepts, such as  

 the phases of a mission or of a flight for example (taxiing, taking-off, cruising, landing, etc.) 

 the specific required functioning of the system under certain conditions (connected, 

autonomous, etc.) 

 the specific conditions in which the system is used: test, training, maintenance, etc. 

The transition from one mode to another is in general the result of a decision, such as a change in the 

way the system operates, in order to adapt to new needs or new contexts. It is therefore conditioned by 

the choices of the system, of its users, or of external actors. In the model, the trigger of a transition is 

likely to be related to a functional event. The set of modes and the transitions between them are 

described in a “mode machine”, which syntax is based on SysML state machines (OMG, 2012). 

State. During its life and its use, the system passes through states that it undergoes. A state often 

directly reflects an operating condition or status on structural elements of the system: operational, 

failed, degraded, absent, etc. States are also likely to represent the physical condition of a component 

(full or empty fuel tank, charged or discharged battery, etc.). State can also be exploited to represent 

environment constraints (temperature, humidity, etc.).  

The transition from one state to another is often not the result of a decision but rather corresponds to a 

change of physical properties. The formalization of these identified states is captured in a “state 

machine” that uses the same underlying syntax than the ones for the modes. The transitions carry the 

triggering change event but are not likely to be associated to functional events.  

Mastering modes and states: challenges  

A typical situation articulating modes and states can be the following: the system is normally running, 

in operational mode; its state is nominal (all components are available). Then a failure occurs; this is 

formalized as a transition from nominal to degraded state. The system supervision should be able to 

detect this new state, and as a reaction, it should drive the transition from operational mode to a 

degraded mode, dealing with the loss of components. 

As systems and missions become more complex, the potential combination of modes and states 

becomes exponential and difficult to master. For example, 

 Several distinct modes machines can exist in parallel at system level (for example a drone can 

be taking off, cruising, on zone, returning, landing, and for each of these modes or phases, be 

independently in silent or communicating mode).   



 

 Each subsystem, equipment or component can have its own mode machine 

 Each subsystem, equipment or component can have its own state machine 

 The system level modes can be the result of a given combination of subsystem modes 

 Modes and states are not hierarchically interlaced, but they can have impact on one another 

 

 

Figure 4: An example of modes and states combinations 

Challenges are numerous: 

 Being able to prove that the system expected behavior can be reached in all possibly realizable 

combinations of modes, states, at system and subsystem level.  

 Being able to study the reconfigurations of the system while it operates. 

 Using modes and states as a support to perform analyses on the system. For example, in the 

domain of satellite launchers, the mass, power and communications profiles vary significantly 

according to the flying phases, and the modes of each subsystem. (Figure 4) 

The remaining parts of this paper elaborate on the methodological approaches and concepts aiming at 

tackling these challenges. Note: the Capella tooling described in this paper is currently part of an 

incubation add-on and is not yet available in the default open source workbench (but will be at some 

point).  

Configurations and situations 

Instead of directly relating modes and states to the functional behavior or structural elements in the 

model, two news concepts are introduced for methodological purposes: configurations and situations.  

Configuration. The concept of configuration aims at providing the means to characterize the system 

when it is in a given context – a context being a mode, a state, or any combination of those. A 

configuration identifies a set of elements that are active or inactive in this context (functions, 

components, exchanges, ports, etc.): 

 A configuration intended to describe what is expected in a mode is likely to have a functional 

dominance (capabilities, functions, exchanges, functional chains, scenarios, etc.) in order to 

describe the required functional behavior.  



 

 A configuration intended to describe a state is likely to have a structural dominance 

(components, component ports and links, etc.) but can also reference functional elements, 

depending on the nature of the described state. A typical example for such a configuration 

would be the expression of unavailable components (failure, absence, etc.). 

 

Figure 5: Specification of configuration content 

In Capella, a configuration can reference any kind of element and can be specified on any structural 

element (the system, its actors, its components, etc.). For the sake of ergonomics, configurations can 

be defined as being inclusive or exclusive. Depending on the kind of analyses the configuration will 

be exploited by, it might be more efficient to specify what is inactive in the configuration (exclusive 

definition) rather than specifying everything that is active (inclusive definition).  

Figure 5 illustrates one way of specifying the content of configurations. Here, the sample model is the 

simplistic one of a hybrid vehicle, and three configurations are defined. When the vehicle moves with 

the sole electrical power, it is silent and a notification system is required to warn pedestrians the 

vehicle is approaching. In that example, checked elements are the ones that are excluded from the 

configuration.  

Capella provides the means to preview configurations on any architecture diagrams. Displayed 

configurations are indicated with a lozenge shape on the border of the component it is defined for. 

Figure 6 shows two different configurations, greyed elements are the ones that are not active in the 

configuration.  



 

 

Figure 6: Preview of configurations in Capella 

Situations. Different kinds of modes or states can be simultaneously active for a given element 

(system, component, etc.) at a given time. For instance, a system can be at the same moment 

 in operational or training mode 

 autonomous or coupled to an external system 

 in one given phase of a mission 

 in a configuration that is complete or incomplete (for example because some of its 

components undergo maintenance).   

This means several modes machines and states machines can be relevant simultaneously. Therefore, 

it is necessary to study the consequences of the combination of these modes and states. This is done 

with the concept of superposition situation. A situation is defined as a logical combination of modes 

and states (for example, [mode1 AND state1] OR [mode2 AND [state2 OR state3]]) that reflects the 

superposition of modes and states likely to occur at one given moment, either in different modes or 

states machines on the system itself either across its components. Reminder: at one given moment, 

there is only one current mode or state per mode or state machine. Figure 7 illustrate a context where 

a configuration covers two different possibilities.   



 

 

Figure 7: Concept of situation 

Capella provides the means to specify a situation and to associate configurations to this situation. 

Developments are currently ongoing to take situations into account in all diagrams (and in particular 

in sequence diagrams).    

Engineering of modes and states in Arcadia and Capella relies on these different concepts and their 

relationships, in order to confront them and check that what is expected from the system can be 

achieved in all reachable situations.  

Purpose of modes and states in the different Arcadia perspectives 

While it is possible and useful to define modes and states in Operational Need Analysis, this section 

mainly focuses on the perspectives centered on the system itself.   

System Need Analysis. The main modes and states at this level are the ones describing the expected 

behavior of the system, as requested by the customer. They are likely to be known, perceived, or 

exploited by the end-users of the system. Among others, they capture the required operating modes or 

employment conditions of the system in different situations. They can help specify the minimal 

required behavior of the system when facing feared situations.  

External actors of the system can also have modes and states that can impact the expected behavior of 

the system. For example, an actor changing from one mode to another and interrupting its 

communication with the system can trigger a change of state of the system and then a transition to a 

degraded mode. It might therefore be useful to include in superposition situations the modes and 

states of the actors when they are likely to have consequences.  

The functional verification consists in checking the feasibility and continuity of functional chains and 

scenarios in all superposition situations.  

Logical Architecture. A similar approach is performed here. The consistency of logical modes and 

states (as well as the content of associated configurations) is ensured and traceability is established 

towards their sources in System Need Analysis.  



 

New system modes and states can appear as the result of design constraints or choices. In that case, 

they do not necessarily need to be traced towards the modes and states of System Need Analysis.  

The articulation between system-level modes and states and component-level ones is to be managed 

(see “future work” section).  

Physical Architecture. Again, a similar approach is performed, with the same consistency and 

traceability constraints. The addition of hosting components (providing implementation or execution 

resources to behavior components, etc.) in this perspective brings a new dimension, introducing for 

example the states and conditions of failure of these components.  

The definition of the modes and states expected from each subsystem is performed here, most likely 

in a co-engineering dynamic (see “future work” section). Arcadia and Capella allow continuity 

between system and subsystem models. The modes, states, and configurations of one given 

subsystem in the Physical Architecture perspective at system level become the modes and states of 

this subsystem’s own System Need Analysis perspective.  

Mastering modes and states: methodological approach 

The engineering approach described here is generic; it is applicable in any Arcadia perspective, for 

system as well as for components. It covers the following activities: definition of expected behavior, 

analysis of situations of interests (superposition of current modes and states), and adaptation of the 

architecture following the results of the analysis. The design of the associated supervision is not 

covered here.   

 
Figure 8: Synthesis of the methodological framework 

Depending on the modeling objectives in a given project, the approach can either be fully or partly 

applied. It is to be taken as a guiding framework. Figure 8 provides a synthesis of the framework. 

What is presented here is an ongoing work, as the refinement of the method and the development of 

the associated tooling and algorithms in Capella are in progress.  



 

Definition of the expected behavior 

Modes. The first step consists in defining the expected behavior to face the different contexts the 

system will face. This includes all or parts of the following: 

1. Identification of the different kinds of modes required simultaneously: for example, 

operational mission or training, fully operational or maintenance, autonomous or remotely 

piloted by an operator, etc.  

2. For each kind of mode, formalization of one mode machine specifying all possible transitions 

between the modes of this kind 

3. The content of each mode is then detailed in an atomic configuration that primarily describes 

the functional and non-functional content (required capabilities, functions, scenarios and 

functional chains to be played, etc.) but might also include some structural content 

(components, interfaces, physical connections, etc.). A same atomic configuration can be 

shared by several modes.     

4. The triggers and conditions for all possible transitions between modes within a mode machine 

can then be specified, and if possible, related to elements such as functional exchanges or 

execution of functions.    

  

States. The different simultaneous state machines that can impact the content and behavior of the 

system (presence or absence of components, health status of physical components, environmental 

conditions, etc.) can be defined following the same pattern. Atomic configurations are used to 

primarily describe the foreseen structural content and associated properties.   

Identification of superposition situations. Once the expected behavior of the system is specified, it 

has to be confronted to the situations that can influence or harm it during its operating time. Each 

situation identifies the required superposition of modes (logical combination of modes in each mode 

machine) as well as the states likely to occur in this situation (typically feared states like attack, 

failure, external disturbance, etc.). A situation is a superposition of “current” modes and states, which 

means all active simultaneously at a given moment. Optionally, scenarios are used to place the 

situations in a timeline to capture the global evolution.    

Definition of global configurations of interest. Unlike atomic configurations, global configurations 

are not directly associated to any specific mode or state. Instead, they are used to capture an expected 

system behavior of interest. There are multiple reasons why a specific system behavior (scenario, 

functional chain, etc.) can be of interest: because it corresponds to a particularly critical point of the 

system, because it is a customer specific request, because it is a minimal behavior to be preserved 

whatever the operating conditions, etc. 

Analysis of the superposition of modes and states  

Computed global configuration for each situation of modes. Each superposition situation of 

several modes brings constraints coming from the atomic configurations associated to each mode. 

These atomic configurations have to be combined, which might bring contradictions (for example, a 

function can be required in a mode and rejected in another, a functional chain can become incomplete 

because of rejected functions, etc.).  

The following step of the approach is therefore to build the global computed configuration, merging 

all atomic configurations associated to the modes involved in the considered situation. The merging 

rules have to be refined (this is the topic of an ongoing work), but a simple union is a good starting 

point. The internal consistency of this resulting global configuration can then be analyzed. 



 

Inconsistencies mean either the modes machines either the atomic configurations have to be 

reworked.  

Confrontation with expected global configuration of interest. Optionally for each situation of 

several modes, if global configurations of interest have been defined, it is possible to compare them to 

the global computed configuration and detect missing elements in the latter one.  

Analysis of the computed global configurations for situations mixing modes and states. From a 

technical or conceptual standpoint, situations involving states could be managed the same way as 

situations involving only modes. However, it is generally recommended to treat them incrementally, 

in a second step. 

Adaptation of the architecture  

If the delta between the expected behavior and the result of the previous analysis are not acceptable, a 

compromise has to be sought, if possible by reworking the architecture to restore the expected 

behavior. This can take several forms, including: 

 Functional reallocation (for example to move critical functions in a less vulnerable 

component) 

 Introduction of degraded modes (for example triggering a dynamic reconfiguration of 

resources), introduction of redundancy   

 Improvement of configurations associated to certain states (using for example more reliable 

components) 

All this rework on the architecture implies a review or a modification of the modes and states, of the 

transitions between them, and of the associated configurations. Should this be the only solution, all 

this analysis work can be used as a support to renegotiate with the customer the original expected 

behavior.    

Conclusion and future work 

Most significant evolutions in Arcadia and Capella undergo a few years of incubation covering 

methodological refinement and experimentation in real-world contexts. This work on modes and 

states management is no exception. The original version of the Arcadia method was relying on a 

single availability relationship between functions on one side and modes or states on the other side. 

Nearly two years after the first workshops on the topic and after a significant amount of iterations, the 

methodological approach described in this paper is a significant leap forward for Arcadia users.  

While the concept of configuration was already present in the literature, its exploitation in the Arcadia 

context has not been straightforward. There are two keys enabling the approach described in this 

paper. The first and most important one is the introduction of the concept of situation, which provides 

a prism for analyses. The second one is the distinction between expected global configurations of 

interest, atomic configurations and computed global configurations. 

From a methodological point of view, the following topics are currently experimented: 

 Design of the supervision of the system and components modes and states. This first step of 

this design is to define the function(s) in charge of the global orchestration of the supervision. 

This function will typically be in charge of governing the starting and the stopping of the 



 

system, trigger the transitions between modes, monitor the operating states, detect the 

situations requiring reconfigurations, etc.     

 Articulation between system and components: contribution to the supervision, relationships 

between mode or state machines at different level, required co-engineering, etc.  

 Verification and validation of the dynamics of mode / state changes, through simulation 

techniques 

 Analysis and verification of the system reconfiguration conditions, taking into account the 

initial and final situations, but also all intermediate ones to assess the feasibility of a 

reconfiguration.   

From a tooling point of view, the current developments cover: 

 Definition and implementation of checking and propagation rules for the definition of 

configurations (if a resource component is not present, then the deployed components are not 

available, the functions allocated to these deployed components are not available, etc.) 

 Definition and implementation of merging algorithms for computed global configurations 

 Better support for configuration-specific properties on elements 

 Improved assistance to the specification of situations  

Acknowledgements 

This work is the result of a collaborative effort in the context of the Clarity project (Clarity, 2015). We 

would like to thank the modeling experts and developers contributing to the methodological and 

tooling aspects (Thales Research and Technology, Altran, INRIA Aoste) as well as the systems 

engineers who provide use cases and extremely valuable feedback (Thales Alenia Space, Thales 

Airborne Systems, Airbus Safran Launchers, and Areva). In particular, we would like to thank our 

Thales colleagues Jérôme Le Noir, Laëtitia Saoud, Eric Maes, and Felix Dorner.  

References 
Voirin, J.-L. 2010. “Method and tools to secure and support collaborative architecting of constrained systems” 

Paper presented at the 27th Congress of the International Council of the Aeronautical Science (ICAS 

2010), Nice, France, 19-24 September. 

———. 2012. "Modelling languages for Functional Analysis put to the test of real life" Paper presented at 3
rd

 

International Conference on Complex Systems Design & Management (CSD&M 2012), 12 December 

Olver, A. M. and Ryan, M.J. 2014. “On a useful taxonomy of Phases, Modes, and States in Systems 

Engineering“. Paper presented in Systems Engineering / Test and Evaluation Conference, Adelaïde, 

Australia   

Wasson, C. S. (2011), 3.3.1 System Phases, Modes, and States: Solutions to Controversial Issues. INCOSE 

International Symposium, 21: 279–294. doi:10.1002/j.2334-5837.2011.tb01205.x 

Feiler, P.H., Lewis, B.A., Vestal, S. 2006. “The SAE architecture analysis; design language (AADL) a 

standard for engineering performance critical systems”. In Computer Aided Control System Design, 

2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium 

on Intelligent Control, 2006 IEEE, pages 1206–1211, Oct 2006. 

OMG (Object Management Group). 2010. UML profile for MARTE. Object Management Group, v1.1, 

October 2010. 



 

OMG (Object Management Group). 2012. Systems Modeling Language (SysML), Version 1.3 

Capella. 2014. “Capella website” http://www.polarsys.org/capella  

Arcadia. 2014. “Introduction to Arcadia” http://www.polarsys.org/capella/arcadia.html  

Clarity Consortium. 2015. “Clarity website” http://www.clarity-se.org  

Biography 

Stéphane Bonnet, Thales Corporate Engineering, is the Design Authority of the Thales MBSE 

workbench for systems, hardware and software architectural design. He holds a PhD in software 

engineering. From 2008 onwards, he has led the development of Capella. He dedicates most of his 

time to MBSE training and coaching activities worldwide, for Thales and other organizations. He 

helps systems engineering managers and systems architects implement MBSE approaches on 

operational projects. He is animating networks of experts from all Thales domains and business units 

to capture operational needs and orient the method and workbench evolutions and roadmaps.  

Jean-Luc Voirin is Director, Engineering and Modeling, in Thales Defense Missions Systems 

business unit and Technical Directorate. He holds a MSc & Engineering Degree from ENST 

Bretagne, France. His fields of interests include architecture, computing and hardware design, 

algorithmic and software design on real-time image synthesis systems. He has been an architect of 

real-time and near real-time computing and mission systems on civil and mission aircraft and fighters. 

He is the principal author of the Arcadia method and an active contributor to the definition of methods 

and tools. He is involved in coaching activities across all Thales business units, in particular on 

flagship and critical projects.  

Véronique Normand is a senior scientist working as a Manager and Design Authority for the Thales 

Technical Directorate, where she is responsible for the research and technology strategy in 

model-based engineering for systems and software since 2009. She holds a PhD in Computer Science 

and a degree from the ENSIMAG informatics and mathematics school in Grenoble, France. Her 

professional experience involves research in user-centric design, software architecture, collaborative 

environments, and model-based engineering; consultancy and coaching in engineering methods; 

software project management.  

Daniel Exertier, Thales Corporate Engineering, is Model Driven Engineering Domain Manager, 

System and Software Technologies Manager. He holds a double MSc degree in Robotics from the 

Cranfield Institute of Technology (UK) and in Computer Science from the Compiègne University of 

Technology (France). In charge of the Model Driven Engineering (MDE) domain, he drives the 

definition of the MDE vision and strategy for the engineering workbenches and builds technical 

partnerships, collaborative projects and open innovation schemes. In parallel, he manages the MDE 

Open Source strategy and the relationship with the Eclipse and PolarSys Open Source Foundations 

and Communities. 

   

http://www.polarsys.org/capella
http://www.polarsys.org/capella/arcadia.html
http://www.clarity-se.org/

