
Development of Modelling Frameworks and Viewpoints with
Kitalpha

Benoît Langlois

Thales Global Services

Meudon-La-Forêt, France
benoit.langlois@thalesgroup.com

Daniel Exertier

Thales Global Services

Meudon-La-Forêt, France
daniel.exertier@thalesgroup.com

Boubekeur Zendagui

Obeo

Gif-Sur-Yvette, France
boubekeur.zendagui@obeo.fr

Abstract
A common need in system, software, and hardware engineering is
to describe system architectures, especially in demanding domains
such as aeronautics, defence or telecommunications. Kitalpha is
an environment to develop and execute MBE (Model-Based
Engineering) workbenches for description of system architecture.
Kitalpha uses the DSL technique in order to develop such devel-
opment environments accurately, quickly, and safely. This paper
presents the main features of Kitalpha and lessons learned from a
DSL-based development.

Categories and Subject Descriptors

D2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE); D2.6 [Programming Environments]:
Textual environments; D.3.2 [Programming Languages]: Lan-
guage Classifications – Very high-level languages.

General Terms: Design, Languages.

Keywords: Architecture Description; Architecture Framework;
DSL; Eclipse; Kitalpha; PolarSys; Viewpoint

1. Introduction
In system, software, hardware engineering, a common need dur-
ing the phases of analysis and design is to describe the architec-
ture of a system. Several standards have been established to define
a shared notation, such as the UML [10], ISO/IEC 42010 stand-
ards [6], NAF [9] or DoDAF [1]. Different categories of tools
implement those standards: general purpose tools such as UML
tools like Papyrus [11] which address multiple architecture stand-
ards, specialized tools which address a reduced set of standards,
and DSL [7][12] (Domain-Specific Language)-based tools spe-
cialized for architecture description. Kitalpha is a tool which
belongs to this last category.

Kitalpha is an Eclipse modelling project of the PolarSys [13]
Working Group [2]. It is dedicated to implement modelling
frameworks and viewpoints, and this in coherence with the
ISO/IEC 42010 standard for description of system architecture.
Kitalpha provides both a development and runtime environment to
create and execute rich MBE workbenches (e.g., edition with
diagrams, documentation, import/export, model transformation /
analysis / validation) for system / software / hardware architects
and engineers in small- to large-scale projects.

Kitalpha was initiated by Thales to develop and enrich Capella
[4], a tool for system engineering. But Kitalpha is generic enough
to implement different architecture framework standards (e.g.,

TOGAF/MODAF), proprietary method or domain-specific work-
benches in the MBSE (model-based systems engineering) context.

Kitalpha is a foundation tool. Indeed, above the core architec-
ture description of a system, the purpose is to describe engineer-
ing specialities (e.g., the non-functional concerns of safety and
performance), up to architecture evaluation to facilitate the deci-
sion process of architecture alternatives for complex systems in
domains such aeronautics, communication, or transportation.

This paper is structured as follows. Section 2 presents Kitalpha
in the context of the ISO/IEC 42010 standard. Section 3 focuses
on the DSL solution adopted by Kitalpha. Section 4 provides a set
of lessons learned with Kitalpha about DSL. Section 5 concludes.

2. An environment to develop and execute MBE
workbenches
Kitalpha is an environment to develop and execute MBE work-
benches to describe system architecture. Kitalpha is based on the
ISO/IEC 42010 standard. In this standard, an architecture frame-
work is composed of viewpoints. Each viewpoint describes at
least one system concern, such as non-functional concerns (e.g.,
performance, safety, security, cost), for involved stakeholders
(e.g., safety engineer).

Conforming to that standard, an MBE workbench is an archi-
tecture framework which aggregates viewpoints. For its imple-
mentation, Kitalpha extends the definition of viewpoint to also
consider it as an engineering extension which comes with its own

metamodels, representations (e.g., diagrams, tables, user interfac-
es), rules (e.g., validation, analysis, transformation), services and

Figure 1. Architecture description based on architecture and
viewpoints (ISO/IEC 42010)

tools to address an engineering specialty. Consequently, an MBE
workbench is the result of a flexible assembly of core viewpoints
extended by new ones which are, in the context of co-engineering,
appropriate and valuable for specialty engineers. The set of all the
viewpoints provide a solution for the complete description of a
system.

Figure 2 depicts an MBE Workbench composed of core view-
points which define the common language, representations and
services to describe a system. In co-engineering, Performance,
Safety, and Cost viewpoints extend here this common set. When
viewpoint algorithms are too complex, computations are delegated
to an external tool. A bridge enables a bidirectional exchange of
viewpoint data. The complete description of a system is based on
the union of all the viewpoints (i.e., the core and co-engineering
viewpoints). At the workbench level, bridges ensure external
communications with other MBE Workbenches or formalisms,
such as UML or other DSLs.

Figure 2. A MBE Workbench for architecture description

To develop MBE workbenches, a lesson learned at Thales is
that designers must be autonomous in creating and maintaining
their own viewpoints, without coding. Developers can enrich them
afterward, for instance to implement algorithms. To meet this
requirement, Kitalpha offers a development environment made of
DSLs to assist designers and developers in their development
activities of architecture frameworks and viewpoints. For in-
stance, textual editors enable to declare viewpoint metamodels,
user interfaces, diagrams, or services. From those DSLs, genera-
tors build all the architecture framework and viewpoint artefacts.
For instance, the declaration of diagrams with an appropriate DSL
is translated in Sirius [14] diagrams. Figure 3 depicts the two
parallel processes of architecture framework and viewpoint devel-
opment decomposed in the activities of edition with DSLs, gener-
ation and packaging to create and extend an MBE Workbench.

Kitalpha provides both development and runtime services to

define, use and manage architecture frameworks and viewpoints.

The main services at development time are:

• For Architecture Framework (AF): i) definition of an AF by
DSL, ii) generation of AF artifacts, iii) packaging of AF arti-
facts with the viewpoints it aggregates.

• For Viewpoint: i) definition of a viewpoint by DSL, ii) genera-
tion of viewpoint artifacts, iii) packaging of viewpoint arte-
facts.

The main services at runtime are:

• Core services: i) system architecture description with an archi-
tecture framework and its viewpoints, ii) viewpoint manage-
ment in order to monitor viewpoints, iii) activation / deactiva-
tion of a viewpoint, iv) detachment / attachment of viewpoint
data, v), migration of a viewpoint.

• Additional services, out of the scope of Kitalpha: versioning,
collaborative work, reporting, architecture assessment, testing,
simulation.

Figure 3. DSL-based development of MBE Workbenches

3. DSL Structure in Kitalpha
The two Kitalpha DSLs, for the definition of architecture frame-
work and viewpoints of an MBE Workbench, follow the same
structure. An abstract syntax defines the languages to describe
architecture frameworks and viewpoints. A concrete syntax ena-
bles the designers and developers to describe architectures frame-
works and viewpoints. At this stage, only a textual syntax with
Xtext [16] is supported, even if the foundations are able to accept
other kinds of representations (e.g., graphical or tabular). A mech-
anism of synchronisation translates concrete syntax into abstract
syntax and vice versa.

The viewpoint DSL is however more complex than the archi-
tecture framework DSL. As show in Figure 4, the DSL is decom-
posed by aspects: i) Data for the definition of metamodel, ii) User
interface for the data representation by user interfaces, iii) Dia-
gram for the graphical representation of data, iii) Services for the

Figure 4. DSLs to define and represent data and services

definition of business rules, services, and parameters, iv) Build to
automatically generate continuous integration scripts, and v)
Configuration to tune the generation parameters of architecture
framework and viewpoint artefacts. The abstract syntax is exten-
sible. Thus, other aspects could be supported, such as the defini-
tion of constraints. At the concrete syntax level, a main textual
grammar of viewpoint aggregates textual grammars of viewpoint
aspects as depicted in the following picture.

The following figure exemplifies another editor for the defini-

tion of viewpoint metamodel. All the common features to describe
a metamodel are covered. The words “ecore” and “capella” identi-
fies external metamodels, respectively the Eclipse EMF and Ca-
pella metamodels. The “extends” section means that the current
metaclass extends the definition of identified metaclasses (e.g., a
Logical Component is enriched by a QualityAssessment meta-
class).

A generation function produces artefacts from the complete set

of descriptions which conform to the abstract syntax and stored in
the form of Eclipse EMF models. This mapping is realized by
software factories [5] with EGF [3] to mass produce artefacts,
such as code, but also models, diagrams or Eclipse plugins. The
software factories are selected according to a target application
which declares all the parameters and resources to target a specific
platform (e.g., a targeted DSL, or UML; a tooling platform; col-
laborative work or not).

4. Lessons learned
Kitalpha incubated at Thales for several years before being recent-
ly open sourced in the framework of the PolarSys working group.
At this stage, it is the appropriate time to present lessons learned
about DSL in this development context.

Productivity and quality The combination of DSL and gen-
eration has dramatically improved productivity of the developers
to implement viewpoints. Days become hours of development.
For instance, for a development of a metamodels, user interface,
diagrams, structure services, and continuous integration scripts,
before it took about 8-10 days, and now about 5-8 hours. Worse
before, there was not a systematic practice of continuous integra-
tion, and sometimes it remained manual. With the feedback from
user teams, a central team has set up all the foundations, automat-
ed code production, solved code issues, and defined architectural
rules of the produced artefacts. Boring activities, such as writing
code of user interfaces, scripts for continuous integration, or
definition of the Eclipse plugin dependencies are achieved with
very few tuning. At this stage, the designers/developers are very
satisfied by a textual syntax for its efficiency (e.g., with highlight-
ed text, assistance, validation rules, but also for precise and accu-
rate descriptions) and they are not on demand of another concrete
syntax (e.g., graphical). About maintenance, the generators were
designed to support incrementally. For instance, for the user inter-
face description by DSL, there is a Java code merger during the
translation phase in order to preserve the manual code; some
artefacts, such as a build model to produce the continuous integra-
tion scripts, are replaced. The issue of migration, when viewpoint
metadata evolve, has not been solved. Migration code is manually
maintained, which is a lack. Kitalpha is based on Eclipse and tries
to use the best tools for each aspect of development. For instance,
for diagrams, Sirius dramatically reduces the complexity of GMF
and there is a direct translation from the diagram DSL to a Sirius
model. For the user interface aspect, the existing solution is based
on a home-solution; the next step will be the adoption of PMF
[12] which is a more powerful solution, with a real and rich met-
amodel, and with the ability, for evolution, to target multiple
platforms (e.g., XWT, Web).

 Homogeneity with DSL-based workbenches The primary
need of Kitalpha was to develop viewpoints for Capella, previous-
ly named Melody Advance in its non-open source version, in
order to extend Capella with new kinds of data, representations
and rules, as depicted in Figure 7. Capella is a complex MBE
workbench to describe architecture in system engineering. Capella
is based on the DSL technique in order to accurately address and
represent this domain for demanding system engineers. The first

Viewpoint QualityAssessment {
 name: "QualityAssessment"
 Data QualityAssessment.data
 UI QualityAssessment.ui
 Diagrams QualityAssessment.diagram
 Services QualityAssessment.services
 Build QualityAssessment.build
 Configuration QualityAssessment.conf

}

Figure 5. Example of main editor of a viewpoint

QualityAssessment.data {
 Class QualityAssessment {
 description: "Quality Assessment"
 icon: "QualityAssessment.gif"
 extends fa.AbstractFunction, la.LogicalComponent,
 pa.PhysicalComponent
 Attributes:
 maturityLevel type ecore.EString
 confidenceLevel enum ConfidenceLevel
 assessed type ecore.EBoolean
 Associations:
 basedOn refers [0,*] QualityAssessment
 context refers [0,*] external capella.NamedElement
 measures contains [0,*] QualityMeasure
 }
 Class QualityMeasure {
 icon: "QualityMeasure.gif"
 Attributes:
 criterion type ecore.EString
 measureValue type ecore.EInt
 }
 Enumeration ConfidenceLevel {
 "Not Assessed" , Low , Medium , High
 }

}

Figure 6. Example of Data editor of a viewpoint

Figure 7. Enrichment of Capella with viewpoints

interest of the homogeneity between Kitalpha and Capella is to
share common development foundations, what enables economies
of scales. The second interest is that the enrichment of Capella
with viewpoints developed with Kitalpha is seamless.

Achievement of the concrete syntax The combination of
DSL and generation encapsulates complexity that users generally
ignore. Concrete syntax is the top of the iceberg and must be as
perfect as possible. The syntax, textual here, must be clear, light,
with clear messages, completion, especially with predefined piec-
es of code adapted to the context of work. Functionally, the syntax
to describe an aspect, for instance metamodels or diagrams, must
be complete else there is a risk of complete rejection because it
will be judged as a general lack of the tool. Finally, it appears that
obtaining a mature textual syntax is time-consuming, what must
not be underestimated.

Dynamic grammar extensibility One requirement was to
have a dynamic extensibility of the textual syntax. At the abstract
syntax level, it is very well managed. At the concrete syntax level,
if it is possible to contextually adapt the textual syntax built with
Xtext [16], the flexibility to extend it is not easy because the
syntax and editors are compiled.

Separation of description by aspects Historically, the sepa-
ration by aspects was born for a scalability reason: a complete
viewpoint could not be described in one editor, otherwise it would
have been too long with heterogeneous information. This separa-
tion enables to separate the different concerns and to have a mod-
ular organization of the abstract and concrete syntax. This separa-
tion by aspects is made possible by the extensibility of grammar.
A main grammar is enriched by contribution of grammars (e.g.,
availability of new aspects, enrichment of the abstract or concrete
syntax with new assistants and validation rules).

Impacts of decoupling by architecture framework and view-
points The conformance to the ISO/IEC 42010 standard is
structuring for the development practices, i) at the tooling level
with dedicated DSL editors, generators, and packaging configura-
tions, ii) for the architects, designers and developers when they
describe a system. Finally, it appears that a traditional modelling
development would correspond to one architecture framework
with a big viewpoint. Separation of concerns becomes a best
practice to decouple the development activities by viewpoints.

Question about a textual syntax for Sirius Sirius [14] is an
Eclipse component for model representations, especially graphical
with diagrams. The question is why there is an alternative to the
Sirius tree editor to design diagrams. Firstly, the textual descrip-
tion of diagrams is needed for the integration with the other as-
pects described in a textual form. Secondly, the Kitalpha editor
simplifies some parts in comparison with Sirius and offers accel-
erators during textual completion. Thirdly, a textual notation
enables to have a complete view of a diagram definition at a
glance.

Tool-independence of the syntax The syntax to describe di-
agram is independent of Sirius but it is close. Actually, it is un-
easy to be tool-independent and map directly inhomogeneous
metamodels of a same aspect, for instance diagrams. It is the same
for the other aspects, for instance user interfaces or continuous
integration. However, regarding the data aspect, it is encouraging
that either DSL or UML could be mapped. Moreover, for continu-
ous integration, scripts are not directly generated from the DSL
description but from an intermediary model which could evolve
over the time in order to target other continuous integration envi-
ronments.

Separation of the development tasks of abstract and concrete
syntax In terms of team organization, the development tasks of
the abstract and concrete syntax have been assigned to two differ-
ent persons in order to take equally care of each of them. Valida-
tion has been assigned to a third person in order to be impartial.

5. Conclusion
Kitalpha is an environment to develop and execute MBE work-
benches for system architecture description. This paper has pre-
sented the real advantage to use the DSL technique to develop
accurately, quickly, and safely such MBE workbenches, and to
realize economies of scales. The DSL technique has brought
autonomy and efficiency to designers and developers in order to
develop and maintain their own viewpoints. Kitalpha fills the gap
in Eclipse with an integrated and pure DSL environment, and
avoid using a multitude of tools, with glue between, which is a
risk for new projects or without experimented practices. In the
development context of co-engineering, Kitalpha is an enabler for
architects and speciality engineers to seamlessly extend an archi-
tecture framework for a complete description of system architec-
ture in system, software and hardware engineering.

Acknowledgments
We thank Stéphane Bonnet, Matthieu Helleboid, Thomas Guiu,
and Faycal Abka for their collaboration. This initiative is support-
ed by Sys2Soft, a French research project, and Crystal, a Europe-
an project.

References
 [1] Departement of Defense, The DoDAF Architecture Framework

Version 2.02, August 2010

[2] Eclipse Working Groups, http://www.eclipse.org/org/workinggroups/

[3] EGF, Eclipse Generation Factories, http://eclipse.org/egf

[4] Exertier, D., Bonnet, S., Arcadia / Capella, a field-proven modeling
solution for system and software architecture engineering,
eclipsecon France 2014

[5] Greenfield, J., Short, K., Cook, S., and Kent, S., Software Factories,
Assembling applications with Patterns, Models, Framework, and
Tools, Wiley, 2004

[6] ISO/IEC/IEEE 42010, Systems and software engineering — Archi-
tecture description, First edition, 2011-09-15

[7] Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling, IEEE Com-
puter Society, Wiley-Interscience Publication, 2008

[8] Kitalpha, https://www.polarsys.org/projects/polarsys.kitalpha

[9] NATO Architecture Framework v4.0 Documentation,
http://nafdocs.org/

[10] OMG Unified Modeling Language TM (OMG UML), Version 2.5
FTF – Beta 1, ptc/2012-10-24

[11] Papyrus, https://www.eclipse.org/papyrus/

[12] PMF, Presentation Modeling Framework,
https://wiki.eclipse.org/Pmf

[13] PolarSys, https://www.polarsys.org

[14] Sirius, http://eclipse.org/sirius/

[15] Voelter, M., DSL Engineering, dslbook.org, 2013

[16] Xtext, http://www.eclipse.org/Xtext/

