/* $NetBSD: elf2aout.c,v 1.23.10.2 2024/12/15 12:57:32 martin Exp $ */ /* * Copyright (c) 1995 * Ted Lemon (hereinafter referred to as the author) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* elf2aout.c This program converts an elf executable to a NetBSD a.out executable. The minimal symbol table is copied, but the debugging symbols and other informational sections are not. */ #if HAVE_NBTOOL_CONFIG_H #include "nbtool_config.h" #endif #ifndef TARGET_BYTE_ORDER #define TARGET_BYTE_ORDER BYTE_ORDER #endif #include #include #include #include #include #include #include #include #include #include #include #include #include struct sect { /* should be unsigned long, but assume no a.out binaries on LP64 */ uint32_t vaddr; uint32_t len; }; static void combine(struct sect *, struct sect *, int); static int phcmp(const void *, const void *); static void *saveRead(int file, off_t offset, size_t len, const char *name); static void copy(int, int, off_t, off_t); static void translate_syms(int, int, off_t, off_t, off_t, off_t); #if TARGET_BYTE_ORDER != BYTE_ORDER static void bswap32_region(int32_t* , int); #endif static int *symTypeTable; static int debug; static __dead void usage(void) { fprintf(stderr, "Usage: %s [-Os] \n", getprogname()); exit(EXIT_FAILURE); } static const struct { const char *n; int v; } nv[] = { { ".text", N_TEXT }, { ".rodata", N_TEXT }, { ".data", N_DATA }, { ".sdata", N_DATA }, { ".lit4", N_DATA }, { ".lit8", N_DATA }, { ".bss", N_BSS }, { ".sbss", N_BSS }, }; static int get_symtab_type(const char *name) { size_t i; for (i = 0; i < __arraycount(nv); i++) { if (strcmp(name, nv[i].n) == 0) return nv[i].v; } if (debug) warnx("section `%s' is not handled\n", name); return 0; } static uint32_t get_mid(const Elf32_Ehdr *ex) { switch (ex->e_machine) { #ifdef notyet case EM_AARCH64: return MID_AARCH64; case EM_ALPHA: return MID_ALPHA; #endif case EM_ARM: return MID_ARM6; #ifdef notyet case EM_PARISC: return MID_HPPA; #endif case EM_386: return MID_I386; case EM_68K: return MID_M68K; case EM_OR1K: return MID_OR1K; case EM_MIPS: if (ex->e_ident[EI_DATA] == ELFDATA2LSB) return MID_PMAX; else return MID_MIPS; case EM_PPC: return MID_POWERPC; #ifdef notyet case EM_PPC64: return MID_POWERPC64; break; #endif case EM_RISCV: return MID_RISCV; case EM_SH: return MID_SH3; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: if (ex->e_ident[EI_CLASS] == ELFCLASS32) return MID_SPARC; #ifdef notyet return MID_SPARC64; case EM_X86_64: return MID_X86_64; #else break; #endif case EM_VAX: return MID_VAX; case EM_NONE: return MID_ZERO; default: break; } if (debug) warnx("Unsupported machine `%d'", ex->e_machine); return MID_ZERO; } static unsigned char get_type(Elf32_Half shndx) { switch (shndx) { case SHN_UNDEF: return N_UNDF; case SHN_ABS: return N_ABS; case SHN_COMMON: case SHN_MIPS_ACOMMON: return N_COMM; default: return (unsigned char)symTypeTable[shndx]; } } int main(int argc, char **argv) { Elf32_Ehdr ex; Elf32_Phdr *ph; Elf32_Shdr *sh; char *shstrtab; ssize_t i, strtabix, symtabix; struct sect text, data, bss; struct exec aex; int infile, outfile; uint32_t cur_vma = UINT32_MAX; uint32_t mid; int symflag = 0, c; unsigned long magic = ZMAGIC; strtabix = symtabix = 0; text.len = data.len = bss.len = 0; text.vaddr = data.vaddr = bss.vaddr = 0; while ((c = getopt(argc, argv, "dOs")) != -1) { switch (c) { case 'd': debug++; break; case 's': symflag = 1; break; case 'O': magic = OMAGIC; break; case '?': default: usage: usage(); } } argc -= optind; argv += optind; /* Check args... */ if (argc != 2) goto usage; /* Try the input file... */ if ((infile = open(argv[0], O_RDONLY)) < 0) err(EXIT_FAILURE, "Can't open `%s' for read", argv[0]); /* Read the header, which is at the beginning of the file... */ i = read(infile, &ex, sizeof ex); if (i != sizeof ex) { if (i == -1) err(EXIT_FAILURE, "Error reading `%s'", argv[1]); else errx(EXIT_FAILURE, "End of file reading `%s'", argv[1]); } #if TARGET_BYTE_ORDER != BYTE_ORDER ex.e_type = bswap16(ex.e_type); ex.e_machine = bswap16(ex.e_machine); ex.e_version = bswap32(ex.e_version); ex.e_entry = bswap32(ex.e_entry); ex.e_phoff = bswap32(ex.e_phoff); ex.e_shoff = bswap32(ex.e_shoff); ex.e_flags = bswap32(ex.e_flags); ex.e_ehsize = bswap16(ex.e_ehsize); ex.e_phentsize = bswap16(ex.e_phentsize); ex.e_phnum = bswap16(ex.e_phnum); ex.e_shentsize = bswap16(ex.e_shentsize); ex.e_shnum = bswap16(ex.e_shnum); ex.e_shstrndx = bswap16(ex.e_shstrndx); #endif // Not yet if (ex.e_ident[EI_CLASS] == ELFCLASS64) errx(EXIT_FAILURE, "Only 32 bit is supported"); /* Read the program headers... */ ph = saveRead(infile, ex.e_phoff, (size_t)ex.e_phnum * sizeof(Elf32_Phdr), "ph"); #if TARGET_BYTE_ORDER != BYTE_ORDER bswap32_region((int32_t*)ph, sizeof(Elf32_Phdr) * ex.e_phnum); #endif /* Read the section headers... */ sh = saveRead(infile, ex.e_shoff, (size_t)ex.e_shnum * sizeof(Elf32_Shdr), "sh"); #if TARGET_BYTE_ORDER != BYTE_ORDER bswap32_region((int32_t*)sh, sizeof(Elf32_Shdr) * ex.e_shnum); #endif /* Read in the section string table. */ shstrtab = saveRead(infile, sh[ex.e_shstrndx].sh_offset, (size_t)sh[ex.e_shstrndx].sh_size, "shstrtab"); /* Find space for a table matching ELF section indices to a.out symbol * types. */ symTypeTable = malloc(ex.e_shnum * sizeof(int)); if (symTypeTable == NULL) err(EXIT_FAILURE, "symTypeTable: can't allocate"); memset(symTypeTable, 0, ex.e_shnum * sizeof(int)); /* Look for the symbol table and string table... Also map section * indices to symbol types for a.out */ for (i = 0; i < ex.e_shnum; i++) { char *name = shstrtab + sh[i].sh_name; if (!strcmp(name, ".symtab")) symtabix = i; else if (!strcmp(name, ".strtab")) strtabix = i; else symTypeTable[i] = get_symtab_type(name); } /* Figure out if we can cram the program header into an a.out * header... Basically, we can't handle anything but loadable * segments, but we can ignore some kinds of segments. We can't * handle holes in the address space, and we handle start addresses * other than 0x1000 by hoping that the loader will know where to load * - a.out doesn't have an explicit load address. Segments may be * out of order, so we sort them first. */ qsort(ph, ex.e_phnum, sizeof(Elf32_Phdr), phcmp); for (i = 0; i < ex.e_phnum; i++) { /* Section types we can ignore... */ if (ph[i].p_type == PT_NULL || ph[i].p_type == PT_NOTE || ph[i].p_type == PT_PHDR || ph[i].p_type == PT_MIPS_REGINFO) continue; /* Section types we can't handle... */ if (ph[i].p_type == PT_TLS) { if (debug) warnx("Can't handle TLS section"); continue; } if (ph[i].p_type != PT_LOAD) errx(EXIT_FAILURE, "Program header %zd " "type %d can't be converted.", i, ph[i].p_type); /* Writable (data) segment? */ if (ph[i].p_flags & PF_W) { struct sect ndata, nbss; ndata.vaddr = ph[i].p_vaddr; ndata.len = ph[i].p_filesz; nbss.vaddr = ph[i].p_vaddr + ph[i].p_filesz; nbss.len = ph[i].p_memsz - ph[i].p_filesz; combine(&data, &ndata, 0); combine(&bss, &nbss, 1); } else { struct sect ntxt; ntxt.vaddr = ph[i].p_vaddr; ntxt.len = ph[i].p_filesz; combine(&text, &ntxt, 0); } /* Remember the lowest segment start address. */ if (ph[i].p_vaddr < cur_vma) cur_vma = ph[i].p_vaddr; } /* Sections must be in order to be converted... */ if (text.vaddr > data.vaddr || data.vaddr > bss.vaddr || text.vaddr + text.len > data.vaddr || data.vaddr + data.len > bss.vaddr) errx(EXIT_FAILURE, "Sections ordering prevents a.out " "conversion."); /* If there's a data section but no text section, then the loader * combined everything into one section. That needs to be the text * section, so just make the data section zero length following text. */ if (data.len && text.len == 0) { text = data; data.vaddr = text.vaddr + text.len; data.len = 0; } /* If there is a gap between text and data, we'll fill it when we copy * the data, so update the length of the text segment as represented * in a.out to reflect that, since a.out doesn't allow gaps in the * program address space. */ if (text.vaddr + text.len < data.vaddr) text.len = data.vaddr - text.vaddr; /* We now have enough information to cons up an a.out header... */ mid = get_mid(&ex); aex.a_midmag = (u_long)htobe32(((u_long)symflag << 26) | ((u_long)mid << 16) | magic); aex.a_text = text.len; aex.a_data = data.len; aex.a_bss = bss.len; aex.a_entry = ex.e_entry; aex.a_syms = (sizeof(struct nlist) * (symtabix != -1 ? sh[symtabix].sh_size / sizeof(Elf32_Sym) : 0)); aex.a_trsize = 0; aex.a_drsize = 0; #if TARGET_BYTE_ORDER != BYTE_ORDER aex.a_text = bswap32(aex.a_text); aex.a_data = bswap32(aex.a_data); aex.a_bss = bswap32(aex.a_bss); aex.a_entry = bswap32(aex.a_entry); aex.a_syms = bswap32(aex.a_syms); aex.a_trsize = bswap32(aex.a_trsize); aex.a_drsize = bswap32(aex.a_drsize); #endif /* Make the output file... */ if ((outfile = open(argv[1], O_WRONLY | O_CREAT, 0777)) < 0) err(EXIT_FAILURE, "Unable to create `%s'", argv[1]); /* Truncate file... */ if (ftruncate(outfile, 0)) { warn("ftruncate %s", argv[1]); } /* Write the header... */ i = write(outfile, &aex, sizeof aex); if (i != sizeof aex) err(EXIT_FAILURE, "Can't write `%s'", argv[1]); /* Copy the loadable sections. Zero-fill any gaps less than 64k; * complain about any zero-filling, and die if we're asked to * zero-fill more than 64k. */ for (i = 0; i < ex.e_phnum; i++) { /* Unprocessable sections were handled above, so just verify * that the section can be loaded before copying. */ if (ph[i].p_type == PT_LOAD && ph[i].p_filesz) { if (cur_vma != ph[i].p_vaddr) { uint32_t gap = ph[i].p_vaddr - cur_vma; char obuf[1024]; if (gap > 65536) errx(EXIT_FAILURE, "Intersegment gap (%u bytes) too large", gap); if (debug) warnx("%u byte intersegment gap", gap); memset(obuf, 0, sizeof obuf); while (gap) { ssize_t count = write(outfile, obuf, (gap > sizeof obuf ? sizeof obuf : gap)); if (count < 0) err(EXIT_FAILURE, "Error writing gap"); gap -= (uint32_t)count; } } copy(outfile, infile, ph[i].p_offset, ph[i].p_filesz); cur_vma = ph[i].p_vaddr + ph[i].p_filesz; } } /* Copy and translate the symbol table... */ translate_syms(outfile, infile, sh[symtabix].sh_offset, sh[symtabix].sh_size, sh[strtabix].sh_offset, sh[strtabix].sh_size); free(ph); free(sh); free(shstrtab); free(symTypeTable); /* Looks like we won... */ return EXIT_SUCCESS; } /* translate_syms (out, in, offset, size) Read the ELF symbol table from in at offset; translate it into a.out nlist format and write it to out. */ void translate_syms(int out, int in, off_t symoff, off_t symsize, off_t stroff, off_t strsize) { #define SYMS_PER_PASS 64 Elf32_Sym inbuf[64]; struct nlist outbuf[64]; ssize_t i, remaining, cur; char *oldstrings; char *newstrings, *nsp; size_t newstringsize; uint32_t stringsizebuf; /* Zero the unused fields in the output buffer.. */ memset(outbuf, 0, sizeof outbuf); /* Find number of symbols to process... */ remaining = (ssize_t)(symsize / (off_t)sizeof(Elf32_Sym)); /* Suck in the old string table... */ oldstrings = saveRead(in, stroff, (size_t)strsize, "string table"); /* * Allocate space for the new one. We will increase the space if * this is too small */ newstringsize = (size_t)(strsize + remaining); newstrings = malloc(newstringsize); if (newstrings == NULL) err(EXIT_FAILURE, "No memory for new string table!"); /* Initialize the table pointer... */ nsp = newstrings; /* Go the start of the ELF symbol table... */ if (lseek(in, symoff, SEEK_SET) < 0) err(EXIT_FAILURE, "Can't seek"); /* Translate and copy symbols... */ for (; remaining; remaining -= cur) { cur = remaining; if (cur > SYMS_PER_PASS) cur = SYMS_PER_PASS; if ((i = read(in, inbuf, (size_t)cur * sizeof(Elf32_Sym))) != cur * (ssize_t)sizeof(Elf32_Sym)) { if (i < 0) err(EXIT_FAILURE, "%s: read error", __func__); else errx(EXIT_FAILURE, "%s: premature end of file", __func__); } /* Do the translation... */ for (i = 0; i < cur; i++) { int binding, type; size_t off, len; #if TARGET_BYTE_ORDER != BYTE_ORDER inbuf[i].st_name = bswap32(inbuf[i].st_name); inbuf[i].st_value = bswap32(inbuf[i].st_value); inbuf[i].st_size = bswap32(inbuf[i].st_size); inbuf[i].st_shndx = bswap16(inbuf[i].st_shndx); #endif off = (size_t)(nsp - newstrings); /* length of this symbol with leading '_' and trailing '\0' */ len = strlen(oldstrings + inbuf[i].st_name) + 1 + 1; /* Does it fit? If not make more space */ if (newstringsize - off < len) { char *nns; newstringsize += (size_t)(remaining) * len; nns = realloc(newstrings, newstringsize); if (nns == NULL) err(EXIT_FAILURE, "No memory for new string table!"); newstrings = nns; nsp = newstrings + off; } /* Copy the symbol into the new table, but prepend an * underscore. */ *nsp = '_'; strcpy(nsp + 1, oldstrings + inbuf[i].st_name); outbuf[i].n_un.n_strx = nsp - newstrings + 4; nsp += len; type = ELF32_ST_TYPE(inbuf[i].st_info); binding = ELF32_ST_BIND(inbuf[i].st_info); /* Convert ELF symbol type/section/etc info into a.out * type info. */ if (type == STT_FILE) outbuf[i].n_type = N_FN; else outbuf[i].n_type = get_type(inbuf[i].st_shndx); if (binding == STB_GLOBAL) outbuf[i].n_type |= N_EXT; /* Symbol values in executables should be compatible. */ outbuf[i].n_value = inbuf[i].st_value; #if TARGET_BYTE_ORDER != BYTE_ORDER outbuf[i].n_un.n_strx = bswap32(outbuf[i].n_un.n_strx); outbuf[i].n_desc = bswap16(outbuf[i].n_desc); outbuf[i].n_value = bswap32(outbuf[i].n_value); #endif } /* Write out the symbols... */ if ((i = write(out, outbuf, (size_t)cur * sizeof(struct nlist))) != cur * (ssize_t)sizeof(struct nlist)) err(EXIT_FAILURE, "%s: write failed", __func__); } /* Write out the string table length... */ stringsizebuf = (uint32_t)newstringsize; #if TARGET_BYTE_ORDER != BYTE_ORDER stringsizebuf = bswap32(stringsizebuf); #endif if (write(out, &stringsizebuf, sizeof stringsizebuf) != sizeof stringsizebuf) err(EXIT_FAILURE, "%s: newstringsize: write failed", __func__); /* Write out the string table... */ if (write(out, newstrings, newstringsize) != (ssize_t)newstringsize) err(EXIT_FAILURE, "%s: newstrings: write failed", __func__); free(newstrings); free(oldstrings); } static void copy(int out, int in, off_t offset, off_t size) { char ibuf[4096]; ssize_t remaining, cur, count; /* Go to the start of the segment... */ if (lseek(in, offset, SEEK_SET) < 0) err(EXIT_FAILURE, "%s: lseek failed", __func__); if (size > SSIZE_MAX) err(EXIT_FAILURE, "%s: can not copy this much", __func__); remaining = (ssize_t)size; while (remaining) { cur = remaining; if (cur > (int)sizeof ibuf) cur = sizeof ibuf; remaining -= cur; if ((count = read(in, ibuf, (size_t)cur)) != cur) { if (count < 0) err(EXIT_FAILURE, "%s: read error", __func__); else errx(EXIT_FAILURE, "%s: premature end of file", __func__); } if ((count = write(out, ibuf, (size_t)cur)) != cur) err(EXIT_FAILURE, "%s: write failed", __func__); } } /* Combine two segments, which must be contiguous. If pad is true, it's okay for there to be padding between. */ static void combine(struct sect *base, struct sect *new, int pad) { if (base->len == 0) *base = *new; else if (new->len) { if (base->vaddr + base->len != new->vaddr) { if (pad) base->len = new->vaddr - base->vaddr; else errx(EXIT_FAILURE, "Non-contiguous " "data can't be converted"); } base->len += new->len; } } static int phcmp(const void *vh1, const void *vh2) { const Elf32_Phdr *h1, *h2; h1 = (const Elf32_Phdr *)vh1; h2 = (const Elf32_Phdr *)vh2; if (h1->p_vaddr > h2->p_vaddr) return 1; else if (h1->p_vaddr < h2->p_vaddr) return -1; else return 0; } static void * saveRead(int file, off_t offset, size_t len, const char *name) { char *tmp; ssize_t count; off_t off; if ((off = lseek(file, offset, SEEK_SET)) < 0) errx(EXIT_FAILURE, "%s: seek failed", name); if ((tmp = malloc(len)) == NULL) errx(EXIT_FAILURE, "%s: Can't allocate %jd bytes.", name, (intmax_t)len); count = read(file, tmp, len); if ((size_t)count != len) { if (count < 0) err(EXIT_FAILURE, "%s: read error", name); else errx(EXIT_FAILURE, "%s: premature end of file", name); } return tmp; } #if TARGET_BYTE_ORDER != BYTE_ORDER /* swap a 32bit region */ static void bswap32_region(int32_t* p, int len) { size_t i; for (i = 0; i < len / sizeof(int32_t); i++, p++) *p = bswap32(*p); } #endif