
The tutodoc class
Tutorial-style documentation

Christophe, BAL

Dec 18, 2024 - Version 1.7.1

The tutodoc class 1 is used by its author to semantically produce documentation of LATEX
packages and classes in a tutorial style 2 with a sober rendering for reading on screen.
Remark : this documentation is also available in French.

Last changes
å Fix.

• Documentation: references to tools to indicate changes have been incorrectly written as characteristics of
highlighted colored content.

Ñ Break.
• The \tdocenv macro and its starred version no longer offer an option.

• LATEX showcases: the default layout is more sober, and there are options for having just the rulers, or the
colored stripe. See just after.

v New.
• Formatting of computer codes in addition to those specifically in LATEX.

1. Creation of \begin{tdoccode} ...\end{tdoccode} and \tdoccodein.
2. For macros for inline code, and environments for blocks of code, minted options are indicated inside

square brackets in the traditional way: [minted options] .
3. For code block environments, tcolorbox options are indicated inside rafters: <tcolorbox options> .
4. The new macro \tdoctcb allows to use shortcuts for regularly used tcolorbox styles.

• Documentation: a new section presents tools for formatting computer codes other than those in LATEX.

ÎUpdate.
• Sub-sub-sections are numbered in lower case.

• Themes.
1. Less space consumed.
2. Shadows have better coloring.
3. For all themes except the draft one, the radius of the arcs of the corners of the frames has changed from

.75mm to .2pt,.
4. Use case in LATEX: with the theme color, the background color changes from yellow!4 to gray!5.
5. Latest changes: with the dark theme, the [Init] text produced by the \tdocstartproj macro uses the

same font as the environment titles to indicate changes.

1The name comes from “tuto·rial-type doc·umentation”.
2The idea is to produce an efficient PDF file that can be browsed for one-off needs. This is generally what is expected for a

coding documentation.

1

Contents
I. Dependencies 4

II. General settings 4
1. Font size and page geometry 4
2. Titles and table of contents 4
3. Dynamic links 4

III. What language is used by the tutodoc class? 4

IV. What does that mean in “English”? 5

V. Choose your theme 5

VI. Highlighting content 5
1. Content in the reading flow 5

a. Examples 5
b. Some remarks 6

2. Flashy content 6
a. A tip 6
b. Informative note 7
c. Something important 7
d. Caution about a delicate point 7
e. Warning of danger 7

VII. Specify packages, classes, macros or environments 8

VIII. Origin of a prefix or suffix 8

IX. A real-life rendering 8
1. A minimalist rendering by default 8
2. With framing lines 9
3. With colored stripe 9
4. By importing the LATEX code 10

X. Use cases in LATEX 10
1. “Inline” codes 11
2. Directly typed codes 11
3. Imported codes 12
4. Imported codes put into practice 13

XI. Presenting computer code 14
1. “Inline” codes 14
2. Codes typed directly 15
3. Imported codes 16

XII. Indicate changes 16
1. When? 16
2. What’s new? 18

a. Sobriety first 18
b. Color if necessary 19

3. The what and the when 20

XIII. Ornament 20

XIV. Contribute 21
1. Complete the translations 21

a. The fr and en folders 21
b. The changes folder 21
c. The status folder 21
d. The README.md and LICENSE.txt files 21
e. New translations 22

2. Improving the source code 22

2

XV. History 23

Appendix – Theme gallery 26

3

I. Dependencies
tutodoc admits the following dependencies (the dates in brackets are those of the versions used during the
latest tests).

scrartcl.cls (2024/10/24)• clrstrip.sty (2021/08/28)•

csquotes.sty (2024/04/04)• fontawesome5.sty (2022/05/02)•

geometry.sty (2020/01/02)• hyperref.sty (2024/11/05)•

inputenc.sty (2024/02/08)• keytheorems.sty (2024/11/11)•

marginnote.sty (2018/08/09)• minted.sty (2024/11/17)•

tcolorbox.sty (2024/10/22)•

II. General settings

1. Font size and page geometry
The scrartcl class is loaded via the fontsize = 10pt option, and the geometry package manages the page
dimensions.

ÿ Warning.

The macros for dating and versioning presented in the section XII on page 16 require fixed settings for
page geometry and font size.

2. Titles and table of contents
The selected settings are directly visible in this documentation.

3. Dynamic links
The hyperref package is imported, if it hasn’t already been, and the settings chosen are just for the colors of
links relating to citations, files, internal links, and finally url (this colors will depend on the theme chosen).

III. What language is used by the tutodoc class?
This documentation loads the babel package via \usepackage[english]{babel} a package that tutodoc
does not load. On the other hand, the tutodoc class identifies en as the main language used by babel.3
As this language is included in the list of languages taken into account, see below, the tutodoc class will
produce the expected effects.

en : English.• es : Spanish.• fr : French.•

ò Note.

Packages babel and polyglossia are taken into account.

P Caution.

If the choice of main language is not made in the preamble, the mechanism used will fail with unintended
side effects (see warning that follows).

ÿ Warning.

When a language is not supported by tutodoc, a warning message is issued, and English is selected as
the language for tutodoc.

3Technically, we use \BCPdata{language} which returns a language in short format.

4

IV. What does that mean in “English”?
The macro \tdocinEN and its starred version are useless for English speakers because they have the following
effects.

Cool and top stand for \tdocinEN*{cool} and \tdocinEN{top}.

Cool and top stand for “cool ” and “top” in English.

The macro \tdocinEN and its starred version are based on \tdocquote : for example, “semantic” is obtained
via tdocquote{semantic} .

ò Note.

As the text “in English” is translated into the language detected by tutodoc, the macro \tdocinEN and
its starred version become useful for non-English speakers.

V. Choose your theme
To modify the general layout, there is the tutodoc class option theme = <choice> where <choice> can
take the following values.

bw: a black-and-white theme with some shades of grey.•
color: a colored theme, this is the default value.•
dark: a dark theme ideal for resting the eyes.•
draft: a theme for a printout such as to look for content errors that aren’t necessarily easy to spot in
front of a screen.

•

ò Note.

At the end of this document, after the change history, you’ll find a gallery of use cases for these different
themes : go to appendix page 26.

VI. Highlighting content

ò Note.

The environments presented in this section a add a short title indicating the type of information provided.
This short text will always be translated into the language detected by the tutodoc class.
aThe formatting comes from the keytheorems package.

1. Content in the reading flow

Ë Important.

All the environments presented in this section share the same counter, which will be reset to zero as soon
\section is used.

a. Examples

Numbered examples are indicated via \begin{tdocexa} ...\end{tdocexa}, which offers an optional argu-
ment for adding a small title. Here are two possible uses.

\begin{tdocexa}
An example...

\end{tdocexa}

\begin{tdocexa}[Small title]
Useful?

\end{tdocexa}

Example VI.1. An example...

Example VI.2 (Small title). Useful?

5

� Tip.

It can sometimes be useful to return to the line at the start of the content. The code below shows how
to proceed (this trick also applies to the tdocrem environment presented next). Note in passing that the
numbering follows that of the previous example as desired.

\begin{tdocexa}
\leavevmode
\begin{enumerate}

\item Point 1.

\item Point 2.
\end{enumerate}

\end{tdocexa}

Example VI.3.

1. Point 1.

2. Point 2.

b. Some remarks

Everything happens via \begin{tdocrem} ...\end{tdocrem}, which works identically to the tdocexa en-
vironment, as shown in the following example.

\begin{tdocrem}
Just one remark...

\end{tdocrem}

\begin{tdocrem}
Another?

\end{tdocrem}

\begin{tdocrem}[Small title]
Useful?

\end{tdocrem}

Remark VI.4. Just one remark...

Remark VI.5. Another?

Remark VI.6 (Small title). Useful?

2. Flashy content

ò Note.

The formatting proposed here is the default one, but others are possible by changing the theme: see the
gallery of use cases in the appendix page 26. As for the icons, they are obtained via the fontawesome5
package, and the \tdocicon macro which manages the spacing relatively to the text.a

aFor example, \fbox{tdocicon{faBed}{Fatigued}} produces G Fatigued .

a. A tip

The tdoctip environment is used to give tips. Here’s how to use it.

\begin{tdoctip}
A tip.

\end{tdoctip}

\begin{tdoctip}[Small title]
Useful?

\end{tdoctip}

� Tip.

A tip.

� Tip (Small title).

Useful?

� Tip.

Sometimes, highlighted content can be reduced to a list. In this case, the formatting can be improved as
follows where we use the wide option from the enumitem package imported by this documentation.

6

\begin{tdoctip}[Little elegant]
\begin{enumerate}

\item Point 1.
\item Point 2.

\end{enumerate}
\end{tdoctip}
VERSUS.
\begin{tdoctip}[More elegant]

\begin{enumerate}[wide]
\item Point 1.
\item Point 2.

\end{enumerate}
\end{tdoctip}

� Tip (Little elegant).

1. Point 1.

2. Point 2.

VERSUS.

� Tip (More elegant).

1. Point 1.

2. Point 2.

b. Informative note

The tdocnote environment is used to highlight useful information. Here’s how to use it.

\begin{tdocnote}
Something useful to tell you...

\end{tdocnote}

\begin{tdocnote}[Small title]
Useful?

\end{tdocnote}

ò Note.

Something useful to tell you...

ò Note (Small title).

Useful?

c. Something important

The tdocimp environment is used to indicate something important but harmless.

\begin{tdocimp}
Important and harmless.

\end{tdocimp}

\begin{tdocimp}[Small title]
Useful?

\end{tdocimp}

Ë Important.

Important and harmless.

Ë Important (Small title).

Useful?

d. Caution about a delicate point

The tdoccaut environment is used to indicate a delicate point to the user. Here’s how to use it.

\begin{tdoccaut}
Caution, caution...

\end{tdoccaut}

\begin{tdoccaut}[Small title]
Useful?

\end{tdoccaut}

P Caution.

Caution, caution...

P Caution (Small title).

Useful?

e. Warning of danger

The tdocwarn environment is used to warn the user of a trap to avoid. Here’s how to use it.

7

\begin{tdocwarn}
Avoid the dangers...

\end{tdocwarn}

\begin{tdocwarn}[Small title]
Useful?

\end{tdocwarn}

ÿ Warning.

Avoid the dangers...

ÿ Warning (Small title).

Useful?

VII. Specify packages, classes, macros or environments
Here’s what you can type semantically.

\tdoccls{myclass} is for... \\
\tdocpack{mypackage} is for... \\
\tdocmacro{onemacro} is for... \\
\tdocenv{env} produces... \\
Just \tdocenv*{env}...

myclass is for...
mypackage is for...
\onemacro is for...
\begin{env} ...\end{env} produces...
Just env...

Remark VII.1. Unlike \tdoclatexin, the \tdocmacro, \tdocenv and \tdocenv* macros don’t color the
text they produce. In addition, \tdocenv{monenv} produces \begin{monenv} ...\end{monenv} with break-
able spaces to allow line breaks if required.

VIII. Origin of a prefix or suffix
To explain the names chosen, there is nothing like indicating and explaining the short prefixes and suffixes
used. This is easily done as follows.

\tdocpre{sup} relates to... \\
\tdocprewhy{sup.erbe} means... \\
\emph{\tdocprewhy{sup.er} for...}

sup relates to...
sup·erbe means...
sup·er for...

Remark VIII.1. The choice of a full stop to split a word allows words with a hyphen to be used, as in
\tdocprewhy{bric.k-breaker} which gives bric·k-breaker.

IX. A real-life rendering
It is sometimes useful to render code directly in the documentation. This requires the rendering to be
dissociable from the explanatory text.

1. A minimalist rendering by default
Example IX.1. It can be useful to show a real rendering directly in a document.4 This is typed via the
environment tdocshowcase as follows.

\begin{tdocshowcase}
\bfseries A bit of code \LaTeX.

\bigskip

\emph{\large End of the awful demo.}
\end{tdocshowcase}

This results in the following rendering, which is a combination of low vertical spacing and simple import.

A bit of code LATEX.

End of the awful demo.
Remark IX.2. The section 4 on page 13 explains how to obtain, via the macro \tdoclatexshow, a code
followed by its actual rendering as in the previous example.

4Typically when making a demo.

8

ÿ Warning.

With the default settings, if the code to be formatted begins with an opening bracket, we must use one of
the following tricks.

\begin{tdocshowcase}[]
[This works...]

\end{tdocshowcase}

OR.

\begin{tdocshowcase}
\string[This also works...]

\end{tdocshowcase}

This will produce the following.

[This works...]
OR.
[This also works...]

2. With framing lines
To make the formatted LATEX code more visible, you can use the rule style, as in the following examples.

Example IX.3. The option style = rule provides the following where the automatically added texts will
adapt to the language found by tutodoc.

Start of the real output

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
End of the real output

Example IX.4 (Editable text and colours). You can easily obtain the following horror.
My beginning

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
My end

Here’s the code that was used.5

\begin{tdocshowcase}[style = rule,
col-stripe = red,
col-text = orange!75!black,
before = My beginning,
after = My end]

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
\end{tdocshowcase}

ò Note.

In the previous example, the text uses the proposed darkened orange. However, the red is used as a base
to obtain the colors used for the framing lines: the transformations used depend on the theme chosen.a
You should also be aware that behind the scenes, the macro \tdocruler is used, it works as follows.

\tdocruler[red]{A decorated pseudo-title}

A decorated pseudo-title

aFor example, the themes bw and draft ignore the key col-stripe!

3. With colored stripe
There are situations where you need to be able to clearly identify an example of formatted LATEX code. This
can be done, as the following examples show.6

5The next section will justify the a priori strange choice of col-stripe instead of col-rule .
6Behind the scenes, the strips are created effortlessly using the clrstrip package.

9

Example IX.5. The style = stripe option provides the following.

Start of the real output

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
End of the real output

Example IX.6 (Editable text and colors). You can easily produce a beautiful horror like the one below.

Mon début

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
Ma fin à moi

Here’s the code that was used.7

\begin{tdocshowcase}[style = stripe,
col-stripe = green,
col-text = purple,
before = Mon début,
after = Ma fin à moi]

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...
\end{tdocshowcase}

4. By importing the LATEX code
To obtain renderings by importing the code from an external file, instead of typing it, simply use the macro
\tdocshowcaseinput whose option uses the same syntax as that of the environment tdocshowcase, and the
mandatory argument corresponds to the path of the file. Here are some examples of use.

Example IX.7 (Standard use).

\tdocshowcaseinput{examples-showcase-external.tex}

This gives:

Blablobli, blablobli, blablobli, blablobli, blablobli, blablobli...

Example IX.8 (With framing lines).

\tdocshowcaseinput[style = rule]{examples-showcase-external.tex}

This gives:
Start of the real output

Blablobli, blablobli, blablobli, blablobli, blablobli, blablobli...
End of the real output

Example IX.9 (A colored stripe).

\tdocshowcaseinput[style = stripe,
col-stripe = red,
col-text = LightCoral]%

{examples-showcase-external.tex}

This gives:

Start of the real output

Blablobli, blablobli, blablobli, blablobli, blablobli, blablobli...
End of the real output

X. Use cases in LATEX
Documenting a package, or class, is best done through use cases showing both the code and the corresponding
result.8

7Now we understand why we chose col-stripe instead of col-rule .
8Code is formatted using the minted and tcolorbox packages.

10

1. “ Inline” codes
Example X.1 (Standard use). The \tdoclatexin macro 9 can be used to type code in line in a similar
way to \verb, or as a standard macro (see the handling of braces in the latter case below). Here are some
examples of use.10

1: \tdoclatexin|$a^b = c$| \\
2: \tdoclatexin+\tdoclatexin|$a^b = c$|+ \\
3: \tdoclatexin{\tdoclatexin{$a^b = c$}}

1: $a^b = c$
2: \tdoclatexin|$a^b = c$|
3: \tdoclatexin{$a^b = c$}

Example X.2 (Possible options). As the \tdoclatexin macro is based on minted, you can use all the
options taken into account by minted. Here are some examples.

1: \tdoclatexin[style = bw]{$a^b = c$} \\
2: \tdoclatexin[style = igor,

showspaces]{$a^b = c$}

1: $a^b = c$
2: $a^b = c$

ò Note.

The \tdoclatexin macro can be used in a footnote as shown below.a

a$minted = TOP$ has been typed \tdoclatexin+$minted = TOP$+ in this footnote.

2. Directly typed codes
Example X.3 (Side by side). Displaying a code and its rendering side by side is done as follows where the
macro \tdoctcb allows you to just type tdoctcb{sbs} instead of listing side text (sbs is for “s·ide b·y
s·ide”, while tcb is the standard abbreviation for tcolorbox). Note the use of rafters, not square brackets
(more on this later).

\begin{tdoclatex}<\tdoctcb{sbs}>
$A = B + C$
\end{tdoclatex}

This gives :

$A = B + C$ A = B + C

Example X.4 (Following). \begin{tdoclatex} ...\end{tdoclatex} produces the following result (this
default setting is also obtained by using \tdoctcb{std}).11

$A = B + C$

A = B + C

Example X.5 (Just the code). Via \tdoctcb{code}, we’ll just get the code as below.

$A = B + C$

Example X.6 (Customise). The tdoclatex environment accepts two types of optional argument.

1. Between classic square brackets, you can use any option taken into account by minted.

2. Between rafters, you can use any option managed by the environments obtained via tcolorbox.

For example, the following modifications can be made if required.12

\begin{tdoclatex}%
[linenos, style = igor, showspaces]%
<\tdoctcb{sbs},
attach boxed title to top left = {yshift = -9pt},
fonttitle = \bfseries,
title = Local modifications,

9The name of the macro \tdoclatexin comes from “in·line LATEX ” .
10A background color is deliberately used to subtly highlight the \LaTeX codes.
11std refers to the “standard” behaviour of tcolorbox in relation to the minted library.
12This documentation uses the options between rafters to obtain correct rendering of code producing shaded frames: see the

section 2 on page 6.

11

top = 10pt>
% Sometimes useful, but don't overuse it!
$A = B + C$
% End of this demonstration.
\end{tdoclatex}

This gives :

Local modifications
1 % Sometimes useful, but don't overuse it!
2 $A = B + C$
3 % End of this demonstration.

A = B + C

ÿ Warning.

To obtain the default formatting for a code beginning with a bracket or a rafter, you’ll need to do a bit of
fiddling, as shown below.

\begin{tdoclatex}[]
[Strange... Or not!]
\end{tdoclatex}
OR.
\begin{tdoclatex}<>
<Strange... Or not!>
\end{tdoclatex}

This gives :

[Strange... Or not!]

[Strange... Or not!]

OR.

<Strange... Or not!>

<Strange... Or not!>

Another method is to use the \string primitive, as shown below.

\begin{tdoclatex}
\string[Strange... Or not!]
\end{tdoclatex}
OR.
\begin{tdoclatex}
\string<Strange... Or not!>
\end{tdoclatex}

This gives :

[Strange... Or not!]

[Strange... Or not!]

OR.

<Strange... Or not!>

<Strange... Or not!>

3. Imported codes
For the following codes, consider a file with the relative path examples-listing-xyz.tex, and with the
following contents.

12

% Just one demo.
$x y z = 1$

The \tdoclatexinput macro, shown below, expects the path of a file and offers the same system of options
between square brackets, or rafters, as the environment tdoclatex.

Example X.7 (Side by side).

\tdoclatexinput<\tdoctcb{sbs}>{examples-listing-latex-xyz.tex}

This produces the following formatting.

% Just one demo.
$x y z = 1$ xyz = 1

Example X.8 (Following).

\tdoclatexinput{examples-listing-latex-xyz.tex}

This produces the following formatting, which also corresponds to the option \tdoctcb{std} .

% Just one demo.
$x y z = 1$

xyz = 1

Example X.9 (Only the code).

\tdoclatexinput<\tdoctcb{code}>{examples-listing-latex-xyz.tex}

This produces the following formatting.

% Just one demo.
$x y z = 1$

Example X.10 (Customise).

\tdoclatexinput[style = igor, showspaces]%
<colframe = purple, colback = red!5>%
{examples-listing-latex-xyz.tex}

This produces the following formatting.

% Just one demo.
$x y z = 1$

xyz = 1

4. Imported codes put into practice

ò Note.

The default texts take into account the language detected by tutodoc.

Example X.11 (Showcase). The following comes from \tdoclatexshow{examples-listing-xyz.tex}.

% Just one demo.
$x y z = 1$

This gives :
xyz = 1

Example X.12 (Changing the explanatory text). Using the key explain, you can use a custom text.
Thus, \tdoclatexshow[explain = Here is the rendering.]{examples-listing-xyz.tex} will give the
following.

13

% Just one demo.
$x y z = 1$

Here is the rendering.
xyz = 1

Example X.13 (The options available). In addition to the explanatory text, it is also possible to use all the
options of tdocshowcase environment, see IX on page 8. Here is an example to illustrate this.

\tdoclatexshow[style = stripe,
col-stripe = orange,
col-text = blue!70!black,
before = Rendering hereafter.,
explain = What comes next is coloured...,
after = Finished rendering.,]
{examples-listing-latex-xyz.tex}

This will produce the following.

% Just one demo.
$x y z = 1$

What comes next is coloured...

Rendering hereafter.

xyz = 1

Finished rendering.

XI. Presenting computer code
Some packages offer functions that require to code a little in Lua.13 For these projects, the documentation
must be able to present lines of code; this is why tutodoc makes it easy to do this, and much more.14

Ë Important.

The tools in this section can also be used to present LATEXcode, but they should not be used for simple use
cases, as the macros and environments presented next are for studying code, not just for using it: see the
section X on page 10 to use the right tools for formatting LATEX use cases.

1. “ Inline” codes
The \tdoccodein 15 macro expects two arguments: the 1st indicates the programming language, and the 2nd

gives the code to be formatted. It is possible to use an option identical to that proposed by \tdoclatexin:
see the section 1 on page 11. Here are some possible use cases.16

1: \tdoccodein{py}{print("OK" if i = 0 else "KO")} \\
2: \tdoccodein[style = bw]{py}{print("OK" if i = 0 else "KO")} \\
3: \tdoccodein[style = igor, showspaces]%

{py}{print("OK" if i = 0 else "KO")}

1: print("OK" if i = 0 else "KO")
2: print(" OK " if i = 0 else " KO ")
3: print("OK" if i = 0 else "KO")

13For mathematics, these include luacas and tkz-elements.
14As code formatting is done via the packages minted and tcolorbox, the macros and environments presented in this section

allow code to be formatted in all the languages supported by Pygments, a Python project used behind the scenes by minted.
15The name of the macro \tdoccodein comes from “in·line code ” .
16A background color is used to subtly highlight the formatted codes. For example, typing \tdoccodein{py}{funny = "ah"*3}

will produce funny = "ah"*3 .

14

https://pygments.org/

ò Note.

The page https: // pygments. org/ languages contains a complete list of supported languages with
their short names. For example, it is possible to format Brainfuck code like this obscure sequence
++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++..+++. which displays Hello .

2. Codes typed directly
Code can be typed directly into a document via \begin{tdoccode} ...\end{tdoccode} which expects an
argument indicating the programming language, and any options between parenthesis and/or square brackets
identical to those proposed by \begin{tdoclatex} ...\end{tdoclatex}: see the section X on page 10.17

Example XI.1 (Standard feature).

\begin{tdoccode}{pl}
print "Who are you? ";
my $name = <STDIN>;

chomp($name);

if ($name eq "") {
print "Ah, not very chatty today!";

} else {
print "Hello $name";
print "Amazing! Actually, not at all...";

}
\end{tdoccode}

This gives :

print "Who are you? ";
my $name = <STDIN>;

chomp($name);

if ($name eq "") {
print "Ah, not very chatty today!";

} else {
print "Hello $name";
print "Amazing! Actually, not at all...";

}

Example XI.2 (One-off rendering customization).

\begin{tdoccode}[style = solarized-light, linenos]%
<leftrule = 22pt, colback = orange!5, colframe = red!35>%
{lua}

io.write("Who are you?")
local name = io.read()

if name == "" then
print("Ah, not very chatty today!")

else
print("Hello “ .. name .. ”.")
print("Amazing! Actually, not at all...")

end
\end{tdoccode}

This gives :

17Note that the coloring of the LATEX codes is lexically correct, but semantically wrong.

15

https://pygments.org/languages

1 io.write("Who are you?")
2 local name = io.read()
3

4 if name == "" then
5 print("Ah, not very chatty today!")
6

7 else
8 print("Hello “ .. name .. ”.")
9 print("Amazing! Actually, not at all...")

10 end

3. Imported codes
The tdoccodeinput macro expects the language and path of a file to be formatted, and possibly options
similar to those offered by the tdoccode environment.

Example XI.3 (Standard features).

\tdoccodeinput{hs}{examples-listing-full-hello-you.hs}

This gives:

main :: IO ()

main = do
putStr "Who are you? "
name <- getLine

if name == ""
then putStrLn "Ah, not very chatty today!"

else do
putStrLn ("Hello " ++ name ++ ".")
putStrLn "Amazing! Actually, not at all..."

Example XI.4 (Customize rendering on occasion).

\tdoccodeinput[style = solarized-light, linenos]%
<leftrule = 22pt, colback = orange!5, colframe = red!35>%
{tex}{examples-listing-full-hello-you.tex}

This gives:

1 \NewDocumentCommand{\helloyou}{m}{%
2 \IfBlankTF{#1}{%
3 Ah, not very chatty today!
4 }{%
5 Hello #1.
6

7 Amazing! Actually, not at all...%
8 }%
9 }

XII. Indicate changes
To make it easier to monitor a project, it is essential to provide a history indicating the changes made when
a new version is published.

1. When?
You can date and/or version something.

Example XII.1 (Dating new features). The \tdocdate macro is used to indicate a date in the margin, as
in the following example.

16

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...

\medskip % CAUTION! This prevents overlapping.

\tdocdate{2023-09-24}
Ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble...

\medskip % CAUTION! This prevents overlapping.

\tdocdate[gray]{2020-05-08}
Bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli...

Blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo...

Blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu...

This gives :
Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...

2023-09-24 Ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble...

2020-05-08 Bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli, bli...
Blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo...
Blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu...

Example XII.2 (Versioning new features, possibly with a date). Associating a version number with a new
feature is done using the \tdocversion macro, with the color and date being optional arguments.

\tdocversion[red]{10.2.0-beta}[2023-12-01]
Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...

\smallskip\bigskip % CAUTION! This prevents overlapping.

\tdocversion{10.2.0-alpha}
Ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble,
ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble,
ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble,
ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble, ble...

This gives :
10.2.0-beta
2023-12-01

Bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla, bla...

10.2.0-alpha Ble, ble,
ble, ble...

Example XII.3 (Caution with paragraph titles). The following example shows that a date and/or version
must be placed just after a paragraph title, and not before it.

\paragraph{A well-versioned title.}
\tdocversion{1.2.3}[2024-11-23]
Blah, blah, blah, blah, blah, blah, blah, blah, blah, blah, blah...
Stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay...

Stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay...
Blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo...

\tdocdate{2024-11-23}
\paragraph{A badly versioned title.}
Blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu...

This gives :

17

1.2.3
2024-11-23

A well-versioned title. Blah, blah, blah, blah, blah, blah, blah, blah, blah, blah, blah... Stay, stay, stay,
stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay...
Stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay, stay... Blo, blo, blo, blo, blo, blo, blo, blo,
blo, blo, blo, blo, blo, blo...

2024-11-23

A badly versioned title. Blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu, blu...

Example XII.4 (Adjust vertical shift). If required, you can modify the vertical offset used to place dates
and versions in the margin, the default value being (−8 pt).

This is what it looks like without vertical shift.

\paragraph{A home-made setting.}%
\tdocversion{1.2.3}[2024-10-29]<0pt>

Blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo...

This gives :
This is what it looks like without vertical shift.

1.2.3
2024-10-29

A home-made setting. Blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo, blo...

Ë Important.

1. The \tdocdate and \tdocversion macros require two compilations.

2. The final rendering of the dates takes into account the language detected by tutodoc: for example, if
French is selected, the dates will be displayed in the format DD/MM/YYYY.

P Caution.

Only the use of the digital format YYYY-MM-DD is verified,a and this is a choice! Why? Quite simply
because dating and versioning explanations should be done semi-automatically to avoid any human bugs.
aTechnically, checking the validity of a date using LATEX3 presents no difficulty.

2. What’s new?
tutodoc offers the macro \tdocstartproj and different environments to indicate quickly and clearly what
has been done during the changes made, or to come.18

ò Note.

For icons, see the note at the beginning of the section 2 on page 6.

a. Sobriety first

Example XII.5 (Just for the very first version).

\tdocstartproj{1st version of the project.} � 1st version of the project.

Example XII.6 (For new features).

\begin{tdocnew}
\item Info 1...
\item Info 2...

\end{tdocnew}

v New.
• Info 1...

• Info 2...

Example XII.7 (For updates).

18The user doesn’t need all the technical details.

18

\begin{tdocupdate}
\item Info 1...
\item Info 2...

\end{tdocupdate}

ÎUpdate.
• Info 1...

• Info 2...

Example XII.8 (For breaks).

\begin{tdocbreak}
\item Info 1...
\item Info 2...

\end{tdocbreak}

Ñ Break.
• Info 1...

• Info 2...

Example XII.9 (For problems).

\begin{tdocprob}
\item Info 1...
\item Info 2...

\end{tdocprob}

] Problem.
• Info 1...

• Info 2...

Example XII.10 (For fixes).

\begin{tdocfix}
\item Info 1...
\item Info 2...

\end{tdocfix}

å Fix.
• Info 1...

• Info 2...

Example XII.11 (Roadmap).

\begin{tdoctodo}
\item Info 1...
\item Info 2...

\end{tdoctodo}

☼ Todo.
• Info 1...

• Info 2...

Example XII.12 (Technical information).

\begin{tdoctech}
\item Info 1...
\item Info 2...

\end{tdoctech}

e Technical information.
• Info 1...

• Info 2...

Example XII.13 (Selectable themes with an icon).

\begin{tdoctopic}{To hide}<\faEyeSlash>
% An icon from fontawesome5.

\item Info 1...
\item Info 2...

\end{tdoctopic}

6 To hide.
• Info 1...

• Info 2...

Example XII.14 (Selectable themes without icons).

\begin{tdoctopic}{End of icons}
\item Info 1...
\item Info 2...

\end{tdoctopic}

End of icons.
• Info 1...

• Info 2...

b. Color if necessary

It may be useful to highlight some changes: this can only be done by modifying the content color.

Example XII.15 (A flashy first version).

\tdocstartproj[DarkOrchid]%
{Brightly colored version 1.} � Brightly colored version 1.

19

Example XII.16 (Outstanding fixes).

\begin{tdocfix}[col = CadetBlue]
\item Info...

\end{tdocfix}

å Fix.
• Info...

3. The what and the when
The optional keys col-chges , date and version allow to date and/or version a change of a particular type.
Here are some examples of use.

\begin{tdoctech}[date = 2024-10-29,
col-chges = red]

\item Info...
\end{tdoctech}

\begin{tdocupdate}[version = 1.2.3,
col-chges = ForestGreen,
col = ForestGreen]

\item Info...
\end{tdocupdate}

\begin{tdoctopic}{To hide}<\faEyeSlash>%
[version = 4.5.6,
date = 2025-11-30]

\item Info...
\end{tdoctopic}

This gives :

2024-10-29 e Technical information.

• Info...

1.2.3 ÎUpdate.

• Info...

4.5.6
2025-11-30

6 To hide.

• Info...

XIII. Ornament
Let’s finish this documentation with a small formatting tool that can be very useful.

Bla, bla, bla...

\tdocsep % Practical for demarcation.

This works with enumerations.

\begin{itemize}
\item Focus.

\end{itemize}

\tdocsep % Uniform behaviour.

Ble, ble, ble...

Bla, bla, bla...

This works with enumerations.

• Focus.

Ble, ble, ble...

20

XIV. Contribute

ò Note.

You don’t need to be a coder to take part in translations, including those that are useful for the
running of tutodoc.

1. Complete the translations

ò Note.

The author of tutodoc manages the French and English versions of the translations.

P Caution.

Although we’re going to explain how to translate the documentation, it doesn’t seem relevant to do so, as
English should suffice these days.a

aThe existence of a French version is simply a consequence of the native language of the author of tutodoc.

i translate
g changes
i en

g api
g doc

g fr
g status

i en
api.yaml
manual.yaml

g fr
README.md
LICENSE.txt

Figure 1: Simplified view of the translation folder

The translations are roughly organized as in figure 1 where just the important folders for the translations
have been “opened ” .19 A little further down, the section e explains how to add new translations.

a. The fr and en folders

These two folders, managed by the author of tutodoc, have the same organization; they contain files that
are easy to translate even if you’re not a coder.

b. The changes folder

This folder is a communication tool where important changes are indicated without dwelling on minor
modifications specific to one or more translations.

c. The status folder

This folder is used to keep track of translations from the project’s point of view. Everything is done via
well-commented YAML files, readable by a non-coder.

d. The README.md and LICENSE.txt files

The LICENSE.txt file is aptly named, while the README.md file takes up in English the important points of
what is said in this section about new translations.

19This was the organization on October 5, 2024.

21

e. New translations

Ë Important.

The api folder contains translations relating to the functionalities of tutodoc. Here you’ll find TXT files
for editing with a text or code editor, but not with a document processor. The content of these files uses
commented lines in English to explain what tutodoc will do; these lines begin with // . Here’s an extract
from such a file, where translations are made after each = sign, without touching the preceding, as this
initial piece is used internally by the tutodoc code.

// #1: year in format YYYY like 2023.
// #2: month in format MM like 04.
// #3: day in format DD like 29.
date = #1-#2-#3

// #1: the idea is to produce one text like
// "this word means #1 in English".
in_EN = #1 in english

ò Note.

The doc folder is reserved for documentation. It contains TEX files that can be compiled directly for
real-time validation of translations.

ÿ Warning.

Only start from one of the fr and en folders, as these are the responsibility of the tutodoc author.

Let’s say you want to add support for Italian from files written in English.20

Method 1 : use of git.

1. Recover the entire project folder via https://github.com/bc-tools/for-latex/tree/tutodoc . Do
not use the main branch, which is used to freeze the latest stable versions of projects in the single
https://github.com/bc-tools/for-latex repository,.

2. In the tutodoc/contrib/translate folder, create an it copy of the en folder, with the short name of
the language documented in the page “IIETF language tag” from Wikipedia.

3. Once the translation is complete in the it folder, share it via https://github.com/bc-tools/
for-latex/tree/tutodoc using a classic git push .

Method 2 : communicate by e-mail.

1. By e-mail with the subject “tutodoc - CONTRIB - en FOR italian ”, request a version of the English
translations (note the use of the English name for the new language). Be sure to respect the subject
of the e-mail, as the author of tutodoc automates the pre-processing of this type of e-mail.

2. You will receive a folder named italian containing the English version of the latest translations. This
folder will be the place for your contribution.

3. Once the translation is complete, you will need to compress your italian file in zip or rar format
before sending it by e-mail with the subject “tutodoc - CONTRIB - italian ” .

2. Improving the source code

Ë Important.

If you want to participate to tutodoc , you’ll need to use the LATEX3 programming paradigm.

20As mentioned above, there is no real need for the doc folder.

22

https://github.com/bc-tools/for-latex/tree/tutodoc
https://github.com/bc-tools/for-latex
https://en.wikipedia.org/wiki/IETF_language_tag#List_of_common_primary_language_subtags
https://github.com/bc-tools/for-latex/tree/tutodoc
https://github.com/bc-tools/for-latex/tree/tutodoc

Participation as a coder is made via the repository https://github.com/bc-tools/for-latex/tree/
tutodoc corresponding to the tutodoc development branch.

P Caution.

Do not use the main branch, which is used to freeze the latest stable versions of projects in the mono
repository https: // github. com/ bc-tools/ for-latex .

XV. History
1.7.1

2024-12-18
å Fix.

• Documentation: references to tools to indicate changes have been incorrectly written as characteristics of
highlighted colored content.

Ñ Break.
• The \tdocenv macro and its starred version no longer offer an option.
• LATEX showcases: the default layout is more sober, and there are options for having just the rulers, or the

colored stripe. See just after.

v New.
• Formatting of computer codes in addition to those specifically in LATEX.

1. Creation of \begin{tdoccode} ...\end{tdoccode} and \tdoccodein.
2. For macros for inline code, and environments for blocks of code, minted options are indicated inside

square brackets in the traditional way: [minted options] .
3. For code block environments, tcolorbox options are indicated inside rafters: <tcolorbox options> .
4. The new macro \tdoctcb allows to use shortcuts for regularly used tcolorbox styles.

• Documentation: a new section presents tools for formatting computer codes other than those in LATEX.

ÎUpdate.
• Sub-sub-sections are numbered in lower case.
• Themes.

1. Less space consumed.
2. Shadows have better coloring.
3. For all themes except the draft one, the radius of the arcs of the corners of the frames has changed from

.75mm to .2pt,.
4. Use case in LATEX: with the theme color, the background color changes from yellow!4 to gray!5.
5. Latest changes: with the dark theme, the [Init] text produced by the \tdocstartproj macro uses the

same font as the environment titles to indicate changes.

1.7.0
2024-12-04

Ñ Break.
• Format: the scrartcl class replaces the venerable article. This implies better placement of the margin notes

with the options retained for loading scrartcl.
• LATEX code: the macro \tdocinlatex has been renamed \tdoclatexin.
• Color key names will be hyphenated where necessary: this implies the following changes.

1. Indicate the latest changes: the colchges option of the environments has been renamed col-chges.
2. Showcases: for the environment tdocshowcase and the macro \tdocshowcaseinput, the colstripe and

coltext options have been renamed col-stripe and col-text .

å Fix.
• Admonitions: for the \newkeytheorem used with the draft theme, postheadhook = \leavevmode has been

added (this is necessary because the content can naturally be of the list type).

v New.
• Documentation: addition of a section listing dependencies.
• Class options.

1. Options not specific to tutodoc are passed on to the class in charge of general formatting.
2. The scrartcl options fontsize and DIV can’t be used because their values are fixed by tutodoc.

• The macro \tdocinEN respects the English linguistic rules.
• Indicate the latest changes.

1. Add the environment \begin{tdoctodo} ...\end{tdoctodo} .
2. Each environment has a new option col for the color of the content indicating changes.

23

https://github.com/bc-tools/for-latex/tree/tutodoc
https://github.com/bc-tools/for-latex/tree/tutodoc
https://github.com/bc-tools/for-latex

ÎUpdate.
• draft theme and changes: the environments for the latest changes stop to use icons.

• Documentation: the theme gallery uses a better fake example.

e Technical information.
• Simplified organisation of configuration files in the final project.

1. Use of one file per theme with a name like tutodoc-*.css.cls .
2. Locale: use of names like tutodoc-*.loc.cls .

1.6.2
2024-10-30

v New.
• The macros \tdocdate and \tdocversion has a new final optional argument <voffset> to choose a specific

vertical offset.

• Better environments to indicate the changes made.
1. The new optional keys col , date and version allow to date and version a change of a specific topic.
2. Use of \paragraph for the title.

ÎUpdate.
• Version and changes: the font of the margin notes will always have a normal shape.

• Ornament: use of a \cleaders to avoid orphean rules at the bottom of a page.

1.6.1
2024-10-28

e Technical information.
• The naming rules of CTAN need the use of CSS files named tutodoc-*.css.cls.sty .

1.6.0
2024-10-27

Ñ Break.
• The showcase environment and its descendants: the color key has been renamed colstripe.

• The macro \tdoclinkcolor becomes the color tutodoc@link@color for internal use.

v New.
• The theme class option allows you to choose different formatting themes.

• Change log: addition of the tdoctech environment for technical information.

• The showcase environment and its descendants: the coltext key can also be used to change the text color.

• The new functionalities have been documented.

ÎUpdate.
• Change log: the tdocupdate environment uses the icon Îinstead of # .

å Fix.
• The Spanish translations were not included in the previous version! Don’t laugh too loud...

1.5.0
2024-10-19

e Technical information.
• Version 3 of minted is taken into account.

Ñ Break.
• The tutodoc class replaces the now-defunct tutodoc package (for the moment, the young class offers no specific

options).

• The \tdocruler macro is now used via \tdocruler[<color>]{<text>} (remember that the old syntax was
\tdocruler{<text>}{<color>}).

v New.
• The class is usable in Spanish.

• The documentation contains a new section explaining how to contribute.

å Fix.
• The \tdocdate macro did not handle date format and formatting.

• Colored frames did not color text after a page break.

24

https://ctan.org/

1.4.0
2024-09-28

Ñ Break.
• The tdoccaution environment has been renamed tdoccaut for simplified input.

• Content highlighting: examples and remarks, indicated via the tdocexa and tdocrem environments, are num-
bered using a common counter.

• The unused macro \tdocxspace has been deleted.

v New.
• Change log: the \tdocstartproj macro is used to manage the case of the first public version.

• Code factorization: the \tdocicon macro is responsible for adding icons in front of text.

ÎUpdate.
• Colors: the \tdocdarkcolor and \tdoclightcolor macros offer an optional argument.

1. \tdocdarkcolor: the amount of color in relation to black can be optionally defined.
2. \tdoclightcolor: the transparency rate can be optionally defined.

• Content highlighting: reduced space around content in colored frames.

• Versioning: better vertical spacing thanks to \vphantom.

1.3.1
2024-09-26

v New.
• Star version of \tdocenv to display only the environment name.

1.3.0
2024-09-25

e Technical information.
• Version 3 of minted cannot be used for the moment as it contains bugs: see https://github.com/gpoore/

minted/issues/401. We therefore force temporarily the use of version 2 of minted.

Ñ Break.
• The tdocimportant environment has been renamed tdocimp for simplified input.

v New.
• Change log: proposed environments use icons.

• Content highlighting: colored frames with icons are proposed for the following environments.

tdoccaution1. tdocimp2. tdocnote3.

tdoctip4. tdocwarn5.

1.2.0-a
2024-08-23

ÎUpdate.
• \tdocversion

1. The version number is above the date.
2. The spacing is better managed when the date is absent.

å Fix.
• Content highlighting: the French translations of “caution” and “danger ” were incorrect.

1.1.0
2024-01-06

v New.
• Change log: two new environments.

1. \begin{tdocbreak} ...\end{tdocbreak} for breaking changes which are not backward compatible.
2. \begin{tdocprob} ...\end{tdocprob} for identified problems.

• \tdoclatexin: a light yellow is used as the background color.

1.0.1
2023-12-08

å Fix.
• \tdocenv: spacing is now correct, even if the babel package is not loaded with the French language.

• \begin{[} ...\end{[}[nostripe]]tdocshowcase : page breaks around “framing” lines should be rare from now
on.

1.0.0
2023-11-29

� First public version of the project.

25

https://github.com/gpoore/minted/issues/401
https://github.com/gpoore/minted/issues/401

Appendix – Theme gallery

ò Note.

Each example is a PDF directly inserted into this document (so don’t be surprised by the page numbers).

26

The "bw" theme

I. Liens

A very big link, but at least we can see it.

II. LATEX listings

Typing inline code such as E = m c^2 \neq \pi \neq \frac{3}{14} is useful, as is showing use cases such
as the following one.

Formatted \LaTeX\ code is great: $E = m c^2$ or $pi \neq \frac{3}{14}$.

Formatted LATEX code is great: E = mc2 or pi ̸= 3
14 .

There’s also a less invasive side-by-side mode. Nice! No ?

Formatted \LaTeX\ code is great: \\

$E = m c^2$ or $\pi \neq \frac{3}{14}$.

Formatted LATEX code is great:
E = mc2 or π ̸= 3

14 .

III. Highlighting, versioning and dating

1. tdocexa, tdocrem

1.7.0

2024-12-04
In the flow of the text, it is always useful to be able to provide examples and comments to supplement the
main content.

Example III.1. What to say 1? I don’t know, but it’s nice. No ?

Remark III.2. What to say 2? I don’t know, but it’s nice. No ?

2. tdocnote, tdoctip...

Depending on the context of use, it is sometimes necessary to be able to highlight content by indicating its
degree of importance.

ò Note.

What to say a? I don’t know, but it’s nice. No ?

aLet’s not forget the footnotes...

� Tip.

What to say? I don’t know, but it’s nice. No ?

Ë Important.

What to say? I don’t know, but it’s nice. No ?

P Caution.

What to say? I don’t know, but it’s nice. No ?

ÿ Warning.

What to say? I don’t know, but it’s nice. No ?

1Let’s not forget the footnotes...
2Let’s not forget the footnotes...

1/2

3. tdocbreak, tdocfix...

� A new demonstration section...

☼ Todo.

• A gallery would be welcome...

In a change log, it is important to visualise the types of changes clearly. This makes it easier for the user to
read!

Ñ Break.

• Infos...

å Fix.

• Infos...

v New.

• Infos...

] Problem.

• Infos...

e Technical information.

• Infos...

ÎUpdate.

• Infos...

☼ Todo.

• Infos...

2/2

The "color" theme

I. Liens

A very big link, but at least we can see it.

II. LATEX listings

Typing inline code such as E = m c^2 \neq \pi \neq \frac{3}{14} is useful, as is showing use cases such
as the following one.

Formatted \LaTeX\ code is great: $E = m c^2$ or $pi \neq \frac{3}{14}$.

Formatted LATEX code is great: E = mc2 or pi ̸= 3
14 .

There’s also a less invasive side-by-side mode. Nice! No ?

Formatted \LaTeX\ code is great: \\

$E = m c^2$ or $\pi \neq \frac{3}{14}$.

Formatted LATEX code is great:
E = mc2 or π ̸= 3

14 .

III. Highlighting, versioning and dating

1. tdocexa, tdocrem

1.7.0

2024-12-04
In the flow of the text, it is always useful to be able to provide examples and comments to supplement the
main content.

Example III.1. What to say 1? I don’t know, but it’s nice. No ?

Remark III.2. What to say 2? I don’t know, but it’s nice. No ?

2. tdocnote, tdoctip...

Depending on the context of use, it is sometimes necessary to be able to highlight content by indicating its
degree of importance.

ò Note.

What to say a? I don’t know, but it’s nice. No ?

aLet’s not forget the footnotes...

� Tip.

What to say? I don’t know, but it’s nice. No ?

Ë Important.

What to say? I don’t know, but it’s nice. No ?

P Caution.

What to say? I don’t know, but it’s nice. No ?

ÿ Warning.

What to say? I don’t know, but it’s nice. No ?

1Let’s not forget the footnotes...
2Let’s not forget the footnotes...

1/2

3. tdocbreak, tdocfix...

� A new demonstration section...

☼ Todo.

• A gallery would be welcome...

In a change log, it is important to visualise the types of changes clearly. This makes it easier for the user to
read!

Ñ Break.

• Infos...

å Fix.

• Infos...

v New.

• Infos...

] Problem.

• Infos...

e Technical information.

• Infos...

ÎUpdate.

• Infos...

☼ Todo.

• Infos...

2/2

The "dark" theme

I. Liens

A very big link, but at least we can see it.

II. LATEX listings

Typing inline code such as E = m c^2 \neq \pi \neq \frac{3}{14} is useful, as is showing use cases such
as the following one.

Formatted \LaTeX\ code is great: $E = m c^2$ or $pi \neq \frac{3}{14}$.

Formatted LATEX code is great: E = mc2 or pi ̸= 3
14 .

There’s also a less invasive side-by-side mode. Nice! No ?

Formatted \LaTeX\ code is great: \\

$E = m c^2$ or $\pi \neq \frac{3}{14}$.

Formatted LATEX code is great:
E = mc2 or π ̸= 3

14 .

III. Highlighting, versioning and dating

1. tdocexa, tdocrem

1.7.0

2024-12-04
In the flow of the text, it is always useful to be able to provide examples and comments to supplement the
main content.

Example III.1. What to say 1? I don’t know, but it’s nice. No ?

Remark III.2. What to say 2? I don’t know, but it’s nice. No ?

2. tdocnote, tdoctip...

Depending on the context of use, it is sometimes necessary to be able to highlight content by indicating its
degree of importance.

ò Note.

What to say a? I don’t know, but it’s nice. No ?

aLet’s not forget the footnotes...

� Tip.

What to say? I don’t know, but it’s nice. No ?

Ë Important.

What to say? I don’t know, but it’s nice. No ?

P Caution.

What to say? I don’t know, but it’s nice. No ?

ÿ Warning.

What to say? I don’t know, but it’s nice. No ?

1Let’s not forget the footnotes...
2Let’s not forget the footnotes...

1/2

3. tdocbreak, tdocfix...

� A new demonstration section...

☼ Todo.

• A gallery would be welcome...

In a change log, it is important to visualise the types of changes clearly. This makes it easier for the user to
read!

Ñ Break.

• Infos...

å Fix.

• Infos...

v New.

• Infos...

] Problem.

• Infos...

e Technical information.

• Infos...

ÎUpdate.

• Infos...

☼ Todo.

• Infos...

2/2

The "draft" theme
I. Liens
A very big link, but at least we can see it.

II. LATEX listings
Typing inline code such as E = m c^2 \neq \pi \neq \frac{3}{14} is useful, as is showing use cases such
as the following one.

Formatted \LaTeX\ code is great: $E = m c^2$ or $pi \neq \frac{3}{14}$.

Formatted LATEX code is great: E = mc2 or pi ̸= 3
14 .

There’s also a less invasive side-by-side mode. Nice! No ?

Formatted \LaTeX\ code is great: \\

$E = m c^2$ or $\pi \neq \frac{3}{14}$.

Formatted LATEX code is great:
E = mc2 or π ̸= 3

14 .

III. Highlighting, versioning and dating

1. tdocexa, tdocrem

1.7.0

2024-12-04
In the flow of the text, it is always useful to be able to provide examples and comments to supplement the
main content.

Example III.1. What to say 1? I don’t know, but it’s nice. No ?

Remark III.2. What to say 2? I don’t know, but it’s nice. No ?

2. tdocnote, tdoctip...

Depending on the context of use, it is sometimes necessary to be able to highlight content by indicating its
degree of importance.

Note III.3. What to say 3? I don’t know, but it’s nice. No ?

Tip III.4. What to say? I don’t know, but it’s nice. No ?

Important III.5. What to say? I don’t know, but it’s nice. No ?

Caution III.6. What to say? I don’t know, but it’s nice. No ?

Warning III.7. What to say? I don’t know, but it’s nice. No ?

3. tdocbreak, tdocfix...
[Init] A new demonstration section...

Todo.
• A gallery would be welcome...

In a change log, it is important to visualise the types of changes clearly. This makes it easier for the user to
read!

Break.

• Infos...

Fix.

• Infos...

New.

• Infos...

Problem.

• Infos...

Technical information.

• Infos...

Update.

• Infos...

Todo.

• Infos...

1Let’s not forget the footnotes...
2Let’s not forget the footnotes...
3Let’s not forget the footnotes...

1/1

	Dependencies
	General settings
	Font size and page geometry
	Titles and table of contents
	Dynamic links

	What language is used by the tutodoc class?
	What does that mean in English?
	Choose your theme
	Highlighting content
	Content in the reading flow
	Examples
	Some remarks

	Flashy content
	A tip
	Informative note
	Something important
	Caution about a delicate point
	Warning of danger

	Specify packages, classes, macros or environments
	Origin of a prefix or suffix
	A real-life rendering
	A minimalist rendering by default
	With framing lines
	With colored stripe
	By importing the LaTeX code

	Use cases in LaTeX
	Inline codes
	Directly typed codes
	Imported codes
	Imported codes put into practice

	Presenting computer code
	Inline codes
	Codes typed directly
	Imported codes

	Indicate changes
	When?
	What's new?
	Sobriety first
	Color if necessary

	The what and the when

	Ornament
	Contribute
	Complete the translations
	The fr and en folders
	The changes folder
	The status folder
	The README.md and LICENSE.txt files
	New translations

	Improving the source code

	History
	Appendix – Theme gallery

