The medmath package

Jianrui Lyu (tolvjr@163.com)

Version 2024E (2024-01-20)

1 Introduction

1.1 The mediummath option in nccmath package

There are several problems with mediummath option in nccmath package.

1. The big operators in superscripts and subscripts are too large.

\[A^{\sum_{0}^{1}x} = B \]

2. The definite integrals inside cases environment sometimes cause infinite loops.

\[
\begin{cases}
 a & \int_{1}^{t} \\
 \end{cases}
\]

3. The \oiint operators are not scaled to medium size.

\[
\oiint_{\Sigma} xyz dS = \frac{\sqrt{3}}{120}
\]

1.2 The medmath package

The medmath package started as a fork of mediummath code in nccmath package, aiming to provide more stable and flexible medium-size math commands.

1. The big operators in superscripts and subscripts are in medium size.

\[A^{\sum_{0}^{1}x} = B \]

2. The definite integrals inside cases environment always work.

\[
\begin{cases}
 a & \int_{1}^{t} \\
 \end{cases}
\]

3. The \oiint operators are scaled to medium size.

\[
\oiint_{\Sigma} xyz dS = \frac{\sqrt{3}}{120}
\]
2 Usage

Since medmath package is a fork of mediummath option in nccmath package, the usage is basically the same. Here is a minimal example:

```
\documentclass{article}
\usepackage{medmath}
\begin{document}
Inline $\int_0^1x^2dx=\frac{1}{3}$. Displayed \[
\int_0^1x^2dx=\frac{1}{3}. \]
\end{document}
```

Inline $\int_0^1x^2dx=\frac{1}{3}$. Displayed

\[
\int_0^1x^2dx=\frac{1}{3}.
\]

You will see that both integral symbols and both fractions are in medium size. You could see the differences if you remove `\usepackage{medmath}` line.

Since version 2024E, medmath package is able to adjust \medintcorr for some math fonts, hence integral operators with subscripts will look better. As a start, only three fonts (Computer Modern, Mathdesign Utopia, and Mathdesign Charter) are detected.