The \texttt{wheelchart} package

Draw wheelcharts with Ti\textsc{k}Z

Matthias Floré

Version 2.0 (2023/12/03)

\textbf{Abstract}

This package is based on the package \texttt{tikz} (see \cite{5}) and can be used to draw various kinds of diagrams such as a bar chart, doughnut chart, infographic, pie chart, ring chart, square chart, sunburst chart, waffle chart and wheel chart with Ti\textsc{k}Z. It provides several options to customize the diagrams. It is also possible to specify a plot for the shape of the chart. Furthermore a legend can be added and the table of contents can be displayed as one of these diagrams. Other tools for creating wheelcharts or pie charts can be found in \cite{2}, \cite{1}, \cite{4}, \cite{6} and \cite{3}.

\textbf{Contents}

\begin{itemize}
 \item \textbf{1 Usage} \hfill page 2
 \item \textbf{2 The main macro} \hfill page 3
 \item \textbf{3 Additional macros} \hfill page 4
 \item \textbf{4 Keys} \hfill page 7
 \item \textbf{5 Additional examples} \hfill page 54
 \item \textbf{6 Version history} \hfill page 59
 \item \textbf{References} \hfill page 60
 \item \textbf{Index} \hfill page 61
\end{itemize}
1 Usage

The package \texttt{wheelchart} can be used by putting the following in the preamble.

```latex
\usepackage{wheelchart}
```

The package \texttt{wheelchart} loads the package \texttt{tikz} and the TikZ library \texttt{calc}.

Many examples in this manual use colors which can be defined by giving \texttt{dvipsnames} as an option to \texttt{documentclass}.
2 The main macro

\wheelchart\{(options)\}{(wheelchart data)\}

This command can be placed inside a `tikzpicture` environment. It draws a wheelchart with \(\text{wheelchart data} \). With the initial settings, the \(\text{wheelchart data} \) is a comma separated list in which each item corresponds to one slice of the wheelchart and consists of data separated by a `/`. The precise syntax of the \(\text{wheelchart data} \) will be explained below. The \(\text{options} \) can be given with the keys described in Section 4.

\exampleforthismanual

To simplify the creation of examples in this manual, we define the \(\text{wheelchart data} \) below.

\begin{verbatim}
\gdef\exampleforthismanual{
14/Apricot/Apricot/{A, B, C, E, K}/north east lines/0/0/Gray,
40/LimeGreen/Lime/{B, C}/grid/0/15/Black,
20/Melon/Melon/{A, C}//0.5/0/none,
16/OliveGreen/Olive/{A, B, E, K}/dots/0/0/none,
28/Peach/Peach/{A, B, C, E, K}/fivepointed stars/0/0/Lavender,
32/Plum/Plum/{A, B, C, E, K}/bricks/0/-15/none,
50/WildStrawberry/Strawberry/{B, C, E, K}//1/0/DarkOrchid}
\}
\end{verbatim}

The default wheelchart with these data is shown below.
3 Additional macros

\WCcount
This macro gives the current number of the slice in the \textit{wheelchart data}.

\WCcountdiscrete
If the key \texttt{discrete} is true then this macro gives the current number of the \LaTeX{} pic from the key \texttt{discrete pic}.

\WCdataangle
This macro is similar to \WCmidangle but also takes into account the keys \texttt{data angle pos}, \texttt{data angle shift} and \texttt{data sep} (with respect to the key \texttt{counterclockwise}).

\WCetocthelinkedname
\WCetocthelinkednumber
\WCetocthelinkedpage
\WCetocthename
\WCetocthenumber
\WCetocthenumberofpages
\WCetocthepage
These macros are defined when the key \texttt{etoc level} is used.

\WClegend
If the key \texttt{legend row} is used then the resulting legend is stored in the macro \WClegend.

\WClist{\texttt{name}}
This macro is defined when the key \texttt{WClist(name)} is used and gives the element in the \texttt{⟨list⟩} given to the key \texttt{WClist(name)} with as index \WCcount modulo the length of this \texttt{⟨list⟩}. The \texttt{⟨name⟩} is the one given to the key \texttt{WClist(name)}.

\WCmidangle
This macro gives the angle in degrees modulo 360 of the middle of the current slice.

\begin{tikzpicture}
\wheelchart[
 data angle shift=\WCvarG,
 data style={
 rotate=\WCdataangle,
 draw=Magenta,
 fill=GreenYellow,
 anchor=west,
 text=Gray
 },
 inner data={%\textbackslash WCmidangle%
 },
 inner data style={
 rotate=\WCmidangle,
 font=\ttfamily
 }
])(\exampleforthismanual)
\end{tikzpicture}
\WCperc
This macro displays \WCpercentagerounded followed by a % symbol.

If the package siunitx is loaded then the following code is used. The package siunitx can be loaded before or after the package wheelchart.

\qty{\WCpercentagerounded}{\percent}

If the package siunitx is not loaded then the following code is used.

\WCpercentagerounded,\%

\WCpercentage
This macro gives the percentage of the current slice where the total is computed with the values of the key value. Note that rounding errors can occur.

\usepackage{siunitx}
\begin{tikzpicture}
\wheelchart[
data=\WCvarC\WCperc,
slices style={\WCvarB!\fpeval{4*\WCpercentage}}]
\exampleforthismanual
\end{tikzpicture}

\WCpercentagerounded
This macro displays \WCpercentage rounded up to the number of decimals determined by the key perc precision.

\WCtotalcount
This macro gives the total number of slices.

\WCtotalnum
This macro gives the sum of all values of the key value.
The \(\text{wheelchart data}\) in the command \texttt{wheelchart} is a list in which the items are separated by the value of the key \texttt{separator rows}. Each item in this list corresponds to one slice of the wheelchart and consists of data separated by the value of the key \texttt{separator columns}. The number of such data needs to be the same for each slice. With the initial settings, these individual data are interpreted as the macros \texttt{\WCvarA}, \texttt{\WCvarB}, \texttt{\WCvarC}, ..., \texttt{\WCvarZ}, \texttt{\WCvarAA} and so on and can be accessed within the \(\text{options}\) of the command \texttt{wheelchart} if applicable.

The name of these macros can be specified with \(\langle\text{prefix}\rangle\) and \(\langle\text{name}\rangle\) which are determined by respectively the keys \texttt{header prefix} and \texttt{header}.

Initially, only \texttt{\WCvarA}, \texttt{\WCvarB} and \texttt{\WCvarC} are used for \texttt{value=\WCvarA}, \texttt{slices style=\WCvarB} and \texttt{data=\WCvarC}.

Other ways to specify data are by using for example a list such as an array with the package \texttt{tikz}, a list with the package \texttt{listofitems} or with the key \texttt{WClist(name)}.
4 Keys

The keys in this Section can be given as \textit{options} to the command \texttt{\wheelchart}.

If applicable, an optional non-empty \textit{range} between braces can be given to a key after the \textit{key name} except for the key \texttt{slice} where the \textit{range} is mandatory. This \textit{range} is processed with \texttt{\foreach} with the option \texttt{parse=true}. Hereafter the elements are processed with \texttt{\fp_eval:n}. If such a \textit{range} is given to a key then the options given to this key will only be applied to a slice if the number of the slice is in the \textit{range}. The \textit{range} only makes sense for a key which is processed for each slice. For example, the \textit{range} does not make sense for the key \texttt{middle}.

Furthermore, it is possible to add \texttt{\{list\}} after the \textit{key name}. Then a list can be given to the key. This list is processed analogously as how the key \texttt{\WClist\{name\}} works. Then the result is given to the key.
We give some examples for the options \texttt{(range)} and \texttt{\{list\}} below.

- The following wheelchart can be obtained with the 3 possibilities below.

\begin{tikzpicture}
\wheelchart[
data{list}={
 An,example,where,some,of,the,
 keys,are,given,using,a,list
},
slices style{list}={
 Thistle,Orchid,Fuchsia
},
total count=12
]
\end{tikzpicture}

\usepackage{listofitems}
\readlist{WCcolors}{Thistle,Orchid,Fuchsia}
\setsepchar{ }
\readlist{WCdata}{An example where some of the keys are given using a list}
data={\WCdata[\WCcount]},
slices style={
 /utils/exec={\pgfmathsetmacro{\WCcolornumber}{int(Mod({\WCcount-1},\WCcolorslen)+1)}},
 \WCcolors[\WCcolornumber],
},
total count=\WCdatalen,

\texttt{\textcolor{Thistle}{slices style\{1,4,...,\WCdatalen\}=Thistle,}
\texttt{\textcolor{Orchid}{slices style\{2,5,...,\WCdatalen\}=Orchid,}
\texttt{\textcolor{Fuchsia}{slices style\{3,6,...,\WCdatalen\}=Fuchsia,}
}

- The following wheelchart can be obtained with the 3 possibilities below.
\begin{tikzpicture}
\wheelchart[
 explode=\WCcount==3?0.5:(\WCcount==7?1:0),
 pie
](\exampleforthismanual)
\end{tikzpicture}

```
\texttt{explode}=(\texttt{\WCcount==3?0.5:(\WCcount==7?1:0)}),
```

```
\texttt{explode}(3)=0.5, \\
\texttt{explode}(7)=1.
```

\textbf{/wheelchart/after slices=\{\texttt{code}\}}
(no default, initially empty)

The \texttt{(code)} given to this key will be executed after each slice of the wheelchart.

\textbf{/wheelchart/anchor xsep=\{\texttt{angle}\}}
(no default, initially 5)

\textbf{/wheelchart/anchor ysep=\{\texttt{angle}\}}
(no default, initially 5)

These keys determine the default anchor of the key \texttt{data} in the case that \texttt{lines ext=0}. Note that rounding errors can occur in the computation of the angle which is used to determine the default anchor according to Table 1.

<table>
<thead>
<tr>
<th>Angle (up to rounding errors)</th>
<th>Anchor of the key \texttt{data} in the case that \texttt{lines ext=0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>west</td>
</tr>
<tr>
<td>90</td>
<td>south</td>
</tr>
<tr>
<td>180</td>
<td>east</td>
</tr>
<tr>
<td>270</td>
<td>north</td>
</tr>
<tr>
<td>For other angles not in {0, 90, 180, 270}:</td>
<td></td>
</tr>
<tr>
<td>[0, \texttt{anchor ysep}]</td>
<td>west</td>
</tr>
<tr>
<td>[\texttt{anchor ysep}, 90 + \texttt{anchor xsep}]</td>
<td>south west</td>
</tr>
<tr>
<td>[90 - \texttt{anchor xsep}, 90 + \texttt{anchor xsep}]</td>
<td>south</td>
</tr>
<tr>
<td>[90 + \texttt{anchor xsep}, 180 + \texttt{anchor ysep}]</td>
<td>south east</td>
</tr>
<tr>
<td>[180 - \texttt{anchor ysep}, 180 + \texttt{anchor ysep}]</td>
<td>east</td>
</tr>
<tr>
<td>[180 + \texttt{anchor ysep}, 270 + \texttt{anchor xsep}]</td>
<td>north east</td>
</tr>
<tr>
<td>[270 - \texttt{anchor xsep}, 270 + \texttt{anchor xsep}]</td>
<td>north</td>
</tr>
<tr>
<td>[270 + \texttt{anchor xsep}, 360 + \texttt{anchor ysep}]</td>
<td>north west</td>
</tr>
<tr>
<td>[360 - \texttt{anchor ysep}, 360]</td>
<td>west</td>
</tr>
</tbody>
</table>

Table 1: Anchor of the key \texttt{data} in the case that \texttt{lines ext=0}.
The anchor of the key `data` can also be specified manually by using `data style={anchor=⟨anchor⟩}`.

/`wheelchart/arc={⟨options⟩}` (style, no default, initially empty)

If this key is set then an arc with the style determined by this key will be drawn following the plot for a slice of the wheelchart.

/`wheelchart/arc around text=⟨boolean⟩` (default true, initially false)

If true then the arc with the style determined by the key `arc` will be split in two parts such that the gap between these two parts leaves space for the contents of the key `arc data`. The space between the arc and the contents of the key `arc data` can be increased with for example `- in arc data=-text-`.

/`wheelchart/arc data={⟨text⟩}` (no default, initially empty)

This key contains the `⟨text⟩` which will be placed following the plot for a slice of the wheelchart using the decoration `text along path`. This requires the TikZ library `decorations.text`. The style of this decoration is given as follows. First, the option `raise=-0.5ex` is given. Then `text align` is determined by the key `arc data align`. Thereafter, the style of the key `arc data style` is added.

Note that for example `\WCpercentage` follows the arc but `\WCperc` does not. Braces are required around some macros and for example `arc data={{{{\WCperc}}}}` requires 4 pairs of braces.

/`wheelchart/arc data align=center|left|right` (no default, initially center)

This key determines the alignment of the contents of the key `arc data`.

/`wheelchart/arc data angle pos=⟨⟨value⟩⟩` (no default, initially 0.5)

/`wheelchart/arc data angle shift=⟨⟨angle⟩⟩` (no default, initially 0)

These keys determine the position of the contents of the key `arc data` similar as the corresponding keys for the key `data`.

/`wheelchart/arc data dir=⟨⟨value⟩⟩` (no default, initially 1)

This key determines the direction of the contents of the key `arc data`. If the `⟨value⟩` is positive then the direction is the same as the direction of the slice. If the `⟨value⟩` is negative then the direction is reversed. The values 1 and -1 are recommended. When the contents of the key `arc data` is placed, the corresponding domain for the plot is estimated. A warning is given when the contents of the key
arc data did (possibly) not fit. In this case, the absolute value of the key arc data dir should be increased.

\begin{tikzpicture}
\wheelchart[
 arc=\WCvarB, arc around text, arc data=\WCvarC, arc data dir={\WCmidangle<180?1:-1}, arc data pos=1.2, arc data style=\text color=\WCvarB, arc first half=dashed, arc pos=1.2, arc second half=\rightarrow, data=, value=width("\WCvarC")]
\exampleforthismanual
\end{tikzpicture}

\wheelchart[at={\point}]

This key defines the center of the wheelchart.

\wheelchart[before slices={\code}]

The \textit{code} given to this key will be executed before each slice of the wheelchart.

\wheelchart[caption={\textit{text}}]

This key contains the \textit{text} which will be placed below the wheelchart. The \textit{text} is placed in a node. The \textit{x} coordinate of this node is the \textit{x} coordinate of the center of the wheelchart, which is defined by the key at. In general, this is not the same as the \textit{x} coordinate of the center of the local bounding box around the wheelchart. The \textit{y} coordinate of this node is at a value determined by the key caption sep below the south of the local bounding box around the wheelchart. The style of this node is given
as follows. First, the options `anchor=north,align=center` are given. Thereafter, the style of the key `caption style` is added.

```latex
/wheelchart/caption left={⟨text⟩}
```

(no default, initially empty)

This key contains the `⟨text⟩` which will be placed below left of the wheelchart. The `⟨text⟩` is placed in a node. This node is placed at a value determined by the key `caption left sep` below the south west of the local bounding box around the wheelchart. The style of this node is given as follows. First, the options `anchor=north west,align=left` are given. Thereafter, the style of the key `caption left style` is added.

```latex
/wheelchart/caption left sep={⟨value⟩}
```

(no default, initially 0.5)

The node where the contents of the key `caption left` is placed is at `⟨value⟩` below the south west of the local bounding box around the wheelchart.

```latex
/wheelchart/caption left style={⟨options⟩}
```

(style, no default, initially empty)

This key accepts a list of keys which will be applied to the node where the contents of the key `caption left` is placed.

```latex
/wheelchart/caption sep={⟨value⟩}
```

(no default, initially 0.5)

The y coordinate of the node where the contents of the key `caption` is placed is at `⟨value⟩` below the south of the local bounding box around the wheelchart.

```latex
/wheelchart/caption style={⟨options⟩}
```

(style, no default, initially empty)

This key accepts a list of keys which will be applied to the node where the contents of the key `caption` is placed.

Title left

- Text with multiple lines
- Short text
- Another text

Title

- Text which is longer than the short text

Caption left

Caption

\begin{tikzpicture}
\wheelchart[
 at={(5,2)},
 caption=Caption,
 caption style={font=\scshape},
 caption left=Caption left,
 caption left style={font=\sffamily},
 middle={texttt{name=WCname}},
 name=WCname,
 start half,
 title=Title,
 title style={font=\bfseries},
 title left=Title left,
 title left style={font=\em}]

 \draw[dashed] (WCname.south west) rectangle (WCname.north east);
 \foreach\pos in {north,east,south,west}{
 \node \texttt{at (WCname.\pos) \{\pos};
 }
\end{tikzpicture}

\wheelchart/contour={⟨options⟩} (style, no default, initially empty)

If this key is set then a contour with the style determined by this key will be drawn around the
wheelchart. This key does not apply if a plot is used.

\wheelchart/counterclockwise={⟨boolean⟩} (default true, initially false)

If true, the wheelchart will be drawn counterclockwise instead of clockwise.

\wheelchart/data={⟨text⟩} (no default, initially \WCvarC)

This key contains the ⟨text⟩ which will be placed at each slice of the wheelchart. This can be suppressed
by using data{}. The ⟨text⟩ is placed in a node. The style of this node is given as follows. First, the
anchor is set following Table 1 and Table 3. Then the option align=left is added. Thereafter, the
style of the key data style is added.

\wheelchart/data angle pos={⟨value⟩} (no default, initially 0.5)
\wheelchart/data angle shift={⟨angle⟩} (no default, initially 0)
\wheelchart/data pos={⟨value⟩} (no default, initially 1)
\wheelchart/data sep={⟨value⟩} (no default, initially 0.2)

The position of the contents of the key data is determined as follows.

1. The inner plot is evaluated in the point with as angle the convex combination with as parameter
 the key data angle pos of the inner start angle and the inner end angle, added with the key
data angle shift in degrees (taking into account the key counterclockwise) and as radius the
 inner radius minus the key data sep.

2. The outer plot is evaluated in the similar point but using the outer start angle, the outer end angle
 and the outer radius plus the key data sep.

3. If \texttt{lines} \neq 0 then the values of the keys lines sep and lines are added to the radii above, in
 addition to the key data sep.

4. The contents of the key data is placed at the convex combination with as parameter the key
data pos of the previous two points.
Apricot 7%
Lime 20%
Melon 10%
Olive 8%
Peach 14%
Plum 16%
Strawberry 25%

\begin{tikzpicture}
\wheelchart[
data angle pos{2}={0.3},
data angle pos{6}={0.8},
data angle shift{3}={-0.1},
data angle shift{5}={0.1},
data pos={\WClistB},
data sep=0,
lines{1,2,4,6,7}={0.5},
lines{3,5}={1},
lines angle pos{1}={0.8},
lines angle shift{7}={-0.2},
lines ext={\WClistA},
lines ext dir{1,...,3}={left},
lines ext dir{4,...,7}={right},
lines ext fixed,
lines ext fixed left=-1,
lines ext fixed right=7,
lines pos={\WClistB},
lines sep={0.2*\WClistA},
xbar={6}{1.5},
\WClistA={1,0},
\WClistB={0,1},
wheel data={\WCperc},
wheel data pos={0.5},
wheel data pos{1}={1},
wheel data pos{4}={0},
wheel data sep={0.2}]
\end{tikzpicture}

/wheelchart/data style={⟨options⟩}
This key accepts a list of keys which will be applied to the node where the contents of the key data is placed.

/wheelchart/discrete={⟨boolean⟩}
(default true, initially false)
If true then TikZ pics are placed with the ⟨code⟩ determined by the key discrete pic. The number of pics is determined by the key value. It is required to set the key discrete space at borders.

/wheelchart/discrete factor={⟨value⟩}
(no default, initially 1)
The algorithm to place the TikZ pics depends on the ⟨value⟩. The value 1 is recommended.

/wheelchart/discrete partitioning=angle|radius
(no default, initially radius)
angle In this case, the TikZ pics are placed uniformly with respect to the angle.
radius In this case, the TikZ pics are placed uniformly with respect to the radius.
These options are illustrated in the examples below.
The \(\text{\texttt{code}}\) determines the Ti\h KZ pics.
angle In this case, the TiKZ pics are ordered with respect to the angle.

radius In this case, the TiKZ pics are ordered with respect to the radius.

These options are illustrated in the examples below.

\begin{tikzpicture}
\pgfkeys{/wheelchart, data=, discrete, discrete pic={\shade[ball color=\WCvarB] (0,0) circle[radius=4pt];}, discrete space at borders=false, middle style={font=\ttfamily}, start angle=180, total angle=180, value=\WCvarA/2}
\wheelchart[legend columns=4, legend row=\{node[anchor=north] at (3.5,-1) \{begin\{tabular\}{*{4}{l@{ }lr}} \WClegend\end\{tabular\}\};, middle={discrete sort=angle}]
\end{tikzpicture}

\begin{tikzpicture}
\pgfkeys{/wheelchart, data=, discrete, discrete pic={\shade[ball color=\WCvarB] (0,0) circle[radius=4pt]; \WCvarC \WCperc}, legend=\{node[anchor=north] at (3.5,-1) \{begin\{tabular\}{*{4}{l@{ }lr}} \WClegend\end\{tabular\}\};, middle={discrete sort=radius}]
\wheelchart[at={(7,0)}, discrete sort=radius, middle={discrete sort=radius}]
\end{tikzpicture}

/wheelchart/discrete space at borders=\{boolean\} \hspace{1cm} (default true)

This key determines whether space is left at the begin and end where the TiKZ pics are placed. For example, suppose that 3 TiKZ pics are placed at positions between 0 and 1. If \texttt{discrete space at borders} is true then these are placed at the positions \(\frac{1}{3}, \frac{2}{3}\) and \(\frac{5}{6}\). If \texttt{discrete space at borders} is false then these are placed at the positions 0, \(\frac{1}{3}\) and 1.

This key deliberately has no initial value in order to force awareness of the consequences of the settings of this key. In the example below, the cyan TiKZ pics are aligned if \texttt{discrete space at borders} is false while this is not the case if \texttt{discrete space at borders} is true.
In the example below, the red and green TiKZ pics overlap if `discrete space at borders` is false while this is not the case if `discrete space at borders` is true.
If the key `etoc level` is used then the number of pages of the last section depends on ⟨number⟩ which can for example represent the total number of pages in the document or the number of pages before the start of the Appendix or the Index. For example, `etoc count total pages=\totalpages` can be used. To provide the command `\totalpages`, this requires `\usepackage\{page\}\{totalpages\}` which should normally be loaded before the package `wheelchart` to give a correct result.

If this key is used then the ⟨wheelchart data⟩ of the command `\wheelchart` can be left empty and is defined to match the sections of the level defined by ⟨level⟩. Here, `\WCetocthelinkedname` corresponds to `\etocthelinkedname`, `\WCetocthelinkednumber` to `\etocthelinkednumber`, `\WCetocthelinkedpage` to `\etocthelinkedpage`, `\WCetocthenickname` to `\etocthenickname`, `\WCetocthenumber` to `\etocthenumber` and `\WCetocthepage` to `\etocthepage`. The package `etoc` is required to provide these commands. Furthermore, `\WCetocthenumberofpages` corresponds to the number of pages of the current section. For the last section, this depends on the value of the key `etoc count total pages`.

The resulting ⟨wheelchart data⟩ from the key `etoc level` is stored globally and can be reused later with the key `etoc use name`.

If this key is used then the ⟨wheelchart data⟩ is reused from where `etoc name` has the same ⟨name⟩.

The following example illustrates the difference between the possible values of the key `expand list`.

```
\begin{tikzpicture}
\def\WClistA{a,A}
\def\WClistB{b,B}
\def\WCdata{\WClistA,\WClistB}
\foreach\expandlist \[count=\n\] in {false,once,true}{
  \wheelchart[at={(3.5*\n},0)},
data=\WCvarA,
expand list=\expandlist,
radius=0]{1},
slices style\{list\}={
  Dandelion,CarnationPink,
  SpringGreen,ProcessBlue
},
title=\{expand list=\expandlist\},
title style=\{font=\textfamily\},
value=1
]{\WCdata}
}\end{tikzpicture}
```

The initial setting `expand list=once` works in most situations, even when commands such as `\ref`, `\cite` and `\textbf` are used such as in the example below.
In the following example, the \texttt{wheelchart data} from the previous example is stored in a macro. In this case, we have to use the initial setting \texttt{expand list=once}.

In the example below, we have to use \texttt{expand list=true}.

In the example below, we have to use \texttt{expand list=true} and the command \texttt{\expandonce} from the package \texttt{etoolbox}.
\begin{tikzpicture}
 \def\WCsliceA{1/Brown/{\emph{A}: \(\mu\)}}
 \def\WCsliceAfinal{\expandonce\WCsliceA}
 \def\WCsliceB{2/Tan/{\bfseries B}: \(\pi\)}
 \def\WCsliceBfinal{\expandonce\WCsliceB}
 \wheelchart[
 expand list=true, %false and once %do not work
 middle={expand list=true},
 middle style={font=\large\ttfamily}\]
 {\WCsliceAfinal,\WCsliceBfinal}
 %\WCsliceA and \WCsliceB do not work
\end{tikzpicture}

This key is similar to the key \texttt{expand list} but applies to the items in the \texttt{\langle wheelchart data \rangle} of the command \texttt{\wheelchart} which correspond to a slice of the wheelchart.

\begin{tikzpicture}
 \def\WClistA{a/b}
 \def\WClistB{c/d}
 \def\WCdata{\WClistA/\WClistB}
 \foreach\expandlistitems in {false,once,true} {
 \wheelchart[
 expand list=false, expand list items=\expandlistitems, legend=; \texttt{\expandlistitems}: \WCvarA]
 {\WCdata}
 }
\end{tikzpicture}

This key will shift the slices of the wheelchart with \texttt{\langle value \rangle} with respect to the center of the wheelchart.

\begin{tikzpicture}
 \foreach\code in {\langle code \rangle} {
 \wheelchart[
 for loop end=\langle code \rangle]
 {\langle wheelchart data \rangle}
 }
\end{tikzpicture}

This key is similar to the key \texttt{for loop end} but the \texttt{\langle code \rangle} given to this key will be executed at the end of the body of these for loops.

\begin{tikzpicture}
 \foreach\code in {\langle code \rangle} {
 \wheelchart[
 for loop start=\langle code \rangle]
 {\langle wheelchart data \rangle}
 }
\end{tikzpicture}

This key is similar to the key \texttt{for loop end} but the \texttt{\langle code \rangle} given to this key will be executed at the start of the body of the for loops.

\begin{tikzpicture}
 \foreach\value in {\langle value \rangle} {
 \wheelchart[
 gap=\langle value \rangle]
 {\langle wheelchart data \rangle}
 }
\end{tikzpicture}

The \texttt{\langle value \rangle} of this key defines half the distance between two slices of the wheelchart. This key does \texttt{not} apply if a plot is used.

\begin{tikzpicture}
 \foreach\angle in {\langle angle \rangle} {
 \wheelchart[
 gap max angle=\langle angle \rangle]
 {\langle wheelchart data \rangle}
 }
\end{tikzpicture}

If the value of the key \texttt{gap} is too large then a slice can partly disappear such as for example below when \texttt{gap max angle} is 155°. The \texttt{\langle angle \rangle} of the key \texttt{gap max angle} determines the inner arc of the slice as illustrated in the examples below.
The \texttt{gap polar} key defines half the polar gap in degrees between two slices of the wheelchart. Note the difference between the keys \texttt{explode}, \texttt{gap} and \texttt{gap polar}. This is illustrated in the examples below.
The \texttt{\textbackslash wheelchart\textbackslash gap radius} key will be added to \texttt{inner radius} and subtracted from \texttt{outer radius}.

The items in the \texttt{(list)} determine the names in the macros \texttt{\langle prefix\rangle\langle name\rangle}.

The \texttt{(prefix)} is used in the macros \texttt{\langle prefix\rangle\langle name\rangle}.
This key contains the \text{text} which will be placed at each slice of the wheelchart. The \text{text} is placed in a node. The style of this node is given as follows. First, the option align=left is given. Thereafter, the style of the key \text{inner data style} is added.

These keys determine the position of the contents of the key \text{inner data} similar as the corresponding keys for the key \text{data}. No lines are drawn for the inner data.

This key accepts a list of keys which will be applied to the node where the contents of the key \text{inner data} is placed.

This key accepts a list of keys which will be applied to the plot determined by the key \text{inner plot}.

The \text{value} of this key defines the inner radius of the wheelchart.

If the key \text{legend row} is used then the maximum number of times that the \text{code} given to the key \text{legend row} appears on one row is determined by \text{number}. The environment (for example \text{tabular}, \text{tabularx} from the package \text{tabularx}, \text{tabular} from the package \text{tabular} or \text{tblr} from the package \text{tabularxarray}) which contains the macro \text{\WClegend} needs to have a suitable column specification according with \text{number} and the key \text{legend row}.

The \text{code} given to this key will be executed for each slice of the wheelchart.

If true then only the legend is constructed. This does not apply to the key \text{legend entry}. In this case it is not necessary to place the command \text{\wheelchart} in a \text{tikzpicture} environment.
\usepackage{tikzlings}
\wheelchart[
 header={animal,accessory},
 legend columns=3,
 legend only,
 legend row=\{\tikz{\scale=0.3}{\csname \WCanimal\endcsname\signpost={\WCcount, \WCaccessory} \} & \WCanimal}\},
 legend={\%\begin{tabular}{*{3}{cl}}
 \multicolumn{6}{c}{\WCtotalcount{} animals from the package \texttt{tikzlings}} \\
 \WClegend\hline
 \end{tabular} \},
 separator columns={},
 separator rows={},
 value=1
]{
 bear basket;
 bee book;
 bug chef;
 cat crown;
 elephant football;
 koala handbag;
 owl hat;
 panda icecream;
 penguin milkshake;
 snowman santa;
 squirrel shovel
}

\wheelchart/legend row=⟨\code⟩
(no default)

If this key is set then a legend consisting of rows for an environment such as \texttt{tabular}, \texttt{tabularx}, \texttt{tabulary} from the package \texttt{tabularx}, \texttt{tabulary} from the package \texttt{tabulary} or \texttt{tblr} from the package \texttt{tabularray} is constructed using the \langle code\rangle for each slice of the wheelchart.

If a \texttt{tblr} environment from the package \texttt{tabularray} is used then the option \texttt{expand=\WClegend} needs to be given to this \texttt{tblr} environment and \texttt{\UseTblrLibrary{counter}} is required.

The maximum number of times that the \langle code\rangle appears on one row is determined by the key \texttt{legend columns}.

The code automatically inserts \& and \\ after the \langle code\rangle if necessary.

The result is stored in the macro \texttt{\WClegend}.
\usepackage{tabularray} \useTblrLibrary{counter,siunitx}
\begin{tikzpicture}
\wheelchart[
after slices={
 \pgfdeclareradialshading{WCshading}{\pgfpoint{0cm}{0cm}}{
 color(0bp)=(\WCvarB);
 color(16.66666bp)=(\WCvarB);%2/3 * 25bp
 color(20.83333bp)=(\WCvarB!10);%2.5/3 * 25bp
 color(25bp)=(\WCvarB);
 color(50bp)=(\WCvarB)
 }
 \shade[even odd rule,shading=WCshading] (0,0) circle[radius=3] circle[radius=2];
},
data=,
legend row={\tikz\fill[\WCvarB] (0,0) rectangle (0.3,0.3);%}
& \WCvarC & \WCvarA & \WCpercentaged\tikz\node[anchor=west]{\WCvarD}
},
legend={
 \node[anchor=west] at (3.5,0) {\begin{tblr}[expand=\WClegend]{
colspec={llS[table-format=3.0]S[table-format=2.0{\unit{\percent}}]l},
column{1}={rightsep=0pt,appto={\,}},
column{2}={leftsep=0pt},
cell{2-Y}{4}={appto={\,\unit{\percent}}},
row{1}={guard}
}\end{tblr}\node[anchor=west]{\WClegend}\node\textbf{\textit{Fruit}} & \textbf{\textit{Value}} & \textbf{\textit{Percentage}} & \textbf{\textit{Vitamins}}\vrule\node\textbf{\textit{Total}} & \textbf{\textit{\WCtotalnum}} & \node|};
},
slices style={
 fill=none,\node\clip}
}\exampleforthismanual\end{tikzpicture}

\wheelchart/lines={\langle value\rangle} \hfill (default 1, initially 0)
The \textit{value} is used in the positioning of the contents of the key \textit{data}. The end point of the lines is determined similarly but without the key \textit{data sep}.

\begin{tikzpicture}
\def\WCtest#1#2{
 \pgfmathparse{\WCpercentage>10?"#1":"#2"}
 \pgfmathresult
}\wheelchart[
data=\WCtest{\WCperc},
lines=\WCpercentage>10?0:0.5},
lines style=(dotted,thick),
pie,
slices style={
 bottom color=\WCvarB,
top color=\WCvarB!80!black,
 shading angle=\bymidangle-90}
],
wheel data=\WCtest{\WCperc}\exampleforthismanual\end{tikzpicture}

\wheelchart/lines angle pos={\langle value\rangle} \hfill (no default, initially 0.5)
These keys are similar to the corresponding keys for data but determine the start point of the lines.

If the (value) of this key is nonzero and lines ext fixed is false then the lines between the wheelchart and the contents of the key data will be extended horizontally with a length defined by (value).

The default direction in which the lines between the wheelchart and the contents of the key data will be extended horizontally if lines ext ≠ 0 is determined by Table 2 and illustrated in the following example. This can be overruled by giving an explicit value to this key. Note that rounding errors can occur in the computation of the angle which is used to determine the default direction according to Table 2.

The direction in which the lines between the wheelchart and the contents of the key data will be extended horizontally if lines ext ≠ 0 and if the key lines ext dir is not used

<table>
<thead>
<tr>
<th>Angle (up to rounding errors)</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 90 – lines ext dir sep</td>
<td>right</td>
</tr>
<tr>
<td>90 – lines ext dir sep, 90 + lines ext dir sep</td>
<td>value of the key lines ext top dir</td>
</tr>
<tr>
<td>90 + lines ext dir sep, 270 – lines ext dir sep</td>
<td>left</td>
</tr>
<tr>
<td>270 – lines ext dir sep, 270 + lines ext dir sep</td>
<td>value of the key lines ext bottom dir</td>
</tr>
<tr>
<td>270 + lines ext dir sep, 360</td>
<td>right</td>
</tr>
</tbody>
</table>

Table 2: The direction in which the lines between the wheelchart and the contents of the key data will be extended horizontally if lines ext ≠ 0 and if the key lines ext dir is not used.
\usetikzlibrary{patterns}
\begin{tikzpicture}[font=\ttfamily]
\def\WClinesextdirsep{10}
\wheelchart[
 data(1,6)=\text{lines ext top dir},
 data(2)=\text{right},
 data(3,4)=\text{lines ext bottom dir},
 data(5)=\text{left},
 data angle pos=\WClistdap,
 data sep=0,
 inner data angle pos{1,4}=0.1,
 inner data angle pos{3,6}=0.9,
 inner data pos=1,
 inner data sep=0.4,
 inner data style=(\text{anchor=\WClistia}),
 lines=0.6,
 lines(1,3)=0.2,
 lines angle pos=\WClistdap,
 lines ext,
 lines ext dirsep=\WClinesextdirsep,
 lines sep(list)=(0.7,0.2,0.7),
 slice{1,3,4,6}=\{
 arc=->,
 inner data=\text{lines ext dirsep},
 value=\WClinesextdirsep
 },
 slices style=(\text{draw},
 pattern=\WClistpattern
),
 total count=6,
 value(2,5)=180-2*\WClinesextdirsep,
 WClistdap=(0.9,0.2,0.1),
 WClistia=(west,east),
 WClistpattern=(crosshatch,dots,crosshatch)
]{}
\end{tikzpicture}

/wheelchart/lines ext dirsep\{\langle angle\rangle\} \hspace{1cm} (no default, initially 0)

This key determines half the angle in degrees of the segment to which the keys lines ext bottom dir
and lines ext top dir apply.

/wheelchart/lines ext fixed\{\langle boolean\rangle\} \hspace{1cm} (default true, initially false)

If true, the line between the wheelchart and the contents of the key data will be extended horizontally
till the x coordinate determined by the keys lines ext fixed left and lines ext fixed right.

/wheelchart/lines ext fixed left\{\langle value\rangle\} \hspace{1cm} (no default)

/wheelchart/lines ext fixed right\{\langle value\rangle\} \hspace{1cm} (no default)

If lines ext fixed is true, the lines are extended horizontally initially to the right till the x coordinate
outer radius + lines sep + lines ext and to the left till the opposite of this x coordinate. This can be overruled by giving an explicit value to the key lines ext fixed left and/or lines ext fixed right.

/wheelchart/lines ext left anchor\{\langle anchor\rangle\} \hspace{1cm} (no default, initially mid east)

/wheelchart/lines ext right anchor\{\langle anchor\rangle\} \hspace{1cm} (no default, initially mid west)

The direction in which the lines between the wheelchart and the contents of the key data will
be extended horizontally if lines ext \neq 0 \hspace{1cm} Anchor of the key data

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>\text{value of the key lines ext left anchor}</th>
<th>\text{value of the key lines ext right anchor}</th>
</tr>
</thead>
</table>

Table 3: Anchor of the key data in the case that lines ext \neq 0.
These keys are similar to the corresponding keys for `data` but determine the start point of the lines.

This key accepts a list of keys which will be applied to the lines drawn by the key `lines`.
\usepackage{siunitx} \usetikzlibrary{decorations.markings}
\begin{tikzpicture}
\wheelchart[
 data=\WCperc,
 data angle pos{4}=0.2,
 % data style={outer sep=4pt},
 legend columns=2,
 legend row={\tikz\fill[\WCvarB] (0,0) circle[radius=0.15]; & \WCvarC & \WCvarA},
 legend=
 \node[anchor=north,draw,rounded corners,thick]
 at (0,-4.5) {
 \begin{tabular}{*{2}{l@{ }lr}}\WClegend\
 \end{tabular}
 },
 lines=0.5,
 lines ext=1,
 lines ext bottom dir=left,
 lines ext dirsep=1,
 lines ext fixed,
 lines ext top dir=right,
 lines sep=0,
 lines style={
 \WCvarB,
postaction=decorate,
 decoration={
 markings,
 mark at position 1 with {
 \fill[\WCvarB] (0,0) circle[radius=0.15];
 }
 }
 },
 start angle=331.2
]{\exampleforthismanual}
\wheelchart[
 data=,
 radius={1.5}{2},
 slices style=\WCvarB!70,
 start angle=331.2
]{\exampleforthismanual}
\end{tikzpicture}

\begin{tikzpicture}
\wheelchart[
 data sep=0,
 data style={
 inner sep=0pt,
 shift={(0,0.1)}
 },
 lines=0.5,
 lines ext=1.2,
 lines ext bottom dir=right,
 lines ext dirsep=1,
 %lines ext fixed,
 lines ext left anchor=base west,
 lines ext right anchor=base east,
 lines ext top dir=left,
 lines pos=0.5,
 lines sep=0,
 %lines style=\WCvarB,
 start angle=331.2
]{\exampleforthismanual}
\end{tikzpicture}
Apricot: 14
Lime: 40
Melon: 20
Olive: 16
Peach: 28
Plum: 32
Strawberry: 50

\usetikzlibrary{decorations.markings}
\begin{tikzpicture}
\wheelchart[
data=
WCvarC: WCvarA,
data angle shift=WCvarG,
data sep=0,
data style={draw=WCvarB,fill=WCvarB/20},
lines=1.5,
lines ext=1,
lines sep=-1,
lines style={
 Black,
 postaction=decorate,
 decoration={
 markings,
 mark=at position 0 with {\fill[Black] (0,0) circle[radius=0.15];}
 }
},
pie,
start angle=331.2
]\(\exampleforthismanual\)
\end{tikzpicture}

/wheelchart/middle={(text)} (no default, initially empty)
This key contains the (text) which will be placed at the center of the wheelchart. The (text) is placed in a node. The style of this node is given as follows. First, the option align=center is given. Thereafter, the style of the key middle style is added.

/wheelchart/middle fill={(options)} (style, no default, initially empty)
If this key is set then the middle of the wheelchart will be filled with this style. This key does not apply if a plot is used.
This key accepts a list of keys which will be applied to the node where the contents of the key `middle` is placed.

This key defines the `<name>` of the local bounding box around the wheelchart.

This key is similar to the key `inner plot` but determines the outer parts of the slices of the wheelchart.

```latex
\begin{tikzpicture}
\wheelchart[
    counterclockwise,
    middle fill={
        Green,
        draw=Red,
        ultra thick
    },
    radius={0.8*\WCcount}\(0.4+0.8*\WCcount)\,
    slices style={
        draw=Blue,
        fill=none,
        ultra thick
    },
    start angle=0,
    total angle=300,
    total count=4
]{}
\end{tikzpicture}
```
This key accepts a list of keys which will be applied to the plot determined by the key `outer plot`.

```
/wheelchart/outer plot style={⟨options⟩}  
(style, no default, initially empty)
```

This key allows for customizing the appearance of the outer plot.

```
/wheelchart/outer radius={⟨value⟩}  
(no default, initially 3)
```

The `⟨value⟩` of this key defines the outer radius of the wheelchart.

```
/wheelchart/parse=pgfmath\l3fp  
(no default, initially pgfmath)
```

`pgfmath` In this case, the values of applicable keys will be parsed with `\pgfmathparse`.
`\l3fp` In this case, the values of applicable keys will be parsed with `\fp_eval:n`.

```
/wheelchart/perc precision={⟨number⟩}  
(no default, initially 0)
```

This key defines the number of decimals up to which the percentage in the macros `\WCperc` and `\WCpercentagerounded` are rounded.

```
/wheelchart/pie={⟨boolean⟩}  
(default true, initially false)
```

If true, the inner radius of the wheelchart is set to 0.

```
/wheelchart/plot={⟨code⟩}  
(no default)
```

This key sets `inner plot` and `outer plot`. Since the `let operation` from the TikZ library `calc` is used, it is not possible to use the variable names `\n`, `\p`, `\x` and `\y` inside the `⟨code⟩`.

Note that positions depend on the `domain` and not on the length of the `plot`. For example below, `data angle pos=0.5`. The corresponding value of the `domain` is 1 which gives the x coordinate 1 which is not in the middle of the plot. Whereas `wheel data angle pos=sqrt(2)/2`. The corresponding value of the `domain` is $\sqrt{2}$ which gives the x coordinate 2 which is in the middle of the plot.
\begin{tikzpicture}
\wheelchart[
 domain=0:2,
 plot=\{(\#1)^2,\#2\},
 wheel data=text B,
 wheel data angle pos=\sqrt(2)/2
]{1/BrickRed/text A}
\end{tikzpicture}

\begin{tikzpicture}
\wheelchart[
 plot=\{(\#1):0.5*(\sin(\#1*3)+1)+\#2\}
]{\exampleforthismanual}
\end{tikzpicture}

\begin{tikzpicture}
\wheelchart[
 domain=0:720,
 gap polar=5,
 plot=\{(\#1*3.5/180),\sin(\#1)-\#2\},
 radius=\{(0),(2)\},
 value=1,
 wheel data=\WCcount,
 wheel data pos=0.5
]{\exampleforthismanual}
\end{tikzpicture}
\begin{tikzpicture}
\wheelchart[
 arc data=\WCvarC,
 arc data dir=(\WCendangle<180?-1:1),
 arc data pos=0.5,
 data=,
 domain=0:360,
 plot=((#1):
 (((#1)*\pi/180+15)^2-1)/300
 +(\#2)-0.25),
 radius=(0){0.5},
 slices arrow={1}{0},
 value=\sqrt{3+\WCcount*\pi*(\pi+6)/7}-
 \sqrt{3+(\WCcount-1)*\pi*(\pi+6)/7}
]\{\exampleforthismanual\}
\end{tikzpicture}

\begin{tikzpicture}
\pgfkeys{
 /wheelchart,
 gap,
 radius={1.3}{2},
 start angle=180*(1-2/\WCtotalcount),
 value=1
}
\wheelchart[
 plot={(#1)*cos(180/\WCtotalcount)/cos(Mod(#1,360/\WCtotalcount)-180/\WCtotalcount)}
]\{\exampleforthismanual\}
\wheelchart[
 at={(8,0)},
 slices inner arrow={-cot(90*(1-2/\WCtotalcount))}{0},
 slices outer arrow={cot(90*(1-2/\WCtotalcount))}{0}
]\{\exampleforthismanual\}
\end{tikzpicture}

/\wheelchart/plot style={\{options\}} (style, no default, initially empty)
This key sets inner plot style and outer plot style.

/\wheelchart/radius={\{inner radius\}}{\{outer radius\}} (no default)
This key defines the inner and outer radius of the wheelchart.
This key determines the \langle number\rangle of samples used in the plots.

(no default, initially 25)

The \langle wheelchart data\rangle in the command \texttt{\wheelchart} is a list in which the items are separated by the value of the key separator columns. Each item in this list corresponds to one slice of the wheelchart and consists of data separated by the value of the key separator columns.

(no default)

If this key is set then the shape of the slices of the wheelchart is defined by \langle path\rangle.

In the following example, a ; is placed at the beginning of the argument for the key \texttt{slices} because there is no path to be filled. Thereafter, a node is placed still within the argument for the key \texttt{slices}.
Below we list some keys to modify the shape of the slices. These keys only affect the shape of the slices and not the computation of the inner and outer plot. In particular, these keys do not affect the placement of arc data, data, inner data, lines, wheel data and wheel lines. If this placement should be changed then the keys inner plot and outer plot can be used.

/wheelchart/slices arc=((value 1)){{(value 2)}}

This key sets slices end arc and slices start arc but uses the opposite of (value 1) for slices start arc.
/wheelchart/slices arc inner end=(boolean) (default true, initially false)
If true then the keys slices end arc, slices inner arc and slices start arc are set such that the inner part and the end of each of the slices of the wheelchart form one arc and such that the start has the opposite curvature as the end.

/wheelchart/slices arc inner end start=(boolean) (default true, initially false)
If true then the keys slices end arc, slices inner arc and slices start arc are set such that the inner part and the end of each of the slices of the wheelchart form one arc and such that the start has the same curvature as the end.
\begin{tikzpicture}
\foreach \a/\x in {-60/0,0/4.5,60/10}{
\wheelchart[
 at={(\x,0)},
 radius=(0.66)(2),
 slices arc inner end start,
 slices inner angle shift=\a,
 slices style={fill=none,draw=Turquoise,ultra thick},
 total count=20
]{}}
\end{tikzpicture}

/wheelchart/slices arc inner start=(boolean) \hspace{1cm} \text{(default true, initially false)}
If true then the keys \text{slices end arc, slices inner arc} and \text{slices start arc} are set such that the inner part and the start of each of the slices of the wheelchart form one arc and such that the end has the opposite curvature as the start.

\begin{tikzpicture}
\wheelchart[
 middle=\
 \wheelchart[
 \slices arc\\
 \slices inner\\
 angle shift=90
],
 middle style={font=\ttfamily},
 slices arc inner start,
 slices inner angle shift=90
]{
 1/Goldenrod/,
 1/Mahogany/,
 1/JungleGreen/,
 1/RoyalBlue/}
\end{tikzpicture}

/wheelchart/slices arc inner start end=(boolean) \hspace{1cm} \text{(default true, initially false)}
If true then the keys \text{slices end arc, slices inner arc} and \text{slices start arc} are set such that the inner part and the start of each of the slices of the wheelchart form one arc and such that the end has the same curvature as the start.
This key modifies the shape of the slices according to the 7 arguments. Here, \langle arg 1 \rangle must be end, inner, outer or start and \langle arg 2 \rangle, \langle arg 3 \rangle and \langle arg 4 \rangle must be inner end, inner start, outer end or outer start. For example, the key slices arc inner end sets slices arc match={inner}{1}{-1}{1}{inner end}{inner start}{outer end}. If true then the keys slices end arc, slices outer arc and slices start arc are set such that the outer part and the end of each of the slices of the wheelchart form one arc and such that the start has the opposite curvature as the end.

If true then the keys slices end arc, slices outer arc and slices start arc are set such that the outer part and the end of each of the slices of the wheelchart form one arc and such that the start has the same curvature as the end.
Apricot Lime Melon Olive Peach Plum Strawberry

slices arc outer end start

\begin{tikzpicture}
\wheelchart[
data=,
gap polar=5,\
middle=(slices arc\% outer end start\%),\nmiddle style={\ttfamily},\nslices arc outer end start,\nvalue=1,\nwheel data=\WCvarC,\n]\exampleforthismanual\end{tikzpicture}

\begin{tikzpicture}
\wheelchart[
data=,\ngap=0.1,\nslices arc inner start,\nslices arc outer start,\nslices style={\WCvarB!50,\ndraw=\WCvarB,\nultra thick},\nvalue=1,\nwheel data=\WCcount,\nwheel data pos=0.8,\n]\exampleforthismanual\end{tikzpicture}

/wheelchart/slices arc outer start={boolean} (default true, initially false)

If true then the keys slices end arc, slices outer arc and slices start arc are set such that the outer part and the start of each of the slices of the wheelchart form one arc and such that the end has the opposite curvature as the start.
\begin{tikzpicture}
\foreach \a/\x in {0/0,45/5,90/10} {
\wheelchart[
 at={\x,0},
 data=,
 gap,
 radius={0.66}{2},
 slices arc outer start,
 slices outer angle shift=\a,
 value=1
]{\exampleforthismanual}
}
\end{tikzpicture}

//wheelchart/slices arc outer start end=\textit{boolean} \hfill (default true, initially false)

If true then the keys slices end arc, slices outer arc and slices start arc are set such that
the outer part and the start of each of the slices of the wheelchart form one arc and such that the end
has the same curvature as the start.

//wheelchart/slices arrow=\{\textit{value 1}\}\{\textit{value 2}\} \hfill (no default)

This key is similar to the key slices arc but draws an arrow.

\begin{tikzpicture}
\wheelchart[
 gap=0.3,
 slices arrow={1}{-1}
]{\exampleforthismanual}
\end{tikzpicture}

//wheelchart/slices end arc=\{\textit{value 1}\}\{\textit{value 2}\} \hfill (no default)

This key determines the end of the slice.

The effect of \textit{value 1} and \textit{value 2} is shown in the figure and the table below.
If \textit{value 1} > 0 then the arc points outwards the slice. If \textit{value 1} < 0 then the arc points inwards
the slice. Here, outwards and inwards are relative to the orientation of the four-sided polygon formed
by the points whose coordinates are determined by the inner and outer radius of the first slice and the
start angle and the angle at the inverse of the key samples between the start angle and the end angle
of the first slice. If the start angle and the end angle of the first slice are equal then the end angle
of the last slice is used instead. If this test is inconclusive then the orientation is set according to the key
counterclockwise.
If \textit{value 1} = 0 then a line segment is drawn.
If \textit{value 1} and \textit{value 2} are negative then an arc is drawn which behaves the same as an arc with
\textit{value 2} = 0 and such that its radius matches the radius of the arc corresponding to setting \textit{value 1}
to its opposite. This is illustrated in the table below.
\begin{tikzpicture}
\wheelchart[
 for loop start={
 \definecolor{WCcolor}{wave}{
 \fpeval{380+\WCcount-1*340/(\WCtotalcount-1)}
 }
 \foreach \i in {1,...,\WCtotalcount} {
 \node at (\i*360/\WCtotalcount,0) {
 \textcolor{WCcolor}{\i}
 };
 }
 },
 gap polar=180/\WCtotalcount,
 radius={1.5}{3},
 slices end arc={-0.6}{0},
 slices start arc={1.2}{0},
 slices style=WCcolor,
 total count=20
]{}

\end{tikzpicture}

This key is similar to the key \texttt{slices end arc} but draws an arrow.

\texttt{/wheelchart/slices end arrow=\{\langle value 1\rangle\}\{\langle value 2\rangle\}}

This key sets the \texttt{to} path operation for the end of the slice. The angle at the inner side is determined by \langle value 1\rangle and the angle at the outer side is determined by \langle value 2\rangle.

\texttt{/wheelchart/slices inner angle reduce=\{\langle angle\rangle\}}

This key sets \texttt{slices inner end angle shift to} \langle angle\rangle and \texttt{slices inner start angle shift to} \langle angle\rangle.

\texttt{/wheelchart/slices inner angle shift=\{\langle angle\rangle\}}

(no default)
This key sets \texttt{slices inner end angle shift} and \texttt{slices inner start angle shift} to \texttt{(angle)}.

\begin{tikzpicture}
\wheelchart[
data=,
middle=
 {\%
slices inner\%
angle shift=90\%
},
middle style=(font=\textttfamily),
slices inner angle shift=90
]{\exampleforthismanual}
\end{tikzpicture}

\begin{tikzpicture}
\wheelchart[
data=,
gap,
radius={(1/3)},
slices arc={0.5}{0},
slices inner angle shift=45,
value=1,
wheel data=\WCvarC,
wheel data angle pos=0.8
]{\exampleforthismanual}
\end{tikzpicture}
\begin{tikzpicture}
\foreach \a/\x in {-60/0,0/5.6,60/10}
\wheelchart[
at={(\x,0)},
radius={0.66}{2},
slices arc inner start,
slices inner angle shift=\a,
slices style=[fill=\WClistcolors],
total count=40,
WClistcolors={RedOrange,none}]{}}
\end{tikzpicture}

1 Apricot
2 Lime
3 Melon
4 Olive
5 Peach
6 Plum
7 Strawberry

This key is similar to the key slices end arc but sets the inner part of the slice.

/wheelchart/slices inner arc tangent=(boolean) (default true, initially false)
If true then the key slices inner arc is set such that the arc is tangent to the end and start of the slice if possible. Note that this is not possible for all settings for keys such as plot and slices inner angle shift.

\begin{tikzpicture}
\wheelchart[
clockwise,
data=,
gap=0.1,
middle=slices inner\ arc tangent,
middle style={font=\ttfamily},
slices inner arc tangent,
slices style={
\draw=\WCvarB,
fill=\WCvarB/50,
ultra thick
},
value=1]
\end{tikzpicture}

This key is similar to the key slices end arrow but sets the inner part of the slice.

/wheelchart/slices inner arrow={⟨value 1⟩}{⟨value 2⟩} (no default)
The end angle of the inner part of the slice will be modified such that the angle between the end and
the inner part of the slice is shifted with \langle angle \rangle (taking into account the key \texttt{counterclockwise}). The
behavior of this key depends on whether a plot is used.

This key is similar to the key \texttt{slices inner end angle shift} but modifies the start angle of the inner
part of the slice.

This sets the \texttt{to} path operation for the inner part of the slice. The angle at the start is determined
by \langle value 1 \rangle and the angle at the end is determined by \langle value 2 \rangle.

This key sets \texttt{slices outer end angle shift} to \texttt{-\langle angle \rangle} and \texttt{slices outer start angle shift} to \texttt{\langle angle \rangle}.

This key sets \texttt{slices outer end angle shift} and \texttt{slices outer start angle shift} to \langle angle \rangle.
This key is similar to the key `slices end arc` but sets the outer part of the slice.

If true then the key `slices outer arc` is set such that the arc is tangent to the end and start of the slice if possible. Note that this is not possible for all settings for keys such as `plot` and `slices inner angle shift`.

\begin{tikzpicture}
\wheelchart[
 data=,
 gap=0.1,
 middle=slices outer\ arc tangent,
 middle style={font=\ttfamily},
 slices outer arc tangent,
 slices style={
 draw=\WCvarB,
 fill=\WCvarB!50,
 ultra thick
 },
 value=1
]
\end(tikzpicture)
This key is similar to the key `slices end arrow` but sets the outer part of the slice.

The end angle of the outer part of the slice will be modified such that the angle between the end and the inner (not the outer) part of the slice is shifted with \(\langle \text{angle} \rangle \) (taking into account the key `counterclockwise`). The behavior of this key depends on whether a plot is used.

\[
\begin{tikzpicture}
\pgfkeys{/wheelchart, data=, radius=\{1\}{1.5}, value=1}
\wheelchart[at={(3.25,0)}, slices outer arrow=\{0\}{0}]
\wheelchart[at={(6.5,0)}, slices inner arrow=\{0\}{0}, slices outer arrow=\{0\}{0}]
\end{tikzpicture}
\]

\[
\begin{tikzpicture}
\foreach/r/s/a in \{3/0.5,2/15/1,1/30/0.7\}{
\wheelchart[
 radius=\{0.5\}{r},
 slices outer arrow=\{a\}{0},
 slices style={
 fill=\{\WClistcolors!20, draw=\{\WClistcolors, ultra thick, double
 },
 start half=\s,
 total count=12, \WClistcolors={CarnationPink,Orchid}
}]
}
\end{tikzpicture}
\]

```
\begin{tikzpicture}[font=\scriptsize]
\foreach/a/x in \{1/0,\tan(180/\text{\textbackslash{}WCTotalcount})/5\}{
\wheelchart[ at={(a,x)}, data=, gap, radius=\{0.66\}{a},
 slices outer arrow=\{a\}{0}, start half, value=1, wheel data=\textbackslash{}WC\textbackslash{}varC
]\}\end{tikzpicture}
\end{exampleforthemanual}
```
This key is similar to the key `slices outer end angle shift` but modifies the start angle of the outer part of the slice.

wheelchart/slices outer to={⟨value 1⟩}{⟨value 2⟩}
(no default)

This key sets the `to` path operation for the outer part of the slice. The angle at the start is determined by `⟨value 1⟩` and the angle at the end is determined by `⟨value 2⟩`.

/*wheelchart/slices pos={⟨value⟩}*
(no default, initially 0.5)

This key determines the position of the slices if the key `slices` is used similar as the corresponding key for the key `data`.

/*wheelchart/slices scope={⟨options⟩}*
(style, no default, initially empty)

This key accepts a list of keys which will be applied to the scope in which the slices of the wheelchart, the wheel lines determined by the key `wheel lines` and the different kinds of data are placed.
This key determines the position of the slices if the key `slices` is used similar as the corresponding key for the key `data`.

This key is similar to the key `slices end arc` but sets the start of the slice.

This key is similar to the key `slices end arrow` but sets the start of the slice.

This key sets the `to` path operation for the start of the slice. The angle at the inner side is determined by `value 1` and the angle at the outer side is determined by `value 2`.

This key defines the style of the slices of the wheelchart.

This key sets `slices end to` and `slices start to` but uses the opposite respective values for `slices start to`.
\begin{tikzpicture}[looseness=2]
 \wheelchart[
 radius=(1)(3),
 slices inner angle shift=90,
 slices inner arc=(0)(0),
 slices outer to=(70)(70),
 slices style list=(Maroon,Salmon),
 slices to=(30)(30),
 total count=6
]
\end{tikzpicture}

\wheelchart/slice\{⟨range⟩\}={⟨options⟩}

This key accepts a list of keys from the wheelchart key family. The \(⟨range⟩\) is mandatory and must be non-empty. It is processed with \texttt{\foreach} with the option \texttt{parse=true}. Hereafter the elements are processed with \texttt{\fp_eval:n}. The \(⟨options⟩\) will only be applied to a slice if the number of the slice is in the \(⟨range⟩\). The \(⟨range⟩\) only makes sense for a key which is processed for each slice. For example, the \(⟨range⟩\) does not make sense for the key \texttt{middle}.

\wheelchart/start angle={⟨angle⟩}

(no default, initially 90)

This key defines the \(⟨angle⟩\) in degrees at which the first slice of the wheelchart starts.

\wheelchart/start half={⟨angle⟩}

(default 90)

This key sets the start angle such that the middle of the first slice of the wheelchart is positioned at \(⟨angle⟩\) in degrees.

\wheelchart/title={⟨text⟩}

(no default, initially empty)

This key contains the \(⟨text⟩\) which will be placed above the wheelchart. The \(⟨text⟩\) is placed in a node. The \(x\) coordinate of this node is the \(x\) coordinate of the center of the wheelchart, which is defined by the key \texttt{at}. In general, this is not the same as the \(x\) coordinate of the center of the local bounding box around the wheelchart. The \(y\) coordinate of this node is at a value determined by the key \texttt{title sep} above the north of the local bounding box around the wheelchart. The style of this node is given as follows. First, the options \texttt{anchor=south,align=center} are given. Thereafter, the style of the key \texttt{title style} is added.

\wheelchart/title left={⟨text⟩}

(no default, initially empty)

This key contains the \(⟨text⟩\) which will be placed above left of the wheelchart. The \(⟨text⟩\) is placed in a node. This node is placed at a value determined by the key \texttt{title left sep} above the north west of the local bounding box around the wheelchart. The style of this node is given as follows. First, the options \texttt{anchor=south west,align=left} are given. Thereafter, the style of the key \texttt{title left style} is added.

\wheelchart/title left sep={⟨value⟩}

(no default, initially 0.5)

The node where the contents of the key \texttt{title left} is placed is at \(⟨value⟩\) above the north west of the local bounding box around the wheelchart.

\wheelchart/title left style={⟨options⟩}

(style, no default, initially empty)
This key accepts a list of keys which will be applied to the node where the contents of the key `title` is placed.

```
/wheelchart/title sep={⟨value⟩}
```

(no default, initially 0.5)

The y coordinate of the node where the contents of the key `title` is placed is at $⟨value⟩$ above the north of the local bounding box around the wheelchart.

```
/wheelchart/title style={⟨options⟩}
```

(style, no default, initially empty)

This key accepts a list of keys which will be applied to the node where the contents of the key `title` is placed.

```
/wheelchart/total angle={⟨angle⟩}
```

(no default, initially 360)

This key defines the total $⟨angle⟩$ in degrees of the wheelchart.

```
/wheelchart/total count={⟨number⟩}
```

(no default)

If this key is set then the number of slices of the wheelchart is determined by $⟨number⟩$. Moreover, \WCvarA is defined as 1 and \WCvarB and \WCvarC are defined to be empty.

```latex
\usepackage{siunitx}
\begin{tikzpicture}
\def\n{57}
\wheelchart[
    gap=0.015, \\
    middle=\qty{\n}{\percent}, \\
    slices style=Gray, \\
    slices style{1,...,\n}=Cyan, \\
    total count=100
]{}
\end{tikzpicture}
```

```
/wheelchart/triangle proportional area={⟨width⟩}{⟨height⟩}
```

(no default)

This key configures the plot such that a triangular shape is obtained. The value is proportional to the area and not to the height. Moreover, it sets `samples=2` and `wheel data pos=0.5`. The point $(0,0)$ is at the top. This can be shifted with the key `at`.

```latex
\begin{tikzpicture}
\wheelchart[
    triangle proportional area=\{5\}{4}, \\
    value=1
]{\exampleforthismanual}
\end{tikzpicture}
```

```
/wheelchart/triangle proportional height={⟨width⟩}{⟨height⟩}
```

(no default)

This key configures the plot such that a triangular shape is obtained. The value is proportional to the height and not to the area. Moreover, it sets `samples=2` and `wheel data pos=0.5`. The point $(0,0)$ is at the top. This can be shifted with the key `at`.

```latex
\begin{tikzpicture}
\wheelchart[
    triangle proportional height=\{6\}{5}, \\
    value=2
]{\exampleforthismanual}
\end{tikzpicture}
```
This key defines the \langle value\rangle which corresponds to the size of each slice of the wheelchart.

This key locally defines a macro \WClist\langle name\rangle which gives the element in the \langle list\rangle with as index \WCcount modulo the length of the \langle list\rangle. The \langle list\rangle is expanded once and processed using a clist. In particular, blank arguments are ignored. An empty argument in the \langle list\rangle can be obtained with \{\}. Items containing a , can be obtained by surrounding it with \{ and \} such as \WClistA=\{\{a,b\},c,d\}\}. If \def\mylist{a,b,c} and \WClistA=\mylist then \WClistA gives a,b,c for each slice. On the other hand, if \WClistA/.expanded=\mylist then \WClistA alternates between a, b and c.

This key contains the \langle text\rangle which will be placed on top of each slice of the wheelchart. The \langle text\rangle is placed in a node. The style of this node is given as follows. First, the option align=left is given. Thereafter, the style of the key wheel data style is added.

These keys determine the position of the contents of the key wheel data similar as the corresponding keys for the key data.

This key accepts a list of keys which will be applied to the node where the contents of the key wheel data is placed.

If this key is set then lines with the style determined by this key will be drawn inside the slices of the wheelchart. The number of these lines depends on the value of the key value.

Below is the example from [5, Subsection 7.6] recreated with the package wheelchart.
Ratings given by 50 participants

- **ok**: 10 (20%)
- **good**: 9 (18%)
- **very good**: 3 (6%)
- **bad**: 8 (16%)
- **very bad**: 0 (0%)
- **none**: 20 (40%)

This key sets domain=0:{⟨width⟩}, plot={⟨#1⟩,⟨#2⟩}, radius=0:{⟨height⟩}, samples=2 and also wheel data pos=0.5. The point (0,0) is below left of the bar. This can be shifted with the key at.

\begin{tikzpicture}
\wheelchart[
 anchor xsep=15,
 contour=gray,
 data={''\WCvarC'' : \WCvarA{} (\WCperc),
 middle=Ratings given by\WCtotalnum{} participants,
 radius=(1.8)(2.2),
 start half=270,
 wheel lines={black!15,thick}
 }
{10/neutral/ok,
 9/good!60!white/good,
 3/good/very good,
 20/none/none,
 0/bad/very bad,
 8/bad!60!white/bad}]
\end{tikzpicture}

/wheelchart/xbar={⟨width⟩}{⟨height⟩} (no default)

This key sets domain=0:{⟨width⟩}, plot={⟨#1⟩,⟨#2⟩}, radius=0:{⟨height⟩}, samples=2 and also wheel data pos=0.5. The point (0,0) is below left of the bar. This can be shifted with the key at.

\begin{tikzpicture}
\wheelchart[
 data pos={list}={1,0},
 data style={anchor=mid},
 gap polar=0.05,
 slices arrow={1}{0},
 xbar={8}{1.5}]
\end{tikzpicture}

/wheelchart/ybar={⟨width⟩}{⟨height⟩} (no default)

This key sets domain=0:{⟨height⟩}, plot={⟨#2⟩,⟨#1⟩}, radius=0:{⟨width⟩}, samples=2 and also wheel data pos=0.5. The point (0,0) is below left of the bar. This can be shifted with the key at.

\begin{tikzpicture}
\wheelchart[
 data pos=list={1,0},
 data style=anchor=mid,
 gap polar=0.05,
 slices arrow={1}{0},
 xbar={9}{1.5}]
\end{tikzpicture}
5 Additional examples

The following example is an answer to the question on https://tex.stackexchange.com/questions/433848/is-there-a-way-to-make-sunburst-charts-multi-level-pie-charts-in-latex.
The following example is an answer to the question on https://tex.stackexchange.com/questions/447920/pie-chart-with-color-palette-info-inside-and-legend.
Source: Whitechurch Securities

Income & growth £100k portfolio

Portfolio income £3,785 or 3.79%

- Miton Multi-Cap Income 5%
- Schroder Income Maximiser 6%
- Trojan Income 6%
- CF Woodford Equity Income 7%
- Artemis Global Income 7%
- First State Global Listed Infrastructure 4%
- Lazard Global Listed Infrastructure 4%
- Legg Mason RARE Global Income 4%
- Newton Global Income 6%
- Henderson Strategic Bond 5%
- Invesco Perpetual Monthly Income Plus 5%
- Jupiter Strategic Bond 4%
- L&G All Stocks Index Linked Gilt Index 4%
- L&G Short Dated Sterling Corporate Bond Index 4%
- Royal London Short Duration Global High Yield Bond 4%
- TwentyFour Corporate Bond 4%
- TwentyFour Dynamic Bond 4%

- F&C Property Growth & Income 5%
- Aviva Multi Strategy Target Income 5%
- Invesco Perpetual Global Targeted Income 1%
- Cash 1%

PROPERTY 5%
ALTERNATIVE 10%
UK EQUITIES 24%

Fixed Income 17%
CASH 1%

Portfolio income £3,785 or 3.79%
The following example is an answer to the question on https://tex.stackexchange.com/questions/477310/cyclic-flowchart-in-tikz.

```
\usetikzlibrary {decorations.text}
\begin{tikzpicture}
\sffamily
\wheelchart[  
  data=,  
  middle=Optimized\%vibrating\% systems,  
  middle fill=RoyalBlue,  
  middle style=white,  
  radius=(1.2)(4),  
  slices={((0,0) circle[radius=0.8];},  
  slices style=\WCvarA,  
  start half,  
  value=1,  
  wheel data=\WCvarB,  
  wheel pos=0.5,  
  wheel style={  
    white,  
    align=center
  }
]  
  Green/Passive\control,  
  Maroon/Feed-\forward,  
  Orange/Active\control
\}  
\wheelchart[  
  gap polar=25,  
  radius=(2.5)(2.7),  
  slices end arrow={1}{-1},  
  slices start arrow={1}{-1},  
  slices style=Gray,  
  total count=3
]{}
\foreach\n in (-30,90,210){  
  \draw[->,MidnightBlue,ultra thick](\n:1.7)--(\n:1.3);  
}\fill[  
  top color=Gray!50,  
  bottom color=Gray,  
  draw,  
  even odd rule  
](0,0) circle[radius=3.5]  
circle[radius=4.2];
\wheelchart[  
  arc(2)=({  
    <->,  
    ultra thick  
   },  
   arc around text,  
   arc data=\WCvarA,  
   arc data pos=0.5,  
   arc pos=0.5,  
   data=,  
   gap polar=10,  
   radius=(3.5)(4.2),  
   slices style={fill=none},  
   start half=180,  
   value=1
]{  
  (Mass M, Damping D, Stiffness K),  
  Dynamic model,  
  Frequency response functions H,
}  
\end{tikzpicture}
```
6 Version history

Version 1.0 (2022/09/11) First version.

Version 2.0 (2023/12/03)

- The package now mainly uses \LaTeX{}3 syntax.
- Improved the definition of the path of the slices.
- Many internal computations are now performed with \texttt{\textbackslash fp_eval:n} instead of \texttt{pgfmath} for higher accuracy and to allow larger values. This applies in particular to the computation of \texttt{WC_percentage}, \texttt{WC_percentagerounded} and \texttt{WC_totalnum}. Hence \texttt{WC_percentagerounded} can be parsed by \texttt{siunitx} since its definition does not involve \texttt{pgfmathprintnumberto} anymore and \texttt{WC_totalnum} does not end with .0 if it is an integer.
- The number of data which can be given to each slice of the wheelchart and accessed by \texttt{WC_varA} and so on is not limited to 26 anymore.
- Added the macros \texttt{WC_countdiscrete}, \texttt{WC_eucthelinkedname}, \texttt{WC_eucthelinkednumber}, \texttt{WC_eucthelinkedpage}, \texttt{WC_eucotename}, \texttt{WC_eucotenumber}, \texttt{WC_eucotenumberofpages}, \texttt{WC_eucotethepage}, \texttt{WC_euclegenend}, \texttt{WC_plist(name)} and \texttt{(prefix)(name)}.
- Added the keys after slices, arc, arc around text, arc data, arc data align, arc data angle pos, arc data angle shift, arc data dir, arc data pos, arc data sep, arc data style, arc first half, arc pos, arc second half, arc sep, before slices, caption left sep, caption sep, data angle pos, data pos, discrete, discrete factor, discrete partitioning, discrete pic, discrete sort, discrete space at borders, domain, etoc code, etoc count total pages, etoc level, etoc name, etoc use name, expand list items, for loop end, for loop start, gap max angle, gap radius, header, header prefix, inner data angle pos, inner data angle shift, inner data pos, inner plot, inner plot style, legend columns, legend only, legend row, lines angle pos, lines angle shift, lines ext dir, lines ext fixed left, lines ext fixed right, lines pos, outer plot, outer plot style, parse, plot, plot style, samples, separator columns, separator rows, slices angle pos, slices angle shift, slices arc inner end, slices arc inner end start, slices arc inner start, slices arc inner start end, slices arc match, slices arc outer end, slices arc outer end start, slices arc outer start, slices arc outer start end, slices end to, slices inner angle reduce, slices inner angle shift, slices inner arc, slices inner arc tangent, slices inner arrow, slices inner end angle shift, slices inner start angle shift, slices inner to, slices outer angle reduce, slices outer angle shift, slices outer arc, slices outer arc tangent, slices outer arrow, slices outer end angle shift, slices outer start angle shift, slices outer to, slices pos, slices scope, slices sep, slices start to, slices to, slice\{range\}, title left sep, title sep, triangle proportional area, triangle proportional height, WC_plist(name), wheel data angle pos, wheel data angle shift, wheel data sep, xbar and ybar.
- Added the possibility to give a \texttt{\{range\}} to the keys such that the options given to the key will only be applied to a slice if the number of the slice is in the \texttt{\{range\}}.
- Added the possibility to give a \texttt{\{list\}} to the keys.
- The \texttt{\{wheelchart data\}} are not processed with \texttt{\textbackslash foreach} anymore but instead with one of \texttt{\seq_set_split:Nee}, \texttt{\seq_set_split:Nen} or \texttt{\seq_set_split:Neo} depending on the keys \texttt{expand list} and \texttt{expand list items}. Thus syntax which is specific to how \texttt{\textbackslash foreach} processes a list does not work anymore, such as the dots notation and the repeating of the last entry if some entry in the list has fewer entries than required.
- If the key \texttt{start angle} is set after the key \texttt{start half} then v1.0 preserved the setting of the key \texttt{start half}. In v2.0, the setting is determined by the key which is set last.
In v1.0, the value of the key data angle shift was also applied to inner data, lines and wheel data. In v2.0, this is not the case anymore. Instead there are now separate keys inner data angle shift, lines angle shift, wheel data angle shift and also arc data angle shift.

In v1.0, the key data sep was not applied if the key lines ext was used. In v2.0, this is not the case anymore.

In v1.0, a negative value for the key lines was not applied. In v2.0, this is not the case anymore.

References
Index

\langle prefix\rangle\langle name\rangle, 6

after slices key, 9
anchor xsep key, 9
anchor ysep key, 9
arc key, 10
arc around text key, 10
arc data key, 10
arc data align key, 10
arc data angle pos key, 10
arc data angle shift key, 10
arc data dir key, 10
arc data pos key, 11
arc data sep key, 11
arc data style key, 10
arc first half key, 11
arc pos key, 11
arc second half key, 11
arc sep key, 11
at key, 11
before slices key, 11
caption key, 11
caption left key, 12
caption left sep key, 12
caption left style key, 12
caption sep key, 12
caption style key, 12
contour key, 13
counterclockwise key, 13
data key, 13
data angle pos key, 13
data angle shift key, 13
data pos key, 13
data sep key, 13
data style key, 14
discrete key, 14
discrete factor key, 14
discrete partitioning key, 14
discrete pic key, 15
discrete sort key, 15
discrete space at borders key, 16
domain key, 17
etoc code key, 17
etoc count total pages key, 18
etoc level key, 18
etoc name key, 18
etoc use name key, 18\exampleforthismanual, 3
expand list key, 18
expand list items key, 20
explode key, 20
for loop start key, 20
gap key, 20
gap max angle key, 20
gap polar key, 21
gap radius key, 22
header key, 22
header prefix key, 22
inner data key, 23
inner data angle pos key, 23
inner data angle shift key, 23
inner data pos key, 23
inner data sep key, 23
inner data style key, 23
inner plot key, 23
inner plot style key, 23
inner radius key, 23
legend key, 23
legend columns key, 23
legend entry key, 23
legend only key, 23
legend row key, 24
tines key, 25
tines angle pos key, 25
tines angle shift key, 26
tines ext key, 26
tines ext bottom dir key, 26
tines ext dir key, 26
tines ext dirsep key, 27
tines ext fixed key, 27
tines ext fixed left key, 27
tines ext fixed right key, 27
tines ext left anchor key, 27
tines ext right anchor key, 27
tines ext top dir key, 28
tines pos key, 28
tines sep key, 28
tines style key, 28
middle key, 30
middle fill key, 30
middle style key, 31
name key, 31
outer plot key, 31
outer plot style key, 32
outer radius key, 32
parse key, 32
perc precision key, 32
pie key, 32
plot key, 32
plot style key, 34
radius key, 34
samples key, 35
separator columns key, 35
separator rows key, 35
slices key, 35
slices angle pos key, 36
slices angle shift key, 36
slices arc key, 36
slices arc inner end key, 37
slices arc inner end start key, 37
slices arc inner start key, 38
slices arc inner start end key, 38
slices arc match key, 39
slices arc outer end key, 39
slices arc outer end start key, 39
slices arc outer start key, 40
slices arc outer start end key, 41
slices arrow key, 41
slices end arc key, 41
slices end arrow key, 42
slices end to key, 42
slices inner angle reduce key, 42
slices inner angle shift key, 42
slices inner arc key, 44
slices inner arc tangent key, 44
slices inner arrow key, 44
slices inner end angle shift key, 45
slices inner start angle shift key, 45
slices inner to key, 45
slices outer angle reduce key, 45
slices outer angle shift key, 45
slices outer arc key, 46
slices outer arc tangent key, 46
slices outer arrow key, 46
slices outer end angle shift key, 47
slices outer start angle shift key, 47
slices outer to key, 48
slices pos key, 48
slices scope key, 48
slices sep key, 49
slices start arc key, 49
slices start arrow key, 49
slices start to key, 49
slices style key, 49
slices to key, 49
slice{(range)} key, 50
start angle key, 50
start half key, 50
title key, 50
title left key, 50
title left sep key, 50
title left style key, 50
title sep key, 51
title style key, 51
total angle key, 51
total count key, 51
triangle proportional area key, 51
triangle proportional height key, 51
value key, 52
\WCcount, 4
\WCcountdiscrete, 4
\WCdataangle, 4
\WCetocthelinkedname, 4
\WCetocthelinkednumber, 4
\WCetocthenamelinkedpage, 4
\WCetocthenlename, 4
\WCetocthenumber, 4
\WCetocthenumberofpages, 4
\WCetocthepage, 4
\WClegend, 4
WClist(name) key, 52
WClist(name), 4
WCmidangle, 4
WCperc, 5
WCpercentage, 5
WCpercentagerounded, 5
\WCTotalcount, 5
\WCTotalnum, 5
\WCVarA, 6
\WCVarB, 6
\WCVarC, 6
wheel data key, 52
wheel data angle pos key, 52
wheel data angle shift key, 52
wheel data pos key, 52
wheel data sep key, 52
wheel data style key, 52
wheel lines key, 52
\wheelchart, 3
\wheelchart/
 after slices, 9
 anchor xsep, 9
 anchor ysep, 9
 arc, 10
 arc around text, 10
 arc data, 10
 arc data align, 10
 arc data angle pos, 10
 arc data angle shift, 10
 arc data dir, 10
 arc data pos, 11
 arc data sep, 11
 arc data style, 11
 arc first half, 11
 arc pos, 11
 arc second half, 11
 arc sep, 11
 at, 11
 before slices, 11
 caption, 11
 caption left, 12
 caption left sep, 12
 caption left style, 12
 caption sep, 12
slices start to, 49
slices style, 49
slices to, 49
slice\{\langle range\rangle\}, 50
start angle, 50
start half, 50
title, 50
title left, 50
title left sep, 50
title left style, 50
title sep, 51
title style, 51
total angle, 51
total count, 51
triangle proportional area, 51
triangle proportional height, 51
value, 52
WClist\{name\}, 52
wheel data, 52
wheel data angle pos, 52
wheel data angle shift, 52
wheel data pos, 52
wheel data sep, 52
wheel data style, 52
wheel lines, 52
xbar, 53
ybar, 53
xbar key, 53
ybar key, 53
A The source code

\% wheelchart.sty
\% Copyright 2023 Matthias Floré
\%
\% This work may be distributed and/or modified under the
\% conditions of the LaTeX Project Public License, either version 1.3c
\% of this license or (at your option) any later version.
\% The latest version of this license is in
\% http://www.latex-project.org/lppl.txt
\% and version 1.3c or later is part of all distributions of LaTeX
\% version 2005/12/01 or later.
\%
\% This work has the LPPL maintenance status `maintained'.
\%
\% The Current Maintainer of this work is Matthias Floré.
\%
\% This work consists of the files wheelchart.pdf, wheelchart.sty,
\% wheelchart.tex and README.md.
\NeedsTeXFormat{LaTeX2e}
\RequirePackage{tikz}
\usetikzlibrary{calc}
\ProvidesExplPackage{wheelchart}{2023/12/03}{2.0}{Draw wheelcharts with TikZ}

A.1 Variables

\newcounter { g__wheelchart_WCcount_counter }
\tl_new:N \l__wheelchart二季度_etoc_name_tl
\tl_new:N \l__wheelchart二季度_expand_list_tl
\tl_new:N \l__wheelchart二季度_expand_list_items_tl
\tl_new:N \g__wheelchart二季度_inner_contour_tl
\tl_new:N \l__wheelchart二季度_key_name_tl
\tl_new:N \l__wheelchart二季度_key_range_tl
\tl_new:N \l__wheelchart二季度_legend_row_tl
\tl_new:N \g__wheelchart二季度_name_tl
\tl_new:N \g__wheelchart二季度_outer_contour_tl
\tl_new:N \l__wheelchart二季度_slices_tl
\tl_new:N \l__wheelchart二季度_slices_end_tl
\tl_set:Nn \l__wheelchart二季度_slices_end_tl
{ -- (\fp_use:c { l__wheelchart二季度_inner~end_x_fp } , \fp_use:c { l__wheelchart二季度_inner~end_y_fp }) }
\tl_new:N \l__wheelchart二季度_slices_inner_tl
\tl_set:Nn \l__wheelchart二季度_slices_inner_tl
{ arc
 [start-angle = \fp_use:N \l__wheelchart二季度_slice二季度_inner~end_angle_fp ,
 end-angle = \fp_use:N \l__wheelchart二季度_slice二季度_start_angle_fp ,
 radius = \fp_use:N \l__wheelchart二季度_inner_radius_fp
]
}
\tl_new:N \l__wheelchart二季度_slices_outer_tl
\tl_set:Nn \l__wheelchart二季度_slices_outer_tl
{ arc
 [start-angle = \fp_use:N \l__wheelchart二季度_slice二季度_outer~start_angle_fp ,
 end-angle = \fp_use:N \l__wheelchart二季度_slice二季度_outer~end_angle_fp ,
 radius = \fp_use:N \l__wheelchart二季度_outer_radius_fp
]
}
A.2 Functions

\cs_generate_variant:Nn \seq_set_split:Nnn { Nen , Neo }{ Nen , Neo }
\cs_generate_variant:Nn \tl_build_put_right:Nn { NV }{ NV }

\cs_new:Npn __wheelchart_arc_around_text:nnn #1#2#3
{__wheelchart_convex_comb_coord_plot:nnnnnn
{ draw , / wheelchart / arc_style , / wheelchart / arc_#1_half }
{ \fp_eval:n
{ \l__wheelchart_arc_data_angle_pos_fp + 0.5 * \g__wheelchart_arc_data_factor_fp *
 \sign (\l__wheelchart_arc_data_dir_fp) *
 \fp_use:c { c__wheelchart_arc_data_start_factor_\l__wheelchart_arc_data_align_tl _fp }
 + \fp_use:c { c__wheelchart_arc_data_end_factor_\l__wheelchart_arc_data_align_tl _fp }
 }
 + #2
}
{\l__wheelchart_plot_variable_fp }
{ 0 }
{ \l__wheelchart_arc_pos_fp }
{ \l__wheelchart_arc_sep_fp }
}

\cs_new:Npn __wheelchart_caption_and_title:nnnnn #1#2#3#4#5
{
__wheelchart_if_text:nn \#1
{
 \node [anchor = \#2 , align = \#3 , / wheelchart / \#1_style]
at (\$ (\#4) + (0 , \{ \#5 * (\pgfkeysvalueof { / wheelchart / \#1-sep }) \}) \$)
 \{ \pgfkeysvalueof { / wheelchart / \#1 } \};
}

\cs_new:Npn __wheelchart_convex_comb_coord_aux:n #1 { (#1) }
\cs_generate_variant:Nn __wheelchart_convex_comb_coord_aux:n { o }
\cs_new:Npn __wheelchart_convex_comb_coord_def:nnnn #1#2#3#4
{
 __wheelchart_inner_plot:nn
 { \fp_eval:n
 { (1 - (#1)) * \l__wheelchart_slice_inner_start_angle_fp
 + (#1) * \l__wheelchart_slice_inner_end_angle_fp
 + \l__wheelchart_counter_or_clockwise_fp * (#2)
 }
 \{ \fp_eval:n { \l__wheelchart_inner_radius_fp - (#4) } \} }
 ! { \fp_eval:n {#3} } !
 __wheelchart_outer_plot:nn
 { \fp_eval:n
 { (1 - (#1)) * \l__wheelchart_slice_outer_start_angle_fp
 + (#1) * \l__wheelchart_slice_outer_end_angle_fp
 + \l__wheelchart_counter_or_clockwise_fp * (#2)
 }
 }
}
\cs_new:Npn __wheelchart_convex_comb_coord:nnnn #1#2#3#4
}{ __wheelchart_convex_comb_coord_def:nnnn {#1} {#2} {#3} {#4} }

\cs_new:Npn __wheelchart_convex_comb_coord_plot_aux:nnnn #1#2#3#4
{ \path [#1] plot
\[domain = {#2} \c_colon_str {#3} ,
samples = \fp_use:N \l__wheelchart_samples_fp ,
variable = \l__wheelchart_plot_variable_fp
\]
({#4}) ;
}

\cs_generate_variant:Nn __wheelchart_convex_comb_coord_plot_aux:nnnn { nnno }

\cs_new:Npn __wheelchart_convex_comb_coord_plot:nnnnnnn #1#2#3#4#5#6#7
{ __wheelchart_convex_comb_coord_plot_aux:nnno {#1} {#2} {#3}
{ __wheelchart_convex_comb_coord_def:nnnn {#4} {#5} {#6} \g__wheelchart_half_ex_over_one_cm_fp + (#7) }
}

\cs_new:Npn __wheelchart_def_angle:nnnN #1#2#3#4
{ \path let
\p \l__wheelchart_def_angle_1 = __wheelchart_convex_comb_coord:nnnn {#1} {#2} { 0 } {#3} ,
\p \l__wheelchart_def_angle_2 = __wheelchart_convex_comb_coord:nnnn {#1} {#2} { 1 } {#3}
in
\begin{align}
&/ \text{utils} / \text{exec} = \\
&\bool_gset:Nn \g__wheelchart_def_angle_radius_shift_bool
\end{align}
}
\fp_compare_p:n
{
\y { \l__wheelchart_def_angle_2 } - \y { \l__wheelchart_def_angle_1 } == 0
&
\x { \l__wheelchart_def_angle_2 } - \x { \l__wheelchart_def_angle_1 } == 0
}
}
\bool_if:NF \g__wheelchart_def_angle_radius_shift_bool
{
\fp_gset:Nn \g__wheelchart_def_angle_angle_angle_fp
{
\atand
{
\y { \l__wheelchart_def_angle_2 } - \y { \l__wheelchart_def_angle_1 } ,
\x { \l__wheelchart_def_angle_2 } - \x { \l__wheelchart_def_angle_1 }
}
}%here \pgf@xx and so on are not used
}
}
\bool_if:NT \g__wheelchart_def_angle_radius_shift_bool
{
\path let
\p { \l__wheelchart_def_angle_1 } =
__wheelchart_convex_comb_coord:nnnn {#1} {#2} { 0 } { \fp_eval:n { (#3) + 1 / \l__wheelchart_samples_fp } } ,
\p { \l__wheelchart_def_angle_2 } =
__wheelchart_convex_comb_coord:nnnn {#1} {#2} { 1 } { \fp_eval:n { (#3) + 1 / \l__wheelchart_samples_fp } }
\in
\\[/ utils / exec =
{\fp_gset:Nn \g__wheelchart_def_angle_angle_angle_fp
{
\atand
{
\y { \l__wheelchart_def_angle_2 } - \y { \l__wheelchart_def_angle_1 } ,
\x { \l__wheelchart_def_angle_2 } - \x { \l__wheelchart_def_angle_1 }
}
\pgfmathsetmacro {#4} { Mod (\fp_use:N \g__wheelchart_def_angle_angle_fp , 360) }

\cs_new:Npn __wheelchart_def_coord_aux:nn #1#2
\{
\path let \p { l__wheelchart_coord } = (\use:c { __wheelchart_#1_plot:nn } {#2} { \fp_use:c { l__wheelchart_#1_radius_fp } })
\in
\[
\]/ utils / exec =
\{
\fp_gset:Nn \g__wheelchart_x_coord_fp
\{
\(\pgf@yy * \x { l__wheelchart_coord } - \pgf@yx * \y { l__wheelchart_coord } \) / \l__wheelchart_coord_determinant_fp
\}
\fp_gset:Nn \g__wheelchart_y_coord_fp
\{
\(\pgf@xx * \y { l__wheelchart_coord } - \pgf@xy * \x { l__wheelchart_coord } \) / \l__wheelchart_coord_determinant_fp
\}
\}
\}

\cs_new:Npn __wheelchart_def_coord:nn #1#2
\{
__wheelchart_def_coord_aux:nn #1 \fp_use:c { l__wheelchart_slice_#1_#2_angle_fp } \}
\fp_set_eq:cN { l__wheelchart_#1_#2_x_fp } \g__wheelchart_x_coord_fp
\fp_set_eq:cN { l__wheelchart_#1_#2_y_fp } \g__wheelchart_y_coord_fp
\}

\cs_new:Npn __wheelchart_def_gap:NN #1#2
\{
\}

\cs_new:Npnn \wheelchart_def // }
\fp_set:Nn #1
\{ (#2) * \text{sind} (\text{min} (\l__wheelchart_abs_half_angle_minus_new_angle_minus_gap_polar_fp , \l__wheelchart_gap_max_angle_def_fp)) \text{\<} \l__wheelchart_gap_fp
\? \text{min} (\l__wheelchart_abs_half_angle_minus_new_angle_fp , \l__wheelchart_gap_max_angle_def_fp) :
\text{asind} (\text{min} (\l__wheelchart_gap_fp / ((#2) + 1 - \text{sign} (#2)) , 1)) + \l__wheelchart_gap_polar_fp
%note the \text{min} (\ldots , 1) such that the \text{asind} is always defined
%also note the + 1 - \text{sign} (#2) such that the denominator is also nonzero if #2 = 0
\}
\}
\cs_new:Npn __wheelchart_def_macro:Nn #1#2
\{
\str_case:enF \{ \pgfkeysvalueof \{ / wheelchart / parse \} \}
\{
\text{pgfmath}
\{
\text{pgfmathparse} \{#2\}
\fp_set:Nn #1 \{ \pgfmathresult \}
\}
\{ \text{13fp} \}
\{ \fp_set:Nn #1 \{#2\} \}
\}
\{ \pgfkeys \{ / errors / unknown-choice-value / . expanded = \{ parse \} \{ \pgfkeysvalueof \{ / wheelchart / parse \} \} \} \}
\}
\cs_new:Npn __wheelchart_def_macros:n #1
\{
\str_case:enF \{ \pgfkeysvalueof \{ / wheelchart / parse \} \}
\{
\text{pgfmath}
\{
\clist_map_inline:nn \{#1\}
\text{pgfmathparse} \{ \pgfkeysvalueof \{ / wheelchart / #1 \} \}
\}
\fp_set:cn { l__wheelchart__str_map_function:nN {##1} __wheelchart_space_to_underscore:n _fp } { \pgfmathresult }

\clist_map_inline:nn {#1}
{ \fp_set:cn { l__wheelchart__str_map_function:nN {##1} __wheelchart_space_to_underscore:n _fp } { \pgfkeysvalueof { / wheelchart / ##1 } } }
{ \pgfkeys { / errors / unknown-choice-value /. expanded = { parse } { \pgfkeysvalueof { / wheelchart / parse } } } }

\cs_new:Npn __wheelchart_def_slice_angle:nnnn #1#2#3#4
{ \bool_if:NTF \l__wheelchart_plot_bool
{ \fp_set:cn { l__wheelchart_slice_#1_#2_angle_fp } { \fp_use:c { g__wheelchart_#3angle_fp } + \l__wheelchart_counter_or_clockwise_fp * ((#4) * \fp_use:c { l__wheelchart_#1_gap_fp } + \fp_use:c { l__wheelchart_slices_#1_#2_angle_shift_fp }) }

} \fp_set:cn { l__wheelchart_slice_#1_#2_angle_fp } { \fp_use:c { g__wheelchart_#3angle_fp } + \l__wheelchart_counter_or_clockwise_fp * ((#4) * \fp_use:c { l__wheelchart_#1_gap_fp } + \fp_use:c { l__wheelchart_slices_#1_#2_angle_shift_fp } - \asind \l__wheelchart_inner_radius_fp * \sind (\fp_use:c { l__wheelchart_slices_#1_#2_angle_shift_fp })) }

\cs_new:Npn __wheelchart_def_slice_keys:n #1
{
 {%note the double {{...}} such that the contents is in a group
%such that pgfkeys which are specific to the current slice are local for this slice
 \clist_if_in:NVT \l__wheelchart_slice_range_local_clist \WCcount
 {
 \pgfkeys{ / wheelchart , slice_final /. expanded = { \exp_not:v { l__wheelchart_slice\WCcount_keys_clist } } }
 \pgfkeys{/ wheelchart , slice_final_style }
 }
 #1
}

\cs_new:Npn __wheelchart_def_WClegend:
{
 \int_set:Nn \l__wheelchart_legend_columns_int
 {\fp_eval:n {ceil (\WCtotalcount \div (\pgfkeysvalueof { / wheelchart / legend-columns }))}}}
\cs_set:Npn \WClegend {}
\tl_build_begin:N \WClegend
\int_compare:nNnTF { \l__wheelchart_legend_columns_int } = { 1 }
{ \int_step_inline:nnn { 2 } { \WCtotalcount } { __wheelchart_legend_append:nn {##1} { \strut } } }
{ \int_compare:nNnF { \l__wheelchart_legend_columns_int - 1 } > { \WCtotalcount }
{\int_set:Nn \l__wheelchart_legend_rows_int
{\fp_eval:n {ceil (\WCtotalcount \div \l__wheelchart_legend_columns_int)}}}
\int_step_inline:nn { \l__wheelchart_legend_columns_int - 2 }
{ __wheelchart_legend_append:nn \#1 \strut \& \#1 + \l__wheelchart_legend_rows_int } \strut
\int_compare:nNnF { \#1 \strut + (\l__wheelchart_legend_columns_int - 1) \strut * \l__wheelchart_legend_rows_int } > { \WCtotalcount }
{
\setcounter{g__wheelchart_WCcount_counter}{1}

\cs_set:cpn{WCvar\int_to_Alph:n}{##1}
{\cs:w l__wheelchart_item_WCvar\int_to_Alph:n{##1}_the_wheelchart_WCcount_counter\cs_end:}
}

\int_step_inline:nnn{\seq_count:N\l__wheelchart_list_items_seq}
{\cs_set:cpn{\pgfkeysvalueof{/wheelchart/header~prefix}\clist_item:Nn\l__wheelchart_header_clist}{##1}
{\cs:w l__wheelchart_item_\pgfkeysvalueof{/wheelchart/header~prefix}
\clist_item:Nn\l__wheelchart_header_clist{##1}_the_wheelchart_WCcount_counter\cs_end:}
}
}

__wheelchart_diff_atan:nnnn #1#2#3#4
{Mod\{\fp_eval:n\{\g__wheelchart_slices_orientation_fp*\}
{\atand\{
\fp_use:c{l__wheelchart_#3_y_fp}-\fp_use:c{l__wheelchart_#4_y_fp},
\fp_use:c{l__wheelchart_#3_x_fp}-\fp_use:c{l__wheelchart_#4_x_fp}
\}
-\atand\{
\fp_use:c{l__wheelchart_#1_y_fp}-\fp_use:c{l__wheelchart_#2_y_fp},
\fp_use:c{l__wheelchart_#1_x_fp}-\fp_use:c{l__wheelchart_#2_x_fp}
\}}
\cs_new:Npn __wheelchart_discrete_algorithm:
\{
__wheelchart_def_macros:n \{ discrete-factor , gap-radius , samples \}
__wheelchart_def_macro:Nn \l__wheelchart_outer_radius_fp
\{ \pgfkeysvalueof \{ / wheelchart / outer-radius \} - \fp_use:N \l__wheelchart_gap_radius_fp \}
\bool_if:NTF \l__wheelchart_pie_bool
\{ \fp_set:Nn \l__wheelchart_inner_radius_fp \{ 0 \} \}
\{
__wheelchart_def_macro:Nn \l__wheelchart_inner_radius_fp
\{ \pgfkeysvalueof \{ / wheelchart / inner-radius \} + \fp_use:N \l__wheelchart_gap_radius_fp \}
\}
\int_compare:nNnT \{ \l__wheelchart_discrete_space_at_borders_int \} = \{ -1 \}
\{
\pgfkeys
\{
/ errors / boolean-expected /. expanded =
\{ discrete-space-at-borders \}
\pgfkeysvalueof \{ / wheelchart / discrete-space-at-borders \} \}
\}
\seq_clear:N \l__wheelchart_discrete_points_seq
\bool_if:NTF \l__wheelchart_plot_bool
\{
\fp_zero:N \l__wheelchart_discrete_outer_length_fp
__wheelchart_discrete_def_coord:nn \{ outer \} \{ 0 \}
\int_step_inline:nn \{ \fp_use:N \l__wheelchart_samples_fp - 1 \}
\{
__wheelchart_discrete_def_coord:nn \{ outer \} \{##1\}
\fp_add:Nn \l__wheelchart_discrete_outer_length_fp
\{ sqrt \}
\}
\begin{verbatim}
(g__wheelchart_x_coord_fp - g__wheelchart_previous_x_coord_fp) ^ 2
+ (g__wheelchart_y_coord_fp - g__wheelchart_previous_y_coord_fp) ^ 2
\}
__wheelchart_discrete_def_coord:nn { inner } { l__wheelchart_samples_fp - 1 }
\fp_set:Nn \l__wheelchart_discrete_end_length_fp
{ sqrt
 (g__wheelchart_x_coord_fp - g__wheelchart_previous_x_coord_fp) ^ 2
+ (g__wheelchart_y_coord_fp - g__wheelchart_previous_y_coord_fp) ^ 2
}\fp_zero:N \l__wheelchart_discrete_inner_length_fp
\int_step_inline:nnnn { \fp_use:N \l__wheelchart_samples_fp - 2 } { -1 } { 0 }
{ __wheelchart_discrete_def_coord:nn { inner } {##1}
 \fp_add:Nn \l__wheelchart_discrete_inner_length_fp
 { sqrt
 (g__wheelchart_x_coord_fp - g__wheelchart_previous_x_coord_fp) ^ 2
+ (g__wheelchart_y_coord_fp - g__wheelchart_previous_y_coord_fp) ^ 2
 }__wheelchart_discrete_def_coord:nn { outer } { 0 }
\fp_set:Nn \l__wheelchart_discrete_start_length_fp
{ sqrt
 (g__wheelchart_x_coord_fp - g__wheelchart_previous_x_coord_fp) ^ 2
+ (g__wheelchart_y_coord_fp - g__wheelchart_previous_y_coord_fp) ^ 2
}\fp_set:Nn \l__wheelchart_discrete_outer_length_fp
\end{verbatim}
\begin{verbatim}
{ abs (\l__wheelchart_total_angle_fp * deg * \l__wheelchart_outer_radius_fp) }
\fp_set:Nn \l__wheelchart_discrete_end_length_fp { abs (\l__wheelchart_outer_radius_fp - \l__wheelchart_inner_radius_fp) }
\fp_set:Nn \l__wheelchart_discrete_inner_length_fp { abs (\l__wheelchart_total_angle_fp * deg * \l__wheelchart_inner_radius_fp) }
%note the abs (...) because \l__wheelchart_total_angle_fp can be negative
%and \l__wheelchart_outer_radius_fp can be smaller than \l__wheelchart_inner_radius_fp
\fp_set_eq:NN \l__wheelchart_discrete_start_length_fp \l__wheelchart_discrete_end_length_fp
\str_case:enF { \pgfkeysvalueof { / wheelchart / discrete~partitioning } }
{ radius }
{ \int_set:Nn \l__wheelchart_discrete_partitioning_first_index_int { 1 } \int_set:Nn \l__wheelchart_discrete_partitioning_second_index_int { 2 } \fp_set_eq:NN \l__wheelchart_discrete_level_start_length_fp \l__wheelchart_discrete_inner_length_fp \fp_set_eq:NN \l__wheelchart_discrete_level_end_length_fp \l__wheelchart_discrete_outer_length_fp \fp_set_eq:NN \l__wheelchart_discrete_sublevel_start_length_fp \l__wheelchart_discrete_start_length_fp \fp_set_eq:NN \l__wheelchart_discrete_sublevel_end_length_fp \l__wheelchart_discrete_end_length_fp }
{ angle }
{ \int_set:Nn \l__wheelchart_discrete_partitioning_first_index_int { 2 } \int_set:Nn \l__wheelchart_discrete_partitioning_second_index_int { 1 } \fp_set_eq:NN \l__wheelchart_discrete_level_start_length_fp \l__wheelchart_discrete_start_length_fp \fp_set_eq:NN \l__wheelchart_discrete_level_end_length_fp \l__wheelchart_discrete_end_length_fp \fp_set_eq:NN \l__wheelchart_discrete_sublevel_start_length_fp \l__wheelchart_discrete_inner_length_fp \fp_set_eq:NN \l__wheelchart_discrete_sublevel_end_length_fp \l__wheelchart_discrete_outer_length_fp \int_set:Nn \l__wheelchart_discrete_sort_int { 3 - \l__wheelchart_discrete_sort_int } }
\pgfkeys
{ / errors / unknown~choice~value /. expanded =
{ discrete~partitioning }
{ \pgfkeysvalueof { / wheelchart / discrete~partitioning } }
}
\int_set:Nn \l__wheelchart_discrete_levels_int
\end{verbatim}
\{
\fp_eval:n
\{
\fmax
{
\fround
{
\fsqrt
{
{
((\l__wheelchart_discrete_sublevel_start_length_fp + \l__wheelchart_discrete_sublevel_end_length_fp)
* \l__wheelchart_discrete_factor_fp
/ (\l__wheelchart_discrete_level_start_length_fp + \l__wheelchart_discrete_level_end_length_fp)
)
* \WCtotalnum
)
,
1
}
}
\}
\int_gzero:N \g__wheelchart_discrete_count_int
\fp_zero:N \l__wheelchart_discrete_levels_sum_fp
\int_step_inline:nn { \l__wheelchart_discrete_levels_int - 1 }
{\fp_set:Nn \l__wheelchart_discrete_level_fp
{ (##1 - 0.5 * (1 + \l__wheelchart_discrete_space_at_borders_int))
/ (\l__wheelchart_discrete_levels_int - \l__wheelchart_discrete_space_at_borders_int)
}
\fp_add:Nn \l__wheelchart_discrete_levels_sum_fp { \l__wheelchart_discrete_level_fp }
\int_set:Nn \l__wheelchart_discrete_sublevels_int
{
\fp_eval:n
\{
\fround
{
(}
\begin{verbatim}
(#1) * \l__wheelchart_discrete_level_start_length_fp
+ \l__wheelchart_discrete_levels_sum_fp
* (\l__wheelchart_discrete_level_end_length_fp - \l__wheelchart_discrete_level_start_length_fp)
/ (\l__wheelchart_discrete_levels_int * 0.5
* (\l__wheelchart_discrete_level_start_length_fp + \l__wheelchart_discrete_level_end_length_fp)
)
* \WCtotalnum - \g__wheelchart_discrete_count_int
}

\int_gadd:Nn \g__wheelchart_discrete_count_int { \l__wheelchart_discrete_sublevels_int }
\int_compare:nNnTF { \l__wheelchart_discrete_sublevels_int } = { 1 }
{ \seq_put_right:Ne \l__wheelchart_discrete_points_seq
{ 0.5
/ \fp_use:N \l__wheelchart_discrete_level_fp
}
}
\int_step_inline:nn { \l__wheelchart_discrete_sublevels_int }
{ \seq_put_right:Ne \l__wheelchart_discrete_points_seq
{ \fp_eval:n
{ (#1 - 0.5 * (1 + \l__wheelchart_discrete_space_at_borders_int)
/ (\l__wheelchart_discrete_sublevels_int - \l__wheelchart_discrete_space_at_borders_int)
}
%the denominator is 0 if \l__wheelchart_discrete_sublevels_int = \l__wheelchart_discrete_space_at_borders_int = 1
%thus the case when \l__wheelchart_discrete_sublevels_int = 1 is treated separately above
/ \fp_use:N \l__wheelchart_discrete_level_fp
\end{verbatim}
\int_compare:nNnTF { \l__wheelchart_discrete_levels_int } = { 1 }
{ \fp_set:Nn \l__wheelchart_discrete_level_fp { 0.5 } }
{ \fp_set:Nn \l__wheelchart_discrete_level_fp
{ 1 - 0.5 * (1 - \l__wheelchart_discrete_space_at_borders_int) \\
/ (\l__wheelchart_discrete_levels_int - \l__wheelchart_discrete_space_at_borders_int)}
}
\int_set:Nn \l__wheelchart_discrete_sublevels_int { \fp_eval:n { round (\WCtotalnum - \g__wheelchart_discrete_count_int) } }
\int_compare:nNnTF { \l__wheelchart_discrete_sublevels_int } = { 1 }
{ \seq_put_right:Ne \l__wheelchart_discrete_points_seq
{ 0.5 \\
/ \fp_use:N \l__wheelchart_discrete_level_fp}
}
{ \int_step_inline:nn { \l__wheelchart_discrete_sublevels_int } }
{ \seq_put_right:Ne \l__wheelchart_discrete_points_seq
{ \fp_eval:n
{ (##1 - 0.5 * (1 + \l__wheelchart_discrete_space_at_borders_int)) \\
/ (\l__wheelchart_discrete_sublevels_int - \l__wheelchart_discrete_space_at_borders_int)
}
/ \fp_use:N \l__wheelchart_discrete_level_fp}
}
\seq_sort:Nn \l__wheelchart_discrete_points_seq
\seq_set_split:Nnn \l__wheelchart_discrete_coefficients_first_seq { / } {##1}
\seq_set_split:Nnn \l__wheelchart_discrete_coefficients_second_seq { / } {##2}
\fp_compare:nNnTF
 { \seq_item:Nn \l__wheelchart_discrete_coefficients_first_seq { \l__wheelchart_discrete_sort_int } }
 >
 { \seq_item:Nn \l__wheelchart_discrete_coefficients_second_seq { \l__wheelchart_discrete_sort_int } }
 { \sort_return_swapped: }
 { \sort_return_same: }
\int_gzero:N \g__wheelchart_discrete_count_int
__wheelchart_for_loop:n
{ \pgfkeysvalueof { / wheelchart / before~slices }
\int_step_inline:nn { \fp_eval:n { round (\l__wheelchart_value_fp) } }%note that \fp_eval:n { round (...) } is necessary
%even when the value is an integer because if parse=pgfmath then .0 is added and then
\int_step_inline:nn { \fp_use:N \l__wheelchart_value_fp } would give the messages
%Missing character: There is no . in font nullfont! Missing character: There is no 0 in font nullfont!
{ \int_gincr:N \g__wheelchart_discrete_count_int
\cs_set:Npe \WCcountdiscrete { \int_use:N \g__wheelchart_discrete_count_int }
\seq_set_split:Nne \l__wheelchart_discrete_coefficients_first_seq { / }
\seq_set_split:Nne \l__wheelchart_discrete_coefficients_second_seq { / }
%Naturally, an error occurs if the sum of the rounded values of the key value is
%greater than the rounded value of \WCtotalnum.
%For example if there are 2 values 1.6 and 1.7 then these numbers are 4 and 3 and then there is no 4-th item in the list.
%However only positive integer values make practical sense for this diagram.
\pic [/ wheelchart / slices_style] at
{ $ __wheelchart_inner_plot:nn
{ \fp_eval:n
{ \l__wheelchart_start_angle_fp + \l__wheelchart_counter_or_clockwise_fp * \l__wheelchart_total_angle_fp *
 { \seq_item:Nn \l__wheelchart_discrete_coefficients_first_seq
 { \l__wheelchart_discrete_partitioning_first_index_int } } } }
\begin{verbatim}
\fp_eval:n
\{
 \l__wheelchart_start_angle_fp + ((\#2) / (\l__wheelchart_samples_fp - 1))
 * \l__wheelchart_counter_or_clockwise_fp * \l__wheelchart_total_angle_fp
\}
\}
\cs_new:Npn __wheelchart_for_loop:n #1
\{
 \fp_gset_eq:NN \g__wheelchart_angle_fp \l__wheelchart_start_angle_fp
 __wheelchart_for_loop_initial:n
\}
__wheelchart_def_slice_keys:n
\{
 \fp_set_eq:Nc \l__wheelchart_value_fp { l__wheelchart_value_\WCcount_fp }
 \cs_set_eq:Nc \WCpercentage { l__wheelchart_WCpercentage_\WCcount }
 \cs_set_eq:Nc \WCpercentagerounded { l__wheelchart_WCpercentagerounded_\WCcount }
 \fp_gset:Nn \g__wheelchart_new_angle_fp
 \{
 \WCcount == \WCtotalcount
 ?
 \l__wheelchart_start_angle_fp + \l__wheelchart_counter_or_clockwise_fp * \l__wheelchart_total_angle_fp
 :
 \g__wheelchart_angle_fp +
 \{
 \l__wheelchart_counter_or_clockwise_fp * \l__wheelchart_value_fp
 * (\l__wheelchart_total_angle_fp / \WCtotalnum)
 \}
 }
\}
__wheelchart_def_macros:n
\{
 data-angle-pos ,
 gap ,
 gap-max-angle ,
 gap-polar ,
 gap-radius ,
 samples ,
\}
\end{verbatim}
slices-inner-end-angle-shift ,
slices-inner-start-angle-shift ,
slices-outer-end-angle-shift ,
slices-outer-start-angle-shift
}
__wheelchart_def_macro:Nn \l__wheelchart_outer_radius_fp
{ \pgfkeysvalueof { / wheelchart / outer-radius } - \fp_use:N \l__wheelchart_gap_radius_fp }
\bool_if:NTF \l__wheelchart_pie_bool
{ \fp_set:Nn \l__wheelchart_inner_radius_fp { 0 } }
{__wheelchart_def_macro:Nn \l__wheelchart_inner_radius_fp
{ \pgfkeysvalueof { / wheelchart / inner-radius } + \fp_use:N \l__wheelchart_gap_radius_fp }
}\fp_set_eq:NN \l__wheelchart_inner_radius_orig_fp \l__wheelchart_inner_radius_fp
\fp_set:Nn \l__wheelchart_abs_half_angle_minus_new_angle_fp
{ abs (\g__wheelchart_angle_fp - \g__wheelchart_new_angle_fp) / 2 }
\fp_set:Nn \l__wheelchart_abs_half_angle_minus_new_angle_minus_gap_polar_fp
{ \l__wheelchart_abs_half_angle_minus_new_angle_fp - \l__wheelchart_gap_polar_fp }
\bool_if:NTF \l__wheelchart_plot_bool
{ \fp_set_eq:NN \l__wheelchart_outer_gap_fp \l__wheelchart_gap_polar_fp
 \fp_set_eq:NN \l__wheelchart_inner_gap_fp \l__wheelchart_gap_polar_fp }
{\fp_set:Nn \l__wheelchart_gap_max_angle_def_fp
\l__wheelchart_inner_radius_fp > 0
? 90
: \}
\sind (\l__wheelchart_abs_half_angle_minus_new_angle_minus_gap_polar_fp) < 0.001
? \}
\l__wheelchart_gap_max_angle_fp < 180
? \l__wheelchart_gap_max_angle_fp
; 90
\l__wheelchart_gap_max_angle_fp < 90 \lor \l__wheelchart_gap_max_angle_fp > 180 ?
180 :
\l__wheelchart_gap_max_angle_fp
}
\l__wheelchart_def_gap:NN \l__wheelchart_outer_gap_fp \l__wheelchart_outer_radius_fp
\l__wheelchart_def_gap:NN \l__wheelchart_inner_gap_fp \l__wheelchart_inner_radius_fp
\fp_compare:nNnT { \l__wheelchart_abs_half_angle_minus_new_angle_minus_gap_polar_fp } > { 0.01 }
{ \fp_set:Nn \l__wheelchart_inner_radius_fp
 max
 (\l__wheelchart_gap_fp
 / sind
 (min
 (\l__wheelchart_abs_half_angle_minus_new_angle_minus_gap_polar_fp ,
 \l__wheelchart_gap_max_angle_def_fp
)
)
 ,
 \l__wheelchart_inner_radius_fp
)
}
\l__wheelchart_def_slice_angle:nnnn { inner } { end } { new_ } { -1 }
\l__wheelchart_def_slice_angle:nnnn { outer } { end } { new_ } { -1 }
\l__wheelchart_def_angle:nnnN { 0.5 } { 0 } { 0 } \WCmidangle
__wheelchart_def_macros:n { data-angle-shift , data-sep }
__wheelchart_def_angle:nnnN
__wheelchart_data_angle_pos_fp
__wheelchart_data_angle_shift_fp
__wheelchart_data_sep_fp
\WCdataangle
__wheelchart_def_macros:n { explode }
\pgfkeysvalueof { / wheelchart / for-loop-start }%this must be placed after the definition of macros such as \WCpercentage
%such that these macros can be used in the key for loop start
\begin { scope }
\[shift = { (\WCmidangle \c_colon_str \fp_use:N \l__wheelchart_explode_fp) } , / wheelchart / slices_scope \]
\end { scope }
\fp_gset_eq:NN \g__wheelchart_angle_fp \g__wheelchart_new_angle_fp
\pgfkeysvalueof { / wheelchart / for-loop-end }
\}
\}
\cs_new:Npn __wheelchart_for_loop_initial:n #1
\{
\str_case:en { \l__wheelchart_type_tl }
\{
\default
\{
\clist_if_empty:NTF \l__wheelchart_header_clist
\{
\int_step_inline:nn { \WCtotalcount }
\{
\cs_set:Npe \WCcount {##1}
\int_step_inline:nn { \seq_count:N \l__wheelchart_list_items_seq }
\{
\cs_set_eq:cc { WCvar\int_to_Alph:n {####1} } { l__wheelchart_item_WCvar\int_to_Alph:n {####1}_##1 } }
\#1
\}
\}
\int_step_inline:nn { \WCtotalcount }
\{
\cs_set:Npe \WCcount {##1}
\}
\}
\}
\}
\}
\}
\seq_map_indexed_inline:Nn \l__wheelchart_list_items_seq
{\cs_set:cpn
{\l__wheelchart_item_\pgfkeysvalueof { / wheelchart / header-prefix }
\clist_item:Nn \l__wheelchart_header_clist {####1}_##1
}
{####2}
}
}

{ totalcount }
{
\cs_set:Npe \WCtotalcount { \fp_use:N \l__wheelchart_total_count_fp }
\cs_set:Npn \WCvarA { 1 }
\cs_set:Npn \WCvarB {}
\cs_set:Npn \WCvarC {}
}

{ etoc }
{
\bool_if:NTF \l__wheelchart_etoc_use_name_bool
{\int_if_exist:cTF { g__wheelchart_etoc_item_\l__wheelchart_etoc_name_tl _count_int }
 { \cs_set:Npe \WCtotalcount { \int_use:c { g__wheelchart_etoc_item_\l__wheelchart_etoc_name_tl _count_int } } }
 { \cs_set:Npn \WCtotalcount { 0 } }
}
{\
\PackageError { wheelchart } { The-package-etoc-must-be-loaded-to-use-the-key-etoc-level } {} }
\etocsetlevel { part } { 0 }
\etocsetlevel { chapter } { 0 }
\etocsetlevel { section } { 0 }
\etocsetlevel { subsection } { 0 }
\etocsetlevel { subsubsection } { 0 }
\etocsetlevel { paragraph } { 0 }
\etocsetlevel { subparagraph } { 0 }
\etocsetlevel { \l__wheelchart_etoc_level_tl } { -1 }%these level changes are local to the current group
\etocthelinkedpage
\cs_gset_eq:cN { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _the_name_\int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } }
\etocthename
\cs_gset_eq:cN { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _the_number_\int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } }
\etocthenumber
\cs_gset_eq:cN { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _the_page_\int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } }
\etocthepage
{}\int_gzero_new:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } \pgfkeysvalueof { /wheelchart /etoc-code } \int_compare:nNnT { \int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } } > { 0 } \cs_gset:cpe { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _the_number_of_pages_\int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } }
{}\int_eval:n { \l__wheelchart_etoc_count_total_pages_int + 1 - \cs:w g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _the_page_\int_use:c { g__wheelchart_etoc_item\l__wheelchart_etoc_name_tl _count_int } \cs_end: }
}
\cs_new:Npn __wheelchart_outer_plot:nn #1#2
 { {#1} \c_colon_str {#2} }

\cs_new:Npn __wheelchart_slices_arc:nnnnnn #1#2#3#4#5#6
 { [[/ utils / exec =
 __wheelchart_def_macro:Nn \l__wheelchart_slices_arc_A_fp {#1}
 \fp_set:Nn \l__wheelchart_slices_arc_A_abs_fp { abs (\l__wheelchart_slices_arc_A_fp) }
 \fp_compare:nNnF { \l__wheelchart_slices_arc_A_abs_fp } < { 0.01 }
 { __wheelchart_def_macro:Nn \l__wheelchart_slices_arc_B_fp {#2}
 \fp_set:Nn \l__wheelchart_slices_arc_rotate_fp { atan2 (\fp_use:c { \l__wheelchart_#3_y_fp } - \fp_use:c { \l__wheelchart_#4_y_fp } , \fp_use:c { \l__wheelchart_#3_x_fp } - \fp_use:c { \l__wheelchart_#4_x_fp })
 \fp_set:Nn \l__wheelchart_slices_arc_coord_fp
 { \l__wheelchart_slices_arc_A_fp < 0 && \l__wheelchart_slices_arc_B_fp < 0 ? \l__wheelchart_slices_arc_A_fp : \l__wheelchart_slices_arc_B_fp
 \fp_set:Nn \l__wheelchart_slices_arc_angle_fp
 }\fp_set:Nn \l__wheelchart_slices_arc_A_fp {#1} \fp_set:Nn \l__wheelchart_slices_arc_A_abs_fp { abs (\l__wheelchart_slices_arc_A_fp) } \fp_compare:nNnF { \l__wheelchart_slices_arc_A_abs_fp } < { 0.01 }
 { __wheelchart_def_macro:Nn \l__wheelchart_slices_arc_B_fp {#2}
 \fp_set:Nn \l__wheelchart_slices_arc_rotate_fp { atan2 (\fp_use:c { \l__wheelchart_#3_y_fp } - \fp_use:c { \l__wheelchart_#4_y_fp } , \fp_use:c { \l__wheelchart_#3_x_fp } - \fp_use:c { \l__wheelchart_#4_x_fp })
 \fp_set:Nn \l__wheelchart_slices_arc_coord_fp
 { \l__wheelchart_slices_arc_A_fp < 0 && \l__wheelchart_slices_arc_B_fp < 0 ? \l__wheelchart_slices_arc_A_fp : \l__wheelchart_slices_arc_B_fp
 \fp_set:Nn \l__wheelchart_slices_arc_angle_fp
 }\fp_set:Nn \l__wheelchart_slices_arc_A_fp {#1} \fp_set:Nn \l__wheelchart_slices_arc_A_abs_fp { abs (\l__wheelchart_slices_arc_A_fp) } \fp_compare:nNnF { \l__wheelchart_slices_arc_A_abs_fp } < { 0.01 }
}
\{ \text{l_wheelchart_slices_arc_A_fp} < 0 \&\& \text{l_wheelchart_slices_arc_B_fp} < 0 \\
 \text{acosd} \\
 \{ \\
 \text{2} / \\
 (\text{min} (\text{l_wheelchart_slices_arc_B_fp} , 0) - 1) \\
 \times ((1 / \text{l_wheelchart_slices_arc_A_fp}) + \text{l_wheelchart_slices_arc_A_fp}) \\
 \} \\
 : \\
 \text{atand} ((\text{l_wheelchart_slices_arc_A_fp} - (1 / \text{l_wheelchart_slices_arc_A_fp})) / 2) \\
\} \% \text{note the min (\text{l_wheelchart_slices_arc_B_fp} , 0) such that the acosd is always defined}
\}

\text{fp_compare:nNnTF} \{ \text{l_wheelchart_slices_arc_A_abs_fp} < \{ 0.01 \}
\}
\#5

\text{fp_compare:nNnT} \{ \text{l_wheelchart_slices_arc_B_fp} < \{ 1 \}
\}

\text{fp_compare:nNnF} \{ \text{l_wheelchart_slices_arc_coord_fp} = \{ 0 \}
\}

\text{--}
\{(\\
\text{fp_use:c} \{ \text{l_wheelchart_#3_x_fp} \} , \text{fp_use:c} \{ \text{l_wheelchart_#3_y_fp} \}) \\
! \{ \text{fp_eval:n} \{ \text{l_wheelchart_slices_arc_coord_fp} / 2 \} \} ! \\
\text{fp_use:c} \{ \text{l_wheelchart_#4_x_fp} \} , \text{fp_use:c} \{ \text{l_wheelchart_#4_y_fp} \} \\
\}
\}
\text{arc}
\[
\text{start_angle} =
\{ \\
\text{fp_eval:n}
\}
__wheelchart_slices_arc_rotate_fp
- __wheelchart_slices_orientation_fp * __wheelchart_slices_arc_angle_fp
}

),
end-angle =
{
\fp_eval:n
{
__wheelchart_slices_arc_rotate_fp + __wheelchart_slices_orientation_fp *
(sign (__wheelchart_slices_arc_A_fp) * 180 + __wheelchart_slices_arc_angle_fp)
}
},
radius =
{
\fp_eval:n
{
0.25 * __wheelchart_slices_arc_B_fp
* abs ((1 / __wheelchart_slices_arc_A_fp) + __wheelchart_slices_arc_A_fp)
* sqrt
(__wheelchart_#3_x_fp - __wheelchart_#4_x_fp)^2 + (__wheelchart_#3_y_fp - __wheelchart_#4_y_fp)^2
}
}
\fp_compare:nNnF { __wheelchart_slices_arc_coord_fp } = { 0 }
{#5}
}

\cs_new:Npn __wheelchart_slices_arrow:nnnnn \#1\#2\#3\#4\#5
{
{
/ utils / exec =
___wheelchart_def_macro:Nn \l___wheelchart_slices_arrow_A_fp \{#1\}
\fp_compare:nNnF \{ \l___wheelchart_slices_arrow_A_fp \} = \{ 0 \}
\{
___wheelchart_def_macro:Nn \l___wheelchart_slices_arrow_B_fp \{#2\}
\fp_set:Nn \l___wheelchart_slices_arrow_coord_fp
\{
\l___wheelchart_slices_arrow_A_fp < 0 \&\& \l___wheelchart_slices_arrow_B_fp < 0 ? 0 : \l___wheelchart_slices_arrow_B_fp
\}
\}
\]
\fp_compare:nNnTF \{ \l___wheelchart_slices_arrow_A_fp \} = \{ 0 \}
\{#5\}
\{ \fp_compare:nNnT \{ \l___wheelchart_slices_arrow_B_fp \} < \{ 1 \}
\{ \fp_compare:nNnF \{ \l___wheelchart_slices_arrow_coord_fp \} = \{ 0 \}
\{ --
\(\text{\((\fp_use:c \{ \l___wheelchart\#3_x_fp \} , \fp_use:c \{ \l___wheelchart\#3_y_fp \}) \)}
\! \{ \fp_eval:n \{ \l___wheelchart_slices_arrow_coord_fp / 2 \} \} !
\(\fp_use:c \{ \l___wheelchart\#4_x_fp \} , \fp_use:c \{ \l___wheelchart\#4_y_fp \} \)
\)
\)
\}
\}
\fp_eval:n
\{
\fp_use:c \{ \l___wheelchart\#3_x_fp \} + \fp_use:c \{ \l___wheelchart\#4_x_fp \} +
\(\g___wheelchart_slices_orientation_fp \ast (\l___wheelchart_slices_arrow_coord_fp - 1)
\ast \l___wheelchart_slices_arrow_A_fp
\ast (\fp_use:c \{ \l___wheelchart\#3_y_fp \} - \fp_use:c \{ \l___wheelchart\#4_y_fp \})
\)
\)
\}
\fp_compare:nNnF { \l__wheelchart_slices_arrow_coord_fp } = { 0 } { -- ($ (\fp_use:c { \l__wheelchart_#4_x_fp } , \fp_use:c { \l__wheelchart_#4_y_fp }) ! { \fp_eval:n { \l__wheelchart_slices_arrow_coord_fp / 2 } } ! (\fp_use:c { \l__wheelchart_#3_x_fp } , \fp_use:c { \l__wheelchart_#3_y_fp }) $ (\fp_use:c { \l__wheelchart_#3_x_fp } , \fp_use:c { \l__wheelchart_#3_y_fp })) -- ($ (\fp_use:c { \l__wheelchart_#4_x_fp } , \fp_use:c { \l__wheelchart_#4_y_fp }) ! { \fp_eval:n { \l__wheelchart_slices_arrow_coord_fp / 2 } } ! (\fp_use:c { \l__wheelchart_#3_x_fp } , \fp_use:c { \l__wheelchart_#3_y_fp }) $ (\fp_use:c { \l__wheelchart_#3_x_fp } , \fp_use:c { \l__wheelchart_#3_y_fp })) } \cs_new:Npn __wheelchart_slices_to:nn #1#2 { \cs_new:Nnn __wheelchart_slices_to:nn #1#2 { to [out = { \fp_eval:n { - \g__wheelchart_slices_orientation_fp * \sign (\l__wheelchart_coord_determinant_fp) * (#1) } } , in = { \fp_eval:n { \g__wheelchart_slices_orientation_fp * \sign (\l__wheelchart_coord_determinant_fp) * ((#2) - 180) } } , \endcsname } \endcsname }
relative
]
)

\cs_new:Npn _wheelchart_space_to_underscore:n #1
{ \str_if_eq:nnTF {#1} { ~ } { _ } {#1} }

A.3 Pgfkeys
\pgfkeys
{ / wheelchart /. is-family ,
 / wheelchart ,
 after-slices /. initial = {},
 anchor-xsep /. initial = 5 ,
 anchor-ysep /. initial = 5 ,
 arc /. style =
 { bool_set_true = \l__wheelchart_arc_bool ,
 arc_style /. style = {#1} }
 ,
 arc_style /. style = {} ,
 arc-around-text /. default = true ,%this key is not set up with /.is choice or \bool_set:Nn %such that for example \WCvarA can be used as value for this key
 arc-around-text /. initial = false ,
 arc-data /. initial = {},
 arc-data-align /. code = { \tl_set:Nn \l__wheelchart_arc_data_align_tl {#1} } ,%this key is not set up with /.is choice %such that for example \WCvarA can be used as value for this key
 arc-data-align = center ,
 arc-data-angle-pos /. initial = 0.5 ,
 arc-data-angle-shift /. initial = 0 ,
 arc-data-dir /. initial = 1 ,
 arc-data-pos /. initial = 1 ,
 arc-data-sep /. initial = 1 ex / 1 cm ,
 arc-data-style /. style = { arc_data_style /. style = {#1} } ,
 arc_data_style /. style = {} ,
 arc-first-half /. style = { arc_first_half /. style = {#1} } ,
 arc_first_half /. style = {} ,
arc-pos/.initial = 1,
arc-second-half/.style = { arc_second_half/.style = {#1} },
arc_second_half/.style = { },
arc-sep/.initial = 1 ex / 1 cm,
at/.initial = { (0, 0) },
before-slices/.initial = { },
bool_set_true/.code = { \bool_set_true:N #1 },
caption/.initial = { },
caption-left/.initial = { },
caption-left-sep/.initial = 0.5,
caption-left-style/.style = { caption-left_style/.style = {#1} },
caption-left-style/.style = { },
caption-sep/.initial = 0.5,
caption-style/.style = { caption_style/.style = {#1} },
caption_style/.style = { },
contour/.style =
 \bool_set_true = \l__wheelchart_contour_bool,
 contour_style/.style = {#1}
},
contour_style/.style = { },
counterclockwise/.is-choice,
counterclockwise/false/.code = { \fp_set:Nn \l__wheelchart_counter_or_clockwise_fp { -1 } },
counterclockwise/false/.value-forbidden,
counterclockwise/true/.code = { \fp_set:Nn \l__wheelchart_counter_or_clockwise_fp { 1 } },
counterclockwise/true/.value-forbidden,
counterclockwise/.default = true,
counterclockwise = false,
data/.initial = { \WCvarC },
data-angle-pos/.initial = 0.5,
data-angle-shift/.initial = 0,
data-pos/.initial = 1,
data-sep/.initial = 0.2,
data-style/.style = { data_style/.style = {#1} },
data_style/.style = { },
discrete/.is-choice,
discrete/false/.code = { \bool_set_false:N \l__wheelchart_discrete_bool },
discrete/false/.value-forbidden,
discrete/true/.code = { \bool_set_true:N \l__wheelchart_discrete_bool },
discrete / true/. value-forbidden,
discrete/. default = true,
discrete = false,
discrete-factor/. initial = 1,
discrete-partitioning/. initial = radius,
discrete-pic/. initial = {},
discrete-sort/. is-choice,
discrete-sort/angle/. code = \{\int_set:Nn \l__wheelchart_discrete_sort_int { 1 } \} ,
discrete-sort/angle/. value-forbidden,
discrete-sort/radius/. code = \{\int_set:Nn \l__wheelchart_discrete_sort_int { 2 } \} ,
discrete-sort/radius/. value-forbidden,
discrete-sort = angle,
discrete-space-at-borders/. is-choice,%this key is not set up with/.is if because an initial value is unwanted for this key
discrete-space-at-borders/false/. code = \{\int_set:Nn \l__wheelchart_discrete_space_at_borders_int { 1 } \} ,
discrete-space-at-borders/value-forbidden,
discrete-space-at-borders/true/. code = \{\int_set:Nn \l__wheelchart_discrete_space_at_borders_int { 0 } \} ,
discrete-space-at-borders/value-forbidden,
discrete-space-at-borders/. default = true,
domain/. style-args/. expanded = \{ #1 _c_colon_str #2 \}
{counterclockwise,
 start-angle = {#1} ,
 total-angle = { (#2) - (#1) }
} ,
etoc-code/. initial = \{\tableofcontents \} ,
etoc-count-total-pages/. code = \{\int_set:Nn \l__wheelchart_etoc_count_total_pages_int {#1} \} ,
etoc-level/. code =
{\tl_set:Nn \l__wheelchart_type_tl { etoc }
 \tl_set:Nn \l__wheelchart_etoc_level_tl {#1}
} ,
etoc-name/. code = \{\tl_set:Nn \l__wheelchart_etoc_name_tl {#1} \} ,
etoc-name = ,
etoc-use-name/. code =
{\tl_set:Nn \l__wheelchart_etoc_name_tl {#1}
 \tl_set:Nn \l__wheelchart_type_tl { etoc }
 \bool_set_true:N \l__wheelchart_etoc_use_name_bool
} ,
expand-list /. is-choice ,
expand-list / false /. code = { \tl_set:Nn \l__wheelchart_expand_list_tl { n } },
expand-list / false /. value-forbidden ,
expand-list / once /. code = { \tl_set:Nn \l__wheelchart_expand_list_tl { o } },
expand-list / once /. value-forbidden ,
expand-list / true /. code = { \tl_set:Nn \l__wheelchart_expand_list_tl { e } },
expand-list / true /. value-forbidden ,
expand-list = once ,
expand-list-items /. is-choice ,
expand-list-items / false /. code = { \tl_set:Nn \l__wheelchart_expand_list_items_tl { n } },
expand-list-items / false /. value-forbidden ,
expand-list-items / once /. code = { \tl_set:Nn \l__wheelchart_expand_list_items_tl { o } },
expand-list-items / once /. value-forbidden ,
expand-list-items / true /. code = { \tl_set:Nn \l__wheelchart_expand_list_items_tl { e } },
expand-list-items / true /. value-forbidden ,
expand-list-items = false ,
explode /. initial = 0 ,
explode /. default = 0.2 ,
for-loop-end /. initial = {} ,
for-loop-start /. initial = {} ,
gap /. initial = 0 ,
gap /. default = 0.05 ,
gap-max-angle /. initial = 180 ,
gap-polar /. initial = 0 ,
gap-polar /. default = 1 ,
gap-radius /. initial = 0 ,
gap-radius /. default = 0.05 ,%the same default value as for gap
header /. code = { \clist_set:Nn \l__wheelchart_header_clist {#1} },
header-prefix /. initial = WC ,
inner-data /. initial = {} ,
inner-data-angle-pos /. initial = 0.5 ,
inner-data-angle-shift /. initial = 0 ,
inner-data-pos /. initial = 0 ,
inner-data-sep /. initial = 0.2 ,
inner-data-style /. style = { inner_data_style /. style = {#1} },
inner_data_style /. style = {} ,
inner-plot /. code =
{ \bool_set_true:N \l__wheelchart_plot_bool
\bool_set_true:N \l__wheelchart_lines_ext_dir_bool \\
\int_set_eq:Nc \l__wheelchart_lines_ext_dir_int { c__wheelchart_lines_ext_dir_#1_int }
}

lines-ext-dirsep /. initial = 0 ,
lines-ext-fixed /. default = true ,% this key is not set up with /.is choice or \bool_set:Nn
% such that for example \WCvarA can be used as value for this key
lines-ext-fixed /. initial = false ,
lines-ext-fixed-left /. initial =
{
 \fp_eval:n
 {
 \l__wheelchart_lines_ext_dir_int
 * (\l__wheelchart_outer_radius_fp + \l__wheelchart_lines_sep_fp + \l__wheelchart_lines_fp + \l__wheelchart_lines_ext_fp)
 }
},
lines-ext-fixed-right /. initial =
{
 \fp_eval:n
 {
 \l__wheelchart_lines_ext_dir_int
 * (\l__wheelchart_outer_radius_fp + \l__wheelchart_lines_sep_fp + \l__wheelchart_lines_fp + \l__wheelchart_lines_ext_fp)
 }
},
lines-ext-left-anchor /. initial = mid-east ,
lines-ext-right-anchor /. initial = mid-west ,
lines-ext-top-dir /. code = { \int_set_eq:Nc \l__wheelchart_lines_ext_top_dir_int { c__wheelchart_lines_ext_dir_#1_int } },
lines-ext-top-dir = right ,
lines-pos /. initial = 1 ,
lines-sep /. initial = 0.2 ,
lines-style /. style = { lines_style /. style = {} } ,
lines_style /. style = {},
middle /. initial = {},
middle-fill /. style =
{
 \bool_set_true = \l__wheelchart_middle_fill_bool ,
 middle_fill /. style = \l__wheelchart_lines_ext_dir_int
}

middle_fill /. style = {} ,
middle-style/.style = { middle_style/.style = {#1} },
middle_style/.style = {},
name/.code = { \	l_gset:Ne \g__wheelchart_name_tl {#1} },
nname = wheelchart@name,
outer-plot/.code =
{ \bool_set_true:N \l__wheelchart_plot_bool
\cs_set:Npn __wheelchart_outer_plot:nn ##1##2 {#1}
\tl_set:Nn \l__wheelchart_slices_outer_tl
 { -- plot
 [domain = \fp_use:N \l__wheelchart_slice_outer_start_angle_fp
 c_colon_str
 \fp_use:N \l__wheelchart_slice_outer_end_angle_fp ,
samples = \fp_use:N \l__wheelchart_samples_fp ,
variable = \l__wheelchart_outer_plot_variable_fp ,
/wheelchart/outer_plot_style
]
(__wheelchart_outer_plot:nn { \l__wheelchart_outer_plot_variable_fp } { \fp_use:N \l__wheelchart_outer_radius_fp })
\}
},
outer-plot-style/.style = { outer_plot_style/.style = {#1} },
outer_plot_style/.style = {},
outer-radius/.initial = 3 ,
pie/.code = { \bool_set:Nn \l__wheelchart_pie_bool { \cs:w c_#1_bool\cs_end: } },
pie/.default = true ,
pie = false,
plot/.style =
{ inner-plot = {#1} ,
 outer-plot = {#1}
},
plot-style/.style =
{ inner-plot-style = {#1} ,
\begin{verbatim}

outer-plot-style = {#1}

\}

radius / style-2-args =
\{
inner-radius = {#1}
outer-radius = {#2}
\}

samples / initial = 25 ; the same number as \textbackslash tikz/samples

separator-columns / initial = \/,

separator-rows / initial = \{},

slice_final / style = \{
slice_final_style / style = {#1}
\}

slice_final_style / style = \{

slices / code =
\{
\bool_set_true:N \l__wheelchart_slices_bool
\tl_set:Nn \l__wheelchart_slices_tl {#1}
\}

slices-angle-pos / initial = 0.5

slices-angle-shift / initial = 0

slices-arc / style-2-args =
\{
\}

slices-arc-inner-end / is-choice,

slices-arc-inner-end / false / style = \{
\}

slices-arc-inner-end / false / value-forbidden,

slices-arc-inner-end / true / style = \{
\}

slices-arc-inner-end / true / value-forbidden,

slices-arc-inner-end / initial = false,

slices-arc-inner-end / default = true,

slices-arc-inner-end-start / is-choice,

slices-arc-inner-end-start / false / style = \{
\}

slices-arc-inner-end-start / false / value-forbidden,

slices-arc-inner-end-start / true / style = \{
\}

slices-arc-inner-end-start / true / value-forbidden,

slices-arc-inner-end-start / initial = false,
\end{verbatim}
slices-arc-inner-end-start /. default = true ,
slices-arc-inner-start /. is-choice ,
slices-arc-inner-start / false /. style = {} ,
slices-arc-inner-start / false /. value-forbidden ,
slices-arc-inner-start / true /. style =
 { slices-arc-match = { inner } { 1 } { -1 } { -1 } { inner-start } { inner-end } { outer-start } } ,
slices-arc-inner-start / true /. value-forbidden ,
slices-arc-inner-start /. initial = false ,
slices-arc-inner-start /. default = true ,
slices-arc-inner-start-end /. is-choice ,
slices-arc-inner-start-end / false /. style = {} ,
slices-arc-inner-start-end / false /. value-forbidden ,
slices-arc-inner-start-end / true /. style =
 { slices-arc-match = { inner } { -1 } { -1 } { -1 } { inner-start } { inner-end } { outer-start } } ,
slices-arc-inner-start-end / true /. value-forbidden ,
slices-arc-inner-start-end /. initial = false ,
slices-arc-inner-start-end /. default = true ,
slices-arc-match /. style-n-args = { 7 }
 { slices-end-arc = { (2) * tan (_wheelchart_diff_atan:nnnn {#7} {#6} {#6} / 2) } { 0 } ,
 slices-start-arc = { (3) * tan (_wheelchart_diff_atan:nnnn {#7} {#6} {#5} {#6} / 2) } { 0 } ,
 slices-1-arc = { (4) * tan (_wheelchart_diff_atan:nnnn {#5} {#7} {#6} {#7} / 2) } { 0 } } ,
slices-arc-outer-end /. is-choice ,
slices-arc-outer-end / false /. style = {} ,
slices-arc-outer-end / false /. value-forbidden ,
slices-arc-outer-end / true /. style =
 { slices-arc-match = { outer } { -1 } { 1 } { -1 } { outer-end } { outer-start } { inner-end } } ,
slices-arc-outer-end / true /. value-forbidden ,
slices-arc-outer-end /. initial = false ,
slices-arc-outer-end /. default = true ,
slices-arc-outer-end-start /. is-choice ,
slices-arc-outer-end-start / false /. style = {} ,
slices-arc-outer-end-start / false /. value-forbidden ,
slices-arc-outer-end-start / true /. style =
 { slices-arc-match = { outer } { -1 } { -1 } { -1 } { outer-end } { outer-start } { inner-end } } ,
slices-arc-outer-end-start / true /. value-forbidden ,
slices-arc-outer-end-start /. initial = false ,
slices-arc-outer-end-start /. default = true ,
slices-arc-outer-start /. is-choice ,
slices-arc-outer-start / false /. style = {} ,
slices-arc-outer-start / false /. value-forbidden ,
slices-arc-outer-start / true /. style =
 { slices-arc-match = { outer } { -1 } { 1 } { 1 } { outer-start } { outer-end } { inner-start } } ,
slices-arc-outer-start / true /. value-forbidden ,
slices-arc-outer-start /. initial = false ,
slices-arc-outer-start /. default = true ,
slices-arc-outer-start-end /. is-choice ,
slices-arc-outer-start-end / false /. style = {} ,
slices-arc-outer-start-end / false /. value-forbidden ,
slices-arc-outer-start-end / true /. style =
 { slices-arc-match = { outer } { 1 } { 1 } { 1 } { outer-start } { outer-end } { inner-start } } ,
slices-arc-outer-start-end / true /. value-forbidden ,
slices-arc-outer-start-end /. initial = false ,
slices-arc-outer-start-end /. default = true ,
slices-arrow /. style-2-args =
 {
 slices-start-arrow = { - (#1) } {#2} ,
 slices-end-arrow = {#1} {#2}
 } ,
slices-end-arc /. code-2-args =
 {
 \tl_set:Nn \l__wheelchart_slices_end_tl
 { __wheelchart_slices_end_tl
 {__wheelchart_slices_arc:nnnnnn
 {#1}
 {#2}
 { outer-end }
 { inner-end }
 { -- (\fp_use:c { l__wheelchart_inner-end_x_fp } , \fp_use:c { l__wheelchart_inner-end_y_fp }) } }
 }
 } ,
slices-end-arrow /. code-2-args =
 {
 \tl_set:Nn \l__wheelchart_slices_end_tl
 { __wheelchart_slices_end_tl
 {__wheelchart_slices_arrow:nnnnnn
 {#1}
 {#2}
 { outer-end }
 { inner-end }
 { -- (\fp_use:c { l__wheelchart_inner-end_x_fp } , \fp_use:c { l__wheelchart_inner-end_y_fp }) } }
 }
 }
{#1}
{#2}
{ outer-end }
{ inner-end }
{ -- (\fp_use:c { l__wheelchart_inner-end_x_fp } , \fp_use:c { l__wheelchart_inner-end_y_fp }) }
}

slices-end-to /. code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_end_tl
{ __wheelchart_slices_to:nn {#2} {#1}
 (\fp_use:c { l__wheelchart_inner-end_x_fp } , \fp_use:c { l__wheelchart_inner-end_y_fp })
}
}

slices-inner-angle-reduce /. style =
{ slices-inner-end-angle-shift = { - (#1) } ,
 slices-inner-start-angle-shift = {#1}
}

slices-inner-angle-shift /. style =
{ slices-inner-end-angle-shift = {#1} ,
 slices-inner-start-angle-shift = {#1}
}

slices-inner-arc /. code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_inner_tl
{ __wheelchart_slices_arc:nnnnnn
 {#1}
 {#2}
 { inner-end }
 { inner-start }
 { -- (\fp_use:c { l__wheelchart_inner-start_x_fp } , \fp_use:c { l__wheelchart_inner-start_y_fp }) }
}
}

slices-inner-arc-tangent /. is-choice,
slices-inner-arc-tangent / false /. code = {} ,
slices-inner-arc-tangent / false /. value-forbidden ,
slices-inner-arc-tangent / true /. code =
{ \tl_set:Nn \l__wheelchart_slices_inner_tl
 __wheelchart_slices_arc:nnnnnn
 __wheelchart_diff_atan:nnnn \outerstart \innerstart \outerend \innerend
 0
 \innerend
 \innerstart
 \-- (\fp_use:c { l__wheelchart_inner_start_x_fp } , \fp_use:c { l__wheelchart_inner_start_y_fp })
 \fp_compare:nNnTF { \l__wheelchart_slices_arc_A_fp } > { 359.99 } { \fp_set:Nn \l__wheelchart_slices_arc_A_fp { 1 } } { \fp_set:Nn \l__wheelchart_slices_arc_A_fp { \tand \(45 - \l__wheelchart_slices_arc_A_fp / 4 \) } }\}
}

slices-inner-arc-tangent / true /. value-forbidden ,
slices-inner-arc-tangent /. initial = false ,
slices-inner-arc-tangent /. default = true ,
slices-inner-arrow /. code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_inner_tl
 __wheelchart_slices_arrow:nnnnn
 \#1
 \#2
 \innerend
 \innerstart
 \-- (\fp_use:c { l__wheelchart_inner_start_x_fp } , \fp_use:c { l__wheelchart_inner_start_y_fp })\}
}

slices-inner-end-angle-shift /. initial = 0 ,
slices-inner-start-angle-shift /. initial = 0 ,
slices-inner-to /. code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_inner_tl
 \l__wheelchart_slices_inner_tl
}
{__wheelchart_slices_to:nn \{#2\} \{#1\}
 (\fp_use:c \{ __wheelchart_inner-start_x_fp \} , \fp_use:c \{ __wheelchart_inner-start_y_fp \})}
}

slices-outer-angle-reduce /. style =
{
 slices-outer-end-angle-shift = { - (#1) } ,
 slices-outer-start-angle-shift = {#1}
},

slices-outer-angle-shift /. style =
{
 slices-outer-end-angle-shift = {#1} ,
 slices-outer-start-angle-shift = {#1}
},

slices-outer-arc /. code-2-args =
{
 \tl_set:Nn \l__wheelchart_slices_outer_tl
 \{
 __wheelchart_slices_arc:nnnnnn
 (#1)
 (#2)
 \{ outer-start \}
 \{ outer-end \}
 \{ -- (\fp_use:c \{ __wheelchart_outer-end_x_fp \} , \fp_use:c \{ __wheelchart_outer-end_y_fp \}) \}

 \}
}

slices-outer-arc-tangent /. is-choice ,

slices-outer-arc-tangent / false /. code = {} ,
slices-outer-arc-tangent / false /. value-forbidden ,
slices-outer-arc-tangent / true /. code =
{
 \tl_set:Nn \l__wheelchart_slices_outer_tl
 \{
 __wheelchart_slices_arc:nnnnnn
 { __wheelchart_diff_atan:nnnn \{ outer-start \} \{ inner-start \} \{ outer-end \} \{ inner-end \} }
 \{ 0 \}
 \{ outer-start \}
 \}
}
\[
\{ \text{outer-end} \}
\{ -- (\text{fp-use:c} \{ l_wheelchart_outer-end_x_fp \}, \text{fp-use:c} \{ l_wheelchart_outer-end_y_fp \}) \}
\]
\[
\text{fp-compare:nNnTF} \{ l_wheelchart_slices_arc_A_fp \} > \{ 359.99 \}
\{ \text{fp-set:Nn} \{ l_wheelchart_slices_arc_A_fp \} \{ 1 \} \}
\{ \text{fp-compare:nNnTF} \{ l_wheelchart_slices_arc_A_fp \} = \{ 180 \}
\{ \text{fp-set:Nn} \{ l_wheelchart_slices_arc_A_fp \} \{ 0 \} \}
\{ \text{fp-set:Nn} \{ l_wheelchart_slices_arc_A_fp \} \{ \text{cotd} \(45 - l_wheelchart_slices_arc_A_fp / 4 \) \} \}
\]
\}
\]

slices-outer-arc-tangent / true /. value-forbidden ,
slices-outer-arc-tangent /. initial = false ,
slices-outer-arc-tangent /. default = true ,
slices-outer-arrow /. code-2-args =
{ \tl-set:Nn \{ l_wheelchart_slices_outer_tl \}
{ _wheelchart_slices_arrow:nnnnn
 (#1)
 (#2)
 \{ outer-start \}
 \{ outer-end \}
 \{ -- (\text{fp-use:c} \{ l_wheelchart_outer-end_x_fp \}, \text{fp-use:c} \{ l_wheelchart_outer-end_y_fp \}) \}
}

slices-outer-end-angle-shift /. initial = 0 ,
slices-outer-start-angle-shift /. initial = 0 ,
slices-outer-to /. code-2-args =
{ \tl-set:Nn \{ l_wheelchart_slices_outer_tl \}
{ _wheelchart_slices_to:nn \{#1\} \{#2\}
 (\text{fp-use:c} \{ l_wheelchart_outer-end_x_fp \}, \text{fp-use:c} \{ l_wheelchart_outer-end_y_fp \})
}

slices-pos /. initial = 0.5 ,
slices-scope /. style = { slices_scope /. style = {...} },
slices_scope /. style = {},
slices-sep /. initial = 0,
slices-start-arc /. code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_start_tl
 { __wheelchart_slices_arc:nnnnnn{#1}{#2}
 { inner-start }
 { outer-start }
 { -- cycle }
 }
},
slices-start-arrow/.code-2-args =
{ \tl_set:Nn \l__wheelchart_slices_start_tl
 { __wheelchart_slices_arrow:nnnnn{#1}{#2}
 { inner-start }
 { outer-start }
 { -- cycle }
 }
},
slices-start-to /. code-2-args = { \tl_set:Nn \l__wheelchart_slices_start_tl { __wheelchart_slices_to:nn {#1}{#2} cycle } },
slices-style /. style = { slices_style /. style = {...} },
slices-style /. style = {},
slices-style = { \WCvarB },
slices-to /. style-2-args =
{ slices-end-to = {#1}{#2},
 slices-start-to = { - (#1) } { - (#2) }
},
start-angle /. initial = 90,
start-half /. style =
\begin{verbatim}
{ start-angle =
 { (#1) - \fp_eval:n
 { \l__wheelchart_counter_or_clockwise_fp * \fp_use:c \{ l__wheelchart_value_1_fp \} * 0.5
 * (\l__wheelchart_total_angle_fp / \WCtotalnum)
 }
 }
},
start-half /. default = 90 ,
title /. initial= {} ,
title-left /. initial = {} ,
title-left-sep /. initial = 0.5 ,
title-left-style /. style = { title-left_style /. style = {#1} } ,
title-left_style /. style = {} ,
title-sep /. initial = 0.5 ,
title-style /. style = { title-style /. style = {#1} } ,
title_style /. style = {} ,
total-angle /. initial = 360 ,
total-count /. code =
{ \tl_set:Nn \l__wheelchart_type_tl { totalcount }
 __wheelchart_def_macro:Nn \l__wheelchart_total_count_fp {#1}
},
triangle-proportional-area /. style-2-args =
{ domain /. expanded = 0 \cColonStr 1 ,
 plot = { { (##2) * sqrt (1 - (#1)) * (#1) / 2 } , { - sqrt (1 - (#1)) * (#2) } } ,
 radius = { -1 } { 1 } ,
 samples = 2 ,
 wheel-data-pos = 0.5
 },
triangle-proportional-height /. style-2-args =
{ domain /. expanded = 0 \cColonStr 1 ,
 plot = { { (##2) * (1 - (#1)) * (#1) / 2 } , { ((#1) - 1) * (#2) } } ,
 radius = { -1 } { 1 } ,
\end{verbatim}
samples = 2 ,
wheel-data-pos = 0.5
},
value /. initial = { \WCvarA },
WC_list /. code-2-args =
\cs_set:cpn {#1}
{ \use:e { \clist_item:nn {#2} \\int_mod:nn { \WCcount-1 } \\clist_count:n {#2} + 1 } }
%note the \use:e such that \WClist<name> also works when given as an argument to pgfmath
%if the list contains a macro, for example
%\begin{tikzpicture}
%\def\n{1}
%\wheelchart[
% value=\WClistA,
% WClistA={\n}
%]{\exampleforthismanual}
%\end{tikzpicture}
%https://tex.stackexchange.com/questions/671298/clist-item-and-pgfmathsetmacro-causing-an-error
},
wheel-data /. initial = { },
wheel-data-angle-pos /. initial = 0.5 ,
wheel-data-angle-shift /. initial = 0 ,
wheel-data-pos /. initial = 0.66 ,
wheel-data-sep /. initial = 0 ,
wheel-data-style /. style = { wheel_data_style /. style = {#1} } ,
wheel_data_style /. style = { },
wheel-lines /. style =
{ bool_set_true = \l__wheelchart_wheel_lines_bool ,
 wheel_lines /. style = {#1} }
},
wheel_lines /. style = { },
xbar /. style-2-args =
{ domain /. expanded = 0 \c_colon_str {#1} ,
 plot = { {##1} , {##2} } ,
 radius = { 0 } {#2} ,
 samples = 2 ,
 wheel-data-pos = 0.5
\begin{verbatim}
}

ybar/.style-2-args =
{
 domain/.expanded = 0 \c_colon_str \{#2\},
 plot = \{ \{#2\}, \{#1\} \},
 radius = \{ 0 \} \{#1\},
 samples = 2,
 wheel-data-pos = 0.5
},

\pgfkeys
{/ wheelchart/.unknown/.code =
{
 \tl_set:Ne \l__wheelchart_key_name_tl { \pgfkeyscurrentname }%it is necessary to define \l__wheelchart_key_name_tl
 %because \pgfkeyscurrentname will be overwritten by / errors / unknown-key /. expanded
 \regex_match:nVTF \{ (.+) \} \l__wheelchart_key_name_tl
 \tl_set:Ne \l__wheelchart_key_range_tl { \pgfkeyscurrentname }
 \regex_replace_all:nnN \{ (.+) \} \l__wheelchart_key_range_tl
 \regex_replace_all:nnN \{ \[\w\s\]+\{ (.+) \} \} \l__wheelchart_key_range_tl
 \str_if_eq:eeTF \{ list \} \l__wheelchart_key_range_tl
 {
 \pgfkeys{/ wheelchart, WC_list = \{ l__wheelchart_list\l__wheelchart_key_name_tl \} \{#1\} }
 \pgfkeys
 {
 / wheelchart ,
 \l__wheelchart_key_name_tl/.expand once = \{ cs:w l__wheelchart_list\l__wheelchart_key_name_tl\cs_end: \}
 }
},
{\clist_gclear:N \g__wheelchart_slice_range_for_loop_clist\foreach \l__wheelchart_slice_range_index_int [parse = true] in \l__wheelchart_key_range_tl
{\clist_gput_right:Ne \g__wheelchart_slice_range_for_loop_clist \{ \fp_eval:n \{ \l__wheelchart_slice_range_index_int \} \}}\clist_map_inline:Nn \g__wheelchart_slice_range_for_loop_clist
\end{verbatim}
A.4 The command \wheelchart

\NewDocumentCommand { \wheelchart } { O{} m } {
 %note the double {{...}} such that the contents is in a group and such that & can be used in pgfmath in a tabular
 \pgfkeys { / wheelchart , #1 }
 @ifpackageloaded { siunitx }
 { \cs_set:Npn \WCperc { \qty { \WCpercentagerounded } { \percent } } }
 { \cs_set:Npn \WCperc { \WCpercentagerounded \, \% } }
 %such that \WCperc is not defined outside this command
 \bool_if:NTF \l__wheelchart_legend_only_bool {
 __wheelchart_initial:n {#2}
 \bool_if:NT \l__wheelchart_legend_row_bool {
 __wheelchart_def_WClegend: }
 \pgfkeysvalueof { / wheelchart / legend }
 }%this gives an error message if a key of the form <unknown key for wheelchart>{<range>} is given
\path let
\p { l__wheelchart_slices_orientation_1 } =
(_wheelchart_outer_plot:nn
 \{ \fp_use:N \g__wheelchart_angle_fp \}
 \{ \fp_use:N \l__wheelchart_outer_radius_fp \})
, \p { l__wheelchart_slices_orientation_2 } =
(_wheelchart_outer_plot:nn
 \{ \fp_use:N \l__wheelchart_slices_orientation_new_angle_fp \}
 \{ \fp_use:N \l__wheelchart_outer_radius_fp \})
, \p { l__wheelchart_slices_orientation_3 } =
(_wheelchart_inner_plot:nn
 \{ \fp_use:N \l__wheelchart_slices_orientation_new_angle_fp \}
 \{ \fp_use:N \l__wheelchart_inner_radius_fp \})
, \p { l__wheelchart_slices_orientation_4 } =
(_wheelchart_inner_plot:nn
 \{ \fp_use:N \g__wheelchart_angle_fp \}
 \{ \fp_use:N \l__wheelchart_inner_radius_fp \})
in
[utils / exec =
{ \fp_gset:Nm \g__wheelchart_slices_orientation_fp
 \{ sign
 \{ 0.1 * \y \{ l__wheelchart_slices_orientation_1 \} \} \} \} \} \)
* (\x { l__wheelchart_slices_orientation_4 } - \x { l__wheelchart_slices_orientation_2 })
+ 0.1 * \y { l__wheelchart_slices_orientation_2 }
* (\x { l__wheelchart_slices_orientation_1 } - \x { l__wheelchart_slices_orientation_3 })
+ 0.1 * \y { l__wheelchart_slices_orientation_3 }
* (\x { l__wheelchart_slices_orientation_2 } - \x { l__wheelchart_slices_orientation_4 })
+ 0.1 * \y { l__wheelchart_slices_orientation_4 }
* (\x { l__wheelchart_slices_orientation_3 } - \x { l__wheelchart_slices_orientation_1 })
)

* sign (\l__wheelchart_coord_determinant_fp)

\]

\begin{scope}
shift /. expanded =

__wheelchart_convex_comb_coord:nnnn
{ \l__wheelchart_slices_angle_pos_fp }
{ \l__wheelchart_slices_angle_shift_fp }
{ \l__wheelchart_slices_pos_fp }
{ \l__wheelchart_slices_sep_fp }
\l__wheelchart_slices_angle_fp

\fill [/ wheelchart / slices_style] \l__wheelchart_slices_tl
\end{scope}
Below we define x and y coordinates of the 4 points of the slice.
We do not use the let operation in the path \fill[/wheelchart/slices_style] ... because then
\n, \p, \x and \y cannot be used as macro names inside the argument of a key which is applied
on this path such as the key slices inner arc.
First it is necessary to define \g__wheelchart_x_coord_fp and \g__wheelchart_y_coord_fp globally. Then we
define local macros taking these values with an expanded definition. These are defined locally such that
these macros do not interfere with values of another wheelchart, for example if wheelcharts would be nested.
We do not use a \coordinate definition because this would be global which is not suited as explained above.
__wheelchart_def_coord:nn { inner } { end }
__wheelchart_def_coord:nn { inner } { start }
__wheelchart_def_coord:nn { outer } { end }
__wheelchart_def_coord:nn { outer } { start }
\fill [/ wheelchart / slices_style]
(\fp_use:c { l__wheelchart_outer~start_x_fp } , \fp_use:c { l__wheelchart_outer~start_y_fp })
l__wheelchart_slices_outer_tl
l__wheelchart_slices_end_tl
l__wheelchart_slices_inner_tl
l__wheelchart_slices_start_tl
;
\pgfkeysvalueof { / wheelchart / after~slices }

__wheelchart_for_loop:n
{
\bool_if:NT \l__wheelchart_wheel_lines_bool
%this is placed inside __wheelchart_for_loop:n such that wheel lines can be applied for specific slices
{\int_step_inline:nnn { 0 } { \fp_eval:n { round (\l__wheelchart_value_fp) } }
%note the \fp_eval:n { round (...) } to avoid the messages Missing character: There is no ... in font nullfont!
{\fp_set:Nn \l__wheelchart_angle_wheel_lines_fp
{\g__wheelchart_angle_fp
+ (\l__wheelchart_counter_or_clockwise_fp * (###1) * (\l__wheelchart_total_angle_fp / \WCtotalnum))
} \draw [/ wheelchart / wheel_lines]
__wheelchart_inner_plot:nn
\{ \fp_use:N \l_wheelchart_angle_wheel_lines_fp \}
\{ \fp_use:N \l_wheelchart_inner_radius_fp \}
\}

__wheelchart_outer_plot:nn
\{ \fp_use:N \l_wheelchart_angle_wheel_lines_fp \}
\{ \fp_use:N \l_wheelchart_outer_radius_fp \}
\};

\bool_if:NF \l__wheelchart_plot_bool
\{
\bool_if:NT \l__wheelchart_contour_bool
\{
\fp_compare:nNnTF { \l_wheelchart_total_angle_fp } = { 360 }
\{
\draw [/ wheelchart / contour_style] \g_wheelchart_inner_contour_tl cycle ;
\draw [/ wheelchart / contour_style] \g_wheelchart_outer_contour_tl cycle ;
\}
\{
\draw [/ wheelchart / contour_style] \g_wheelchart_inner_contour_tl \g_wheelchart_outer_contour_tl cycle ;
\}
\}
\}
__wheelchart_for_loop:n
\{
__wheelchart_def_macros:n
\{ data_pos , lines , lines_angle_pos , lines_angle_shift , lines_ext , lines_pos , lines_sep \}
\fp_compare:nNnF { \l_wheelchart_lines_ext_fp } = { 0 }
\{
\bool_if:NF \l__wheelchart_lines_ext_dir_bool
\{
__wheelchart_def_macros:n \{ lines_ext_dirsep \}
\int_set:Nn \l__wheelchart_lines_ext_dir_int
\fp_eval:n \\ {
\ \ \begin{aligned}
(\WCdataangle < 90 - \l__wheelchart_lines_ext_dirsep_fp \\
? 1 : (\WCdataangle <= 90 + \l__wheelchart_lines_ext_dirsep_fp \\
? \l__wheelchart_lines_ext_top_dir_int \\
: (\WCdataangle < 270 - \l__wheelchart_lines_ext_dirsep_fp \\
? -1 : (\WCdataangle <= 270 + \l__wheelchart_lines_ext_dirsep_fp \\
? \l__wheelchart_lines_ext_bottom_dir_int \\
: 1)))
\end{aligned}
\}

__wheelchart_def_macros:n { lines~ext~fixed~left , lines~ext~fixed~right }
\fp_compare:nF { \l__wheelchart_lines_fp == 0 && \l__wheelchart_lines_ext_fp == 0 }
{
\draw [/ wheelchart / lines_style] let \p { \l__wheelchart_lines_1 } =
__wheelchart_convex_comb_coord:nnnn { \l__wheelchart_data_angle_pos_fp } { \l__wheelchart_data_angle_shift_fp } { } { }
}
__wheelchart_data_pos_fp
__wheelchart_lines_sep_fp + __wheelchart_lines_fp
in
__wheelchart_convex_comb_coord:nnnn
__wheelchart_lines_angle_pos_fp
__wheelchart_lines_angle_shift_fp
__wheelchart_lines_pos_fp
__wheelchart_lines_sep_fp
-- (\p \l__wheelchart_lines_1)
\fp_compare:nNnF \l__wheelchart_lines_ext_fp = { 0 }
{ \str_case:enF \pgfkeysvalueof \wheelchart / lines-ext-fixed }
{ \true }
{ --
{ \fp_eval:n
{ \l__wheelchart_lines_ext_dir_int == 1
? \l__wheelchart_lines_ext_fixed_right_fp
: \l__wheelchart_lines_ext_fixed_left_fp
}
, \y \l__wheelchart_lines_1
}
{ \false }
{ --+ (\fp_eval:n \l__wheelchart_lines_ext_dir_int * \l__wheelchart_lines_ext_fp , 0) }
{ \pgfkeys
{ /errors/boolean-expected/.expanded =
{ lines-ext-fixed }
\begin{verbatim}
{ \pgfkeysvalueof { /wheelchart/lines-ext-fixed } }
}
\coordinate
[shift = \{ \{ \fp_eval:n \{ \l__wheelchart_lines_ext_dir_int * \l__wheelchart_data_sep_fp \} , 0 \} \}]
(g__wheelchart_data_coordinate)
\end{verbatim}
\[
\begin{align*}
&\text{__wheelchart_data_sep_fp} + \\
&\begin{cases}
&\text{__wheelchart_lines_fp} == 0 \\
&\text{0}
\end{cases} \\
&\text{__wheelchart_lines_sep_fp} + \text{__wheelchart_lines_fp}
\end{align*}
\]

\[
(\text{__wheelchart_data_coordinate})
\]

\[
\begin{align*}
&\text{__wheelchart_def_macros:n} \{ \text{arc_data_angle_pos} , \text{arc_data_dir} \} \text{these are needed for arc data and arc}
&\text{__wheelchart_def_macros:n} \{ \text{arc_data_angle_shift} , \text{arc_data_pos} , \text{arc_data_sep} \}
&\text{__wheelchart_if_text:nn} \{ \text{arc_data} \}
&\text{__wheelchart_def_macros:n} \{ \text{arc_data_angle_shift} , \text{arc_data_pos} , \text{arc_data_sep} \}
&\text{__wheelchart_if_text:nn} \{ \text{arc_data_angle_shift} , \text{arc_data_pos} , \text{arc_data_sep} \}
\end{align*}
\]
\begin{verbatim}
{
 text-along-path,
 text = { {} { \fp_gset:Nn \g__wheelchart_arc_data_slice_length_fp { \pgfdecoratedpathlength } } },
 raise = -0.5 ex,
 text-align = \l__wheelchart_arc_data_align_tl,
 /wheelchart/arc_data_style
}
\end{verbatim}
__wheelchart_if_text:nn { inner-data }
\node [align = left , / wheelchart / inner-data_style] at
__wheelchart_convex_comb_coord:nnnn
{ \l__wheelchart_inner_data_angle_pos_fp }
{ \l__wheelchart_inner_data_angle_shift_fp }
{ \l__wheelchart_inner_data_pos_fp }
{ \l__wheelchart_inner_data_sep_fp }
{ \pgfkeysvalueof { / wheelchart / inner-data } } ;
__wheelchart_if_text:nn { wheel-data }
\node [align = left , / wheelchart / wheel-data_style] at
__wheelchart_convex_comb_coord:nnnn
{ \l__wheelchart_wheel_data_angle_pos_fp }
{ \l__wheelchart_wheel_data_angle_shift_fp }
{ \l__wheelchart_wheel_data_pos_fp }
{ \l__wheelchart_wheel_data_sep_fp }
{ \pgfkeysvalueof { / wheelchart / wheel-data } } ;