% --------------------------------------------------------------------------- % % atableau - Andrew Mathas (C) 2022-2025 % % A latex package for symmetric group combinatorics, including: % - abacuses % - multitableau % - ribbon tableau % - shifted tableau % - skew tableau % - tableaux % - tabloids % - Young diagrams % % E-mail: andrew.mathas@gmail.com % Released under the LaTeX Project Public License v1.3c or later % See http://www.latex-project.org/lppl.txt % --------------------------------------------------------------------------- % load TikZ early to avoid \ExplSyntaxOn...\ExplSyntaxOff wrappers \RequirePackage{tikz} \usetikzlibrary{shapes.geometric,matrix} % Correct for negative signs in contents being too long to fit in a tableau \RequirePackage{amsfonts} %% <- also included by amssymb \DeclareMathSymbol{\shortminus}{\mathbin}{AMSa}{"39} % --------------------------------------------------------------------------- % package date and version \def\atableau@version{2.0.2} \def\atableau@release{2025-01-22} \providecommand\DeclareRelease[3]{} \providecommand\DeclareCurrentRelease[2]{} \DeclareRelease{\atableau@version}{\atableau@release}{atableau.sty} \DeclareCurrentRelease{}{\atableau@release} \ProvidesExplPackage{atableau} {\atableau@release} {\atableau@version} {A latex package for symmetric group combinatorics } % --------------------------------------------------------------------------- % package errors \msg_new:nnnn { aTableau } { empty-tableau-row } { Row~#1~of~tableau~is~empty } { Empty~tableau~rows~are~not~supported} \msg_new:nnnn { aTableau } { missing-runner-labels } { Your~abacus~has~a~different~number~of~runners~and~runner~labels } { The~number~of~labels~given~to~the~'runner~labels'~must~match~the~number~of~abacus~runners } \msg_new:nnnn { aTableau } { missing-style } { The~'#1'~styles~key~is~missing~a~value } { The~styles~key~accepts~a~comma~separated~list~of~key-value~pairs~for~defining~TikZ~styles } \msg_new:nnnn { aTableau } { invalid-dots} { Invalid~specifications~for~dotted~rows~or~dotted~cols } { You~can~only~use~these~options~for~interior~rows~and~columns~in~the~diagrams} \msg_new:nnnn { aTableau } { invalid-ribbon-head } { Invalid~ribbon~head:~the~row~and~column~indices~of~the~ribbon~head~must~be~given:~'#1'} { Ribbon~specifications~must~be~for~the~form:~(optional~ribbon~style)[style]+sequences~of~r's~and~c's~with~style} \msg_new:nnnn { aTableau } { invalid-ribbon-specification } { Invalid~ribbon~specification~'#1':~expecting~r~or~c. } { Ribbon~specifications~must~be~for~the~form:~[optional~style]~sequences~of~r's and~c's~with~style} \msg_new:nnnn { aTableau } { unrecognised-abacus-label } { Unrecognised~abacus~label~'#1'. } { The~possible~abacus~labels~are~betas,~residues,~rows~and~shape} \msg_new:nnnn { aTableau } { unrecognised-entries } { Unrecognised~entries~value:~'#1' } { The~possible~diagram~values~for~entries~are:~contents,~first,~hooks,~last,~and~residues} \msg_new:nnnn { aTableau } { unrecognised-style } { Unrecognised~style:~'#1' } { The~available~tableau~styles~are~australian,~english,~french~and~ukrainian~and~the~available~abacus~styles~are~north,~south,~east~and~west~} \msg_new:nnnn { aTableau } { unknown-abacus-ends } { Unrecognised~abacus~ends~setting:~'#1' } { The~supported~ends~for~the~top/bottom~of~the~abacus~are:~-,~_~,.~,|,~and~>} \msg_new:nnnn { aTableau } { unknown-cartan } { Unrecognised~Cartan~type~'#1' } { The~supported~Cartan~types~are~(affine)~types~A,~AA,~C~and~DD} \msg_new:nnnn { aTableau } { unknown-baseline } { Unrecognised~baseline~option:~'#1' } { The~supported~halign~options~are~bottom,~centre,~left,~and~top } \msg_new:nnnn { aTableau } { unknown-halign } { Unrecognised~halign~option:~'#1' } { The~supported~halign~options~are~centre,~left,~and~right } \msg_new:nnnn { aTableau } { unknown-top } { Unrecognised~format~for~abacus~top;~'#1' } { The~supported~formats~are:~blank,~dots,~and~frame} \msg_new:nnnn { aTableau } { unknown-valign } { Unrecognised~valign~option:~#1 } { The~supported~valign~options~are~bottom,~centre~and~top } % --------------------------------------------------------------------------- % package variables \bool_new:N \l__atableau_beta_numbers_bool% true if specifying beta numbers \bool_new:N \l__atableau_frame_bool % true if drawing framed abacus runners \bool_new:N \l__atableau_conjugate_bool % true if drawing conjugate tableau/diagram \bool_new:N \l__atableau_border_bool % true if drawing tableau border \bool_new:N \l__atableau_boxes_bool % true if drawing inner tableau walls \bool_new:N \l__atableau_shifted_bool % true if a shifted tableau \bool_new:N \l__atableau_skew_border_bool % true if drawing skew border \bool_new:N \l__atableau_skew_boxes_bool % true if drawing skew boxes \bool_new:N \l__atableau_tabloid_bool % true if a tabloid \bool_new:N \l__atableau_separators_bool % true if drawing separators for multishapes \fp_new:N \l__atableau_ab_col_dx_fp % change in x-coordinate between columns in an abacus \fp_new:N \l__atableau_ab_col_dy_fp % change in y-coordinate between columns in an abacus \fp_new:N \l__atableau_ab_row_dx_fp % change in x-coordinate between rows in an abacus \fp_new:N \l__atableau_ab_row_dy_fp % change in y-coordinate between rows in an abacus \fp_new:N \l__atableau_abacus_ht_fp % height of the tableaux nodes/separation between abacus beads \fp_new:N \l__atableau_abacus_wd_fp % width of the tableaux nodes/separation between abacus runners \fp_new:N \l__atableau_bead_size_fp % bead radius \fp_new:N \l__atableau_box_ht_fp % height of a tableau box \fp_new:N \l__atableau_box_wd_fp % width of a tableau box \fp_new:N \l__atableau_rows_fp % number of rows in abacus/tableau \fp_new:N \l__atableau_separation_fp % distance between multitableau \fp_new:N \l__atableau_tab_col_dx_fp % change in x-coordinate between columns in a tableau \fp_new:N \l__atableau_tab_col_dy_fp % change in y-coordinate between columns in a tableau \fp_new:N \l__atableau_tab_row_dx_fp % change in x-coordinate between rows in a tableau \fp_new:N \l__atableau_tab_row_dy_fp % change in y-coordinate between rows in a tableau \fp_new:N \l__atableau_tick_length_fp % half the length of the abacus ticks \fp_new:N \l__atableau_x_fp % x-coordinate of the origin of the diagram \fp_new:N \l__atableau_xa_fp % scratch x-coordinate of a node/bead \fp_new:N \l__atableau_xb_fp % scratch x-coordinate of a node/bead \fp_new:N \l__atableau_xl_fp % x-coordinate of a tableau node/bead \fp_new:N \l__atableau_xmax_fp % maximum x-coordinate for multidiagrams and multitableaux \fp_new:N \l__atableau_xoffsets_seq % x-offsets for the (1,1)-nodes in a multi-tableau \fp_new:N \l__atableau_xscale_fp % scaling in the x-direction \fp_new:N \l__atableau_xsep_fp % x-coordinate difference to next separator for multishapes \fp_new:N \l__atableau_y_fp % y-coordinate of the origin of the diagram \fp_new:N \l__atableau_ya_fp % scratch y-coordinate of a node/bead \fp_new:N \l__atableau_yb_fp % scratch y-coordinate of a node/bead \fp_new:N \l__atableau_yl_fp % y-coordinate of a tableau node/bead \fp_new:N \l__atableau_ymax_fp % maximum y-coordinate for multidiagrams and multitableaux \fp_new:N \l__atableau_ymin_fp % minimum y-coordinate for multidiagrams and multitableaux \fp_new:N \l__atableau_yoffsets_seq % t-offsets for the (1,1)-nodes in a multi-tableau \fp_new:N \l__atableau_yscale_fp % scaling in the x-direction \int_new:N \l__atableau_beads_int % number of beads in abacus \int_new:N \l__atableau_charge_int % charge for current component \int_new:N \l__atableau_col_int % current column index \int_new:N \l__atableau_c_int % scratch column counter \int_new:N \l__atableau_cols_int % number of columns in a multitableau/abacus \int_new:N \l__atableau_component_int % component in multidiagrams and tableaux \int_new:N \l__atableau_e_int % quantum characteristic \int_new:N \l__atableau_row_int % current row index \int_new:N \l__atableau_r_int % scratch row counter \int_new:N \l__atableau_rows_int % number of rows in abacus \seq_new:N \l__atableau_charge_seq % sequences of charges = residue/content offset \seq_new:N \l__atableau_component_seq % multipartition \seq_new:N \l__atableau_conjugate_seq % conjugate partition \seq_new:N \l__atableau_dotted_cols_seq % columns with dots \seq_new:N \l__atableau_dotted_rows_seq % rows with dots \seq_new:N \l__atableau_multidotted_cols_seq % sequence of dotted columns for multi shapes \seq_new:N \l__atableau_multidotted_rows_seq % sequence of dotted rows for multi shapes \seq_new:N \l__atableau_multilabel_seq % a sequence of labels for multi shapes \seq_new:N \l__atableau_multipaths_seq % a sequence of ribbon paths for multi shapes \seq_new:N \l__atableau_multiribbons_seq % a sequence of ribbon for multi shapes \seq_new:N \l__atableau_multiskew_seq % a sequence of skew partitions for multi shapes \seq_new:N \l__atableau_multisnobs_seq % a sequence of snobs for multi shapes \seq_new:N \l__atableau_paths_seq % ribbon paths to add to tableau/diagram \seq_new:N \l__atableau_rcs_seq % ribbon row, column indices \seq_new:N \l__atableau_ribbons_seq % ribbons to add to tableau/diagram \seq_new:N \l__atableau_runner_labels_seq % labels for the abacus runners \seq_new:N \l__atableau_shape_seq % a partition \seq_new:N \l__atableau_skew_seq % the inner partition for a skew shape \seq_new:N \l__atableau_snobs_seq % snob ribbons to add to tableau/diagram \seq_new:N \l__atableau_styles_seq % ribbon/bead styles \seq_new:N \l__atableau_texts_seq % ribbon/bead texts \seq_new:N \l__atableau_xsep_seq % x-coordinates separators for multishapes \tl_new:N \l__atableau_abacus_bottom_tl % specifies the bottom of the abacus \tl_new:N \l__atableau_abacus_top_tl % specifies the top of the abacus \tl_new:N \l__atableau_bead_font_tl % font for abacus beads \tl_new:N \l__atableau_bead_shape_tl % shape of abacus beads \tl_new:N \l__atableau_bead_text_tl % text colour of abacus beads \tl_new:N \l__atableau_bead_tl % abacus head colour \tl_new:N \l__atableau_border_tl % diagram border \tl_new:N \l__atableau_box_fill_tl % fill colour for tableau boxes \tl_new:N \l__atableau_box_font_tl % font for tableau boxes \tl_new:N \l__atableau_box_shape_tl % shape of tableau boxes \tl_new:N \l__atableau_box_text_tl % text colour for tableau boxes \tl_new:N \l__atableau_capture_exp_tl % contains captured exponent \tl_new:N \l__atableau_capture_part_tl % contains captured part \tl_new:N \l__atableau_capture_style_tl % contains captured style \tl_new:N \l__atableau_capture_txt_tl % contains captured text \tl_new:N \l__atableau_cartan_tl % the Cartan type \tl_new:N \l__atableau_empty_tl % symbol for empty tableau/diagram in a multi tableau/diagram \tl_new:N \l__atableau_entries_tl % custom entries in tableau \tl_new:N \l__atableau_inner_tl % colour of tableau inner walls \tl_new:N \l__atableau_label_tl % a label to print on an tableau/diagram \tl_new:N \l__atableau_left_delimiter_tl % the left delimiter for multitableau and multidiagrams \tl_new:N \l__atableau_multiprefix_tl % prefix used when constructing multinode names \tl_new:N \l__atableau_name_tl % name of a tableau node \tl_new:N \l__atableau_outer_tl % colour of tableau outer walls \tl_new:N \l__atableau_path_box_tl % node for ribbon paths \tl_new:N \l__atableau_prefix_tl % prefix for node names \tl_new:N \l__atableau_ribbon_box_tl % box entry for ribbons \tl_new:N \l__atableau_ribbon_style_tl % optional style used for current path< ribbon or snob \tl_new:N \l__atableau_ribbon_path_tl % a ribbon in the ribbon tableau \tl_new:N \l__atableau_ribbon_type_tl % the type of ribbon, which is either path, ribbon or snob \tl_new:N \l__atableau_right_delimiter_tl % the right delimiter for multitableau and multidiagrams \tl_new:N \l__atableau_runner_tl % abacus runner colour \tl_new:N \l__atableau_snob_box_tl % box entry for snobs \tl_new:N \l__atableau_separator_fg_tl % foreground colour of the separator \tl_new:N \l__atableau_separator_tl % the separator between multitableau: | or , or ... \tl_new:N \l__atableau_shading_tl % the type of shading to use for the abacus beads \tl_new:N \l__atableau_show_tl % automatic tableau/bead labelling \tl_new:N \l__atableau_skew_border_tl % skew border colour \tl_new:N \l__atableau_starstyle_tl % current star style in use \tl_new:N \l__atableau_styled_nodes_tl % token lists of nodes with non-default style \tl_new:N \l__atableau_tick_tl % abacus tick colour \tl_new:N \l__atableau_tikz_after_tl % TikZ commands for after the diagram \tl_new:N \l__atableau_tikz_before_tl % TikZ commands for before the diagram \tl_new:N \l__atableau_tikzpicture_tl % TikZ environment settings \tl_new:N \l__atableau_unstyled_nodes_tl % token lists of nodes with efault style % --------------------------------------------------------------------------- % Variable defaults -- most defaults are given in the settings: \keys_set:nn {aTableau} {...} \tl_set:Nn \l__atableau_ribbon_type_tl {ribbon} % by default, ribbons are ribbons % --------------------------------------------------------------------------- % default colours \definecolor{aTableauMain} {HTML} {00008B} \definecolor{aTableauInner} {HTML} {0073e6} \definecolor{aTableauSkew} {HTML} {818589} \definecolor{aTableauSkewFill} {HTML} {F8F8F8} \definecolor{aTableauStarStyle} {HTML} {E6F7FF} % --------------------------------------------------------------------------- % TikZ styling of aTableau components \tikzset{ % ----------------------------------------------------------------------- % Allow ball shading to be disabled via shade=none. % The essential idea comes from https://tex.stackexchange.com/a/85750/234252 no~shade/.code={ \tikz@addmode{\tikz@mode@shadefalse } }, % ----------------------------------------------------------------------- % all tikz settings are in the aTableau family aTableau/.is~family, aTableau/.cd, % ----------------------------------------------------------------------- % Styles for tableaux and diagrams % ----------------------------------------------------------------------- % inner tableau wall innerWall/.style = { line~cap = rect, thin, }, % outer tableau wall borderStyle/.style = { % shifting allows us to use \__atableau_set_box_coordinates:nnn when drawing the border shift = {(\fp_eval:n{-(\l__atableau_tab_row_dx_fp+\l__atableau_tab_col_dx_fp)*\l__atableau_box_wd_fp/2}, \fp_eval:n{-(\l__atableau_tab_row_dy_fp+\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp/2})}, line~cap = rect, very~thick, draw = \l__atableau_outer_tl, }, % skew walls skewBorder/.style = { % shifting allows us to use \__atableau_set_box_coordinates:nnn when drawing the border shift = {(\fp_eval:n{-(\l__atableau_tab_row_dx_fp+\l__atableau_tab_col_dx_fp)*\l__atableau_box_wd_fp/2}, \fp_eval:n{-(\l__atableau_tab_row_dy_fp+\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp/2})}, draw = \l__atableau_skew_border_tl, thick }, % styles for tableau boxes in Young diagrams % ----------------------------------------------------------------------- node/.style = { anchor = center, inner~sep = 0pt, minimum~height = \fp_use:N \l__atableau_box_ht_fp cm, minimum~width = \fp_use:N \l__atableau_box_wd_fp cm, shape = \l__atableau_box_shape_tl, font = \l__atableau_box_font_tl, text = \l__atableau_box_text_tl, }, boxStyle/.style = { aTableau/node, aTableau/innerWall, draw = \l__atableau_inner_tl, fill = \l__atableau_box_fill_tl, }, % default skew box style skewBox/.style = { aTableau/node, aTableau/innerWall, draw = \l__atableau_skew_border_tl, fill = aTableauSkewFill, }, % box styles for paths, ribbons and snobs % ----------------------------------------------------------------------- pathBox/.style = { aTableau/node, draw = none, % border disabled by default }, ribbonBox/.style = { aTableau/node, }, snobBox/.style = { aTableau/node, }, % styles for paths, ribbons and snobs % ----------------------------------------------------------------------- % default path style pathStyle/.style = { draw = \l__atableau_inner_tl, }, ribbonStyle/.style = { aTableau/innerWall, draw = \l__atableau_inner_tl, }, % default ribbon style snobStyle/.style = { aTableau/innerWall, draw = \l__atableau_inner_tl, }, % label styles % ----------------------------------------------------------------------- labelStyle/.style = { shift = {(\fp_eval:n{-0.2*(\l__atableau_tab_row_dx_fp+\l__atableau_tab_col_dx_fp)*\l__atableau_box_wd_fp}, \fp_eval:n{-0.2*(\l__atableau_tab_row_dy_fp+\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp})}, font=\scriptsize, text = \l__atableau_inner_tl, }, % tableau star style % ----------------------------------------------------------------------- tableauStarStyle/.style = { fill = aTableauStarStyle, text = \l__atableau_box_text_tl, }, % cleared boxes for dotted rows and columns % ----------------------------------------------------------------------- clearBoxes/.style = { draw = white, fill = white, }, % dots used for dotted rows and columns % ----------------------------------------------------------------------- dottedLine/.style = { densely~dotted, thick, draw = \l__atableau_outer_tl, }, % separators and delimiters % ----------------------------------------------------------------------- separatorSymbol/.style = { text = \l__atableau_separator_fg_tl, }, % default separator line style separatorLine/.style = { thick, draw = \l__atableau_separator_fg_tl, }, % Delimiters around multitableaux and multidiagrams. To change the colour % of the delimiters we need to use \path[aTableau/delimiterPath] (x,y) node... delimiterStyle/.style = { align = center, inner~sep = 0pt, minimum~height = \fp_use:N\l__atableau_ymax_fp cm, }, % hack to set the colour delimiterPath/.style = { every~delimiter/.style = { \l__atableau_separator_fg_tl, }, }, leftDelimiter/.style = { aTableau/delimiterStyle, left~delimiter = \l__atableau_left_delimiter_tl, xshift = 2pt, }, rightDelimiter/.style = { aTableau/delimiterStyle, right~delimiter = \l__atableau_right_delimiter_tl, xshift = -2pt, }, % ----------------------------------------------------------------------- % abacus beads and runners % ----------------------------------------------------------------------- % abacus beads beadStyle/.style = { ball~color = \l__atableau_bead_tl, font = \l__atableau_bead_font_tl, minimum~height = \fp_to_decimal:N \l__atableau_bead_size_fp cm, minimum~width = \fp_to_decimal:N \l__atableau_bead_size_fp cm, shading = \l__atableau_shading_tl, shape = \l__atableau_bead_shape_tl, text = \l__atableau_bead_text_tl, anchor = center, inner~sep = 0pt, }, % abacus runners runnerStyle/.style = { line~cap = rect, very~thick, draw = \l__atableau_runner_tl, }, runnerLabelStyle/.style = { aTableau/node, text = aTableauInner, font = \scriptsize }, % style for the top and bottom of the abacus abacusEnds/.style = { aTableau/runnerStyle, }, % abacus star style abacusStarStyle/.style = { text = aTableauMain, ball~color = aTableauStarStyle, }, % abacus ticks tickStyle/.style = { draw = \l__atableau_tick_tl, semithick, }, % the named coordinate for an abacus tick namedTick/.style = { minimum~height = \fp_to_decimal:N \l__atableau_bead_size_fp cm, minimum~width = \fp_to_decimal:N \l__atableau_bead_size_fp cm, shape = \l__atableau_bead_shape_tl, draw=none, } } % --------------------------------------------------------------------------- % usage: \__atableau_set_style:nn {abacus|tableau} {style} % sets the basic styles for the tableaux and abacus commands \cs_new:Npn \__atableau_set_style:nn #1 #2 { \str_case:enF { #1/#2 } { {tableau/english} { \fp_set:Nn \l__atableau_tab_col_dx_fp {1} \fp_set:Nn \l__atableau_tab_col_dy_fp {0} \fp_set:Nn \l__atableau_tab_row_dx_fp {0} \fp_set:Nn \l__atableau_tab_row_dy_fp {-1} \fp_set:Nn \l__atableau_box_ht_fp {\l__atableau_yscale_fp*0.5} \fp_set:Nn \l__atableau_box_wd_fp {\l__atableau_xscale_fp*0.5} \tl_set:Nn \l__atableau_box_shape_tl {rectangle} } {tableau/french} { \fp_set:Nn \l__atableau_tab_col_dx_fp {1} \fp_set:Nn \l__atableau_tab_col_dy_fp {0} \fp_set:Nn \l__atableau_tab_row_dx_fp {0} \fp_set:Nn \l__atableau_tab_row_dy_fp {1} \fp_set:Nn \l__atableau_box_ht_fp {\l__atableau_yscale_fp*0.5} \fp_set:Nn \l__atableau_box_wd_fp {\l__atableau_xscale_fp*0.5} \tl_set:Nn \l__atableau_box_shape_tl {rectangle} } {tableau/australian} { \fp_set:Nn \l__atableau_tab_col_dx_fp {0.5} \fp_set:Nn \l__atableau_tab_col_dy_fp {-0.5} \fp_set:Nn \l__atableau_tab_row_dx_fp {-0.5} \fp_set:Nn \l__atableau_tab_row_dy_fp {-0.5} \fp_set:Nn \l__atableau_box_ht_fp {\l__atableau_yscale_fp*0.7012} % 1/sqrt(2) \fp_set:Nn \l__atableau_box_wd_fp {\l__atableau_xscale_fp*0.7012} \tl_set:Nn \l__atableau_box_shape_tl {diamond} } {tableau/ukrainian} { \fp_set:Nn \l__atableau_tab_col_dx_fp {0.5} \fp_set:Nn \l__atableau_tab_col_dy_fp {0.5} \fp_set:Nn \l__atableau_tab_row_dx_fp {-0.5} \fp_set:Nn \l__atableau_tab_row_dy_fp {0.5} \fp_set:Nn \l__atableau_box_ht_fp {\l__atableau_yscale_fp*0.7012} \fp_set:Nn \l__atableau_box_wd_fp {\l__atableau_xscale_fp*0.7012} \tl_set:Nn \l__atableau_box_shape_tl {diamond} } {tableau/russian} { \__atableau_set_style:nn {tableau} {ukrainian} } {abacus/south} { \fp_set:Nn \l__atableau_ab_col_dx_fp {1} \fp_set:Nn \l__atableau_ab_col_dy_fp {0} \fp_set:Nn \l__atableau_ab_row_dx_fp {0} \fp_set:Nn \l__atableau_ab_row_dy_fp {-1} \fp_set:Nn \l__atableau_abacus_ht_fp {\l__atableau_yscale_fp*0.5} \fp_set:Nn \l__atableau_abacus_wd_fp {\l__atableau_xscale_fp*0.5} \tl_set:Nn \l__atableau_bead_shape_tl {circle} } {abacus/north} { \fp_set:Nn \l__atableau_ab_col_dx_fp {1} \fp_set:Nn \l__atableau_ab_col_dy_fp {0} \fp_set:Nn \l__atableau_ab_row_dx_fp {0} \fp_set:Nn \l__atableau_ab_row_dy_fp {1} \tl_set:Nn \l__atableau_bead_shape_tl {circle} \fp_set:Nn \l__atableau_abacus_wd_fp {\l__atableau_xscale_fp*0.5} \fp_set:Nn \l__atableau_abacus_ht_fp {\l__atableau_yscale_fp*0.5} } {abacus/east} { \fp_set:Nn \l__atableau_ab_col_dx_fp {0} \fp_set:Nn \l__atableau_ab_col_dy_fp {-1} \fp_set:Nn \l__atableau_ab_row_dx_fp {1} \fp_set:Nn \l__atableau_ab_row_dy_fp {0} \tl_set:Nn \l__atableau_bead_shape_tl {circle} \fp_set:Nn \l__atableau_abacus_wd_fp {\l__atableau_xscale_fp*0.5} \fp_set:Nn \l__atableau_abacus_ht_fp {\l__atableau_yscale_fp*0.5} } {abacus/west} { \fp_set:Nn \l__atableau_ab_col_dx_fp {0} \fp_set:Nn \l__atableau_ab_col_dy_fp {1} \fp_set:Nn \l__atableau_ab_row_dx_fp {-1} \fp_set:Nn \l__atableau_ab_row_dy_fp {0} \tl_set:Nn \l__atableau_bead_shape_tl {circle} \fp_set:Nn \l__atableau_abacus_wd_fp {\l__atableau_xscale_fp*0.5} \fp_set:Nn \l__atableau_abacus_ht_fp {\l__atableau_yscale_fp*0.5} } } { \msg_error:nnx {aTableau} {unrecognised-style} {#1/#2} } } % usage: \__atableau_set_xscale:n {x-scale} : rescale the x-dimension \cs_new_protected:Npn \__atableau_set_xscale:n #1 { \fp_set:Nn \l__atableau_xscale_fp {#1} % makes scale persistent \fp_set:Nn \l__atableau_abacus_wd_fp {#1*\l__atableau_abacus_wd_fp} \fp_set:Nn \l__atableau_box_wd_fp {#1*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_separation_fp {#1*\l__atableau_separation_fp } } % usage: \__atableau_set_yscale:n {y-scale} : rescale the y-dimension \cs_new_protected:Npn \__atableau_set_yscale:n #1 { \fp_set:Nn \l__atableau_yscale_fp {#1} % makes scale persistent \fp_set:Nn \l__atableau_abacus_ht_fp {#1*\l__atableau_abacus_ht_fp} \fp_set:Nn \l__atableau_box_ht_fp {#1*\l__atableau_box_ht_fp} } % usage: \__atableau_set_delimiters:nn {left delimiter} {right delimiter} \cs_new_protected:Npn \__atableau_set_delimiters:nn #1 #2 { \tl_set:Nn \l__atableau_left_delimiter_tl #1 \tl_set:Nn \l__atableau_right_delimiter_tl #2 } % usage: \__atableau_set_multiseq_key:nn {name} {value} % Set up a sequence, for keys used with multishapes \cs_new_protected:Npn \__atableau_set_multiseq_key:nn #1 #2 { \tl_if_in:nnTF {#2} {|} { % unpack the ribbons into \l__atableau_multiribbons_seq \seq_set_split:cnn {l__atableau_multi#1_seq} {|} {#2} } { \seq_set_from_clist:cn {l__atableau_#1_seq} {#2} } } % usage: \__atableau_set_abacus_ends:nn {top} {top} % Set the abacus ends abacus_top and abacus_bottom and give an error % message if the ends are not one of =,-,.,|,> \cs_new_protected:Npn \__atableau_set_abacus_ends:nn #1 #2 { \tl_set:Nn \l__atableau_abacus_top_tl {#1} \str_if_in:nnF {-.>|\c_underscore_str*} {#1} { \msg_error:nne {aTableau} {unknown-abacus-ends} {#1}} \tl_set:Nn \l__atableau_abacus_bottom_tl {#2} \str_if_in:nnF {-.>|\c_underscore_str*} {#2} { \msg_error:nne {aTableau} {unknown-abacus-ends} {#2}} } % --------------------------------------------------------------------------- % command variants \cs_generate_variant:Nn \fp_add:Nn {NV} \cs_generate_variant:Nn \int_set:Nn {No} \cs_generate_variant:Nn \seq_put_right:Nn {Nx} \cs_generate_variant:Nn \seq_set_item:Nnn {NVx, Nnx, Nox} \cs_generate_variant:Nn \seq_set_from_clist:Nn {co} \cs_generate_variant:Nn \seq_set_split:Nnn {cnn} \cs_generate_variant:Nn \__atableau_add_ribbon:n {V} \cs_generate_variant:Nn \__atableau_count_row:n {x} \cs_generate_variant:Nn \__atableau_draw_tableau:n {V} \cs_generate_variant:Nn \__atableau_entry:n {x} \cs_generate_variant:Nn \__atableau_draw_abacus_end:nnn {noo} \cs_generate_variant:Nn \__atableau_set_bead_coordinates:nnn {nVV, nnV, noo, non, noV} \cs_generate_variant:Nn \__atableau_set_box_coordinates:nnn {nVV, nVn, noo } \cs_generate_variant:Nn \__atableau_set_partition:nn {no} \cs_generate_variant:Nn \__atableau_tl_put_right_braced:Nn { NV, Nx, No, Ne } % --------------------------------------------------------------------------- % utility functions % usage: \__atableau_tl_put_right_braced:Nn #1 #2 % Add braces around #2 and append to #1 \cs_new_protected:Nn \__atableau_tl_put_right_braced:Nn { \tl_put_right:Nn #1 { {#2} } } % --------------------------------------------------------------------------- % expandable residue functions % usage: \__atableau_residue_A:nn % Computes the residue of #1 mod #2. This is positive integer remainder when % dividing by #2. As with \int_mod:n, the result is left in the input stream. \cs_new:Npn \__atableau_residue_A:nn #1 #2 { \int_compare:nNnTF {#1} > {0} { \int_mod:nn {#1} {#2} } { \int_eval:n {\int_mod:nn {#2 + \int_mod:nn {#1} {#2}} {#2}} }% \int_mod:nn is negative } % usage: \__atableau_residue_C:nn % Computes the residue of #1 in affine type C. When e=3 this residue pattern is % 0 1 2 3 2 1 0 1 2 3 2 1 0 1 ... % As with \int_mod:n, the result is left in the input stream. \cs_new:Npn \__atableau_residue_C:nn #1 #2 { \int_compare:nNnTF {#1} < {0} { % #1 is negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2}} < {-#2} { \int_eval:n { 2*#2 + \int_mod:nn {#1} {2*#2} } } { \int_eval:n { \int_mod:nn {-#1} {2*#2} } } } { % #1 is non-negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2}} > {#2} { \int_eval:n { 2*#2 - \int_mod:nn {#1} {2*#2} } } { \int_eval:n { \int_mod:nn {#1} {2*#2} } } } } % usage: \__atableau_residue_AA:nn % Computes the residue of #1 in twisted type A. When e=3 this residue pattern is % 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 ... % As with \int_mod:n, the result is left in the input stream. \cs_new:Npn \__atableau_residue_AA:nn #1 #2 { \int_compare:nNnTF {#1} < {0} { % #1 is negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2+1}} < {-#2} { \int_eval:n { 2*#2+1 + \int_mod:nn {#1} {2*#2+1}} } { \int_eval:n { \int_mod:nn {-#1} {2*#2+1} } } } { % #1 is non-negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2+1}} > {#2} { \int_eval:n { 2*#2+1 - \int_mod:nn {#1} {2*#2+1} } } { \int_eval:n { \int_mod:nn {#1} {2*#2+1} } } } } % usage: \__atableau_residue_D:nn % Computes the residue of #1 in affine type C. When e=3 this residue pattern is % 0 1 2 3 3 2 1 0 0 1 2 3 3 2 1 0 0 1 ... % As with \int_mod:n, the result is left in the input stream. \cs_new:Npn \__atableau_residue_DD:nn #1 #2 { \int_compare:nNnTF {#1} < {0} { % #1 is negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2+2}} < {-#2} { \int_eval:n {2*#2+1 + \int_mod:nn {#1} {2*#2+2}} } { \int_eval:n { -\int_mod:nn {#1} {2*#2+2} } } } { % #1 is non-negative \int_compare:nNnTF {\int_mod:nn {#1} {2*#2+2}} > {#2} { \int_eval:n {2*#2+1- \int_mod:nn {#1} {2*#2+2} } } { \int_eval:n { \int_mod:nn {#1} {2*#2+2} } } } } % use type A residues by default \cs_set_eq:NN \__atableau_residue:nn \__atableau_residue_A:nn % --------------------------------------------------------------------------- % Parsing input % \seq_set_split:Nnn does not respect braces around singleton entries % such as in { 1345, 8{10}, {11}, {12} }, with the result that {11} % and {12} are treated as {1}{1} and {1}{2}, respectively. As this is % not what we want, we use \peek_charcode:NTF to do this ourselves. \cs_new_protected:Npn \__atableau_peek_tableau:w { \peek_remove_spaces:n { % ignore spaces \peek_charcode_remove:NTF , { % record the column index in the shape for drawing the border \seq_put_right:NV \l__atableau_shape_seq \l__atableau_col_int % increment the row index \int_incr:N \l__atableau_row_int % reset the column index, and update the skew shape for shifted tableau \bool_if:NTF \l__atableau_shifted_bool { \seq_put_right:No \l__atableau_skew_seq {\int_use:N \l__atableau_row_int} \int_set_eq:NN \l__atableau_col_int \l__atableau_row_int } { \int_set:Nn \l__atableau_col_int { 0\seq_item:Nn \l__atableau_skew_seq {\l__atableau_row_int+1}} } % look for the next entry \__atableau_peek_tableau:w } { \__atableau_peek_style:nw {draw_entry:nn} } } } % --------------------------------------------------------------------------- % usage: \__atableau_peek_style:nw {command suffix} % Read the next entry in the input sequence, with any optional style given by % a * or [...], and then pass this data to the command \__atableau_#1. \cs_new_protected:Npn \__atableau_peek_style:nw #1 { \peek_remove_spaces:n { % ignore spaces \peek_charcode:NTF [ { \use:c{__atableau_#1} } { \peek_charcode_remove:NTF * { \use:c{__atableau_#1} [\l__atableau_starstyle_tl] } { \use:c{__atableau_#1} [] } } } } % To parse the bead specifications used by \Abacus we need to accept the % a "bead specification" of the following form % [style]m^k_txt % where the [style] could simply be a *, the m is an integer, a part of the % partition being constructed, the k its exponent and txt is the text for the % node. Except for m, all of of these components are optional, with the % exponent being 1 if it is omitted. As is customary, the order of the % superscript and subscript is interchangeable. To parse these expressions we % first use \__atableau_peek_style:nw to strip off the style specification, via % \__atableau_record_style:nn, and then pass between \__atableau_peek_beads:nw % and \__atableau_record:nn to look ahead for the characters ^ and _ to decide % which of the following token lists the next character is added to: \cs_new_protected:Npn \__atableau_record_style:nn [#1] #2 { % clear the bead token lists \tl_set:Nn \l__atableau_capture_style_tl {#1} \tl_set:Nn \l__atableau_capture_part_tl {#2} \tl_clear:N \l__atableau_capture_exp_tl \tl_clear:N \l__atableau_capture_txt_tl \__atableau_peek_beads:nw {part} } % look for a caret or an underscore and pass on to \__atableau_record_bead:nn \cs_new_protected:Npn \__atableau_peek_beads:nw #1 { \peek_remove_spaces:n { % ignore spaces \peek_charcode_remove:NTF _ { \__atableau_record_bead:nn {txt} {}} { \peek_charcode_remove:NTF ^ { \__atableau_record_bead:nn {exp} {}} { \__atableau_record_bead:nn {#1} } } } } % #1 is one of part, exp or txt \cs_new_protected:Npn \__atableau_record_bead:nn #1 #2 { \quark_if_recursion_tail_stop_do:nn {#2} { % the data in the sequences \l__atableau_capture_exp_tl times \tl_if_empty:NT \l__atableau_capture_exp_tl { \tl_set:Nn \l__atableau_capture_exp_tl {1}} \int_step_inline:nn { \l__atableau_capture_exp_tl } { \int_incr:N \l__atableau_beads_int \seq_put_right:NV \l__atableau_shape_seq \l__atableau_capture_part_tl \seq_put_right:NV \l__atableau_texts_seq \l__atableau_capture_txt_tl \seq_put_right:NV \l__atableau_styles_seq \l__atableau_capture_style_tl } } \tl_put_right:cn {l__atableau_capture_#1_tl} {#2} \__atableau_peek_beads:nw {#1} } % usage: \__atableau_count_entries:nn [style] {entry} % Count the number of entries in the row, storing the result in c_int \cs_new_protected:Npn \__atableau_count_entries:nn [#1] #2 { % exit when we reach the end of the row \quark_if_recursion_tail_stop:n {#2} \int_incr:N \l__atableau_c_int \__atableau_peek_style:nw {count_entries:nn} } % usage: \__atableau_count_row:n {entries} \cs_new_protected:Npn \__atableau_count_row:n #1 { \__atableau_peek_style:nw {count_entries:nn} #1 \q_recursion_tail \q_recursion_stop } % --------------------------------------------------------------------------- % creating custom diagrams % usage: \__atableau_compute_conjugate_partition:N {seq} % compute the conjugate partition of and store in \l__atableau_conjugate_seq \cs_new_protected:Npn \__atableau_compute_conjugate_partition:N #1 { \seq_clear:N \l__atableau_conjugate_seq \int_zero:N \l_tmpa_int % previous part \int_set:No \l__atableau_r_int {\seq_count:N #1} \int_while_do:nn {\l__atableau_r_int > 0} { \int_set:No \l_tmpb_int {\seq_item:NV #1 \l__atableau_r_int } \int_step_inline:nn { \l_tmpb_int - \l_tmpa_int } { \seq_put_right:NV \l__atableau_conjugate_seq \l__atableau_r_int } \int_set_eq:NN \l_tmpa_int \l_tmpb_int \int_decr:N \l__atableau_r_int } } % usage: \__atableau_set_partition:nn {shape|skew} {csv for partition} % This function allows the partition to be given either as a comma separated % list of integers, or as a comma separated list of integers with exponents % giving the multiplicity of each part. For example, 4,3,3,3,2 and 4,3^3,2 % are both supported. % TODO? Rewrite using quarks? \cs_new_protected:Npn \__atableau_set_partition:nn #1 #2 { \seq_clear:c {l__atableau_#1_seq} \clist_map_inline:nn {#2} { \__atableau_add_to_partition:nn {#1} {##1} } } % add parts to the partition \l__atableau_#1_seq given input % of the form k or k^r \cs_new_protected:Npn \__atableau_add_to_partition:nn #1 #2 { % split #1 on ^: the trailing ^1 sets the exponent to 1 if it's omitted \seq_set_split:Nnn \l_tmpa_seq {^} {#2 ^1} % given k or k^r, set \l_tmpa_int=k and \l_tmpb_int=r, where r=1 with input k \seq_pop_left:NN \l_tmpa_seq \l_tmpa_tl % part \seq_pop_left:NN \l_tmpa_seq \l_tmpb_tl % exponent % now add \l_tmpa_int to \l__atableau_#1_seq b times \int_step_inline:nn {\l_tmpb_tl} { \seq_put_right:ce {l__atableau_#1_seq} {\l_tmpa_tl} } } % usage: \__atableau_diagram_for_shape:N {partition} % Young diagrams are drawn using the \Tableau command by generating % a sequence of ~ for the partition. For example, % it replaces the sequence 3,2,2,1 with % the dot-sequence ~~~,~~,~~,~, \cs_new_protected:Npn \__atableau_diagram_for_shape:N #1 { \tl_clear:N \l__atableau_entries_tl \tl_set:Nn \l_tmpb_tl {} \seq_map_inline:Nn #1 { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \tl_put_right:Nx \l__atableau_entries_tl { \prg_replicate:nn {##1} {{{~}}} } \tl_set:Nn \l_tmpb_tl {,} } } % usage: \__atableau_shape_to_content:Nn {partition sequence} % Return the content sequence to for a tableau of this shape \cs_new_protected:Npn \__atableau_shape_to_content:N #1 { \tl_clear:N \l__atableau_entries_tl \int_zero:N \l__atableau_row_int \tl_set:Nn \l_tmpb_tl {} \seq_map_inline:Nn #1 { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \int_incr:N \l__atableau_row_int \int_step_inline:nn {##1} { \int_set:Nn \l_tmpa_int { \l__atableau_charge_int + ####1 - \l__atableau_row_int + 0\seq_item:NV \l__atableau_skew_seq \l__atableau_row_int } \int_compare:nNnTF {\l_tmpa_int} < {0} { \__atableau_tl_put_right_braced:Ne \l__atableau_entries_tl {\exp_not:N\shortminus\int_eval:n{-\l_tmpa_int}} } { \__atableau_tl_put_right_braced:No \l__atableau_entries_tl {\int_use:N \l_tmpa_int} } } \tl_set:Nn \l_tmpb_tl {,} } } % Diagrams with show=last are drawn using the \Tableau command, with % usage: \__atableau_shape_to_last:N {partition sequence} \cs_new_protected:Npn \__atableau_shape_to_last:N #1 { % compute conjugate of #1 as \l__atableau_conjugate_seq %\__atableau_compute_conjugate_partition:N #1 % initialise \l_tmpc_seq -- should not be necessary but otherwise \seq_item:NV fails \seq_clear:N \l_tmpc_seq % construct the tableau in this sequence and then decant \seq_map_inline:Nn #1 {\seq_put_right:Nn \l_tmpc_seq {}} % value of last entry added to the tableau \int_set:Nn \l__atableau_c_int {\l__atableau_charge_int} % length of the first row of the partition/seq #1 \int_set:Nn \l__atableau_row_int {0\seq_item:Nn #1 {1}} \int_step_inline:nn {\l__atableau_row_int} % ##1 is the column index { \int_zero:N \l__atableau_r_int % r_int is the row index \seq_map_inline:Nn #1 % ####1 is the rth entry of the partition #1 { \int_incr:N \l__atableau_r_int \tl_set:Nn \l_tmpa_tl { 0\seq_item:NV \l__atableau_skew_seq \l__atableau_r_int} \bool_if:nT { \int_compare_p:nNn {##1} > {\l_tmpa_tl} && \int_compare_p:nNn {\l_tmpa_tl+####1+1} > {##1}} { \int_incr:N \l__atableau_c_int \tl_set:No \l_tmpa_tl { \seq_item:Nn \l_tmpc_seq {\l__atableau_r_int} } \__atableau_tl_put_right_braced:No \l_tmpa_tl {\int_use:N \l__atableau_c_int} \seq_set_item:NVx \l_tmpc_seq \l__atableau_r_int {\l_tmpa_tl} } } } % finally, unpack \l_tmpc_tl into l__atableau_entries_tl \tl_clear:N \l__atableau_entries_tl \tl_set:Nn \l_tmpb_tl {} \seq_map_inline:Nn \l_tmpc_seq { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \tl_put_right:Nn \l__atableau_entries_tl {##1} \tl_set:Nn \l_tmpb_tl {,} } } % Diagrams with show=first are drawn using the \Tableau command, with % usage: \__atableau_shape_to_first:N {partition sequence} \cs_new_protected:Npn \__atableau_shape_to_first:N #1 { \tl_clear:N \l__atableau_entries_tl \int_set:Nn \l__atableau_r_int {\l__atableau_charge_int} \tl_set:Nn \l_tmpb_tl {} \seq_map_inline:Nn #1 { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \int_step_inline:nn {##1} { \int_incr:N \l__atableau_r_int \__atableau_tl_put_right_braced:NV \l__atableau_entries_tl \l__atableau_r_int } \tl_set:Nn \l_tmpb_tl {,} } \seq_put_right:No \l__atableau_charge_seq {\int_use:N\l__atableau_r_int} } % usage: \__atableau_shape_to_hook:N {partition_seq} % Return a string for the hooks length tableau % Diagrams with show=hooks are drawn using the \Tableau command \cs_new_protected:Npn \__atableau_shape_to_hook:N #1 { % now construct the hook tableau \tl_clear:N \l__atableau_entries_tl \bool_if:NTF \l__atableau_shifted_bool { % shifted tableau % initialise l_tmpc_seq because we will construct the entries in it and unpack at the end \seq_clear:N \l_tmpc_seq \seq_map_inline:Nn #1 {\seq_put_right:Nn \l_tmpc_seq {}} \int_set:Nn \l__atableau_col_int { 0\seq_item:Nn #1 {1} } % length of first row \int_step_inline:nn { \l__atableau_col_int } { % add hooks column by column, starting by determining the rows in columns ##1 \int_zero:N \l__atableau_row_int \seq_map_inline:Nn #1 { \bool_if:nT { \int_compare_p:nNn {##1} > {\l__atableau_row_int} && \int_compare_p:nNn {####1+\l__atableau_row_int+1} > {##1} } { \int_incr:N \l__atableau_row_int } } % record length of row col+1 \int_set:Nn \l_tmpa_int {0\seq_item:Nn #1 {##1+1}} % loop through rows 1,...,row and add the hook lengths \int_step_inline:nn {\l__atableau_row_int} { \tl_set:Nx \l_tmpa_tl { \seq_item:Nn \l_tmpc_seq {####1} } \tl_set:Nx \l_tmpb_tl { \int_eval:n {\seq_item:Nn #1 {####1} + \l__atableau_row_int - ##1 + \l_tmpa_int } } \__atableau_tl_put_right_braced:NV \l_tmpa_tl \l_tmpb_tl \seq_set_item:Nnx \l_tmpc_seq {####1} {\l_tmpa_tl} } } \tl_set:Nx \l__atableau_entries_tl { \seq_use:Nn \l_tmpc_seq {,} } } { % unshifted (although could be skew, when all bets are off...) % compute conjugate of #1 as \l__atableau_conjugate_seq \int_zero:N \l__atableau_row_int \tl_set:Nn \l_tmpb_tl {} \__atableau_compute_conjugate_partition:N #1 \seq_map_inline:Nn #1 { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \int_incr:N \l__atableau_row_int \int_step_inline:nn {##1} { \tl_set:Ne \l_tmpc_tl { \int_eval:n {##1+\seq_item:Nn \l__atableau_conjugate_seq {####1} -\l__atableau_row_int-####1+1} } \__atableau_tl_put_right_braced:NV \l__atableau_entries_tl \l_tmpc_tl } \tl_set:Nn \l_tmpb_tl {,} } } } % Residue diagrams are drawn using the \Tableau command, with % usage: \__atableau_shape_to_residue:N {partition sequence} \cs_new_protected:Npn \__atableau_shape_to_residue:N #1 { \tl_clear:N \l__atableau_entries_tl \int_zero:N \l__atableau_row_int \tl_set:Nn \l_tmpb_tl {} \seq_map_inline:Nn #1 { \tl_put_right:No \l__atableau_entries_tl \l_tmpb_tl \int_incr:N \l__atableau_row_int \int_step_inline:nn {##1} { \int_set:Nn \l_tmpa_int { \l__atableau_charge_int + ####1 - \l__atableau_row_int } \int_add:Nn \l_tmpa_int { + 0\seq_item:NV \l__atableau_skew_seq \l__atableau_row_int } \tl_set:Nx \l_tmpa_tl { \__atableau_residue:nn { \l_tmpa_int } {\l__atableau_e_int} } \__atableau_tl_put_right_braced:Nx \l__atableau_entries_tl { \l_tmpa_tl } } \tl_set:Nn \l_tmpb_tl {,} } } % --------------------------------------------------------------------------- % draw diagram border % usage: \__atableau_draw_border:nn #1 #2 {name of sequence} {name of style} % The name of the sequence is either skew or shape \cs_new_protected:Npn \__atableau_draw_border:nn #1 #2 { \int_zero:N \l__atableau_r_int % row index \int_zero:N \l__atableau_c_int % column index \tl_clear:N \l__atableau_border_tl % will hold the border \seq_map_inline:cn {l__atableau_#1_seq} { % compute the endpoints of this row \str_if_eq:nnF {skew} {#1} { \int_set:Nn \l__atableau_c_int { 0\seq_item:Nn \l__atableau_skew_seq {\l__atableau_r_int+1}} \bool_if:nT { \l__atableau_tabloid_bool && \int_compare_p:nNn {\l__atableau_r_int} > {0} } { \int_set:Nn \l__atableau_c_int { \int_min:nn {\l__atableau_c_int} {0\seq_item:Nn \l__atableau_skew_seq {\l__atableau_r_int}} } } } \__atableau_set_box_coordinates:nVV {a} \l__atableau_r_int \l__atableau_c_int \__atableau_set_box_coordinates:nVn {b} \l__atableau_r_int {##1} \bool_if:nTF { \int_compare_p:n {\l__atableau_r_int = 0} || \l__atableau_tabloid_bool } { % add line along "top" of the row \tl_put_right:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)} \__atableau_add_row_ends: } { % add lines for second and later rows \tl_put_left:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--} \tl_put_right:Nx \l__atableau_border_tl {--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)} \__atableau_add_row_ends: } \int_incr:N \l__atableau_r_int } % draw the border that we have constructed \tl_if_empty:NF \l__atableau_border_tl { % fill in the last line \bool_if:nT { \l__atableau_tabloid_bool && \int_compare_p:nNn {\l__atableau_r_int} > {0} } { \int_set:Nn \l__atableau_c_int { 0\seq_item:NV \l__atableau_skew_seq \l__atableau_r_int } \__atableau_set_box_coordinates:nVV {a} \l__atableau_r_int \l__atableau_c_int } \tl_put_right:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)} % draw the border \draw[aTableau/#2] \l__atableau_border_tl; } } % usage: \__atableau_remove_dotted_tableau_rows: % Poke some holes in the border for the rows in dotted_rows_seq \cs_new_protected:Nn \__atableau_remove_dotted_tableau_rows: { % To collect repeated rows in dotted_rows_seq % we use \seq_map_inline:Nn and then compare ##1 with \l__atableau_r_int to % determine if this is a new row. % take a copy of \l__atableau_dotted_rows_seq so that the pop_left's below % do not destroy it \seq_set_eq:NN \l_tmpb_seq \l__atableau_dotted_rows_seq \bool_do_until:nn { \seq_if_empty_p:N \l_tmpb_seq } { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_set:Nn \l__atableau_row_int {\l_tmpa_tl} \int_set:Nn \l__atableau_r_int {\l__atableau_row_int+1} % LaTeX3 does not provide \seq_if_in_p:NN, so ... \bool_set_true:N \l_tmpa_bool \bool_do_while:nn { \l_tmpa_bool } { \int_set:Nn \l_tmpa_int {0\seq_item:Nn \l_tmpb_seq 1} \int_compare:nNnTF {\l__atableau_r_int} = {\l_tmpa_int} { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_incr:N \l__atableau_r_int } { \bool_set_false:N \l_tmpa_bool } } % We want to blank out the rows between the four coordinates % a=(row,tmpa) .... b=(row,col) % | | % c=(r,tmpb) .... d=(r,c) % set tmpa and tmpb to the column index for rows row and r, respectively \int_set:No \l__atableau_col_int { 0\seq_item:NV \l__atableau_shape_seq \l__atableau_row_int } % mu_row \int_set:No \l__atableau_c_int { 0\seq_item:NV \l__atableau_shape_seq \l__atableau_r_int } % mu_r % shift in col-direction \fp_set:Nn \l__atableau_xa_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} % shift in row-direction \fp_set:Nn \l__atableau_xb_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} % a draw between the coordinates a, b, c, d \__atableau_set_box_coordinates:noo {l} {\l__atableau_row_int-1} {\l__atableau_col_int-1} % point b \draw[aTableau/clearBoxes] (\fp_eval:n{\l__atableau_xl_fp+0.58*\l__atableau_xa_fp-0.42*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_yl_fp+0.58*\l__atableau_ya_fp-0.42*\l__atableau_yb_fp}) --++(\fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_xb_fp}, \fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_yb_fp}) --++(\fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_xa_fp}, \fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_ya_fp}) --++(\fp_eval:n{-0.12*\l__atableau_xb_fp}, \fp_eval:n{-0.12*\l__atableau_yb_fp}) --++(\fp_eval:n{-(0.15+\l__atableau_c_int)*\l__atableau_xa_fp}, \fp_eval:n{-(0.15+\l__atableau_c_int)*\l__atableau_ya_fp}) --++(\fp_eval:n{(\l__atableau_row_int-\l__atableau_r_int+0.12)*\l__atableau_xb_fp}, \fp_eval:n{(\l__atableau_row_int-\l__atableau_r_int+0.12)*\l__atableau_yb_fp}) --cycle ; % finally, we need to add dots between b and d \draw[aTableau/dottedLine] (\fp_eval:n{0.5*\l__atableau_xa_fp-0.5*\l__atableau_xb_fp+\l__atableau_xl_fp}, \fp_eval:n{0.5*\l__atableau_ya_fp-0.5*\l__atableau_yb_fp+\l__atableau_yl_fp}) --++(\fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_xa_fp+(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_xb_fp}, \fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_ya_fp+(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_yb_fp}) ; % and between a and c, which is trickier as the skew shape plays a role \int_set:No \l_tmpa_int { \int_eval:n {0\seq_item:Nn \l__atableau_skew_seq \l__atableau_row_int} } \int_set:No \l_tmpb_int { \int_eval:n {\int_max:nn{\l_tmpa_int}{0\seq_item:Nn \l__atableau_skew_seq \l__atableau_r_int} }} \int_decr:N \l__atableau_row_int \int_decr:N \l__atableau_r_int \draw[aTableau/dottedLine] (\fp_eval:n{\l__atableau_x_fp+\l_tmpa_int*\l__atableau_xa_fp+\l__atableau_row_int*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_y_fp+\l_tmpa_int*\l__atableau_ya_fp+\l__atableau_row_int*\l__atableau_yb_fp}) --(\fp_eval:n{\l__atableau_x_fp+\l_tmpb_int*\l__atableau_xa_fp+\l__atableau_r_int*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_y_fp+\l_tmpb_int*\l__atableau_ya_fp+\l__atableau_r_int*\l__atableau_yb_fp}) ; \bool_if:nT { \int_compare_p:nNn {\l_tmpa_int}>{0} && \l__atableau_skew_border_bool } { \draw[aTableau/dottedLine,draw=\l__atableau_skew_border_tl] (\fp_eval:n{\l__atableau_x_fp+\l__atableau_row_int*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_y_fp+\l__atableau_row_int*\l__atableau_yb_fp}) --(\fp_eval:n{\l__atableau_x_fp+\l__atableau_r_int*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_y_fp+\l__atableau_r_int*\l__atableau_yb_fp}) ; } } } % usage: \__atableau_remove_dotted_tableau_cols: % Poke some holes in the border for the cols in dotted_rows_seq \cs_new_protected:Nn \__atableau_remove_dotted_tableau_cols: { % To collect repeated columns in dotted_cols_seq % we use \seq_map_inline:Nn and then compare ##1 with \l__atableau_c_int to % determine if this is a new column. % conjugate partition and skew shape \__atableau_compute_conjugate_partition:N \l__atableau_skew_seq \seq_set_eq:NN \l_tmpa_seq \l__atableau_conjugate_seq % \l_tmpa_seq is the conjugate skew \__atableau_compute_conjugate_partition:N \l__atableau_shape_seq % conjugate shape % take a copy of \l__atableau_dotted_cols_seq so that the pop_left's below % do not destroy it \seq_set_eq:NN \l_tmpb_seq \l__atableau_dotted_cols_seq \bool_do_until:nn { \seq_if_empty_p:N \l_tmpb_seq } { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_set:Nn \l__atableau_col_int {\l_tmpa_tl} \int_set:Nn \l__atableau_c_int {\l__atableau_col_int+1} % LaTeX3 does not provide \seq_if_in_p:NN, so ... \bool_set_true:N \l_tmpa_bool \bool_do_while:nn { \l_tmpa_bool } { \int_set:Nn \l_tmpa_int {0\seq_item:Nn \l_tmpb_seq 1} \int_compare:nNnTF {\l__atableau_c_int} = {\l_tmpa_int} { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_incr:N \l__atableau_c_int } { \bool_set_false:N \l_tmpa_bool } } % We want to blank out the rows between the four coordinates % a=(row,tmpa) .... b=(r,tmpb) % | | % c=(row,col) .... d=(r,c) % set row and r to the row indices for col and c, respectively \int_set:No \l__atableau_row_int { 0\seq_item:NV \l__atableau_conjugate_seq \l__atableau_col_int } % mu_row \int_set:No \l__atableau_r_int { 0\seq_item:NV \l__atableau_conjugate_seq \l__atableau_c_int } % mu_r % shift in col-direction \fp_set:Nn \l__atableau_xa_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} % shift in row-direction \fp_set:Nn \l__atableau_xb_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} % a draw between the coordinates a, b, c, d \__atableau_set_box_coordinates:noo {l} {\l__atableau_row_int-1} {\l__atableau_col_int-1} % point b \draw[aTableau/clearBoxes] (\fp_eval:n{\l__atableau_xl_fp-0.42*\l__atableau_xa_fp+0.58*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_yl_fp-0.42*\l__atableau_ya_fp+0.58*\l__atableau_yb_fp}) --++(\fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_xa_fp}, \fp_eval:n{(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_ya_fp}) --++(\fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_xb_fp}, \fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_yb_fp}) --++(\fp_eval:n{-0.12*\l__atableau_xa_fp}, \fp_eval:n{-0.12*\l__atableau_ya_fp}) --++(\fp_eval:n{-(0.15+\l__atableau_r_int)*\l__atableau_xb_fp}, \fp_eval:n{-(0.15+\l__atableau_r_int)*\l__atableau_yb_fp}) --++(\fp_eval:n{(\l__atableau_col_int-\l__atableau_c_int+0.12)*\l__atableau_xa_fp}, \fp_eval:n{(\l__atableau_col_int-\l__atableau_c_int+0.12)*\l__atableau_ya_fp}) --cycle ; % finally, we need to add dots between b and d \draw[aTableau/dottedLine] (\fp_eval:n{\l__atableau_xl_fp-0.5*\l__atableau_xa_fp+0.5*\l__atableau_xb_fp}, \fp_eval:n{\l__atableau_yl_fp-0.5*\l__atableau_ya_fp+0.5*\l__atableau_yb_fp}) --++(\fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_xb_fp+(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_xa_fp}, \fp_eval:n{(\l__atableau_r_int-\l__atableau_row_int)*\l__atableau_yb_fp+(\l__atableau_c_int-\l__atableau_col_int)*\l__atableau_ya_fp}) ; % and between a and c, which is trickier as the skew shape plays a role \int_set:No \l_tmpa_int { \int_eval:n {0\seq_item:Nn \l_tmpa_seq \l__atableau_col_int} } \int_set:No \l_tmpb_int { \int_eval:n {\int_max:nn{\l_tmpa_int}{0\seq_item:Nn \l_tmpa_seq \l__atableau_c_int} }} \int_decr:N \l__atableau_col_int \int_decr:N \l__atableau_c_int \draw[aTableau/dottedLine] (\fp_eval:n{\l__atableau_x_fp+\l_tmpa_int*\l__atableau_xb_fp+\l__atableau_col_int*\l__atableau_xa_fp}, \fp_eval:n{\l__atableau_y_fp+\l_tmpa_int*\l__atableau_yb_fp+\l__atableau_col_int*\l__atableau_ya_fp}) --(\fp_eval:n{\l__atableau_x_fp+\l_tmpb_int*\l__atableau_xb_fp+\l__atableau_c_int*\l__atableau_xa_fp}, \fp_eval:n{\l__atableau_y_fp+\l_tmpb_int*\l__atableau_yb_fp+\l__atableau_c_int*\l__atableau_ya_fp}) ; \bool_if:nT { \int_compare_p:nNn {\l_tmpa_int}>{0} && \l__atableau_skew_border_bool } { \draw[aTableau/dottedLine,draw=\l__atableau_skew_border_tl] (\fp_eval:n{\l__atableau_x_fp+\l__atableau_col_int*\l__atableau_xa_fp}, \fp_eval:n{\l__atableau_y_fp+\l__atableau_col_int*\l__atableau_ya_fp}) --(\fp_eval:n{\l__atableau_x_fp+\l__atableau_c_int*\l__atableau_xa_fp}, \fp_eval:n{\l__atableau_y_fp+\l__atableau_c_int*\l__atableau_ya_fp}) ; } } } % usage: \__atableau_draw_label: % Add the label to a diagram \cs_new_protected:Nn \__atableau_draw_label: { % determine where the label should be attached, which is the (1,1)-box by default \fp_set_eq:NN \l__atableau_xa_fp \l__atableau_x_fp \fp_set_eq:NN \l__atableau_ya_fp \l__atableau_y_fp \bool_if:nF { \seq_if_empty_p:N \l__atableau_skew_seq || \l__atableau_skew_border_bool } { % attach label to the (1,skew_1)-box \tl_set:Nn \l_tmpa_tl { 0\seq_item:Nn \l__atableau_skew_seq {1} } \fp_add:Nn \l__atableau_xa_fp {\l_tmpa_tl*\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_ya_fp {\l_tmpa_tl*\l__atableau_tab_col_dy_fp*\l__atableau_box_wd_fp} } % add the label \node[aTableau/labelStyle] at (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp) { \__atableau_entry:n{\l__atableau_label_tl} }; } % usage: \__atableau_draw_skew_boxes: % Draw the skew boxes using ribbons \cs_new_protected:Nn \__atableau_draw_skew_boxes: { \group_begin: % override the style of the skew boxes inside this group \tikzset{aTableau/ribbonBox/.style=aTableau/skewBox} \tikzset{aTableau/ribbonStyle/.style={draw=none,fill=none}} \tl_set:Nn \l__atableau_ribbon_type_tl {ribbon} % change ribbon type to ribbon \int_zero:N \l__atableau_r_int \seq_map_inline:Nn \l__atableau_skew_seq { \int_incr:N \l__atableau_r_int \int_compare:nNnT {##1} > {0} { \tl_clear:N \l_tmpa_tl \tl_put_right:Ne \l_tmpa_tl { {\int_use:N \l__atableau_r_int} } \tl_put_right:Ne \l_tmpa_tl { {##1} } \tl_put_right:Ne \l_tmpa_tl { \prg_replicate:nn {##1-1} {c} } \__atableau_add_ribbon:V \l_tmpa_tl } } \group_end: } % usage: \__atableau_add_row_ends: increment the (xa,ya) and (xb,yb) coordinates down % one row and add the lines at the left and right hand ends of the row to % \l__atableau_border_tl. If this is a tabloid then we only want to add the % coordinates but otherwise we join them up \cs_new_protected:Nn \__atableau_add_row_ends: { \bool_if:NTF \l__atableau_conjugate_bool { % adding to the left-hand side \fp_add:Nn \l__atableau_xa_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_ya_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} % adding to the right-hand side \fp_add:Nn \l__atableau_xb_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_yb_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} \bool_if:NTF \l__atableau_tabloid_bool { \tl_put_left:Nx \l__atableau_border_tl {--(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)} \tl_put_right:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)--} } { \tl_put_left:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--} \tl_put_right:Nx \l__atableau_border_tl {--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)} } } { % adding to the left-hand side \fp_add:Nn \l__atableau_xa_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_ya_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} % adding to the right-hand side \fp_add:Nn \l__atableau_xb_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_yb_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \bool_if:NTF \l__atableau_tabloid_bool { \tl_put_left:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)} \tl_put_right:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)--} } { \tl_put_left:Nx \l__atableau_border_tl {(\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--} \tl_put_right:Nx \l__atableau_border_tl {--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp)} } } } % --------------------------------------------------------------------------- % Tableaux % usage: \__atableau_draw_tableau:n {tableau specifications} % The entries are first primarily because the \Diagram commands need % to force the entries to expand \cs_new_protected:Npn \__atableau_draw_tableau:n #1 { % set the star style \tl_set:Nn \l__atableau_starstyle_tl {aTableau/tableauStarStyle} % disable interior boxes if boxes_bool is false \bool_if:NF \l__atableau_boxes_bool { \__atableau_tikzset_append:nn {boxStyle} {draw=none} } % initialise the skew shape for a shifted tableaux \bool_if:NT \l__atableau_shifted_bool { \seq_clear:N \l__atableau_skew_seq \seq_put_right:No \l__atableau_skew_seq {0} } % record the tableau shape as we go so that we can draw the border % in finalise_tableau \seq_clear:N \l__atableau_shape_seq % the styled boxes are drawn at the end \tl_clear:N \l__atableau_styled_nodes_tl % set initial row and column \int_zero:N \l__atableau_row_int \int_set:Nn \l__atableau_col_int { 0\seq_item:Nn \l__atableau_skew_seq {1}} % Parse #1 into the rows and columns with style. Initially we used % \seq_set_split:Nnn here, but this required double bracing % multi-character entries whenever they were he only entry in their % column. Now we peek for the commas and the style simultaneously. \__atableau_peek_tableau:w #1 \q_recursion_tail \q_recursion_stop % add the nodes with style \l__atableau_styled_nodes_tl % add the labels, ribbons, snobs and border \__atableau_finalise_tableau: } % usage: \__atableau_finalise_tableau: % As it is used in several places, collect the code that finishes % drawing the tableau by adding the ribbons, paths, snobs, skew boxes, % border and the dotted rows and columns. \cs_new_protected:Nn \__atableau_finalise_tableau: { % prevent paths and ribbons from updating shape \cs_set_eq:NN \__atableau_update_shape: \prg_do_nothing: % add paths \seq_if_empty:NF \l__atableau_paths_seq { \tl_set:Nn \l__atableau_ribbon_type_tl {path} % change ribbon type to path \seq_map_inline:Nn \l__atableau_paths_seq {\__atableau_add_ribbon:n {##1}} } % add ribbons \tl_set:Nn \l__atableau_ribbon_type_tl {ribbon} % change ribbon type to ribbon \seq_map_inline:Nn \l__atableau_ribbons_seq {\__atableau_add_ribbon:n {##1}} % paths and ribbons are inside the delimiters, but snobs are not \cs_set_eq:NN \__atableau_update_extrema:n \use_none:n % draw border \tl_if_blank:VF \l__atableau_label_tl { \__atableau_draw_label: } \bool_if:NT \l__atableau_skew_boxes_bool { \__atableau_draw_skew_boxes: } \bool_if:NT \l__atableau_skew_border_bool { \__atableau_draw_border:nn {skew} {skewBorder} } \bool_if:NT \l__atableau_border_bool { \__atableau_draw_border:nn {shape} {borderStyle} } % remove dotted rows and columns \seq_if_empty:NF \l__atableau_dotted_rows_seq \__atableau_remove_dotted_tableau_rows: \seq_if_empty:NF \l__atableau_dotted_cols_seq \__atableau_remove_dotted_tableau_cols: % add snobs \tl_set:Nn \l__atableau_ribbon_type_tl {snob} % change ribbon type to snob \seq_map_inline:Nn \l__atableau_snobs_seq {\__atableau_add_ribbon:n {##1}} } % --------------------------------------------------------------------------- % box and bead coordinates % usage: \__atableau_update_multi_extrema:n {letter} % Update xmax, ymax and ymin using the x#1_fp and y#1_fp \cs_new_protected:Npn \__atableau_update_multi_extrema:n #1 { % adjust xmax, ymin and ymax for multishapes \fp_set:Nn \l__atableau_xmax_fp { max(\l__atableau_xmax_fp, \use:c{l__atableau_x#1_fp}) } \fp_set:Nn \l__atableau_ymax_fp { max(\l__atableau_ymax_fp, \use:c{l__atableau_y#1_fp}) } \fp_set:Nn \l__atableau_ymin_fp { min(\l__atableau_ymin_fp, \use:c{l__atableau_y#1_fp}) } } \cs_new_protected:Npn \__atableau_update_multi_xtrema:n #1 { % adjust xmax for multishapes \fp_set:Nn \l__atableau_xmax_fp { max(\l__atableau_xmax_fp, \use:c{l__atableau_x#1_fp}) } } % By default, we do not update ymin, ymax and xmax. This only happens for multishapes \cs_set_eq:NN \__atableau_update_extrema:n \use_none:n % usage: \__atableau_set_box_coordinates_normal:nnn : given the row and columns % indices, row and col, define the corresponding coordinates in a tableau % - \l__atableau_xl_fp : x-coordinates % - \l__atableau_yl_fp : y-coordinate % - \l__atableau_name_tl : the node name % Used by the tableau and diagram commands. Note that row and col both start % from 0, so the (1,1)-box has row=col=0. \cs_new_protected:Npn \__atableau_set_box_coordinates_normal:nnn #1 #2 #3 { \tl_set:Nx \l__atableau_name_tl {\l__atableau_prefix_tl-\int_eval:n{1+#2}-\int_eval:n {1+#3}} \fp_set:cn {l__atableau_x#1_fp} {\l__atableau_x_fp+((#2+0.5)*\l__atableau_tab_row_dx_fp+(#3+0.5)*\l__atableau_tab_col_dx_fp)*\l__atableau_box_wd_fp } \fp_set:cn {l__atableau_y#1_fp} {\l__atableau_y_fp+((#2+0.5)*\l__atableau_tab_row_dy_fp+(#3+0.5)*\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp } \__atableau_update_extrema:n #1 } % usage: \__atableau_set_box_coordinates_conjugate:nnn : given the row and columns % indices, row and col, define the corresponding coordinates in the conjugate tableau % - \l__atableau_xl_fp : x-coordinates % - \l__atableau_yl_fp : y-coordinate % - \l__atableau_name_tl : the node name % Used by the tableau and diagram commands \cs_new_protected:Npn \__atableau_set_box_coordinates_conjugate:nnn #1 #2 #3 { \tl_set:Nx \l__atableau_name_tl {\l__atableau_prefix_tl-\int_eval:n{1+#3}-\int_eval:n {1+#2}} \fp_set:cn {l__atableau_x#1_fp} {\l__atableau_x_fp+((#3+0.5)*\l__atableau_tab_row_dx_fp+(#2+0.5)*\l__atableau_tab_col_dx_fp)*\l__atableau_box_wd_fp } \fp_set:cn {l__atableau_y#1_fp} {\l__atableau_y_fp+((#3+0.5)*\l__atableau_tab_row_dy_fp+(#2+0.5)*\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp } \__atableau_update_extrema:n #1 } % by default , normal coordinates are used \cs_set_eq:NN \__atableau_set_box_coordinates:nnn \__atableau_set_box_coordinates_normal:nnn % usage: \__atableau_set_bead_coordinates:nnn : given the row and columns % indices, row and col, define the corresponding coordinates in a tableau or abacus: % - \l__atableau_xl_fp : x-coordinates % - \l__atableau_yl_fp : y-coordinate % - \l__atableau_name_tl : the node name % Used by both the tableaux and abacus commands \cs_new_protected:Npn \__atableau_set_bead_coordinates:nnn #1 #2 #3 { \tl_set:Nx \l__atableau_name_tl {\l__atableau_prefix_tl-\fp_to_int:n{#2-1}-\fp_to_int:n{#3}} \fp_set:cn {l__atableau_x#1_fp} {\l__atableau_x_fp+(#2*\l__atableau_ab_row_dx_fp+#3*\l__atableau_ab_col_dx_fp)*\l__atableau_abacus_wd_fp } \fp_set:cn {l__atableau_y#1_fp} {\l__atableau_y_fp+(#2*\l__atableau_ab_row_dy_fp+#3*\l__atableau_ab_col_dy_fp)*\l__atableau_abacus_ht_fp } } % --------------------------------------------------------------------------- % tableaux boxes/nodes \cs_new_protected:Npn \__atableau_valign_bottom:n #1 { \vbox_to_zero:n { #1 \vss } } \cs_new_protected:Npn \__atableau_valign_centre:n #1 { \vbox_to_zero:n { \vss #1 \vss } } \cs_new_protected:Npn \__atableau_valign_top:n #1 { \vbox_to_zero:n { \vss #1 } } \cs_set_eq:NN \__atableau_valign_center:n \__atableau_valign_centre:n % We use \vbox_to_zero:n and \hbox_overlap_center:n to ensure that an entry % does not change the height or width of the node when it is too large. \cs_new_protected:Npn \__atableau_entry_math:n #1 { \__atableau_valign:n { \__atableau_halign:n { \tl_if_blank:VF \tikz@textcolor {\color{\tikz@textcolor}} \tikz@textfont $~#1 $ } } } % and a text version \cs_new_protected:Npn \__atableau_entry_text:n #1 { \__atableau_valign:n { \__atableau_halign:n { \tl_if_blank:VF \tikz@textcolor {\color{\tikz@textcolor}} \tikz@textfont #1 } } } % By default tableau nodes are typeset in math-mode. \cs_set_eq:NN \__atableau_entry:n \__atableau_entry_math:n % usage: \__atableau_draw_entry:nn [style] {entry} % Used by draw_tableau to draw the node entry #2 in the tableau using the style #1 \cs_new_protected:Npn \__atableau_draw_entry:nn [#1] #2 { % exit when we reach the end of the row \quark_if_recursion_tail_stop_do:nn {#2} { % record the column index in the shape for drawing the border \seq_put_right:NV \l__atableau_shape_seq \l__atableau_col_int } % compute the node name and its (x,y)-coordinates \__atableau_set_box_coordinates:nVV {l} \l__atableau_row_int \l__atableau_col_int \tl_if_empty:nTF {#1} { % draw box if it has the default styling \node[aTableau/boxStyle] (\l__atableau_name_tl) at (\fp_use:N\l__atableau_xl_fp, \fp_use:N\l__atableau_yl_fp) {\__atableau_entry:n{#2}}; } { % save the node to \l__atableau_styled_nodes_tl if it is styled \tl_put_right:Nx \l__atableau_styled_nodes_tl { \exp_not:N \node [aTableau/boxStyle,#1] (\l__atableau_name_tl) at (\fp_use:N\l__atableau_xl_fp, \fp_use:N\l__atableau_yl_fp) {\exp_not:N\__atableau_entry:n{#2}}; } } % look for the next entry, or finish \int_incr:N \l__atableau_col_int \__atableau_peek_tableau:w } % --------------------------------------------------------------------------- % diagrams % usage: \__atableau_draw_diagram:n {partition} \cs_new_protected:Npn \__atableau_draw_diagram:n #1 { % convert #1 to the partition \l__atableau_shape_seq \__atableau_set_partition:nn {shape} {#1} % set the skew shape for shifted tableaux \bool_if:NT \l__atableau_shifted_bool { \seq_clear:N \l__atableau_skew_seq \seq_map_inline:Nn \l__atableau_shape_seq { \seq_put_right:No \l__atableau_skew_seq {\int_use:N \l__atableau_row_int} \int_incr:N \l__atableau_row_int } \int_zero:N \l__atableau_row_int } % depending on \l__atableau_show_tl, generate the tableau entries \str_case:VnF \l__atableau_show_tl { {contents} { \__atableau_shape_to_content:N \l__atableau_shape_seq } {last} { \__atableau_shape_to_last:N \l__atableau_shape_seq } {hooks} { \__atableau_shape_to_hook:N \l__atableau_shape_seq } {first} { \__atableau_shape_to_first:N \l__atableau_shape_seq } {residues} { \__atableau_shape_to_residue:N \l__atableau_shape_seq } {} { \__atableau_diagram_for_shape:N \l__atableau_shape_seq } } { \msg_error:nnx {aTableau} {unrecognised-entries} {\l__atableau_show_tl} } \__atableau_draw_tableau:V \l__atableau_entries_tl } % --------------------------------------------------------------------------- % multitableau and their diagrams % usage: \__atableau_draw_multishape:n diagram|tableau % Draw a multitableau or multidiagram. Most of the work is in calculating the % x-coordinates of the origins and each diagram, their separators and the % maximal y-coordinates, for drawing the delimiters. We also need to set % various keys for the components, so that they work correctly. \cs_new_protected:Npn \__atableau_draw_multishape:n #1 { % save the prefix name so that we can modify it \tl_set_eq:NN \l__atableau_multiprefix_tl \l__atableau_prefix_tl % check for conjugation \bool_if:NT \l__atableau_conjugate_bool { \seq_reverse:N \l__atableau_component_seq } % reset the variables that we need \int_zero:N \l__atableau_component_int % component index % We will increment x_fp to give the origins of the component diagrams. % For now we record the position of the x-coordinates of the left brace, % which will be placed after the diagrams have been drawn we first have to % determine their height. \seq_clear:N \l__atableau_xsep_seq \seq_put_right:Nx \l__atableau_xsep_seq {\fp_to_decimal:N\l__atableau_x_fp} % keep track of min/max y-coordinates used and max x-coordinate \fp_set_eq:NN \l__atableau_xmax_fp \l__atableau_x_fp \fp_set:Nn \l__atableau_ymax_fp {\l__atableau_y_fp + \l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp/2} % middle of box \fp_set_eq:NN \l__atableau_ymin_fp \l__atableau_ymax_fp \seq_map_inline:Nn \l__atableau_component_seq { % increment component and set prefix, charge, skew, ribbons and snobs \int_incr:N \l__atableau_component_int % update ymin, ymax and xmax (re-enable each time as this is disabled when placing ribbons) \fp_compare:nNnTF {\l__atableau_rows_fp} = {0} { \cs_set_eq:NN \__atableau_update_extrema:n \__atableau_update_multi_extrema:n } % update xmax, ymin, ymax { \cs_set_eq:NN \__atableau_update_extrema:n \__atableau_update_multi_xtrema:n } % update only xmax % change the node prefix to include the component index \tl_set:No \l__atableau_prefix_tl {\l__atableau_multiprefix_tl-\int_use:N\l__atableau_component_int} % charge defaults to zero if not set \int_set:Nn \l__atableau_charge_int {0\seq_item:NV \l__atableau_charge_seq \l__atableau_component_int} % set the multi-component keys from the corresponding multi sequence \clist_map_inline:nn {dotted_rows, dotted_cols, paths, ribbons, snobs} { % if multi####1 is empty then clear the ####1 sequence, otherwise set it equal to component value \seq_if_empty:cTF {l__atableau_multi####1_seq} { \seq_clear:c {l__atableau_####1_seq} } { \tl_set:Nx \l_tmpb_tl {\seq_item:cV {l__atableau_multi####1_seq} \l__atableau_component_int} \seq_set_from_clist:co {l__atableau_####1_seq} {\l_tmpb_tl} } } % labels are handled separately because they are not sequences \seq_if_empty:NTF \l__atableau_multilabel_seq { \seq_clear:N \l__atableau_label_seq } { \tl_set:Nx \l_tmpb_tl {\seq_item:NV \l__atableau_multilabel_seq \l__atableau_component_int} \tl_set:No \l__atableau_label_tl {\l_tmpb_tl} } % skew is handled separately because it uses set_partition \seq_if_empty:NTF \l__atableau_multiskew_seq { \seq_clear:N \l__atableau_skew_seq } { \tl_set:Nx \l_tmpb_tl {\seq_item:NV \l__atableau_multiskew_seq \l__atableau_component_int} \__atableau_set_partition:no {skew} {\l_tmpb_tl} } % determine the coordinates for the diagram/tableau % - \l__atableau_c_int: number of columns in first row % - \l__atableau_r_int: number of rows in components \bool_if:nTF { \str_if_empty_p:n {##1} || \str_if_eq_p:nn {##1} {...} } { \int_set:Nn \l__atableau_c_int {1} \int_set:Nn \l__atableau_r_int {1} } { % the component is nonempty \tl_if_eq:nnTF {#1} {diagram} { \__atableau_set_partition:nn {shape} {##1} \int_set:No \l__atableau_c_int {\seq_item:Nn \l__atableau_shape_seq {1}+0\seq_item:Nn \l__atableau_skew_seq {1}} % set r_int equal to the number of nonzero rows in shape_seq \int_set:No \l__atableau_r_int { \seq_count:N \l__atableau_shape_seq } } { % coordinates for tableaux \seq_set_from_clist:Nn \l_tmpa_seq {##1} \int_set:No \l__atableau_c_int {0\seq_item:Nn \l__atableau_skew_seq {1}} % initialise to skew length \tl_set:Nx \l_tmpc_tl {\seq_item:Nn \l_tmpa_seq {1}} % first row of tableau \__atableau_count_row:x \l_tmpc_tl % length of first row + skew % set r_int equal to the number of nonzero rows in shape_seq \int_set:No \l__atableau_r_int { \seq_count:N \l_tmpa_seq } } } % now that we have the coordinates we need, we compute the % x-coordinates of the diagram origin and the separators % need to switch for conjugate partitions \bool_if:NTF \l__atableau_conjugate_bool { % conjugating % the origin is c * col_dx units from the separator + xoffset \fp_add:Nn \l__atableau_x_fp { abs(\l__atableau_c_int*\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp) % number of columns + 0\seq_item:NV \l__atableau_xoffsets_seq \l__atableau_component_int % x-offset } % the next separator is is r * row_dx units from the origin \fp_set:Nn \l__atableau_xsep_fp { abs(\l__atableau_r_int*\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp) + \l__atableau_separation_fp } % compute maximum height of the diagram \fp_set:Nn \l__atableau_yb_fp { \l__atableau_c_int*\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp + \l__atableau_r_int*abs(\l__atableau_tab_col_dy_fp)*\l__atableau_box_ht_fp + 0\seq_item:NV \l__atableau_yoffsets_seq \l__atableau_component_int } } { % not conjugating % the origin is r * row_dx units from the separator + xoffset \fp_add:Nn \l__atableau_x_fp { abs(\l__atableau_r_int*\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp) % number of columns + 0\seq_item:NV \l__atableau_xoffsets_seq \l__atableau_component_int % x-offset } % the next separator is is c * col_dx units from the origin \fp_set:Nn \l__atableau_xsep_fp { abs(\l__atableau_c_int*\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp) % number of columns + \l__atableau_separation_fp } % compute maximum height of the diagram \fp_set:Nn \l__atableau_yb_fp { \l__atableau_r_int*\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp + \l__atableau_c_int*\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp + 0\seq_item:NV \l__atableau_yoffsets_seq \l__atableau_component_int } } % Having determined the positions of the diagram origins and separators, we are ready to draw the diagram % First set the y-coordinate for the origin of the current component \fp_add:Nn \l__atableau_y_fp {0\seq_item:NV \l__atableau_yoffsets_seq \l__atableau_component_int} % special processing for empty diagrams and ... \str_case:nnF {##1} { {} { % an empty diagram -> \l__atableau_empty_tl \__atableau_set_box_coordinates:nnn {a} {0} {0} \node[aTableau/separatorSymbol] at (\fp_use:N \l__atableau_xa_fp, \fp_use:N \l__atableau_ya_fp){\l__atableau_empty_tl}; } {...} { % insert dots. ?? Replace \cdots with \l__atableau_dots_tl ?? \__atableau_set_box_coordinates:nnn {a} {0} {0} \node[aTableau/separatorSymbol] at (\fp_use:N \l__atableau_xa_fp, \fp_use:N \l__atableau_ya_fp){$\cdots$}; } } { % draw the diagram/tableau \use:c {__atableau_draw_#1:n} {##1} } % increment the origin by the separation distance and record the % x-coordinate of the separator \fp_set:Nn \l__atableau_x_fp { \l__atableau_xmax_fp+\l__atableau_box_wd_fp/2+\l__atableau_separation_fp } \seq_put_right:Nx \l__atableau_xsep_seq {\fp_to_decimal:N\l__atableau_x_fp} % add the separation distance to x_fp for the next component \fp_add:NV \l__atableau_x_fp \l__atableau_separation_fp % separation } % end of seq_map_inline to draw component diagrams/tableau % All of the component diagrams/tableaux have been drawn % It remains to add the separators. First we adjust ymin and ymax \bool_if:NT \l__atableau_separators_bool { % when rows_fp is nonzero it sets the maximum y-coordinate, otherwise we % need to adjust ymin and ymax by half the box height \fp_compare:nNnTF {\l__atableau_rows_fp} > {0} { \fp_compare:nNnTF {\l__atableau_tab_row_dy_fp} > {0} { \fp_add:Nn \l__atableau_ymax_fp { (\l__atableau_rows_fp-0.5)*\l__atableau_box_ht_fp } \fp_add:Nn \l__atableau_ymin_fp { -0.5*\l__atableau_box_ht_fp } } { \fp_add:Nn \l__atableau_ymin_fp { (0.5-\l__atableau_rows_fp)*\l__atableau_box_ht_fp } \fp_add:Nn \l__atableau_ymax_fp { 0.5*\l__atableau_box_ht_fp } } } { % adjust ymin and ymax count as they count from the centre of the box \fp_add:Nn \l__atableau_ymax_fp { \l__atableau_box_ht_fp/2} \fp_add:Nn \l__atableau_ymin_fp {-\l__atableau_box_ht_fp/2} } \fp_set:Nn \l__atableau_y_fp {(\l__atableau_ymin_fp+\l__atableau_ymax_fp)/2} % midway between ymin and ymax \fp_set:Nn \l__atableau_ymax_fp { \l__atableau_ymax_fp-\l__atableau_ymin_fp } % maximum height % add left delimiter: need to use \path to set the colour \seq_pop_left:NN \l__atableau_xsep_seq \l_tmpa_tl \tl_if_blank:VF \l__atableau_left_delimiter_tl { \path[aTableau/delimiterPath] (\fp_eval:n{\l_tmpa_tl-\l__atableau_separation_fp/2}, \fp_use:N \l__atableau_y_fp) node[aTableau/leftDelimiter] {}; } % add right delimiter \seq_pop_right:NN \l__atableau_xsep_seq \l_tmpa_tl \tl_if_blank:VF \l__atableau_right_delimiter_tl { \path[aTableau/delimiterPath] (\fp_eval:n{\l_tmpa_tl-\l__atableau_separation_fp/2}, \fp_use:N \l__atableau_y_fp) node[aTableau/rightDelimiter] {}; } % the internal separators \tl_set:Ne \l_tmpa_tl {\fp_to_decimal:N \l__atableau_ymin_fp } % ymin \tl_set:Ne \l_tmpb_tl {\fp_to_decimal:n {\l__atableau_y_fp + \l__atableau_ymax_fp/2}} % ymax \seq_map_inline:Nn \l__atableau_xsep_seq { % add the separator \str_case:VnF \l__atableau_separator_tl { {|} { \draw[aTableau/separatorLine](##1,\l_tmpa_tl)--(##1,\l_tmpb_tl); } } { % any other separator is assumed to be text \node[aTableau/separatorSymbol] at (##1,\fp_use:N \l__atableau_y_fp){\l__atableau_separator_tl}; } } } } % usage: \__atableau_multidiagram:n {entries} % The entries are first primarily because the \Diagram commands needs % to force the entries to expand \cs_new_protected:Npn \__atableau_multidiagram:n #1 { % separate the component partitions \seq_set_split:Nnn \l__atableau_component_seq {|} {#1} % when entries=last, we need to set the charge \tl_if_eq:NnT \l__atableau_show_tl {last} { \seq_clear:N \l__atableau_charge_seq \int_zero:N \l__atableau_c_int % cumulative total of component sizes \seq_set_eq:NN \l_tmpc_seq \l__atableau_component_seq \seq_reverse:N \l_tmpc_seq \seq_map_inline:Nn \l_tmpc_seq { \seq_put_left:No \l__atableau_charge_seq {\int_use:N \l__atableau_c_int} \__atableau_set_partition:nn {shape} {##1} \seq_map_inline:Nn \l__atableau_shape_seq { \int_add:Nn \l__atableau_c_int {####1} } } } % determine the coordinates of the components of the diagram \__atableau_draw_multishape:n {diagram} } % usage: \__atableau_multitableau:n {entries} % The entries are first primarily because the \Diagram commands need % to force the entries to expand \cs_new_protected:Npn \__atableau_multitableau:n #1 { % separate the entries of the component tableaux \seq_set_split:Nnn \l__atableau_component_seq {|} {#1} % determine the coordinates of the components of the tableau \__atableau_draw_multishape:n {tableau} } % --------------------------------------------------------------------------- % Ribbon tableaux % usage: \__atableau_ribbon_tableau:n {ribbons} % Draw a ribbon tableau. The ribbons are specified by % (ribbon style) ij sequences of r's and c's with optional style and % with text as a subscript. Here i and j are the row and column % indices of the head of the ribbon \cs_new_protected:Npn \__atableau_ribbon_tableau:n #1 { % set the star style \tl_set:Nn \l__atableau_starstyle_tl {aTableau/tableauStarStyle} % record the shape as we draw the border \seq_clear:N \l__atableau_shape_seq \cs_set_eq:NN \__atableau_update_shape: \__atableau_update_ribbon_tableau_shape: % draw the ribbon tableau by drawing each of the ribbons \tl_set:Nn \l__atableau_ribbon_type_tl {ribbon} % change ribbon type to ribbon \clist_map_inline:nn {#1} { \__atableau_add_ribbon:n {##1} } % draw the tableau border, adding associated bells and whistles \__atableau_finalise_tableau: } % usage: \__atableau_add_ribbon:n {ribbon} add a ribbon to the tableau % The code for adding ribbons is slightly different dependning onf on whether % \l__atableau_ribbbon_ty[e is equal to 'ribbon' or 'path' \cs_new_protected:Npn \__atableau_add_ribbon:n #1 { % reset the sequences that store the ribbon specifications data \seq_clear:N \l__atableau_texts_seq % will contain node text \seq_clear:N \l__atableau_styles_seq % will contain node styles \seq_clear:N \l__atableau_rcs_seq % will contain node (row,col)-indices \__atableau_peek_ribbon_style:w #1 \q_recursion_tail \q_recursion_stop } % usage: \__atableau_peek_ribbon_style:w {ribbon specifications} % look for (ribbon) style inside parentheses: (style) \cs_new_protected:Npn \__atableau_peek_ribbon_style:w { \peek_remove_spaces:n { % ignore spaces \peek_charcode:NTF ( { \__atableau_save_ribbon_style:n } { \__atableau_save_ribbon_style:n ()} } } % usage: \__atableau_save_ribbon_style:n {style} % read the style (style) and save in \l__atableau_ribbon_style_tl % and then peek for [style]rc... \cs_new_protected:Npn \__atableau_save_ribbon_style:n (#1) { \tl_set:Nn \l__atableau_ribbon_style_tl {#1} \__atableau_peek_style:nw {save_ribbon_head:nnn} } % usage: \__atableau_initialise_path_head: % Start \l__atableau_ribbon_path_tl for a path \cs_new_protected:Nn \__atableau_initialise_path_head: { % adding a ribbon path \tl_set:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) node[aTableau/pathBox,\l__atableau_ribbon_style_tl]{\__atableau_entry:n{\l__atableau_path_box_tl}} } } % usage: \__atableau_initialise_ribbon_head: % Start \l__atableau_ribbon_path_tl for a ribbon \cs_new_protected:Nn \__atableau_initialise_ribbon_head: { % 1. Make (xl,yl) the top corner of the ribbon and add it \fp_add:Nn \l__atableau_xl_fp { 0.5*(\l__atableau_tab_col_dx_fp-\l__atableau_tab_row_dx_fp)*\l__atableau_box_wd_fp } \fp_add:Nn \l__atableau_yl_fp { 0.5*(\l__atableau_tab_col_dy_fp-\l__atableau_tab_row_dy_fp)*\l__atableau_box_ht_fp } \tl_set:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) } % 2. Make (xa,ya) the top left of the ribbon and add it on the left (decreasing column) \fp_set:Nn \l__atableau_xa_fp {\l__atableau_xl_fp-\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_yl_fp-\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} \tl_put_left:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)-- } % 3. Make (xb,yb) the bottom right corner and add it on the right (increasing row) \fp_set:Nn \l__atableau_xb_fp {\l__atableau_xl_fp+\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_yl_fp+\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \tl_put_right:Nx \l__atableau_ribbon_path_tl { --(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp) } } % usage: \__atableau_save_ribbon_head:nnnn {path/ribbon} [style] {row index} {col index} % save the style, row and column indices for the head of the ribbon % and then compute the coordinates of the three "external nodes" in the % head. \cs_new_protected:Npn \__atableau_save_ribbon_head:nnn [#1] #2 #3 { % check for syntax errors to prevent an endless loop \quark_if_recursion_tail_stop_do:nn {#2} { \msg_error:nnn {aTableau} {invalid-ribbon-head} {no~x-coordinate~given} } \quark_if_recursion_tail_stop_do:nn {#3} { \msg_error:nnn {aTableau} {invalid-ribbon-head} {no~y-coordinate~given} } % save any style \seq_put_right:Nx \l__atableau_styles_seq {#1} % record the row and column indices of the head \int_set:No \l__atableau_row_int { \int_eval:n {#2-1} } \int_set:No \l__atableau_col_int { \int_eval:n {#3-1} } \seq_put_right:NV \l__atableau_rcs_seq \l__atableau_row_int \seq_put_right:NV \l__atableau_rcs_seq \l__atableau_col_int % update the shape to include the head node (#3,#4) \__atableau_update_shape: % add initial coordinates to \l__atableau_ribbon_path_tl \__atableau_set_box_coordinates:nVV {l} \l__atableau_row_int \l__atableau_col_int % initialise the start of the path/ribbon \use:c {__atableau_initialise_ \l__atableau_ribbon_type_tl _head:} %\message{row=\int_use:N\l__atableau_row_int,~col=\int_use:N\l__atableau_col_int} \__atableau_peek_ribbon_text:w } % usage: \__atableau_peek_ribbon_text:nw {path/ribbon} % peek for subscripted text _{text} in the ribbon \cs_new_protected:Npn \__atableau_peek_ribbon_text:w { \peek_remove_spaces:n { % ignore spaces \peek_charcode_remove:NTF _ { \__atableau_save_ribbon_text:n } { \seq_put_right:Nn \l__atableau_texts_seq {} % empty text \__atableau_peek_style:nw {save_ribbon:nn} } } } % usage: \__atableau_save_ribbon_text:n {text} % save any text for a rode in the ribbon in \l__atableau_texts_seq \cs_new_protected:Npn \__atableau_save_ribbon_text:n #1 { \seq_put_right:No \l__atableau_texts_seq {#1} \__atableau_peek_style:nw {save_ribbon:nn} } % usage: \__atableau_add_to_ribbon:n % Extend a ribbon path. Here #1 is either r or c \cs_new_protected:Npn \__atableau_extend_ribbon:n #1 { \str_case:enF {#1} { {c} { % move back one column \int_decr:N \l__atableau_col_int % Move (xa,ya) back one column add it to the ribbon on the left \fp_sub:Nn \l__atableau_xa_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_sub:Nn \l__atableau_ya_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} \tl_put_left:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)-- } % Move (xb,xb) back one column add it to the ribbon on the right \fp_sub:Nn \l__atableau_xb_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_sub:Nn \l__atableau_yb_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} \tl_put_right:Nx \l__atableau_ribbon_path_tl { --(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp) } } {r} { % move forward one row \int_incr:N \l__atableau_row_int % Move (xa,ya) forward one row add it to the ribbon on the left \fp_add:Nn \l__atableau_xa_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_ya_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \tl_put_left:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)-- } % Move (xb,xb) forward one row add it to the ribbon on the right \fp_add:Nn \l__atableau_xb_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_yb_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \tl_put_right:Nx \l__atableau_ribbon_path_tl { --(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp) } } } { \msg_error:nnx {aTableau} {invalid-ribbon-specification} {#1} } } % usage: \__atableau_add_to_path:n % Extend a ribbon path. Here #1 is either r or c \cs_new_protected:Npn \__atableau_extend_path:n #1 { % the ribbon hasn't finished, so move row and col according to the ribbon % specification and update the nodes (xa,ya) and (xb,yb) in the ribbon \str_case:enF {#1} { {c} { % move back one column \int_decr:N \l__atableau_col_int \fp_sub:Nn \l__atableau_xl_fp {\l__atableau_tab_col_dx_fp*\l__atableau_box_wd_fp} \fp_sub:Nn \l__atableau_yl_fp {\l__atableau_tab_col_dy_fp*\l__atableau_box_ht_fp} \tl_put_right:Nx \l__atableau_ribbon_path_tl { --(\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) node[aTableau/pathBox,\l__atableau_ribbon_style_tl]{\__atableau_entry:n{\l__atableau_path_box_tl}} } } {r} { % move forward one row \int_incr:N \l__atableau_row_int \fp_add:Nn \l__atableau_xl_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_yl_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \tl_put_right:Nx \l__atableau_ribbon_path_tl { --(\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) node[aTableau/pathBox,\l__atableau_ribbon_style_tl]{\__atableau_entry:n{\l__atableau_path_box_tl}} } } } { \msg_error:nnx {aTableau} {invalid-ribbon-specification} {#1} } } % For each successive r and c in the ribbon specification, determine the % surrpouding coordinates in the ribbon and save any custom styles in % \l__atableau_styles_seq and then repeat \cs_new_protected:Npn \__atableau_save_ribbon:nn [#1] #2 { % draw the ribbon when we run out of nodes \quark_if_recursion_tail_stop_do:nn {#2} { \__atableau_draw_ribbon: } % Add the new coordinate(s) to \l__atableau_ribbon_path_tl. This is % different for ribbons and paths \use:c {__atableau_extend_ \l__atableau_ribbon_type_tl :n} {#2} % update the shape to include the new node \__atableau_update_shape: % save the style and row and column indices \seq_put_right:No \l__atableau_styles_seq {#1} % record the style of the head \seq_put_right:NV \l__atableau_rcs_seq \l__atableau_row_int % record the row of the node \seq_put_right:NV \l__atableau_rcs_seq \l__atableau_col_int % record the column of the node % check to see if this node has any text \__atableau_peek_ribbon_text:w } % update the shape of the ribbon tableau using the current values of % \l__atableau_row_int and \l__atableau_col_int \cs_new_protected:Nn \__atableau_update_ribbon_tableau_shape: { % ensure that \l__atableau_shape_seq has at least a 0 in each row \int_step_inline:nn { \l__atableau_row_int+1 - \seq_count:N \l__atableau_shape_seq } { \seq_put_right:Nn \l__atableau_shape_seq {0} } % for shifted tableaux we also need to ensure that skew is big enough \bool_if:NT \l__atableau_shifted_bool { \int_set:Nn \l_tmpa_int {\seq_count:N \l__atableau_skew_seq} \int_step_inline:nn { \l__atableau_row_int+1 - \l_tmpa_int } { \seq_put_right:Nx \l__atableau_skew_seq {\int_eval:n{\l_tmpa_int+##1-1 }} } } \int_compare:nNnT {0\seq_item:Nn \l__atableau_shape_seq {\l__atableau_row_int+1}} < {\l__atableau_col_int+1} { \seq_set_item:Nox \l__atableau_shape_seq {\l__atableau_row_int+1} { \int_eval:n{\l__atableau_col_int+1} } } } % usage: \__atableau_finalise_ribbon:n % Add the final node to the ribbon \cs_new_protected:Nn \__atableau_finalise_ribbon: { % Add the last node to the ribbon \fp_add:Nn \l__atableau_xa_fp {\l__atableau_tab_row_dx_fp*\l__atableau_box_wd_fp} \fp_add:Nn \l__atableau_ya_fp {\l__atableau_tab_row_dy_fp*\l__atableau_box_ht_fp} \tl_put_left:Nx \l__atableau_ribbon_path_tl { (\fp_use:N\l__atableau_xa_fp, \fp_use:N\l__atableau_ya_fp)-- } % add a closing cycle \tl_put_right:Nn \l__atableau_ribbon_path_tl {--cycle} } % usage: \__atableau_finalise_path:n % We do not need to do anything to finalise a path \cs_set_eq:NN \__atableau_finalise_path:n \prg_do_nothing: % by default, snobs have the same styles and coordinates as ribbons \cs_set_eq:NN \__atableau_extend_snob:n \__atableau_extend_ribbon:n \cs_set_eq:NN \__atableau_finalise_snob: \__atableau_finalise_ribbon: \cs_set_eq:NN \__atableau_initialise_snob_head: \__atableau_initialise_ribbon_head: % \__atableau_draw_ribbon: use the various sequences we have constructed % to draw the ribbon. We first place the nodes with default styling and % no text, then draw the ribbon with its supplied style and then, % finally, add the nodes with custom styling or text. \cs_new_protected:Nn \__atableau_draw_ribbon: { \use:c { __atableau_finalise_ \l__atableau_ribbon_type_tl :} % We want to first draw the ribbon, with its outline and any filling, and % then place the node with the default styling (or unstyled), and styled % nodes in the ribbon. To do this we build the two token lists % \l__atableau_unstyled_nodes_tl and \l__atableau_styled_nodes_tl for these % two types of nodes \tl_clear:N \l__atableau_styled_nodes_tl \tl_clear:N \l__atableau_unstyled_nodes_tl % We need to add ribbon_node to every box in a ribbon, so we do the % check here rather than in \seq_map_inline:Nn \tl_if_eq:VnTF \l__atableau_ribbon_type_tl {path} { \tl_clear:N \l_tmpc_tl } { \tl_set_eq:Nc \l_tmpc_tl { l__atableau_ \l__atableau_ribbon_type_tl _box_tl } } \seq_map_inline:Nn \l__atableau_styles_seq { % pop the text and row and column indices \seq_pop_left:NN \l__atableau_texts_seq \l_tmpa_tl % text \seq_pop_left:NN \l__atableau_rcs_seq \l_tmpb_tl % row index \int_set:Nn \l__atableau_row_int {\l_tmpb_tl} \seq_pop_left:NN \l__atableau_rcs_seq \l_tmpb_tl % column index \int_set:Nn \l__atableau_col_int {\l_tmpb_tl} % compute the box coordinates \__atableau_set_box_coordinates:nVV {l} \l__atableau_row_int \l__atableau_col_int \tl_if_empty:eTF {##1\l_tmpa_tl} { % nodes with default style and no text are added to \l__atableau_unstyled_nodes_tl \tl_put_right:Nx \l__atableau_unstyled_nodes_tl { \exp_not:N \node [aTableau/\l__atableau_ribbon_type_tl Box](\l__atableau_name_tl) at (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) { \exp_not:N \__atableau_entry:n{\l_tmpc_tl }}; } } { % nodes with styling are added to \l__atableau_styled_nodes_tl \tl_put_right:Nx \l__atableau_styled_nodes_tl { \exp_not:N \node [aTableau/\l__atableau_ribbon_type_tl Box,##1](\l__atableau_name_tl) at (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp) {\exp_not:N \__atableau_entry:n{\l_tmpa_tl}}; } } } % draw the ribbon, applying any style \exp_last_unbraced:Ne\draw { [aTableau/\l__atableau_ribbon_type_tl Style,\l__atableau_ribbon_style_tl] } \l__atableau_ribbon_path_tl; % finally, add the unstyled and the styled nodes on top of the ribbon \l__atableau_unstyled_nodes_tl \l__atableau_styled_nodes_tl } % --------------------------------------------------------------------------- % abacuses % usage: \__atableau_draw_abacus_end:nnn {abacus_top/abacus_bottom} % {0/row index} {±1} % Draw the top/bottom on gthe abacus. Here #1 is either % \l__atableau_abacus_top_tl or \l__atableau_abacus_bottom_tl and #2 is % either 0, for top, or the row index of the last row, for bottom \cs_new_protected:Npn \__atableau_draw_abacus_end:nnn #1 #2 #3 { \str_case:Vn #1 { {-} { % draw a line \__atableau_set_bead_coordinates:non {a} {#2} {0} \__atableau_set_bead_coordinates:noo {b} {#2} { \int_eval:n {\l__atableau_cols_int-1} } \draw[aTableau/abacusEnds] (\fp_eval:n{\l__atableau_xa_fp-\l__atableau_ab_col_dx_fp*\l__atableau_abacus_wd_fp/2}, \fp_eval:n{\l__atableau_ya_fp-\l__atableau_ab_col_dy_fp*\l__atableau_abacus_ht_fp/2}) -- (\fp_eval:n{\l__atableau_xb_fp+\l__atableau_ab_col_dx_fp*\l__atableau_abacus_wd_fp/2}, \fp_eval:n{\l__atableau_yb_fp+\l__atableau_ab_col_dy_fp*\l__atableau_abacus_ht_fp/2}); % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-0.4} } {_} { % draw a line \__atableau_set_bead_coordinates:non {a} {#2} {0} \__atableau_set_bead_coordinates:noo {b} {#2} { \int_eval:n {\l__atableau_cols_int-1} } \draw[aTableau/abacusEnds] (\fp_use:N\l__atableau_xa_fp, \fp_use:N\l__atableau_ya_fp) -- (\fp_use:N\l__atableau_xb_fp, \fp_use:N\l__atableau_yb_fp); % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-0.4} } {.} { % draw dots \int_step_inline:nn {\l__atableau_cols_int} { \seq_if_in:NeF \l__atableau_dotted_cols_seq { \int_eval:n{##1-1} } { % draw the abacus runners from (xa,ya) to (xb,yb) \__atableau_set_bead_coordinates:noo {a} { #2 } { \int_eval:n{##1-1} } \__atableau_set_bead_coordinates:noo {b} { #3 } { \int_eval:n{##1-1} } \draw[aTableau/abacusEnds, dotted] (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-1.4} } {>} { % draw dots \int_step_inline:nn {\l__atableau_cols_int} { \seq_if_in:NeF \l__atableau_dotted_cols_seq { \int_eval:n{##1-1} } { % draw the abacus runners from (xa,ya) to (xb,yb) \int_compare:nNnTF {#2} = {0} { \__atableau_set_bead_coordinates:noo {a} { \fp_eval:n{#2+0.5} } { \fp_eval:n{##1-1} } \__atableau_set_bead_coordinates:noo {b} { \fp_eval:n{#3+0.5} } { \fp_eval:n{##1-1} } } { \__atableau_set_bead_coordinates:noo {a} { \fp_eval:n{#2-0.5} } { \fp_eval:n{##1-1} } \__atableau_set_bead_coordinates:noo {b} { \fp_eval:n{#3-0.5} } { \fp_eval:n{##1-1} } } \draw[aTableau/abacusEnds,->] (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-0.8} } {*} { % draw dots \int_step_inline:nn {\l__atableau_cols_int} { \seq_if_in:NeF \l__atableau_dotted_cols_seq { \int_eval:n{##1-1} } { % draw the abacus runners from (xa,ya) to (xb,yb) \int_compare:nNnTF {#2} = {0} { \__atableau_set_bead_coordinates:noo {a} { \fp_eval:n{#2} } { \fp_eval:n{##1-1} } \__atableau_set_bead_coordinates:noo {b} { \fp_eval:n{#3-0.5} } { \fp_eval:n{##1-1} } } { \__atableau_set_bead_coordinates:noo {a} { \fp_eval:n{#2} } { \fp_eval:n{##1-1} } \__atableau_set_bead_coordinates:noo {b} { \fp_eval:n{#3+0.5} } { \fp_eval:n{##1-1} } } \draw[aTableau/abacusEnds,dotted,->] (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-1.8} } {|} { % set default "row height" of the runner labels for use below \fp_set:Nn \l_tmpa_fp {-0.4} } } } % usage: \__atableau_abacus:nn { #runners } { bead specifications } \cs_new_protected:Npn \__atableau_abacus:nn #1 #2 { % set the star style \tl_set:Nn \l__atableau_starstyle_tl {aTableau/abacusStarStyle} \int_set:Nn \l__atableau_cols_int {#1} \seq_if_empty:NF \l__atableau_runner_labels_seq { \int_set:No \l_tmpa_int { \seq_count:N \l__atableau_runner_labels_seq } \int_compare:nNnF {\l__atableau_cols_int-\l_tmpa_int } = {0} { \msg_error:nn {aTableau} {missing-runner-labels } } } % Extract the bead positions and their styles into % \l__atableau_shape_seq, \l__atableau_styles_seq and \l__atableau_text_tl % We allow all of the following expressions % m, m^r, [style]m, [style]m^2, *m, *m^2, % m_text, m_text^r, [style]m_text, [style]m_text^2, *m_text, *m_text^2, % m_text^r, [style]m_text^2, *m_text^2 % where m is a part of the partition \l__atableau_shape_seq and r is % its' exponent. First, clear all of the sequences and zero the bead % counter \seq_clear:N \l__atableau_shape_seq % will record the partition \seq_clear:N \l__atableau_styles_seq % will record the bead style \seq_clear:N \l__atableau_texts_seq % will record the bead text \int_zero:N \l__atableau_beads_int % will record the number of beads % determine the partition/beta numbers \clist_map_inline:nn {#2} { \__atableau_peek_style:nw {record_style:nn} ##1 \q_recursion_tail \q_recursion_stop } % unless they have been set, determine the number of abacus rows \int_compare:nNnT {\l__atableau_rows_int} = {0} { \bool_if:NTF \l__atableau_beta_numbers_bool { \int_set:Nn \l__atableau_rows_int { 1+\int_div_truncate:nn { 0\seq_item:Nn \l__atableau_shape_seq 1} {#1} } } { \int_set:Nn \l__atableau_rows_int { 1+\int_div_truncate:nn {\l__atableau_beads_int-1 + 0\seq_item:Nn \l__atableau_shape_seq 1} {#1} } } } % draw the abacus runners \int_zero:N \l__atableau_col_int \int_step_inline:nn {\l__atableau_cols_int} { \int_set:Nn \l_tmpa_int {##1-1} % save recalculating this many times % skip the runners in dotted_cols_seq \seq_if_in:NVF \l__atableau_dotted_cols_seq \l_tmpa_int { % draw the abacus runners from (xa,ya) to (xb,yb) \__atableau_set_bead_coordinates:nnV {a} { 0 } \l_tmpa_int \__atableau_set_bead_coordinates:noV {b} { \int_eval:n{\l__atableau_rows_int+1} } \l_tmpa_int \draw[aTableau/runnerStyle] (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); % draw ticks \int_step_inline:nn {\l__atableau_rows_int} { \__atableau_set_bead_coordinates:noV {l} { ####1 } \l_tmpa_int % add a named node \node[aTableau/namedTick] (\l__atableau_name_tl) at (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp){}; % add and subtract (half) tick width \fp_set:Nn \l__atableau_xa_fp {\l__atableau_xl_fp+\l__atableau_tick_length_fp*\l__atableau_ab_col_dx_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_yl_fp+\l__atableau_tick_length_fp*\l__atableau_ab_col_dy_fp} \fp_set:Nn \l__atableau_xb_fp {\l__atableau_xl_fp-\l__atableau_tick_length_fp*\l__atableau_ab_col_dx_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_yl_fp-\l__atableau_tick_length_fp*\l__atableau_ab_col_dy_fp} \draw[aTableau/tickStyle,name=\l__atableau_name_tl] (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } } % set e when entries=residues \tl_if_eq:VnT \l__atableau_show_tl {residues} { % if it is not set already, then set e based on the number of runners and the Cartan type \int_compare:nNnT {\l__atableau_e_int} = {0} { \str_case:Vn \l__atableau_cartan_tl { {A } { \int_set_eq:NN \l__atableau_e_int \l__atableau_cols_int } {C } { \int_set:Nn \l__atableau_e_int {\l__atableau_cols_int/2} } {AA} { \int_set:Nn \l__atableau_e_int {(\l__atableau_cols_int-1)/2} } {DD} { \int_set:Nn \l__atableau_e_int {\l__atableau_cols_int/2-1} } } } } % draw the beads on the abacus \int_step_inline:nn { \l__atableau_beads_int } % finally, add the beads, with labels and styles { % determine the row and column indices for the bead \bool_if:NTF \l__atableau_beta_numbers_bool { \int_set:No \l_tmpa_int { \seq_item:Nn \l__atableau_shape_seq {##1} } % beta number } { \int_set:No \l_tmpa_int { \l__atableau_beads_int - ##1 + \seq_item:Nn \l__atableau_shape_seq {##1} } % part -> beta number } \int_set:Nn \l__atableau_row_int { \int_div_truncate:nn {\l_tmpa_int} {\l__atableau_cols_int} } \int_set:Nn \l__atableau_col_int { \int_mod:nn {\l_tmpa_int} {\l__atableau_cols_int} } % determine the bead coordinates: push everything 0.5 of a % unit down to allow space of the top of the abacus \__atableau_set_bead_coordinates:noV {l} {\int_eval:n{\l__atableau_row_int+1} } \l__atableau_col_int \seq_if_in:NVF \l__atableau_dotted_rows_seq \l__atableau_row_int { \seq_if_in:NVF \l__atableau_dotted_cols_seq \l__atableau_col_int { \str_case:VnF \l__atableau_show_tl { {betas} { \tl_set:No \l_tmpa_tl { \int_use:N\l_tmpa_int } } {residues} { \int_set:Nn \l_tmpb_int { \l__atableau_charge_int+\l_tmpa_int-\l__atableau_beads_int } \tl_set:No \l_tmpa_tl { \__atableau_residue:nn {\l_tmpb_int} {\l__atableau_e_int} } } {rows } { \int_set:Nn \l_tmpb_int { \l_tmpa_int-\l__atableau_beads_int+##1 } \int_compare:nNnTF {\l_tmpb_int} > {0} { \tl_set:No \l_tmpa_tl { ##1 } } { \tl_set:No \l_tmpa_tl { {-} } } } {shape} { \tl_set:No \l_tmpa_tl { \seq_item:Nn \l__atableau_shape_seq {##1} } } {} { \tl_set:No \l_tmpa_tl { \seq_item:Nn \l__atableau_texts_seq {##1} } } } { \msg_error:nnx {aTableau} {unrecognised-abacus-label} { \l__atableau_show_tl } } % draw the bead with style \tl_set:No \l_tmpb_tl { \seq_item:Nn \l__atableau_styles_seq {##1} } \exp_last_unbraced:Nx \node{[aTableau/beadStyle, \l_tmpb_tl]} at (\fp_use:N\l__atableau_xl_fp,\fp_use:N\l__atableau_yl_fp){\__atableau_entry:x {\l_tmpa_tl}}; } } } % draw the top ends of the abacus -- and set \l_tmpa_fp for the runner labels \__atableau_draw_abacus_end:nnn \l__atableau_abacus_top_tl {0} {-1} \int_zero:N \l__atableau_c_int % add the runner labels using the "row height" \l_tmpa_fp \int_zero:N \l__atableau_c_int \seq_map_inline:Nn \l__atableau_runner_labels_seq { \__atableau_set_bead_coordinates:nVV {a} \l_tmpa_fp \l__atableau_c_int \seq_if_in:NVF \l__atableau_dotted_cols_seq \l__atableau_c_int { \node[aTableau/runnerLabelStyle] at (\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp){ \__atableau_entry:n{##1} }; } \int_incr:N \l__atableau_c_int } % draw the bottom ends of the abacus \__atableau_draw_abacus_end:noo \l__atableau_abacus_bottom_tl {\int_eval:n {\l__atableau_rows_int+1}} {\int_eval:n {\l__atableau_rows_int+2}} % remove dotted rows and columns \seq_if_empty:NF \l__atableau_dotted_rows_seq \__atableau_remove_dotted_abacus_rows: \seq_if_empty:NF \l__atableau_dotted_cols_seq \__atableau_remove_dotted_abacus_cols: } % usage: \__atableau_remove_dotted_abacus_cols: % Add dots to the columns of the abacus in \l__atableau_dotted_cols_seq \cs_new_protected:Nn \__atableau_remove_dotted_abacus_cols: { % shift in row-direction \fp_set:Nn \l_tmpa_fp {\l__atableau_ab_row_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l_tmpb_fp {\l__atableau_ab_row_dy_fp*\l__atableau_abacus_ht_fp} % take a copy of \l__atableau_dotted_cols_seq so that the pop_left's below % do not destroy it \seq_set_eq:NN \l_tmpb_seq \l__atableau_dotted_cols_seq \bool_do_until:nn { \seq_if_empty_p:N \l_tmpb_seq } { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_set:Nn \l__atableau_col_int {\l_tmpa_tl} \int_set:Nn \l__atableau_c_int {\l__atableau_col_int+1} % LaTeX3 does not provide \seq_if_in_p:NN, so ... \bool_set_true:N \l_tmpa_bool \bool_do_while:nn { \l_tmpa_bool } { \int_set:Nn \l_tmpa_int {0\seq_item:Nn \l_tmpb_seq 1} \int_compare:nNnTF {\l__atableau_c_int} = {\l_tmpa_int} { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_incr:N \l__atableau_c_int } { \bool_set_false:N \l_tmpa_bool } } \__atableau_set_bead_coordinates:nnV {l} { 0 } \l__atableau_col_int % set (xa,ya) and (xb,yb) to the "left" and "right" hand coordinates that we want remove \fp_set:Nn \l__atableau_xa_fp {\l__atableau_xl_fp-0.35*\l__atableau_ab_col_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_yl_fp-0.35*\l__atableau_ab_col_dy_fp*\l__atableau_abacus_ht_fp} \fp_set:Nn \l__atableau_xb_fp {\l__atableau_xl_fp+(\l__atableau_c_int-\l__atableau_col_int-0.65)*\l__atableau_ab_col_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_yl_fp+(\l__atableau_c_int-\l__atableau_col_int-0.65)*\l__atableau_ab_col_dy_fp*\l__atableau_abacus_ht_fp} % blank out any line at the top of the abacus and replace it with dots \tl_if_in:nVT {-_} \l__atableau_abacus_top_tl { \draw[aTableau/clearBoxes] (\fp_eval:n{\l__atableau_xa_fp-0.1*\l_tmpa_fp}, \fp_eval:n{\l__atableau_ya_fp-0.1*\l_tmpb_fp}) --++(\fp_eval:n{0.2*\l_tmpa_fp},\fp_eval:n{0.2*\l_tmpb_fp}) --(\fp_eval:n{\l__atableau_xb_fp+0.1*\l_tmpa_fp}, \fp_eval:n{\l__atableau_yb_fp+0.1*\l_tmpb_fp}) --++(\fp_eval:n{-0.2*\l_tmpa_fp},\fp_eval:n{-0.2*\l_tmpb_fp}) --cycle ; % first blank out the possible header line and replace with dots %\draw[fill=white,draw=none](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); \draw[aTableau/dottedLine](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } % now draw the dots \int_zero:N \l__atableau_row_int \int_step_inline:nn {\l__atableau_rows_int} { \fp_add:Nn \l__atableau_xa_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_ya_fp {\l_tmpb_fp} \fp_add:Nn \l__atableau_xb_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_yb_fp {\l_tmpb_fp} \draw[aTableau/dottedLine](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } % blank out any line at the bottom of the abacus and replace it with dots \tl_if_in:nVT {-_} \l__atableau_abacus_bottom_tl { \fp_add:Nn \l__atableau_xa_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_ya_fp {\l_tmpb_fp} \fp_add:Nn \l__atableau_xb_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_yb_fp {\l_tmpb_fp} \draw[aTableau/clearBoxes] (\fp_eval:n{\l__atableau_xa_fp-0.1*\l_tmpa_fp}, \fp_eval:n{\l__atableau_ya_fp-0.1*\l_tmpb_fp}) --++(\fp_eval:n{0.2*\l_tmpa_fp},\fp_eval:n{0.2*\l_tmpb_fp}) --(\fp_eval:n{\l__atableau_xb_fp+0.1*\l_tmpa_fp}, \fp_eval:n{\l__atableau_yb_fp+0.1*\l_tmpb_fp}) --++(\fp_eval:n{-0.2*\l_tmpa_fp},\fp_eval:n{-0.2*\l_tmpb_fp}) --cycle ; % first blank out the possible header line and replace with dots \draw[aTableau/dottedLine](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } } % usage: \__atableau_remove_dotted_abacus_rows: % Add dots to the rows of the abacus in \l__atableau_dotted_rows_seq \cs_new_protected:Nn \__atableau_remove_dotted_abacus_rows: { % shift in column-direction \fp_set:Nn \l_tmpa_fp {\l__atableau_ab_col_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l_tmpb_fp {\l__atableau_ab_col_dy_fp*\l__atableau_abacus_ht_fp} % take a copy of \l__atableau_dotted_rows_seq so that the pop_left's below % do not destroy it \seq_set_eq:NN \l_tmpb_seq \l__atableau_dotted_rows_seq \bool_do_until:nn { \seq_if_empty_p:N \l_tmpb_seq } { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_set:Nn \l__atableau_row_int {\l_tmpa_tl} \int_set:Nn \l__atableau_r_int {\l__atableau_row_int+1} % LaTeX3 does not provide \seq_if_in_p:NN, so ... \bool_set_true:N \l_tmpa_bool \bool_do_while:nn { \l_tmpa_bool } { \int_set:Nn \l_tmpa_int {0\seq_item:Nn \l_tmpb_seq 1} \int_compare:nNnTF {\l__atableau_r_int} = {\l_tmpa_int} { \seq_pop_left:NN \l_tmpb_seq \l_tmpa_tl \int_incr:N \l__atableau_r_int } { \bool_set_false:N \l_tmpa_bool } } \__atableau_set_bead_coordinates:non {l} { \int_eval:n{\l__atableau_row_int+1} } { 0 } % set (xa,ya) and (xb,yb) to the "left" and "right" hand coordinates that we want remove \fp_set:Nn \l__atableau_xa_fp {\l__atableau_xl_fp-0.35*\l__atableau_ab_row_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l__atableau_ya_fp {\l__atableau_yl_fp-0.35*\l__atableau_ab_row_dy_fp*\l__atableau_abacus_ht_fp} \fp_set:Nn \l__atableau_xb_fp {\l__atableau_xl_fp+(\l__atableau_r_int-\l__atableau_row_int-0.65)*\l__atableau_ab_row_dx_fp*\l__atableau_abacus_wd_fp} \fp_set:Nn \l__atableau_yb_fp {\l__atableau_yl_fp+(\l__atableau_r_int-\l__atableau_row_int-0.65)*\l__atableau_ab_row_dy_fp*\l__atableau_abacus_ht_fp} \draw[aTableau/clearBoxes] (\fp_eval:n{\l__atableau_xa_fp-0.12*\l_tmpa_fp}, \fp_eval:n{\l__atableau_ya_fp-0.12*\l_tmpb_fp}) --++(\fp_eval:n{(\l__atableau_cols_int+0.24)*\l_tmpa_fp},\fp_eval:n{(\l__atableau_cols_int+0.24)*\l_tmpb_fp}) --(\fp_eval:n{\l__atableau_xb_fp+(\l__atableau_cols_int+0.12)*\l_tmpa_fp}, \fp_eval:n{\l__atableau_yb_fp+(\l__atableau_cols_int+0.12)*\l_tmpb_fp}) --(\fp_eval:n{\l__atableau_xb_fp-0.12*\l_tmpa_fp}, \fp_eval:n{\l__atableau_yb_fp-0.12*\l_tmpb_fp}) --cycle ; % first blank out the possible header line and replace with dots \draw[aTableau/dottedLine](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); % now draw the dots \int_step_inline:nnn {2} {\l__atableau_cols_int} { \fp_add:Nn \l__atableau_xa_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_ya_fp {\l_tmpb_fp} \fp_add:Nn \l__atableau_xb_fp {\l_tmpa_fp} \fp_add:Nn \l__atableau_yb_fp {\l_tmpb_fp} \draw[aTableau/dottedLine](\fp_use:N\l__atableau_xa_fp,\fp_use:N\l__atableau_ya_fp)--(\fp_use:N\l__atableau_xb_fp,\fp_use:N\l__atableau_yb_fp); } } } % --------------------------------------------------------------------------- % Keys for the package options and their defaults % setting TikZ styles via styles = { ... } \cs_new_protected:Npn \__atableau_tikzset:nn #1 #2 { \pgfqkeys{/tikz}{#1/.style={#2}} } % appending to aTableau styles \cs_new_protected:Npn \__atableau_tikzset_append:nn #1 #2 { \pgfqkeys{/tikz/aTableau}{#1/.append~style={#2}} } % aTableau options/keys \keys_define:nn { atableau } { % --------------------------------------------------------------------------- % general settings % tableaux alignment align .choice:, align/top .code:n = { \tikzset{baseline=(current~bounding~box.north)} }, align/north .code:n = { \tikzset{baseline=(current~bounding~box.north)} }, align/center .code:n = { \tikzset{baseline=(current~bounding~box.center)}}, align/centre .code:n = { \tikzset{baseline=(current~bounding~box.center)}}, align/bottom .code:n = { \tikzset{baseline=(current~bounding~box.south)} }, align/south .code:n = { \tikzset{baseline=(current~bounding~box.south)} }, align .unknown .code:n = { \msg_error:nne { aTableau } { unknown-baseline } {#1} }, align .initial:n = centre, % set the Cartan type cartan .choices:nn = { A, C, AA, DD } { % record the Cartan type for use in abacuses \tl_set:Nn \l__atableau_cartan_tl {#1} % define all of the type dependent functions here... \cs_set_eq:Nc \__atableau_residue:nn {__atableau_residue_#1:nn} }, cartan/unknown .code:n = { \msg_error:nne { aTableau } { unknown-cartan } {#1} }, cartan .initial:n = A, charge .code:n = { % To cater for multipartitions, the charge is a sequence . % Set l__atableau_charge_int is the first item in the sequence \regex_split:nnN {[,\|]} {#1} \l__atableau_charge_seq \int_set:Nn \l__atableau_charge_int { \seq_item:Nn \l__atableau_charge_seq {1} } }, charge .value_required:n = true, charge .initial:n = 0, % dotted rows and columns for tableaux and abacuses dotted~cols .code:n = { \__atableau_set_multiseq_key:nn {dotted_cols} {#1} }, dotted~cols .value_required:n = true, dotted~rows .code:n = { \__atableau_set_multiseq_key:nn {dotted_rows} {#1} }, dotted~rows .value_required:n = true, e .int_set:N = \l__atableau_e_int, e .initial:n = 0, entries .tl_set:N = \l__atableau_show_tl, % automatic bead labelling entries .value_required:n = false, entries .initial:n = , halign .choice:, halign/center .code = {\cs_set_eq:NN \__atableau_halign:n \hbox_overlap_center:n}, halign/centre .code = {\cs_set_eq:NN \__atableau_halign:n \hbox_overlap_center:n}, halign/left .code = {\cs_set_eq:NN \__atableau_halign:n \hbox_overlap_left:n}, halign/right .code = {\cs_set_eq:NN \__atableau_halign:n \hbox_overlap_right:n}, halign .unknown .code:n = { \msg_error:nne { aTableau } { unknown-halign } {#1} }, halign .initial:n = centre, % math/text mode for boxes and beads math~entries .code:n = { \cs_set_eq:NN \__atableau_entry:n \__atableau_entry_math:n }, text~entries .code:n = { \cs_set_eq:NN \__atableau_entry:n \__atableau_entry_text:n }, % tableau node name prefix name .tl_set:N = \l__atableau_prefix_tl, name .value_required:n = true, name .initial:n = A, % scaling scale .code:n = { \__atableau_set_xscale:n {#1} \__atableau_set_yscale:n {#1} }, scale .value_required:n = true, star~style .code:n = { \__atableau_tikzset_append:nn {tableauStarStyle} {#1} }, star~style .value_required:n = true, % shortcut for setting TikZ styles, following a suggestion of Skillmon to use \keyval_parse:nnn styles .code:n = { \keyval_parse:nnn { \msg_error:nnn {aTableau}{missing-style} } { \__atableau_tikzset:nn } { #1 } }, % tikzpicture environment tikzpicture .tl_set:N= \l__atableau_tikzpicture_tl, tikzpicture .value_required:n = true, tikzpicture .initial:n =, % tikz code after tikz~after .tl_set:N = \l__atableau_tikz_after_tl, tikz~after .value_required:n = true, tikz~after .initial:n = , % tikz~ code before tikz~before .tl_set:N = \l__atableau_tikz_before_tl, tikz~before .value_required:n = true, tikz~before .initial:n = , valign .choices:nn = { bottom, center, centre, top } { \cs_set_eq:Nc \__atableau_valign:n { __atableau_valign_#1:n } }, valign .unknown .code:n = { \msg_error:nne { aTableau } { unknown-valign } {#1} }, valign .initial:n = centre, xscale .code:n = { \__atableau_set_xscale:n {#1} }, xscale .value_required:n = true, xscale .initial:n =1, yscale .code:n = { \__atableau_set_yscale:n {#1} }, yscale .value_required:n = true, yscale .initial:n =1, % --------------------------------------------------------------------------- % tableau settings % convention switches Australian .code:n = \__atableau_set_style:nn {tableau} {australian}, australian .code:n = \__atableau_set_style:nn {tableau} {australian}, australian .value_required:n = false, English .code:n = \__atableau_set_style:nn {tableau} {english}, english .code:n = \__atableau_set_style:nn {tableau} {english}, english .value_required:n = false, english .initial:n =, % default style French .code:n = \__atableau_set_style:nn {tableau} {french}, french .code:n = \__atableau_set_style:nn {tableau} {french}, french .value_required:n = false, ukrainian .code:n = \__atableau_set_style:nn {tableau} {ukrainian}, Ukrainian .code:n = \__atableau_set_style:nn {tableau} {ukrainian}, ukrainian .value_required:n = false, Russian .code:n = \__atableau_set_style:nn {tableau} {ukrainian}, russian .code:n = \__atableau_set_style:nn {tableau} {ukrainian}, border .bool_set:N = \l__atableau_border_bool, border .default:n = true, border .initial:n = true, no~border .bool_set_inverse:N = \l__atableau_border_bool, no~border .default:n = true, % border colours border~color .tl_set:N = \l__atableau_outer_tl, % an alias border~color .value_required:n = true, border~colour .tl_set:N = \l__atableau_outer_tl, border~colour .value_required:n = true, border~colour .initial:n = aTableauMain, border~style .code:n = { \__atableau_tikzset_append:nn {borderStyle} {#1} }, border~style .value_required:n = true, % node height and width box~height .fp_set:N = \l__atableau_box_ht_fp, box~height .value_required:n = true, box~height .initial:n = 0.5, box~width .fp_set:N = \l__atableau_box_wd_fp, box~width .value_required:n = true, box~width .initial:n = 0.5, % box styling box~fill .tl_set:N = \l__atableau_box_fill_tl, box~fill .value_required:n = true, box~fill .initial:n = white, box~font .tl_set:N = \l__atableau_box_font_tl, box~font .value_required:n = true, box~font .initial:n =, box~shape .tl_set:N = \l__atableau_box_shape_tl, box~shape .value_required:n = true, box~shape .initial:n = rectangle, box~text .tl_set:N = \l__atableau_box_text_tl, box~text .value_required:n = true, box~text .initial:n = aTableauMain, box~style .code:n = { \__atableau_tikzset_append:nn {boxStyle} {#1} }, box~style .value_required:n = true, boxes .bool_set:N = \l__atableau_boxes_bool, boxes .default:n = true, boxes .initial:n = true, no~boxes .bool_set_inverse:N = \l__atableau_boxes_bool, no~boxes .default:n = true, conjugate .code:n = { \tl_set:Nx \l_tmpa_tl {\str_lowercase:n {#1}} \str_if_eq:VnTF \l_tmpa_tl {true} { \bool_set_true:N \l__atableau_conjugate_bool \cs_set_eq:NN \__atableau_set_box_coordinates:nnn \__atableau_set_box_coordinates_conjugate:nnn } { \bool_set_false:N \l__atableau_conjugate_bool \cs_set_eq:NN \__atableau_set_box_coordinates:nnn \__atableau_set_box_coordinates_normal:nnn } }, conjugate .default:n = true, conjugate .initial:n = false, inner~wall .tl_set:N = \l__atableau_inner_tl, inner~wall .value_required:n = true, inner~wall .initial:n = aTableauInner, inner~style .code:n = { \__atableau_tikzset_append:nn {innerWall} {#1} }, inner~style .value_required:n = true, % label label .code:n = { \tl_if_in:nnTF {#1} {|} { % unpack the ribbons into \l__atableau_multiribbons_seq \seq_set_split:cnn {l__atableau_multilabel_seq} {|} {#1} } { \tl_set:No \l__atableau_label_tl {#1} } }, label~style .code:n = { \__atableau_tikzset_append:nn {labelStyle} {#1} }, label~style .value_required:n = true, % -- paths --------------------------------------- paths .code:n = { \__atableau_set_multiseq_key:nn {paths} {#1} }, paths .initial:n = , path~style .code:n = { \__atableau_tikzset_append:nn {pathStyle} {#1} }, path~style .value_required:n = true, path~style .initial:n =, path~box .tl_set:N = \l__atableau_path_box_tl, path~box .initial:n = , path~box~style .code:n = { \__atableau_tikzset_append:nn {pathBox} {#1} }, path~box~style .value_required:n = true, path~box~style .initial:n =, % -- ribbons --------------------------------------- ribbons .code:n = { \__atableau_set_multiseq_key:nn {ribbons} {#1} }, ribbons .initial:n = , ribbon~style .code:n = { \__atableau_tikzset_append:nn {ribbonStyle} {#1} }, ribbon~style .value_required:n = true, ribbon~style .initial:n =, ribbon~box .tl_set:N = \l__atableau_ribbon_box_tl, ribbon~box .initial:n = , ribbon~box~style .code:n = { \__atableau_tikzset_append:nn {ribbonBox} {#1} }, ribbon~box~style .value_required:n = true, ribbon~box~style .initial:n =, % -- snobs --------------------------------------- snobs .code:n = { \__atableau_set_multiseq_key:nn {snobs} {#1} }, snobs .initial:n = , snob~style .code:n = { \__atableau_tikzset_append:nn {snobStyle} {#1} }, snob~style .value_required:n = true, snob~style .initial:n =, snob~box .tl_set:N = \l__atableau_snob_box_tl, snob~box .initial:n = , snob~box~style .code:n = { \__atableau_tikzset_append:nn {snobBox} {#1} }, snob~box~style .value_required:n = true, snob~box~style .initial:n =, % -- shifted, skew and tabloid shapes ------------ shifted .bool_set:N = \l__atableau_shifted_bool, shifted .initial:n = false, skew .code:n = { \tl_if_in:nnTF {#1} {|} { % unpack the skew tableau into \l__atableau_multiskew_seq \seq_set_split:Nnn \l__atableau_multiskew_seq {|} {#1} } { \__atableau_set_partition:nn {skew} {#1} } }, skew .value_required:n = true, skew .initial:n = 0, skew~border .bool_set:N = \l__atableau_skew_border_bool, skew~border .initial:n = false, no~skew~border .bool_set_inverse:N = \l__atableau_skew_border_bool, no~skew~border .default:n = true, skew~border~style .code:n = { \__atableau_tikzset_append:nn {skewBorder} {#1} }, skew~border~style .value_required:n = true, skew~boxes .bool_set:N = \l__atableau_skew_boxes_bool, skew~boxes .default:n = true, skew~boxes .initial:n = false, no~skew~boxes .bool_set_inverse:N = \l__atableau_skew_boxes_bool, skew~box~style .code:n = { \__atableau_tikzset_append:nn {skewBox} {#1} }, skew~box~style .value_required:n = true, skew colour .tl_set:N = \l__atableau_skew_border_tl, skew color .tl_set:N = \l__atableau_skew_border_tl, skew colour .initial:n = aTableauSkew, tabloid .bool_set:N = \l__atableau_tabloid_bool, tabloid .initial:n = false, % -- multitableaux and multidiagrams -------------------- delimiters .code:n = { \__atableau_set_delimiters:nn #1 }, delimiters .value_required:n = true, delimiters .initial:n = (), left~delimiter .tl_set:N = \l__atableau_left_delimiter_tl, left~delimiter .value_required:n = true, right~delimiter .tl_set:N = \l__atableau_right_delimiter_tl, right~delimiter .value_required:n = true, empty .tl_set:N = \l__atableau_empty_tl, empty .initial:n = \textendash, separators .bool_set:N = \l__atableau_separators_bool, separators .default:n = true, separators .initial:n = true, no~separators .bool_set_inverse:N = \l__atableau_separators_bool, no~separators .default:n = true, separation .fp_set:N = \l__atableau_separation_fp, separation .value_required:n = true, separation .initial:n = 0.3, separator .tl_set:N = \l__atableau_separator_tl, separator .value_required:n = true, separator .initial:n = |, separator~colour .tl_set:N = \l__atableau_separator_fg_tl, separator~colour .value_required:n = true, separator~colour .initial:n = aTableauMain, separator~color .tl_set:N = \l__atableau_separator_fg_tl, separator~color .value_required:n = true, % set rows in abacuses, multitableau and multidiagrams rows .code:n = { \fp_set:Nn \l__atableau_rows_fp {#1} \int_set:No \l__atableau_rows_int {\fp_to_int:N \l__atableau_rows_fp} }, rows .value_required:n = true, rows .initial:n = 0, xoffsets .code:n = { \regex_split:nnN {[\|,]} {#1} \l__atableau_xoffsets_seq }, xoffsets .value_required:n = true, xoffsets .initial:n = 0, yoffsets .code:n = { \regex_split:nnN {[\|,]} {#1} \l__atableau_yoffsets_seq }, yoffsets .value_required:n = true, yoffsets .initial:n = 0, % --------------------------------------------------------------------------- % abacus keys south .code:n = \__atableau_set_style:nn {abacus} {south}, south .initial:n =, east .code:n = \__atableau_set_style:nn {abacus} {east}, north .code:n = \__atableau_set_style:nn {abacus} {north}, west .code:n = \__atableau_set_style:nn {abacus} {west}, % abacus style abacus~ends .code:n = { \__atableau_set_abacus_ends:nn #1 }, abacus~ends .value_required:n = true, abacus~ends .initial:n = {-|}, abacus~ends~style .code:n = { \__atableau_tikzset_append:nn {abacusEnds} {#1} }, abacus~ends~style .value_required:n = true, abacus~star~style .code:n = { \__atableau_tikzset_append:nn {abacusStarStyle} {#1} }, abacus~star~style .value_required:n = true, bead .tl_set:N = \l__atableau_bead_tl, % bead colour bead .value_required:n = true, bead .initial:n = aTableauMain, bead~font .tl_set:N = \l__atableau_bead_font_tl, % bead font bead~font .initial:n = \small, bead~font .value_required:n = true, bead~size .fp_set:N = \l__atableau_bead_size_fp, bead~size .initial:n = 0.4, bead~sep .fp_set:N = \l__atableau_abacus_ht_fp, % bead separation bead~sep .value_required:n = true, bead~sep .initial:n = 0.42, bead~shape .tl_set:N = \l__atableau_bead_shape_tl, % bead shape colour bead~shape .value_required:n = true, bead~shape .initial:n = circle, bead~style .code:n = { \__atableau_tikzset_append:nn {beadStyle} {#1} }, bead~style .value_required:n = true, bead~text .tl_set:N = \l__atableau_bead_text_tl, % bead text colour bead~text .value_required:n = true, bead~text .initial:n = white, beta~numbers .bool_set:N = \l__atableau_beta_numbers_bool, beta~numbers .initial:n = false, no~shade .code:n = { \__atableau_tikzset_append:nn {beadStyle} {no~shade,} }, no~shade .value_required:n = false, runner .tl_set:N = \l__atableau_runner_tl, % runner colour runner .value_required:n = true, runner .initial:n = aTableauInner, runner~style .code:n = { \__atableau_tikzset_append:nn {runnerStyle} {#1} }, runner~style .value_required:n = true, runner~labels .code:n = { \seq_set_split:Nnn \l__atableau_runner_labels_seq {,} {#1} }, runner~labels .value_required:n = true, runner~label~style .code:n = { \__atableau_tikzset_append:nn {runnerLabelStyle} {#1} }, runner~label~style .value_required:n = true, runner~sep .fp_set:N = \l__atableau_abacus_wd_fp, % runner separation runner~sep .value_required:n = true, runner~sep .initial:n = 0.42, shading .tl_set:N = \l__atableau_shading_tl, shading .value_required:n = true, shading .initial:n = ball, tick .tl_set:N = \l__atableau_tick_tl, % tick colour tick .initial:n = aTableauInner, tick~length .code:n = { \fp_set:Nn \l__atableau_tick_length_fp {#1/2} }, % (half) tick width separation tick~length .value_required:n = true, tick~length .initial:n = 0.1, tick~style .code:n = { \__atableau_tikzset_append:nn {tickStyle} {#1} }, tick~style .value_required:n = true, } % --------------------------------------------------------------------------- % Usage: \__atableau_set_origin:nn (x,y) % Set the Cartesian coordinates for the corner of the (1,1) box % TODO: allow general TikZ-coorindates. To do this we could, for example, use ideas from % https://tex.stackexchange.com/questions/33703/extract-x-y-coordinate-of-an-arbitrary-point-in-tikz \cs_new_protected:Npn \__atableau_set_origin:nn (#1,#2) { \fp_set:Nn \l__atableau_x_fp {#1} \fp_set:Nn \l__atableau_y_fp {#2} } % usage: \__atableau_tikzpicture:nnn {settings} {origin} {aTableau command} % where % - #1: settings are a comma separated list of aTableau settings % - #2: origin are Cartesian coordinates in the form x,y, or NoValue % - #3: an internal aTableau command with parameters for drawing something % Apply settings and wrap an aTableau command inside a tikzpicture environment. % Add any tikzpicture environments settings and before and after TikZ commands \cs_new_protected:Npn \__atableau_tikzpicture:nnn #1 #2 #3 { \group_begin: % keep changes to settings local by working inside a group \keys_set:nn {atableau} {#1} \IfNoValueTF {#2} { % wrap inside a tikzpicture environment, placing the picture at (0,0) \__atableau_set_origin:nn (0,0) \exp_last_unbraced:Ne \tikz{[\l__atableau_tikzpicture_tl]} { \l__atableau_tikz_before_tl #3 \l__atableau_tikz_after_tl } } { % already inside a tikzpicture environment \__atableau_set_origin:nn (#2) \l__atableau_tikz_before_tl #3 \l__atableau_tikz_after_tl } \group_end: } % --------------------------------------------------------------------------- % Public facing package commands % Almost all public-facing routines call \__atableau_tikzpicture:nnn, % which applies the settings, sets the coordinates of the origin and % then ensures that the requested diagram is drawn inside a tikzpicture % environment. % \Abacus (x,y) [style] {#runners} {partition} \NewDocumentCommand\Abacus{ d() O{} m m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_abacus:nn {#3} {#4} } } % \Diagram (x,y) [style] {shape} \NewDocumentCommand\Diagram{ d() O{} m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_draw_diagram:n {#3} } } % \Multidiagram (x,y) [style] {entries} \NewDocumentCommand\Multidiagram{ d() O{} m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_multidiagram:n {#3} } } % \Multitableau (x,y) [style] {entries} \NewDocumentCommand\Multitableau{ d() O{} m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_multitableau:n {#3} } } % \RibbonTableau (x,y) [style] {entries} \NewDocumentCommand\RibbonTableau{ d() O{} m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_ribbon_tableau:n {#3} } } % \ShiftedDiagram (x,y) [style] {entries} \NewDocumentCommand\ShiftedDiagram{ d() O{} m } { \__atableau_tikzpicture:nnn {shifted,#2} {#1} { \__atableau_draw_diagram:n {#3} } } % \ShiftedTableau (x,y) [style] {entries} \NewDocumentCommand\ShiftedTableau{ d() O{} m } { \__atableau_tikzpicture:nnn {shifted,#2} {#1} { \__atableau_draw_tableau:n {#3} } } % \SkewDiagram (x,y) [style] {skew shape} {entries} \NewDocumentCommand\SkewDiagram{ d() O{} m m } { \__atableau_tikzpicture:nnn {skew={#3},#2} {#1} { \__atableau_draw_diagram:n {#4} } } % \SkewTableau (x,y) [style] {skew shape} {entries} \NewDocumentCommand\SkewTableau{ d() O{} m m } { \__atableau_tikzpicture:nnn {skew={#3},#2} {#1} { \__atableau_draw_tableau:n {#4} } } % \Tableau (x,y) [style] {entries} \NewDocumentCommand\Tableau{ d() O{} m } { \__atableau_tikzpicture:nnn {#2} {#1} { \__atableau_draw_tableau:n {#3} } } % \Tabloid (x,y) [style] {entries} \NewDocumentCommand\Tabloid{ d() O{} m } { \__atableau_tikzpicture:nnn {tabloid,#2} {#1} { \__atableau_draw_tableau:n {#3} } } \NewDocumentCommand\aTabset{ m }{ \keys_set:nn { atableau } {#1} } % --------------------------------------------------------------------------- % Finally, now that everything is defined, process the package options. \IfFormatAtLeastTF { 2022-06-01 } { \ProcessKeyOptions [ atableau ] } { \RequirePackage { l3keys2e } \ProcessKeysOptions { atableau } } \endinput % --------------------------------------------------------------------------- % CHANGE LOG % % Version 1.0 % - initial version % - Young diagrams, tabloids, tableaux, shifted tableaux, Ukrainian tableaux, abacuses, braids % % Version 2.0 % - completely rewritten using LaTeX3 % - key interface for the tableaux options % - macros can be used both in and outside tikzpicture environments % - a quark-based interface allows styles to be applied to each tableau entry % - support for different conventions (english, french, ukrainian, australian) % - support diagrams, tableaux, including tabloids, skew and shifted tableaux and ribbon tableaux % - stars and styles % --------------------------------------------------------------------------- % % Copyright (C) 2022-25 by Andrew Mathas % % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License (LPPL), either % version 1.3c of this license or (at your option) any later % version. The latest version of this license is in the file: % % http://www.latex-project.org/lppl.txt % % This work is "maintained" (as per LPPL maintenance status) by % Andrew Mathas. % % This package consists of the files: % atableau.ini % atableau.pdf % atableau.sty % atableau.tex % LICENSE % README.md % % --------------------------------------------------------------------------- % end of atableau.sty