The NewComputerModern FontFamily

Antonis Tsolomitis • University of the Aegean • Department of Mathematics
The New Computer Modern FontFamily
version 5.2.0

Antonis Tsolomitis

June 18, 2024

Contents

1 Introduction 4

2 How to load the fonts 5

3 The Latin alphabet 5
 3.1 Ligatures and stylistic alternatives in Latin 5
 3.2 Oldstyle numbers 5
 3.3 Old Italic .. 6
 3.4 Diacritics Stacking 6
 3.4.1 Coloring diacritics 7

4 Greek 7
 4.1 Other character variants 8
 4.2 Prosodic symbols 9
 4.3 Archaic Greek writing 9
 4.4 Aegean Numbers 10
 4.5 Support for Papyrology 10
 4.6 Support for Chemistry 11

5 Russian 11

6 Hebrew 12

7 Coptic and Epact Numbers 12

8 Cherokee 12

9 Canadian Aboriginal Syllabics 12

10 Devanagari 13

11 Medieval Latin and Uncial Greek 15
1 Introduction

The NewComputerModern FontFamily is a huge extension ("huge" in terms of the number of additional glyphs) of the lm fonts. It is not just a family adding random missing glyphs but it adds support for several more languages and shapes needed for academic (and not only) work. Currently it supports among others, Greek¹, Cyrillic², Hebrew, Cherokee and Coptic. Since it supports diacritics stacking the number of languages that use the Latin alphabet is greatly expanded. Diacritics stacking is also needed for Greek for papyrological work and this is also supported.

Version 4.0 adds to the classic design of computer modern new shapes for Latin and Greek, in particular it adds families for Medieval Latin and Uncial Greek matching in style to the main family.

In terms of weights and sizes, all of its shapes come in Regular, Book weights at 10 and 8 point sizes and in Bold at 10 points.

Mathematics is also supported in Regular and Book weights, currently providing a full coverage of the Unicode Math blocks (with a few more glyphs needed for Mathematics that Unicode has forgotten to encode).

What follows is a sequence of commands and results so as to show how to access all features of the fonts. Character tables are also included.

¹from Claudio Beccari’s Greek.
²from the cmu package.
2 How to load the fonts

The simpler way to load the fonts is through the \fontsetup package. The command

\usepackage[default]{fontsetup}

will load the Book weight of the NewCM family, and

\usepackage[olddefault]{fontsetup}

will load the Regular weight.

Also notice that the fonts support the microtype package for fine typographic tuning. See the documentation of microtype for this.

3 The Latin alphabet

3.1 Ligatures and stylistic alternatives in Latin

The Serif font includes additional ligatures fb ffb ffh ffj fkk fth fj ft fk and the same with longs instead of f in the default liga table (in addition to the default fi fl ffi ffl ff). It also includes an alternative k (in the cv01 table) and p ch ck ct st il in the dlig table. Finally it also includes “end” versions for the letters a, e, m, n and r in the cv02 table. To access the alternative k load the relative font (here the Book weight) with

\setmainfont[CharacterVariant=1]{NewCM10-Book.otf}

To load the same font with the dlig table enabled use

\setmainfont[RawFeature=+dlig]{NewCM10-Book.otf}

and to load the font with endings variations use

\setmainfont[CharacterVariant=2]{NewCM10-Regular.otf}

Of course the above can be mixed separating the optional arguments with comma, or one can define a custom font say by using

\newfontfamily\myfont[<options to enable>]{NewCM10-Book.otf}

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>k</th>
<th>a</th>
<th>e</th>
<th>m</th>
<th>n</th>
<th>r</th>
<th>sp</th>
<th>ch</th>
<th>ck</th>
<th>ct</th>
<th>st</th>
<th>il</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv01</td>
<td></td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sp</td>
<td>ch</td>
<td>ck</td>
<td>ct</td>
<td>st</td>
<td>il</td>
</tr>
<tr>
<td>cv02</td>
<td></td>
<td></td>
<td>a</td>
<td>e</td>
<td>m</td>
<td>n</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dlig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>ch</td>
<td>ck</td>
<td>ct</td>
<td>st</td>
<td>il</td>
</tr>
</tbody>
</table>

3.2 Oldstyle numbers

Typically oldstyle numbers are available in onum Lookup and with the \textsc if fontsetup is loaded. Also available they are with \oldstylenums. There are two series, one is with variable widths and one with fixed width for use in tables. The code

\oldstylenums[0123456789]\addfontfeatures{Numbers=Tabular}\textsc[0123456789]
An alternative design is also provided for the number 1 in cv06. The code
\oldstylenums{0123456789}\addfontfeatures{CharacterVariant=6}
\oldstylenums{0}\textcolor{red}{1}23456789
\addfontfeatures{CharacterVariant=6,Numbers=Tabular}
\oldstylenums{0}\textcolor{red}{1}23456789

gives
0123456789
0123456789

3.3 Old Italic
The fonts also fully support the Old Italic Unicode block (U10300–U1032F) in the Sans font. For example, the slots U10307, U10310, U10312, U10314, U1031F and U1032F are ꞌꏧꏤꏦꏨꏤ.

3.4 Diacritics Stacking
Diacritics—the full block U+0300 to U+036F—and diacritics stacking is supported. In the margin you can see an example of stacking on the letter "x" in Roman, Sans and Mono. If you need to enter these accents you can use the \char command or just copy-paste from the following line (from this pdf file or the provided source TeX file):

Some of the upper accents
\ ́ \̂ \̃ \̄ \̅ \̆ \̇ \̈ \̉ \̊ \̋ \̌ \̍ \̎ \̏ \̑ \̓ \̔ \̽ \̾ \̚ \̔̑̓̔̅̆̇̈̉̊̋̌̍̎̏̑̓̔̽̾͆̚͝͠͡
Some of the lower accents
\̧ \̖ \̗ \̘ \̙ \̜ \̝ \̞ \̟ \̠ \̣ \̤ \̥ \̦ \̪ \̫ \̬ \̭ \̮ \̯ \̰ \̱ \̲ \̹ \̺ \̻ \̼ \̇ \̈ \̉ \̊ \̋ \̌ \̍ \̎ \̏ \̑ \̓ \̔ \̽ \̾ \̚

Please note that stacking is by default supported with xetex. With luatex you have to add the option Renderer=Harfbuzz, say by
\addfontfeature{Renderer=Harfbuzz}

Also notice that your text editor may not support stacking. The editor may show the accents one after the other, but the pdf produced by xetex or luatex will have the accents stacked.
3.4.1 Coloring diacritics

If one wants to use color for diacritics, different from the color of the base character this does not work with \texttt{XƎLTEX} (the commands of the \texttt{color} package break the stacking mechanism). It works though with \texttt{LuaLTEX} using the \texttt{luacolor} package. However, there is a problem when the base glyph and the first diacritic above exist in the font as a precomposed character. For example, this is the case with aacute (á) (U+00E1). Such characters are treated as one by Lua and they can not be colorized with different colors. A work around is to place the empty character U+034F between “a” and acute (U+0301). So the following minimal example produces the result below:

\documentclass{article}
\usepackage[olddefault]{fontsetup}
\usepackage{luacolor}
\pagestyle{empty}
\newfontfamily{\ncmtest}[Renderer=Harfbuzz]{NewCM10-Regular.otf}
\definecolor{orange}{RGB}{255,191,0}
\definecolor{colorone}{RGB}{91,0,250}
\definecolor{colortwo}{RGB}{250,0,121}
\definecolor{colorthree}{RGB}{0,204,250}
\definecolor{colorfour}{RGB}{14,250,0}
\definecolor{colorfive}{gray}{0.8}
\definecolor{colorgray}{gray}{0.8}
\newcommand{\emptydiacritic}{\char"034F}
\begin{document}
\Huge
{\ncmtest \color{colorgray}a\color{colorfour}\color{colortwo}\color{\emptydiacritic}\color{colorthree}\color{colorone}\color{colorfive}}
\end{document}

4 Greek

The full Unicode Greek block is supported, which is

- U0370–U03FF for monotonic, where missing glyphs, such as Heta (Ϝ), Pamphilian digamma (ϝ) etc, have been added. For example, it is now possible to write
 \textbf{βιβλίο} instead of βιβλίο.
- U1F00–U1FFF for polytonic, and
- U10140–U1018F for ancient Greek numbers.

\textit{Θεώρημα 4.1 (Πυθαγόρειον)} Ἐν τοῖς ὀρθογώνιοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστι τοῖς ἀπὸ τῶν τῆς ὀρθῆς γωνίαν περιεχουσῶν πλευρῶν τετράγωνοι.
Small Caps is included (in Mono font too) and all polytonic accents of Greek. Ypogeogrammeni is the default for all characters including Small Caps and prosgegrammeni is offered as an alternative shape in the ss01 lookup table:

<table>
<thead>
<tr>
<th></th>
<th>ypogeogrammeni</th>
<th>prosgegrammeni</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
</tr>
<tr>
<td>sans</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
</tr>
<tr>
<td>mono</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
<td>ᾠ ᾠ ᾠ ᾠ</td>
</tr>
</tbody>
</table>

The prosgegrammeni alternates can be accessed with

\textprosgegrammeni{<text>}

or the

\{prosgegrammeni <text>\}

of the fontsetup package.

4.1 Other character variants

Guillemots (left and right) have a different shape for Greek. For this to work the fonts must be loaded with the cv04 character variant.

Compare the default guillemots: «» with Greek guillemots: «».

There is a serious problem with Unicode and the Greek anoteleia (U0387); the Greek semicolon. Unicode “thinks” that this character is the same with periodcentered (U00B7). This influences the way keyboards are configured by several vendors such as xorg. Anoteleia is a dot written at x-height and not at 1/2 the x-height as the periodcentered. Although Unicode recognizes the problem\(^3\), although they recognize that with their current standard you can not correctly write the Greek language, they refuse to fix it, justifying it by saying the magical words “backwards compatibility” (to a ...mistake, one could add).

NewComputerModern can not allow this, as it defies the purpose of its existence, which is to properly write every supported language. So enabling the CharacterVariant 04 (cv04) in addition to correct guillemots for Greek it maps periodcentered (produced by the keyboards (in Greek Linux keyboards by AltGr+q) to proper anoteleia.

It also fixes a long standing issue with the Greek apostrophe (’)(U1FBD) which is not the same with quoteright (‘)(U2019). U1FBD named as “Greek Koronis” by Unicode is the proper character.

Another problem that has to do with quotes inside quotes. The internal quotes in Greek should be written with the characters quotedblleft and quotedblbase\(^4\). For example, this is correct for Greek

\(^3\)personal communication

\(^4\)Μανάλης Τριανταφυλλίδης, Νεοελληνική Γραμματική της δημοτικής, Ανατύπωση της έκδοσης του ΌΈΣΒ 1941 με διορθώσεις, Θεσσαλονίκη 2002, σελ. 66, ενότητα 133.
But the keyboards only produce quotesingle which is already mapped to apostrophe and it is difficult to remember the names “quotedblleft” and “quotedblbase”. So when enabling cv04 one can define the commands
\newcommand\leftgrquotes{\char"201C}
and
\newcommand\rightgrquotes{\char"201E}
for the rare case one needs quotes inside quotes. The \fontsetup package does this automatically for Greek if the \xgreek package has been loaded before the \fontsetup package or when the language is set to Greek by, say, the Babel package. Otherwise, for non-Greek documents with small passages of Greek, the author may enable cv04 by creating a custom command such as
\newcommand\propergreek[CharacterVariant=4]{NewCM10-Book.otf}
A phrase with Greek quotes inside quotes, proper anoteleia, and proper apostrophe is
«φώναζε: “απ’ έξω την προπαίδεια„»· σαν εκδίκηση ακουγόταν...

4.2 Prosodic symbols

In Greek philology and in linguistics it is often needed to stack accent-type symbols above letters, even if they are not vowels. Although rare in writings, it is for example valid to place dieresis over the consonants π, τ and κ of the nasal complexes μπ, ντ, γκ when it is necessary to show that these are pronounced, as written, voiceless, and not voiced. For example,

κομψῆ, αντιαντικός, ελεγκτής

(see previous footnote). The fonts support this writing if a combining dieresis is placed after the letter to receive it. The combining dieresis is the character U0308. On Linux desktops this is easily entered pressing Alt+Control+u, release them, and type the sequence 0308 and space.

More than that, in linguistics, they need to combine several accents above Greek letters. All this stacking of accents is supported by the fonts. For example, one can write

\ASCIIaccent\Unicodeaccent by placing the combining accents from the Unicode block U0300–U0362 plus the usual Greek accents after the letter. So the above was typed as

α̌ ὁ̋ Ἀ̆ Ἄ̄ ἡ̌ Χ̆′ ι̌ ι̌

4.3 Archaic Greek writing

The Sans Serif Regular font provides access to 6th century bce and 4th century bce Greek capitals in ss04 and ss03 lookups. The \fontsetup package provides commands such as
Moreover, all fonts (except Mono & Math) support Ancient Greek Numerals (the full Unicode block of Greek digits U10140–U1018E is supported), with most symbols designed from scratch (and did not exist in C. Beccari’s original fonts). A few of the new symbols:

The four numerals that already existed in this range (that is U10144–U10147) in Beccari’s fonts have been altered to a new design matching the style of cm but also provide some Ancient Greek flair. The new designs in Serifed and SansSerifed are:

The fontsetup package provides commands for all of the above symbols. The commands follow the Unicode name of each slot (minus the “Greek Acrophonic”). So the Unicode slot U1014F named “Greek Acrophonic Attic Five Staters” can be accessed with the command \atticfivestaters and it gives \(\overline{\varepsilon} \); and the slot u10182 named “Greek Kyathos Base Sign” can be accessed with the command \greekkyathosbasesign and it gives \(\overline{\omicron} \).

4.4 Aegean Numbers

Aegean numbers are supported in the Sans fonts and their slots are defined in fontsetup package using commands of the form \aegeanXXX where XXX is the Unicode name of the character (without spaces). A few examples are:

and the whole table of Aegean Numbers with the commands to access the glyphs is shown on page 24.

4.5 Support for Papyrology

Papyrology needs to declare that a glyph is missing from the papyrus or the papyrus is worn at this point and the papyrologist adds the missing glyph but it is not clear from the papyrus. This is done by adding a dot below the glyph and it is supported for all Greek glyphs in the upright fonts monotonic or polytonic:
where in the source we just typed the dot below (char U0323) after the glyph. This feature is supported for the 4th bce and 6th bce Greek in Sans:

\[\Gamma\varepsilon\omicron\mu\nu\rho\iota\alpha\Gamma\varepsilon\omicron\mu\nu\rho\iota\alpha \]

4.6 Support for Chemistry

It happens often that Greek upright characters are needed in Chemistry. People often have trouble with this (and this is why packages such as chemgreek exist). If Greek keyboard is available then it is easy; you just type in Greek, say \textbeta-glucan to get “\textbeta-glucan”. But many writers do not have the Greek keyboard enabled, and they do not need to. Usually they type \textbeta-glucan but the result “\textbeta-glucan” is not satisfying. One can use the “up” versions typing \textupbeta-glucan but still the result “\textbeta-glucan” looks more Math than Chemistry. To help with this, the fontsetup package provides commands such as \chemAlpha, \chemalpha, \chemBeta, \chembeta, etc. So this information essentially would only belong to the fontsetup documentation if it was not for kappa and rho. If we type in Greek κ-compound we get “κ-compound” which is not satisfying, as kappa is too cursive for this use. So the NewCM family provides an alternative kappa for this reason and this is how \chemkappa is defined in fontsetup:

\begin{verbatim}
\newcommand{\chemkappa}{\textrm{\char"03F0}}
\end{verbatim}

We write \chemkappa-compound and now get “ϰ-compound”.

(\textemph{The \texttt{\textemph{\textrm}}} command in the above definition is there to make the command work in math mode too.)\textit{Similar is the situation for \chemrho (ρ) and \chemrhoalt (ϱ).}

5 Russian

Russian is supported using the glyphs from the cmu package but it has considerable improvements (for example, the quality of the bold sans (see below)).

\begin{quote}
Я помню чудное мгновенье:
Передо мной явилась ты,
Как мимолетное виденье,
Как гений чистой красоты.
(Пушкинъ)
\end{quote}

Again, as in Greek there is a different kind of guillemots for Russian which are available in CharacterVariant 3 (cv03). Compare:

- Defaults guillemots: «»
- Russian guillemots: «»
- Greek guillemots: ‹›

Same is the situation with Russian endash which is shorter than the default:

\begin{verbatim}
Default endash: —
Russian endash: —
\end{verbatim}
6 Hebrew

The Hebrew blocks U0590–U05FF and Hebrew Presentation forms UFB1D–
UFB4F are fully covered. A few letters from Hebrew:

אבגדהושׁשּׂלּכ

7 Coptic and Epact Numbers

The Coptic language is fully supported. This covers the Coptic blocks in the
Greek and Coptic Unicode block (U03E2–U03EF), the full Coptic Unicode block
(U2C80–U2CFF) and the Coptic Epact Numbers (U102E0–U102FF). A few
letters from Coptic and Epact numbers follow:

ⲗⲟⲅⲟⲥ ⲛ̀ⲁⲓⲅⲩⲡⲧⲓⲟⲧ 𐋡 𐋢 𐋣 𐋤 𐋥

8 Cherokee

Both Unicode blocks U13A0–13FF and UAB70–UABBF for Cherokee are sup-
ported. The samples below were kindly provided by Sedi Eastwood:

Sample 1:

ＥＧＰＣ UIGәＧәI TVPәI
ＥＧＰＣ UIGәＧәI TVPәI

Live/exist in a manner that there is
never a reason or purpose to let go of
one another.

(gvjalijvdijadayohisdi
ijehesdi
gvtsalitsvditsadayohisdi
itshesdi)

Sample 2:

SGtbGәI
SC1GәI

Value the existence of one another.

(dejadageyusesdi
detsadageyusesdi)

Sample 3:

ipәI SCtбGәI
ipәI SCtбGәI

Think of one another as sacred or hold
the existence of others sacred.

(vlsgedi dejadayelvsesdi)

9 Canadian Aboriginal Syllabics

Canadian Aboriginal Syllabics are supported in the sans font. The full Uni-
code blocks are covered, which are U1400–U167F, U18B0–U18F5, and U11AB0–
U11ABF.

Some examples in Blackfoot Siksiká:
Blackfoot-speaking real people: ᐃᒐᒥ ᐅᒣ ᐆᒣ ᒪᔅ ᒬᔅ ᒣᔅ ᒬᔅ ᒪᔅ ᒰᔅ ᒬᔅ ᒫᔅ ᒬᔅ ᒣᔅ ᒶᔅ ᒬᔅ ᒫᔅ ᒪᔅ ᒰᔅ ᒬᔅ ᒣᔅ ᒶᔅ ᒬᔅ ᒫᔅ ᒪᔅ ᒰᔅ ᒬᔅ ᒣᔅ ᒶᔅ ᒬᔅ ᒫᔅ ᒫᔅ ᒬᔅ ᒣᔅ ᒶᔅ ᒬᔅ ᒫ書き

Siksiká: ᑐᖴᖾ

Siksikáí'powahsin: ᑕᓱᔾᔨᑎᒃ

In bold: ᑕᓱᔾᔨᑎᒃ

Niitsipowahsin: ᓄᑭᓃᐦᑎᑎᒃ

In oblique: ᓄᑭᓃᐦᑎᑎᒃ

Some more in Cree:

The masonry for the wall through time has been given to people of Manitoba by the international union of bricklayers and allied craftsmen local one Manitoba to commemorate 100 years of service, by Manitoba masonry contractors and by Manitoba masonry suppliers.

10 Devanagari

Devanagari script is supported for the serifed font in Regular (10pt/8pt), Book (10pt/8pt), and Bold (10pt). The fonts support Hindi (as the default), Sanskrit, Marathi and Nepali Languages. The optional arguments for the fontspec font-selection mechanism must include

Script=Devanagari, Language=XXXX where XXXX must be replaced with one of Hindi, Sanskrit, Marathi, Nepali. If the Language parameter is not set then the default is Hindi. For LuaLaTeX the parameter Renderer=Harfbuzz must also be included.

So if say Marathi is needed as the default font document then one can use the following:

\usepackage{fontspec}
\setmainfont[Script=Devanagari, Language=Marathi, Renderer=Harfbuzz]{NewCM10Devanagari-Book.otf}

The Devanagari fonts were developed with the help of निरंजन (Niranjan) whose name appears in the copyright section of the fonts and I also thank him for providing the samples below.

A Sanskrit sample from बृहदारण्यकोपिनिषद् (bṛhadāraṇyakopaniṣad) follows:

ॐ पूणर्मदः पूणर्िमदं, पूणार्त्पूणर्मुदच्यते।
पूणर्स्य पूणर्मादाय पूणर्मेवाविष्यते॥

Thata is complete;
thisb too is complete.
From one complete comes the other. Taking out one complete from the other too results in a complete.

athe outer world
bthe inner world
Next is a beautiful part of a poem in Marathi by तुकाराम (Tukaram) and its translation:

जें कां रंजले गांजले
त्यासे म्हणे जो आपुरे॥ १ ॥
तो वि साहु ओळखावा।
देव तेये चि जाणावा॥

Only the one who treats the downtrodden people equally is a sage. One may sense the essence of god there.

*“The wise” of course, not the plant.

Devanagari Unicode letters (range U0900–U097F) are also available as variables (letters) and numbers in the Regular and Book Math fonts. They are available as usually in three weights in the Math fonts so that the color is balanced when in script size (e.g., in exponents or indices). For this to work a version of {fontsetup} package greater or equal to 1.8 with options {default} or {olddefault} loaded is needed. This is because Devanagari letters are not Math variables in Unicode standard and hence not supported currently as such by the unicode-math package. To show this possibility next is a theorem in Hindi (mixing with Greek):

प्रमेय (Πυθαγόρας (पिथागोरास)) अगर समकोण त्रिभुज के कर्ण की लंबाई को ‘अ’ और अन्य दो भुजाओं की लंबाई को ‘क’ और ‘ख’ कहते हैं, तो भुजाओं की लंबाई के कर्ण की जोड़, कर्ण के वर्ग जितनी होती है, अथार्त् अ² = क² + ख²।

However, if only Devanagari numbers are needed with the source using Arabic numerals then one can use the Stylistic Set 04 of the Math font. So the command \setmathfont[StylisticSet=4]{NewCMMath-Regular.otf} with source:

```latex
\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \ldots = e^x.
```

will have the following effect:

\[
\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \ldots = e^x.
\]

which when the math font is reset to use Arabic numbers with \setmathfont{NewCMMath-Book.otf} it gives:

\[
\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \ldots = e^x.
\]

$$9! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9.$$
11 Medieval Latin and Uncial Greek

The family includes new shapes for medieval and uncial Greek. The \textsetup package provides \textuncial{<text>} and \uncialtext to use this shape. Let us write a sentence in this shape:

\textit{The Pythagorean Theorem is one of the most important \textit{theorems in Mathematics.}}

\textit{Το Πυθαγόρειο \textit{Θεώρημα είναι από τα σημαντικότερα \textit{θεωρήματα των Μαθηματικών.}}}

12 Braille

Braille, both 6dot (uni2801–uni283F) as well as 8dit (uni2840–uni28FF) patterns are included in two versions. The Regular font provides the characters for sighted persons (such as teachers) so they can easily see which dots are on and which off. The Sans font contains the true Braille characters. I decided to have the sighted version in the Regular font since a blind person does not need the real Braille pattern, as those are produced by embossers. The Braille patterns here are meant as fonts to typeset text mainly for sighted persons.

<table>
<thead>
<tr>
<th></th>
<th>6dot</th>
<th>8dot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular version</td>
<td>⠈⠂⠈⠊⠎⠉⠞</td>
<td>⠈⠂⠈⠊⠎⠉⠞</td>
</tr>
<tr>
<td>Sans version</td>
<td>⠈⠂⠈⠊⠎⠉⠞</td>
<td>⠈⠂⠈⠊⠎⠉⠞</td>
</tr>
</tbody>
</table>

13 Ipa symbols

IPA symbols are included and following a suggestion of Huanyu Liu the kerning found in tipa package has been added here and further improved. Moreover the letters eth, eng, beta, theta and chi exists in IPA-style in the fonts and are accessible in the ss05 lookup table since they are in a different design from the Latin and Greek letters. You can access this lookup table using the \textipa command of the fontsetup package.

<table>
<thead>
<tr>
<th></th>
<th>Non-IPA</th>
<th>IPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>δ η β θ χ</td>
<td>δ η β θ χ</td>
</tr>
<tr>
<td>Sans</td>
<td>δ η β θ χ</td>
<td>δ η β θ χ</td>
</tr>
</tbody>
</table>

I am grateful to निरेंजन (Niranjan) for suggesting and testing all the IPA improvements that follow:

The joining of two characters such as ts, dz, kp, tf etc is also supported. The low tie is the character U035C and the upper tie is U0361. The ts is produced by typing the sequence t then the low tie and then s. Similarly kp is produced by typing the sequence k then the upper tie and then p. For tf and dʒ the
fonts have a contextual chaining substitution table that uses a tie which prints lower so it does not touch ň and ź. In cases that one wants to show the tie as x̕y̕z then one needs to enable the cv5 character variant since the tie characters (U035C and U0361) are marks and not base glyphs. One can do that with a command such as
\newfontfamily{\showtie}[CharacterVariant=5]{NewCM10-Book.otf}

There is also an older practice that such sequences are joint into a ligature. This is not the modern way of writing but it seems than many people in the linguistics still prefer it. The fonts support this, if one enables the \ipa table (local ipa) of the fonts. This can be done by adding the RawFeature=+ipa to the font specs when loading it and it is done automatically with the commands \textoldipa{arg} and \oldipatext{arg} of the fontsetup package.

For example, \textoldipa{ts, tʃ} produces ʦ, ʧ.

All other symbols of the tipa package are supported. Some examples are:
p̚, ʰ, ḷ, ɺ, j, s, e, k, m, t, t̼, etc.

It is worth noting that all of the above is also available in the Mono family:

|t̼s|t̼ʃ|t̼p|t̼ʰ|t̼j|t̼s|t̼ʃ|t̼p|t̼ʰ|t̼j|

Another issue is that IPA used to use the Italic alternation of “g” even in the upright design. This restriction was lifted in 1949 as can be seen on page 3 in [IPAev].

Even though the normal upright shape is accepted as an alternation, there are linguists who prefer the older (Italic) shape “g” and hence we are making it the default in the stylistic set dedicated for IPA (ss05).

Another such case is with the “a” shape. It has a different visual form in Italics “a” which resembles to a distinct symbol of IPA leading to a wrong transcription. In order to avoid this confusion, we have used the slanted version “a” of “a” in ss05. The other vowel symbol (ie, a (U0251)) is also available in the fonts.

Next we give a real example of using IPA symbols. The quote below is from A course in phonetics, Ladefoged, Peter and Johnson, Keith, (2014), Cengage learning, pp. 285–286, and the StylisticSet=05 has been enabled:

Other examples of this phenomenon have also been mentioned. We saw that before [ŋ], English does not distinguish between tense and lax vowels. Consequently, the vowel that occurs in, for example, sing has a quality between that of [i] and [ɪ]. Similarly, there is no distinction between tense and lax vowels before [a]. The vowel in here in most forms of American English is also intermediate between [i] and [ɪ]. The principle of maximum perceptual separation also accounts for some of the differences between languages. French has two high rounded vowels, [u] as in tout [tu] “all,” and [y] as in tu [ty] “you.”
A recent addition for IPA is the support of the Unicode block U1D80–U1DBF which includes more letters with palatal and retroflex hook and more modifier small letters. Eg.

<table>
<thead>
<tr>
<th>Upright</th>
<th>Italic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ṉ Ṛ ṣ Ṟ ᶕ ᶔ ᶙ ᶛ ᶞ ᶽ ᶿ</td>
<td>Ṉ Ṛ ṣ Ṟ ᶕ ᶔ ᶙ ᶛ ᶞ ᶽ ᶿ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sans Upright</th>
<th>Sans Oblique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ṉ Ṛ ṣ Ṟ ᶕ ᶔ ᶙ ᶛ ᶞ ᶽ ᶿ</td>
<td>Ṉ Ṛ ṣ Ṟ ᶕ ᶔ ᶙ ᶛ ᶞ ᶽ ᶿ</td>
</tr>
</tbody>
</table>

14 Bold Sans

lm fonts and cmu fonts do not contain a properly made BoldSans. Their BoldSans is a stroke-extension of the Sans with rounded corners. NewCM fixes that and provides a true BoldSans:

<table>
<thead>
<tr>
<th>LM</th>
<th>NewCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ХΞ ХΞЯДЛ</td>
<td>ХΞ ХΞЯДЛ</td>
</tr>
</tbody>
</table>

15 Food Allergies

Food allergy symbols have long been proposed to be accepted to Unicode standard but there has not been any progress up to now. The Sans 10 Regular and Book include standard allergy symbols in the Private Use Area. Each glyph is named after what it represents. For example, the soya symbol is named “soya” so copying the symbol from a pdf file and pasting elsewhere you will get its name, that is “soya”. The symbols are in positions U+E033 to U+E040 and can be accessed using the commands of the next table.
16 Unicode Math coverage and options

NewCM provides full Unicode math support, that is all Mathematics Unicode Slots presented in http://www.unicode.org/charts/ in both Math weights, Regular and Book. These blocks are:

Mathematical Symbols
- Arrows (uni2190–uni21FF)
- Supplemental Arrows-A (uni27F0–uni27FF)
- Supplemental Arrows-B (uni2900–uni297F)
- Supplemental Arrows-C (u1F800–u1F8FF)
- Additional Arrows (uni2B00–uni2BFF)
- Miscellaneous Symbols and Arrows (uni2B00–uni2BFF)
Mathematical Alphanumeric Symbols
(u1D400–u1D7FF)
Arabic Mathematical Alphabetic Symbols
(u1EE00–u1EEFF)
Letterlike Symbols (uni2100–uni214F)

Mathematical Operators
(uni2200–uni22FF)
Basic operators: Plus, Factorial
(uni0000–uni007F)
Division, Multiplication
(uni0080–uni00FF)
Supplemental Mathematical Operators
(uni2200–uni22FF)
Miscellaneous Mathematical Symbols-A
(uni27C0–uni27EF)
Miscellaneous Mathematical Symbols-B
(uni2980–uni29FF)
Floors and Ceilings (uni2308–uni230B)
Invisible Operators (uni2061–uni2064)

Geometric Shapes (uni25A0–uni25FF)
Additional Shapes (uni2200–uni2BFF)
Box Drawing (uni2500–uni257F)
Block Elements (uni2580–uni259F)
Geometric Shapes Extended (uni1F780–uni1F7FF)

Unfortunately, the unicode-math package does not provide commands currently for the hundreds of extra glyphs that have been added in order to fully cover the above Unicode ranges. The user can consult the Unicode charts at the above link and access the required glyph with \char"# where # is the Unicode number of the slot the glyph belongs to.

For example, \char"2BDA will give the Hygeia symbol (uni2BDA) the Rod of Asclepius as shown above (grazed and scaled ×8). The glyph that appeared in TUGboat (see [AT]), being more realistic will be moved to a new font in the future with ornaments.

16.1 Optical sizes for more glyphs

So far the fonts provided optical sizes for 1st and 2nd order exponents for letters. This was not true though for binary operators and some symbols commonly used in mathematics. For example, the \texttt{\perp} symbol (⊥) often appears in 2nd order exponents and then it appeared very thin. Some printers could even hardly print its thin lines. Now, such glyphs plus several binary operators, such as +,
\(\underbrace{\pm \pm}_{\pm \pm} \underbrace{\star \star}_{\star \star} \left| \frac{P_{\alpha}(K)}{e^{|x+y|}} \right| \)

appear on screen and print properly on printers. Zoom or print and compare with `latinmodern-math` font:

\[\underbrace{\pm \pm}_{\pm \pm} \underbrace{\star \star}_{\star \star} \left| \frac{P_{\alpha}(K)}{e^{|x+y|}} \right| \]

16.2 Math Script

Calligraphic letters are accessed as usual with \texttt{\textbackslash mathcal} producing

\[
ABCDEFGHIJKLMNOPQRSTUVWXYZ
\]

However, mathematicians often need a second level of “scriptness”. The fonts provide an alternative calligraphic, a script design at StylisticSet 1. For this to work one has to re-set the math font using

\texttt{\textbackslash setmathfont[StylisticSet=1]{NewCMMath-Book.otf}}

(or the Regular version). So the following code

\[
\texttt{\textbackslash setmathfont[StylisticSet=1]{NewCMMath-Book.otf}}
\]

produces

\[
ABCDEFGHIJKLMNOPQRSTUVWXYZ
\]

\[
abcdefghijklmnopqrstuvwxyz
\]

16.3 Blackboard Bold

In version 5.0 of the fonts a new NewCM blackboard bold was introduced in the place of the AMS blackboard bold letters. There were many complaints from Mathematicians for this choice. I have to make a statement here: it seems that although AMS blackboard bold are not matching with the computer modern design the long time Mathematicians use them had its effect. People (including
myself) got used to it and find it difficult to feel their non-matching design. Moreover, the new design can not be metrically equivalent with the past so there will be slight changes in the older documents if re-run. With this in mind and the fact that the new design should be considered “beta”, as there are characters that need improvement, I decided bring back to default the AMS design and keep the new design for new documents for the StylisticSet 3.

The AMS blackboard bold are:

$$\mathbb{A}\mathbb{B}\mathbb{C}\mathbb{D}\mathbb{E}\mathbb{F}\mathbb{G}\mathbb{H}\mathbb{I}\mathbb{J}\mathbb{K}\mathbb{L}\mathbb{M}\mathbb{N}\mathbb{O}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{S}\mathbb{T}\mathbb{U}\mathbb{V}\mathbb{W}\mathbb{X}\mathbb{Y}\mathbb{Z}$$

$$\mathbb{a}\mathbb{b}\mathbb{c}\mathbb{d}\mathbb{e}\mathbb{f}\mathbb{g}\mathbb{h}\mathbb{i}\mathbb{j}\mathbb{k}\mathbb{l}\mathbb{m}\mathbb{n}\mathbb{o}\mathbb{p}\mathbb{q}\mathbb{r}\mathbb{s}\mathbb{t}\mathbb{u}\mathbb{v}\mathbb{w}\mathbb{x}\mathbb{y}\mathbb{z}$$

To access the new ones needs to load the math font enabling the ss03 stylistic set using for example \setmathfont{StylisticSet=3}{NewCMMath-Book.otf} Then the above black-board bold design changes to

$$\mathbb{A}\mathbb{B}\mathbb{C}\mathbb{D}\mathbb{E}\mathbb{F}\mathbb{G}\mathbb{H}\mathbb{I}\mathbb{J}\mathbb{K}\mathbb{L}\mathbb{M}\mathbb{N}\mathbb{O}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{S}\mathbb{T}\mathbb{U}\mathbb{V}\mathbb{W}\mathbb{X}\mathbb{Y}\mathbb{Z}$$

$$\mathbb{a}\mathbb{b}\mathbb{c}\mathbb{d}\mathbb{e}\mathbb{f}\mathbb{g}\mathbb{h}\mathbb{i}\mathbb{j}\mathbb{k}\mathbb{l}\mathbb{m}\mathbb{n}\mathbb{o}\mathbb{p}\mathbb{q}\mathbb{r}\mathbb{s}\mathbb{t}\mathbb{u}\mathbb{v}\mathbb{w}\mathbb{x}\mathbb{y}\mathbb{z}$$

If using the latest fontsetup (to be released soon) then you can choose the NewCM blackboard bold with the option newcmbb.

16.4 Upright and extensible integrals

The Math fonts (both Regular and Book weights) include upright integrals in the ss02 StylisticSet. Use with

\setmathfont{StylisticSet=2}{NewCMMath-Book.otf}

or

\setmathfont{StylisticSet=2}{NewCMMath-Regular.otf}

or use the upint option of the fontsetup package with

\usepackage[upint,default]{fontsetup}

for the Book weight, or

\usepackage[upint,olddefault]{fontsetup}

for the regular weight.

Moreover, extensible integrals are supported by the fonts but NOT by the Unicode TeX engines. The following code is a trick so that extensible integrals can be constructed using LuaLaTeX. The result is shown at the end of the article. What the code below does, is that it defines the slot uni222B (integral) as a delimiter. And then this is extended as a delimiter with the mechanism that the font provides.
16.5 Additional and alternative characters in Math

The Math fonts provide the character \varnothing (\mathcal{\emptyset}), as an alternative to the \emptyset (\O), through Character Variant cv01. The fontsetup package provides the option ‘\varnothing’ to easily switch to the alternative character.

It also provides four more symbols that correspond to the commands \nrightarrow (\mathrel{\rightarrow}) \nleftarrow (\mathrel{\leftarrow}) \twoheadrightarrow (\mathrel{\twoheadrightarrow}) \twoheadleftarrow (\mathrel{\twoheadleftarrow}) and supported by the default and olddefault options of the fontsetup package. These symbols are not in the Unicode Standard and so they are added in the Private Area of the fonts.

16.6 Notes on Mathematics

Extensible tildes and hats produce different results with XƎLTex and LuaLTex because these unicode engines treat differently the width of characters. In particular, XƎLTex handles italic correction as part of the character width but LuaLTex does this only if a character follows. This affects how extensible accents like \widehat or \widetilde select the proper size. With XƎLTex, \widetilde{Y} \widetilde{X} will give the expected result \~Y \~X; but with LuaLTex the letter \textit{Y} is narrower (and its italic correction is not taken into account if it stands alone) and gets the plain tilde size, as in \~Y. To bypass this with LuaLTex one has to use a zero width character after a letter such as \textit{Y} so that LuaLTex takes into account the italic correction of \textit{Y}. For example with \widetilde{Y\text{"Uchar"200D}} the result will be correct (U200D is the “Zero Width Joiner” in Unicode).

I thank Ulrike Fischer for this solution.

17 The Medieval Latin and Uncial Greek glyph complement
<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 1: NewCMUncial10-Book.otf

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Latin</td>
<td></td>
</tr>
<tr>
<td>U+0020 - 002F</td>
<td>!</td>
<td>"</td>
<td>$</td>
<td>%</td>
<td>&</td>
<td>'</td>
<td>(</td>
<td>)</td>
<td>*</td>
<td>+</td>
<td>,</td>
<td>.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U+0030 - 003F</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>:</td>
<td>;</td>
<td><</td>
<td>=</td>
<td>></td>
<td></td>
</tr>
<tr>
<td>U+0040 - 004F</td>
<td>Α</td>
<td>Β</td>
<td>Γ</td>
<td>Δ</td>
<td>Ε</td>
<td>Ζ</td>
<td>Η</td>
<td>Θ</td>
<td>Ι</td>
<td>Κ</td>
<td>Λ</td>
<td>Μ</td>
<td>Ν</td>
<td>Ξ</td>
<td>Ο</td>
<td>Π</td>
</tr>
<tr>
<td>U+0050 - 005F</td>
<td>Ρ</td>
<td>Σ</td>
<td>Τ</td>
<td>Υ</td>
<td>Φ</td>
<td>Ψ</td>
<td>Ξ</td>
<td>Ο</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U+0060 - 006F</td>
<td>α</td>
<td>β</td>
<td>γ</td>
<td>δ</td>
<td>ε</td>
<td>ζ</td>
<td>η</td>
<td>θ</td>
<td>ι</td>
<td>ι</td>
<td>κ</td>
<td>λ</td>
<td>μ</td>
<td>ν</td>
<td>ο</td>
<td></td>
</tr>
<tr>
<td>U+0070 - 007F</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
<td>y</td>
<td>ω</td>
<td>χ</td>
<td>ψ</td>
<td>ω</td>
<td>ω</td>
<td></td>
</tr>
</tbody>
</table>

Latin-1 Supplement

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U+00A0 - 00AF</td>
<td>-</td>
</tr>
<tr>
<td>U+00B0 - 00BF</td>
<td>-</td>
</tr>
</tbody>
</table>

Greek and Coptic

<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total number of glyphs shown from NewCMUncial10-Book.otf: 160
18 The Aegean Numbers glyph complement

\texttt{\aegeanseparator}	\texttt{\aegeaneighthundred}	&
\texttt{\aegeancheckmark}	\texttt{\aegeanonehundred}	&
\texttt{\aegeantwo}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeantwo}	\texttt{\aegeantwoforthousand}	&
\texttt{\aegeantwo}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeantwo}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeanthree}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanthree}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanfour}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeanfour}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeanfour}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeanfive}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanfive}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanfive}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeanseven}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeanseven}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeansix}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeansix}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanthreehundred}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanthreehundred}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeantwohundred}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeantwohundred}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeantwohundred}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeantwohundred}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanfourhundred}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeanfourhundred}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeanfourhundred}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeanfourhundred}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanfivehundred}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanfivehundred}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeansixhundred}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeansixhundred}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeansixhundred}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeansixhundred}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanseventhousand}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeanseventhousand}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeanseventhousand}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeanseventhousand}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanseventhousand}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeanneight}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeanneight}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeanneight}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeanneight}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeanneight}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeannine}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeannine}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeannine}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeannine}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeannine}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeantenthousand}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeantenthousand}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeantenthousand}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeantenthousand}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeantenthousand}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeantwenty}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeaneightty}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeaneightty}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeaneightty}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeaneightty}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeaneightty}	\texttt{\aegeanweightfifthsubunit}	&
\texttt{\aegeaneighty}	\texttt{\aegeanweightfirstsubunit}	&
\texttt{\aegeaneighty}	\texttt{\aegeanweightsecondsubunit}	&
\texttt{\aegeaneighty}	\texttt{\aegeanweightthirdsubunit}	&
\texttt{\aegeaneighty}	\texttt{\aegeanweightfourthsubunit}	&
\texttt{\aegeaneighty}	\texttt{\aegeanweightfifthsubunit}	&
References
