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barplot_var_stability Barplot variable stability

Description

Produces a ggplot2 plot of stability (as SEM) of variable importance across models trained and
tested across outer CV folds. Optionally overlays directionality for binary response or regression

outcomes.

Usage

barplot_var_stability(
X,
final = TRUE,
top = NULL,
direction = 0,
dir_labels = NULL,
scheme = c("royalblue”, "red"),
breaks = NULL,
percent = TRUE,

level =1,
sort = TRUE
)
Arguments
X anestcv.glmnet or nestcv. train fitted object
final Logical whether to restrict variables to only those which ended up in the final

fitted model or to include all variables selected across all outer folds.
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top Limits number of variables plotted. Set to NULL to plot all variables.

direction Integer controlling plotting of directionality for binary or regression models. @
means no directionality is shown, 1 means directionality is overlaid as a colour, 2
means directionality is reflected in the sign of variable importance. Not available
for multiclass caret models.

dir_labels Character vector for controlling the legend when direction =1

scheme Vector of 2 colours for directionality when direction =1

breaks Vector of continuous breaks for legend colour/size

percent Logical for nestcv.glmnet objects only, whether to scale coefficients to per-

centage of the largest coefficient in each model. If set to FALSE, model coeffi-
cients are shown and direction is ignored.

level For multinomial nestcv. glmnet models only, either an integer specifying which
level of outcome is being examined, or the level can be specified as a character
value.
sort Logical whether to sort by mean variable importance. Passed to var_stability().
Value
A ggplot2 plot
See Also

var_stability()

boot_filter Bootstrap for filter functions

Description

Randomly samples predictors and averages the ranking to give an ensemble measure of predictor
variable importance.

Usage

boot_filter(y, x, filterFUN, B = 50, nfilter = NULL, type = "index"”, ...)
Arguments

y Response vector

X Matrix of predictors

filterFUN Filter function, e.g. ttest_filter().

B Number of times to bootstrap

nfilter Number of predictors to return

type Type of vector returned. Default "index" returns indices, "full" returns full out-

put.
Optional arguments passed to the function specified by filterFUN



boot_ttest 5

Value
Integer vector of indices of filtered parameters (type = "index") or if type = "full” a matrix of
rankings from each bootstrap is returned.

See Also

boot_ttest()

boot_ttest Bootstrap univariate filters

Description

Randomly samples predictors and averages the ranking from filtering functions including ttest_filter(),
wilcoxon_filter(), anova_filter(), correl_filter() and Im_filter() to give an ensemble
measure of best predictors by repeated random sampling subjected to a statistical test.

Usage
boot_ttest(y, x, B =50, ...)
boot_wilcoxon(y, x, B = 50, ...)
boot_anova(y, x, B =50, ...)
boot_correl(y, x, B =50, ...)
boot_lm(y, x, B =50, ...)
Arguments
y Response vector
Matrix of predictors
B Number of times to bootstrap
Optional arguments passed to the filter function
Value

Integer vector of indices of filtered parameters (type = "index"), or if type = "full”, a matrix of
rankings from each bootstrap is returned.
See Also

ttest_filter(), wilcoxon_filter(), anova_filter(), correl_filter(), Im_filter() and
boot_filter()
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boruta_filter

Boruta filter

Description

Filter using Boruta algorithm.

Usage

boruta_filter(

Y
X’

select = c("Confirmed”, "Tentative"),
type = c("index"”, "names"”, "full"),

Arguments

y

X

select

type

Details

Response vector
Matrix of predictors

Which type of features to retain. Options include "Confirmed" and/or "Tenta-
tive".

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

Other arguments passed to Boruta: :Boruta()

Boruta works differently from other filters in that it does not rank variables by variable importance,
but tries to determine relevant features and divides features into Rejected, Tentative or Confirmed.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” full output from Boruta is returned.
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boxplot_expression Boxplot expression levels of model predictors

Description

Boxplots to show range of model predictors to identify exceptional predictors with excessively low
or high values.

Usage

boxplot_expression(x, scheme = NULL, palette = "Dark 3", ...)
Arguments

X a "nestedcv" object

scheme colour scheme

palette palette name (one of hcl.pals()) which is passed to hcl.colors

other arguments passed to boxplot.

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

class_balance Check class balance in training folds

Description

Check class balance in training folds
Usage
class_balance(object)

## Default S3 method:
class_balance(object)

## S3 method for class 'nestcv.train'
class_balance(object)
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Arguments

object Object of class nestedcv.glmnet, nestcv. train or outercv

Value

Invisibly a table of the response classes in the training folds

coef.cva.glmnet Extract coefficients from a cva.glmnet object

Description

Extracts model coefficients from a fitted cva.glmnet() object.

Usage
## S3 method for class 'cva.glmnet'
coef(object, ...)

Arguments
object Fitted cva. glmnet object.

Other arguments passed to coef.glmnet() e.g. s the value of lambda at which
coefficients are required.

Value

Sparse matrix containing coefficients from a cv.glmnet model

coef.nestcv.glmnet Extract coefficients from nestcv.glmnet object

Description

Extracts coefficients from the final fit of a "nestcv.glmnet" object.

Usage
## S3 method for class 'nestcv.glmnet'
coef(object, s = object$final_param["”lambda"], ...)
Arguments
object Object of class "nestcv.glmnet”
s Value of penalty parameter lambda. Default is the mean of lambda values se-

lected across each outer fold.

Other arguments passed to coef.glmnet
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Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.

collinear Filter to reduce collinearity in predictors

Description

This function identifies predictors with 2 above a given cut-off and produces an index of predictors
to be removed. The function takes a matrix or data.frame of predictors, and the columns need to
be ordered in terms of importance - first column of any pair that are correlated is retained and
subsequent columns which correlate above the cut-off are flagged for removal.

Usage
collinear(x, rsqg_cutoff = 0.9, rsg_method = "pearson”, verbose = FALSE)
Arguments
X A matrix or data.frame of values. The order of columns is used to determine
which columns to retain, so the columns in x should be sorted with the most
important columns first.
rsq_cutoff Value of cut-off for r-squared
rsq_method character string indicating which correlation coefficient is to be computed. One
of "pearson” (default), "kendall", or "spearman". See cor ().
verbose Boolean whether to print details
Value

Integer vector of the indices of columns in x to remove due to collinearity

combo_filter Combo filter

Description

Filter combining univariate (t-test or anova) filtering and reliefF filtering in equal measure.

Usage

combo_filter(y, x, nfilter, type = c("index", "names"”, "full"”), ...)
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Arguments

y
X

nfilter

type

Value

correls2

Response vector
Matrix or dataframe of predictors

Number of predictors to return, using 1/2 from ttest_filter or anova_filter
and 1/2 from relieff_filter. Since unique is applied, the final number re-
turned may be less than nfilter.

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns full output.

Optional arguments passed via relieff_filter to CORElearn::attrEval

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a list containing full outputs from either
ttest_filter or anova_filter and relieff filter is returned.

correls?

Correlation between a vector and a matrix

Description

Fast Pearson/Spearman correlation where y is vector, x is matrix, adapted from stats::cor.test.

Usage
correls2(y, x, method = "pearson”, use = "complete.obs")
Arguments
y Numerical vector
Matrix
method Type of correlation, either "pearson” or "spearman".
use Optional character string giving a method for computing covariances in the pres-
ence of missing values. See cor
Details

For speed, p-values for Spearman’s test are computed by asymptotic t approximation, equivalent to
cor.test with exact = FALSE.

Value

Matrix with columns containing the correlation statistic, either Pearson r or Spearman rho, and
p-values for each column of x correlated against vector y
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cva.glmnet Cross-validation of alpha for glmnet

Description

Performs k-fold cross-validation for glmnet, including alpha mixing parameter.

Usage
cva.glmnet(x, y, nfolds = 10, alphaSet = seq(0.1, 1, 0.1), foldid = NULL, ...)
Arguments
X Matrix of predictors
y Response vector
nfolds Number of folds (default 10)
alphaSet Sequence of alpha values to cross-validate
foldid Optional vector of values between 1 and nfolds identifying what fold each
observation is in.
Other arguments passed to cv.glmnet
Value

Object of S3 class "cva.glmnet", which is a list of the cv.glmnet objects for each value of alpha and
alphaSet.

fits List of fitted cv.glmnet objects

alphaSet Sequence of alpha values used

alpha_cvm The mean cross-validated error - a vector of length length(alphaSet).
best_alpha Value of alpha giving lowest alpha_cvm.

which_alpha Index of alphaSet with lowest alpha_cvm

Author(s)

Myles Lewis

See Also

cv.glmnet, glmnet
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cv_coef Coefficients from outer CV glmnet models

Description

Extracts coefficients from outer CV glmnet models from a nestcv.glmnet fitted object.

Usage

cv_coef(x, level = 1)

Arguments
X anestcv.glmnet fitted object
level For multinomial models only, either an integer specifying which level of out-
come is being examined, or the level can be specified as a character value
Value

matrix of coefficients from outer CV glmnet models plus the final glmnet model. Coefficients for
variables which are not present in a particular outer CV fold model are set to 0.

See Also

cv_varImp()

cv_varImp Extract variable importance from outer CV caret models

Description
Extracts variable importance or coefficients from outer CV glmnet models from a nestcv.train
fitted object.

Usage

cv_varImp(x)

Arguments

X anestcv.train fitted object

Details

Note that caret: : varImp() may require the model package to be fully loaded in order to function.
During the fitting process caret often only loads the package by namespace.
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Value
matrix of variable importance from outer CV fold caret models as well as the final model. Variable
importance for variables which are not present in a particular outer CV fold model is set to 0.

See Also

cv_coef ()

glmnet_coefs glmnet coefficients

Description

Convenience function for retrieving coefficients from a cv.glmnet model at a specified lambda.
Sparsity is removed and non-intercept coefficients are ranked by absolute value.

Usage
glmnet_coefs(fit, s, ...)
Arguments
fit A cv.glmnet fitted model object.
s Value of lambda. See coef.glmnet and predict.cv.glmnet
Other arguments passed to coef.glmnet
Value

Vector or list of coefficients ordered with the intercept first, followed by highest absolute value to
lowest.

glmnet_filter glmnet filter

Description

Filter using sparsity of elastic net regression using glmnet to calculate variable importance.
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Usage

glmnet_filter(

Y,
X7

glmnet_filter

family = NULL,
force_vars = NULL,

nfilter

NULL,

method = c("mean”, "nonzero"),
type = c("index"”, "names"”, "full"),

Arguments

y
X

family

force_vars

nfilter
method

type

Details

Response vector
Matrix of predictors

Either a character string representing one of the built-in families, or else a glm()
family object. See glmnet(). If not specified, the function tries to set this
automatically to one of either "gaussian", "binomial" or "multinomial".

Vector of column names x which have no shrinkage and are always included in
the model.

Number of predictors to return

String indicating method of determining variable importance. "mean" (the de-
fault) uses the mean absolute coefficients across the range of lambdas; "nonzero"
counts the number of times variables are retained in the model across all values
of lambda.

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns full output.

Other arguments passed to glmnet

The glmnet elastic net mixing parameter alpha can be varied to include a larger number of pre-
dictors. Default alpha = 1 is pure LASSO, resulting in greatest sparsity, while alpha = 0 is pure
ridge regression, retaining all predictors in the regression model. Note, the family argument is
commonly needed, see glmnet.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is

returned.

See Also

glmnet
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innercv_preds Inner CV predictions

Description

Obtain predictions on held-out test inner CV folds
Usage
innercv_preds(x)

## S3 method for class 'nestcv.glmnet'
innercv_preds(x)

## S3 method for class 'nestcv.train'
innercv_preds(x)

Arguments

X anestcv.glmnet or nestcv. train fitted object

Value

Dataframe with columns testy and predy, and for binomial and multinomial models additional
columns containing probabilities or log likelihood values.

innercv_roc Build ROC curve from left-out folds from inner CV

Description

Build ROC (receiver operating characteristic) curve from left-out folds from inner CV. Object can
be plotted using plot () or passed to functions auc() etc.

Usage
innercv_roc(x, direction = "<", ...)

Arguments
X anestcv.glmnet or nestcv. train fitted object
direction Set ROC directionality pROC::roc

Other arguments passed to pROC::roc
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Value

"roc" object, see pROC::roc

Examples

## Example binary classification problem with P >> n
x <= matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(15@, 1, 0.5)) # binary response

## Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

## t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

## Train glmnet on training set only using filtered predictor matrix
library(glmnet)

fit <- cv.glmnet(filx[trainSet, 1, y[trainSet], family = "binomial")
plot(fit)

## Predict response on test partition

predy <- predict(fit, newx = filx[-trainSet, 1, s = "lambda.min", type = "class")
predy <- as.vector(predy)

predyp <- predict(fit, newx = filx[-trainSet, ], s = "lambda.min”, type = "response")
predyp <- as.vector(predyp)

output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

## Results on test partition
## shows bias since univariate filtering was applied to whole dataset
predSummary (output)

## Nested CV

fit2 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1,
filterFUN = ttest_filter,
filter_options = list(nfilter = 100),
n_outer_folds = 3)

summary (fit2)

## ROC plots

library(pROC)

testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)

plot(fit2$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')

legend('bottomright', legend = c(”Nested CV", "Left-out inner CV folds”,
"Test partition, non-nested filtering"),
col = c("black”, "blue”, "red"), lty =1, lwd = 2, bty = "n")
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innercv_summary Summarise performance on inner CV test folds

Description

Calculates performance metrics on inner CV held-out test folds: confusion matrix, accuracy and
balanced accuracy for classification; ROC AUC for binary classification; RMSE, R*2 and mean
absolute error (MAE) for regression.

Usage

innercv_summary (x)

Arguments

X anestcv.glmnet or nestcv. train object

Value

Returns performance metrics from outer training folds, see predSummary.

See Also

predSummary

Examples

data(iris)
x <- iris[, 1:4]
y <- iris[, 5]

fit <- nestcv.glmnet(y, X,
family = "multinomial”,
alpha = 1,
n_outer_folds = 3)

summary (fit)

innercv_summary(fit)
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lines.prc Add precision-recall curve to a plot

Description

Adds a precision-recall curve to a base graphics plot. It accepts an S3 object of class "prc’, see
prc().

Usage
## S3 method for class 'prc'
lines(x, ...)
Arguments
X An object of class "prc’
Optional graphical arguments passed to lines()
Value

No return value

See Also

prc() plot.prc()

Im_filter Linear model filter

Description

Linear models are fitted on each predictor, with inclusion of variable names listed in force_vars
in the model. Predictors are ranked by Akaike information criteria (AIC) value, or can be filtered
by the p-value on the estimate of the coefficient for that predictor in its model.

Usage

Im_filter(
Y,
X,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
rsg_method = "pearson”,
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type = c("index”, "names”, "full"),
keep_factors = TRUE,

method = oL,

mc.cores =

Arguments

force_vars

nfilter

p_cutoff

rsq_cutoff

rsq_method

type

keep_factors

method

mc.cores

Details

Numeric or integer response vector

Matrix of predictors. If x is a data.frame it will be turned into a matrix. But
note that factors will be reduced to numeric values, but a full design matrix is
not generated, so if factors have 3 or more levels, it is recommended to convert
x into a design (model) matrix first.

Vector of column names x which are incorporated into the linear model.

Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p-value cut-off. P-values are calculated by t-statistic on the estimated coefficient
for the predictor being tested.

"2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on AIC from a linear model. If
2 or more predictors are collinear, the first ranked predictor by AIC is retained,
while the other collinear predictors are removed. See collinear().

character string indicating which correlation coefficient is to be computed. One
of "pearson" (default), "kendall", or "spearman". See collinear().

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a matrix of p values.

Logical affecting factors with 3 or more levels. Dataframes are coerced to a
matrix using data.matrix. Binary factors are converted to numeric values 0/1
and analysed as such. If keep_factors is TRUE (the default), factors with 3 or
more levels are not filtered and are retained. If keep_factors is FALSE, they are
removed.

Integer determining linear model method. See RcppEigen: : fastLmPure()

Number of cores for parallelisation using parallel: :mclapply().

This filter is based on the model y ~ xvar + force_vars where y is the response vector, xvar are
variables in columns taken sequentially from x and force_vars are optional covariates extracted
from x. It uses RcppEigen: : fastLmPure() with method = @ as default since it is rank-revealing.
method = 3 is significantly faster but can give errors in estimation of p-value with variables of zero
variance. The algorithm attempts to detect these and set their stats to NA. NA in x are not tolerated.

Parallelisation is available via mclapply(). This is provided mainly for the use case of the fil-
ter being used as standalone. Nesting parallelisation inside of parallelised nestcv.glmnet() or
nestcv.train() loops is not recommended.



20 metrics

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of linear model AIC. Any variables in force_vars which
are incorporated into all models are listed first. If type = "full” a matrix of AIC value, sigma
(residual standard error, see summary.lm), coefficient, t-statistic and p-value for each tested predic-
tor is returned.

metrics Model performance metrics

Description

Returns model metrics from nestedcv models. Extended metrics including

Usage

metrics(object, extra = FALSE, innerCV = FALSE, positive = 2)

Arguments
object A ’nestcv.glmnet’, nestcv.train’, 'nestcv.SuperLearner’ or outercv’ object.
extra Logical whether additional performance metrics are gathered for binary classifi-
cation models: area under precision recall curve (PR.AUC), Cohen’s kappa, F1
score, Matthew’s correlation coefficient (MCC).
innercv Whether to calculate metrics for inner CV folds. Only available for "nestcv.glmnet’
and 'nestcv.train’ objects.
positive For binary classification, either an integer 1 or 2 for the level of response factor
considered to be ’positive’ or ‘relevant’, or a character value for that factor. This
affects the F1 score. See caret::confusionMatrix().
Details

Area under precision recall curve is estimated by trapezoidal estimation using MLmetrics: : PRAUC().

Value

A named numeric vector of performance metrics.
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model.hsstan hsstan model for cross-validation

Description

This function applies a cross-validation (CV) procedure for training Bayesian models with hierar-
chical shrinkage priors using the hsstan package. The function allows the option of embedded
filtering of predictors for feature selection within the CV loop. Within each training fold, an op-
tional filtering of predictors is performed, followed by fitting of an hsstsan model. Predictions on
the testing folds are brought back together and error estimation/ accuracy determined. The default
is 10-fold CV. The function is implemented within the nestedcv package. The hsstan models
do not require tuning of meta-parameters and therefore only a single CV procedure is needed to
evaluate performance. This is implemented using the outer CV procedure in the nestedcv pack-
age. Supports binary outcome (logistic regression) or continuous outcome. Multinomial models are
currently not supported.

Usage
model.hsstan(y, x, unpenalized = NULL, ...)
Arguments
y Response vector. For classification this should be a factor.
Matrix of predictors
unpenalized Vector of column names x which are always retained into the model (i.e. not
penalized). Default NULL means the parameters for all predictors will be drawn
from a hierarchical prior distribution, i.e. will be penalized. Note: if filtering of
predictors is specified, then the vector of unpenalized predictors should also be
passed to the filter function using the filter_options$force_vars argument.
Filters currently implementing this option are the partial_ttest_filter for
binary outcomes and the Im_filter for continuous outcomes.
Optional arguments passed to hsstan
Details

Caution should be used when setting the number of cores available for parallelisation. The default
setting in hsstan is to use 4 cores to parallelise the Markov chains of the Bayesian inference proce-
dure. This can be switched off either by adding argument cores = 1 (passed on to rstan) or setting
options(mc.cores =1).

Argument cv.cores in outercv() controls parallelisation over the outer CV folds. On unix/mac

setting cv. cores to >1 will induce nested parallelisation which will generate an error, unless par-
allelisation of the chains is disabled using cores = 1 or setting options(mc.cores = 1).

Nested parallelisation is feasible if cv.cores is >1 and multicore_fork = FALSE is set as this uses
cluster based parallelisation instead. Beware that large numbers of processes will be spawned. If
we are performing 10-fold cross-validation with 4 chains and set cv.cores = 10 then 40 processes
will be invoked simultaneously.
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Value

An object of class hsstan

Author(s)

Athina Spiliopoulou

See Also

outercv() hsstan::hsstan()

Examples

# Cross-validation is used to apply univariate filtering of predictors.
# only one CV split is needed (outercv) as the Bayesian model does not
# require learning of meta-parameters.

# control number of cores used for parallelisation over chains
oldopt <- options(mc.cores = 2)

# load iris dataset and simulate a continuous outcome

data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c("marker1”, "marker2", "marker3"”, "marker4")

dt <- as.data.frame(apply(dt, 2, scale))
dt$outcome.cont <- -3 + 0.5 * dt$marker1l + 2 x dt$marker2 + rnorm(nrow(dt), @, 2)

library(hsstan)
# unpenalised covariates: always retain in the prediction model
uvars <- "marker1”
# penalised covariates: coefficients are drawn from hierarchical shrinkage
# prior
pvars <- c("marker2", "marker3"”, "marker4") # penalised covariates
# run cross-validation with univariate filter and hsstan
# dummy sampling for fast execution of example
# recommend 4 chains, warmup 1000, iter 2000 in practice
res.cv.hsstan <- outercv(y = dt$outcome.cont, x = dt[, c(uvars, pvars)],
model = "model.hsstan”,
filterFUN = Im_filter,
filter_options = list(force_vars = uvars,
nfilter = 2,
p_cutoff = NULL,
rsq_cutoff = 0.9),
n_outer_folds = 3,
chains = 2,
cv.cores = 1,
unpenalized = uvars, warmup = 100, iter = 200)
# view prediction performance based on testing folds
res.cv.hsstang$summary
# view coefficients for the final model
res.cv.hsstan$final_fit
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# view covariates selected by the univariate filter
res.cv.hsstan$final_vars

# use hsstan package to examine the Bayesian model
sampler.stats(res.cv.hsstan$final_fit)
print(projsel(res.cv.hsstan$final_fit), digits = 4) # adding marker2
options(oldopt) # reset configuation

# Here adding ‘marker2‘ improves the model fit: substantial decrease of

# KL-divergence from the full model to the submodel. Adding ‘marker3‘ does

# not improve the model fit: no decrease of KL-divergence from the full model
# to the submodel.

nestcv.glmnet Nested cross-validation with glmnet

Description

This function enables nested cross-validation (CV) with glmnet including tuning of elastic net al-
pha parameter. The function also allows the option of embedded filtering of predictors for feature
selection nested within the outer loop of CV. Predictions on the outer test folds are brought back
together and error estimation/ accuracy determined. The default is 10x10 nested CV.

Usage
nestcv.glmnet(
Y,
X’
family = c("gaussian”, "binomial”, "poisson”, "multinomial”, "cox", "mgaussian"),

filterFUN = NULL,

filter_options = NULL,

balance = NULL,

balance_options = NULL,

modifyX = NULL,

modifyX_useY = FALSE,
modifyX_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
n_inner_folds = 10,

outer_folds = NULL,
pass_outer_folds = FALSE,
alphaSet = seq(0.1, 1, 0.1),
min_1se = 0,

keep = TRUE,

outer_train_predict = FALSE,
weights = NULL,

penalty.factor = rep(1, ncol(x)),
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cv.cores = 1,
finalCV = TRUE,
na.option = "omit",
verbose = FALSE,

Arguments

y Response vector or matrix. Matrix is only used for family = 'mgaussian' or
'cox'.

X Matrix of predictors. Dataframes will be coerced to a matrix as is necessary for
glmnet.

family Either a character string representing one of the built-in families, or else a glm()
family object. Passed to cv.glmnet and glmnet

filterFUN Filter function, e.g. ttest_filter or relieff filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.

balance Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote". See randomsample() and smote()

balance_options
List of additional arguments passed to the balancing function

modifyX Character string specifying the name of a function to modify x. This can be
an imputation function for replacing missing values, or a more complex func-
tion which alters or even adds columns to x. The required return value of this
function depends on the modifyX_useY setting.

modifyX_useY  Logical value whether the x modifying function makes use of response training
data from y. If FALSE then the modifyX function simply needs to return a modi-
fied x object, which will be coerced to a matrix as required by glmnet. If TRUE
then the modifyX function must return a model type object on which predict ()
can be called, so that train and test partitions of x can be modified independently.

modifyX_options
List of additional arguments passed to the x modifying function

outer_method  String of either "cv"” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds
n_inner_folds Number of inner CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

pass_outer_folds
Logical indicating whether the same outer folds are used for fitting of the final
model when final CV is applied. Note this can only be applied when n_outer_folds
and n_inner_folds are the same and no balancing is applied.

alphaSet Vector of alphas to be tuned
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min_1se

keep
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Value from 0 to 1 specifying choice of optimal lambda from O=lambda.min to
1=lambda.1se

Logical indicating whether inner CV predictions are retained for calculating left-
out inner CV fold accuracy etc. See argument keep in cv.glmnet.

outer_train_predict

weights

penalty.factor

cv.cores

finalCV

na.option

verbose

Details

Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

Weights applied to each sample. Note weights and balance cannot be used at
the same time. Weights are only applied in glmnet and not in filters.

Separate penalty factors can be applied to each coefficient. Can be O for some
variables, which implies no shrinkage, and that variable is always included in
the model. Default is 1 for all variables. See glmnet. Note this works sepa-
rately from filtering. For some nestedcv filter functions you might need to set
force_vars to avoid filtering out features.

Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel: :parLapply on windows.

Logical whether to perform one last round of CV on the whole dataset to deter-
mine the final model parameters. If set to FALSE, the median of hyperparameters
from outer CV folds are used for the final model. Performance metrics are in-
dependent of this last step. If set to NA, final model fitting is skipped altogether,
which gives a useful speed boost if performance metrics are all that is needed.

Character value specifying how NAs are dealt with. "omit" (the default) is equiv-
alent to na.action = na.omit. "omitcol” removes cases if there are NA in ’y’,
but columns (predictors) containing NA are removed from ’x’ to preserve cases.
Any other value means that NA are ignored (a message is given).

Logical whether to print messages and show progress

Optional arguments passed to cv.glmnet

glmnet does not tolerate missing values, so na.option = "omit" is the default.

Value

An object with S3 class "nestcv.glmnet"

call
output

outer_result

outer_method
n_inner_folds
outer_folds

dimx

the matched call
Predictions on the left-out outer folds

List object of results from each outer fold containing predictions on left-out
outer folds, best lambda, best alpha, fitted glmnet coefficients, list object of
inner fitted cv.glmnet and number of filtered predictors at each fold.

the outer_method argument
number of inner folds
List of indices of outer test folds

dimensions of x
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xsub subset of x containing all predictors used in both outer CV folds and the final
model

y original response vector

yfinal final response vector (post-balancing)

final_param Final mean best lambda and alpha from each fold

final_fit Final fitted glmnet model

final_coef Final model coefficients and mean expression. Variables with coefficients shrunk
to 0 are removed.

final_vars Column names of filtered predictors entering final model. This is useful for
subsetting new data for predictions.

roc ROC AUC for binary classification where available.

summary Overall performance summary. Accuracy and balanced accuracy for classifica-

tion. ROC AUC for binary classification. RMSE for regression.

Author(s)

Myles Lewis

Examples

## Example binary classification problem with P >> n
x <- matrix(rnorm(150 * 2e+04), 150, 2e+04) # predictors
y <- factor(rbinom(15@, 1, 0.5)) # binary response

## Partition data into 2/3 training set, 1/3 test set
trainSet <- caret::createDataPartition(y, p = 0.66, list = FALSE)

## t-test filter using whole dataset
filt <- ttest_filter(y, x, nfilter = 100)
filx <- x[, filt]

## Train glmnet on training set only using filtered predictor matrix
library(glmnet)

fit <- cv.glmnet(filx[trainSet, ], y[trainSet], family = "binomial")
plot(fit)

## Predict response on test partition

predy <- predict(fit, newx = filx[-trainSet, ], s = "lambda.min”, type = "class")
predy <- as.vector(predy)

predyp <- predict(fit, newx = filx[-trainSet, ], s = "lambda.min”, type = "response")
predyp <- as.vector(predyp)

output <- data.frame(testy = y[-trainSet], predy = predy, predyp = predyp)

## Results on test partition
## shows bias since univariate filtering was applied to whole dataset

predSummary (output)

## Nested CV
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## n_outer_folds reduced to speed up example

fit2 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1,
n_outer_folds = 3,
filterFUN = ttest_filter,
filter_options = list(nfilter = 100),
cv.cores = 2)

summary (fit2)

plot_lambdas(fit2, showLegend = "bottomright")

## ROC plots

library(pROC)

testroc <- roc(output$testy, output$predyp, direction = "<")
inroc <- innercv_roc(fit2)

plot(fit2%$roc)
lines(inroc, col = 'blue')
lines(testroc, col = 'red')

legend('bottomright', legend = c(”Nested CV", "Left-out inner CV folds”,
"Test partition, non-nested filtering"),
col = c("black”, "blue”, "red"), lty =1, lwd = 2, bty = "n")

nestcv.SuperLearner Outer cross-validation of SuperLearner model

Description

Provides a single loop of outer cross-validation to evaluate performance of ensemble models from
SuperLearner package.

Usage

nestcv.SuperLearner(
Y,
X,
filterFUN = NULL,
filter_options = NULL,
weights = NULL,
balance = NULL,
balance_options = NULL,
modifyX = NULL,
modifyX_useY = FALSE,
modifyX_options = NULL,
outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
final = TRUE,
na.option = "pass”,
verbose = TRUE,
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)
Arguments
y Response vector
Dataframe or matrix of predictors. Matrix will be coerced to dataframe as this
is the default for SuperLearner.
filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided

and is passed y and x. Must return a character vector with names of filtered
predictors. Not available if outercyv is called with a formula.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.

weights Weights applied to each sample for models which can use weights. Note weights
and balance cannot be used at the same time. Weights are not applied in filters.

balance Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote". Not available if outercyv is called with a formula.
See randomsample() and smote()

balance_options
List of additional arguments passed to the balancing function

modifyX Character string specifying the name of a function to modify x. This can be
an imputation function for replacing missing values, or a more complex func-
tion which alters or even adds columns to x. The required return value of this
function depends on the modifyX_useY setting.

modifyX_useY  Logical value whether the x modifying function makes use of response training
data from y. If FALSE then the modifyX function simply needs to return a modi-
fied x object, which will be coerced to a dataframe as required by SuperLearner.
If TRUE then the modifyX function must return a model type object on which
predict() can be called, so that train and test partitions of x can be modified
independently.

modifyX_options
List of additional arguments passed to the x modifying function

outer_method String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

cv.cores Number of cores for parallel processing of the outer loops. NOTE: this uses
parallel::mclapply on unix/mac and parallel: :parLapply on windows.

final Logical whether to fit final model.

na.option Character value specifying how NAs are dealt with. "omit” is equivalent to

na.action=na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from "X’ to preserve cases. Any
other value means that NA are ignored (a message is given).

verbose Logical whether to print messages and show progress

Additional arguments passed to SuperLearner: : SuperLearner()
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This performs an outer CV on SuperLearner package ensemble models to measure performance,
allowing balancing of imbalanced datasets as well as filtering of predictors. SuperLearner prefers
dataframes as inputs for the predictors. If x is a matrix it will be coerced to a dataframe and variable
names adjusted by make.names ().

Parallelisation of the outer CV folds is available on linux/mac, but not available on windows. On
windows, snowSuperlLearner() is called instead, so that parallelisation is performed across each
call to SuperLearner.

Value

An object with S3 class "nestcv.SuperLearner”

call
output

outer_result

the matched call
Predictions on the left-out outer folds

List object of results from each outer fold containing predictions on left-out
outer folds, model result and number of filtered predictors at each fold.

dimx vector of number of observations and number of predictors
y original response vector
yfinal final response vector (post-balancing)

outer_folds
final_fit
final_vars

summary_vars

List of indices of outer test folds
Final fitted model on whole data
Column names of filtered predictors entering final model

Summary statistics of filtered predictors

roc ROC AUC for binary classification where available.
summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.
Note

Care should be taken with some SuperLearner models e.g. SL . gbm as some models have multicore
enabled by default, which can lead to huge numbers of processes being spawned.

See Also

SuperlLearner: :SuperLearner()
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nestcv.train Nested cross-validation for caret

Description

This function applies nested cross-validation (CV) to training of models using the caret package.
The function also allows the option of embedded filtering of predictors for feature selection nested
within the outer loop of CV. Predictions on the outer test folds are brought back together and error
estimation/ accuracy determined. The default is 10x10 nested CV.

Usage
nestcv.train(
Y,
X’
method = "rf",

filterFUN = NULL,

filter_options = NULL,

weights = NULL,

balance = NULL,

balance_options = NULL,

modifyX = NULL,

modifyX_useY = FALSE,
modifyX_options = NULL,
outer_method = c("cv"”, "LOOCV"),
n_outer_folds = 10,
n_inner_folds = 10,

outer_folds = NULL,

inner_folds = NULL,
pass_outer_folds = FALSE,
cv.cores = 1,

multicore_fork = (Sys.info()["sysname”] != "Windows"),
metric = ifelse(is.factor(y), "loglLoss", "RMSE"),
trControl = NULL,

tuneGrid = NULL,

savePredictions = "final”,
outer_train_predict = FALSE,
finalCV = TRUE,

na.option = "pass”,

verbose = TRUE,

Arguments

y Response vector. For classification this should be a factor.

Matrix or dataframe of predictors
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method

filterFUN

filter_options

weights

balance

balance_options

modifyX

modifyX_useY

modifyX_options

outer_method

n_outer_folds

n_inner_folds

outer_folds

inner_folds
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String specifying which model to use. See caret: :train() for details.

Filter function, e.g. ttest_filter() or relieff_filter(). Any function can
be provided and is passed y and x. Must return a character vector with names of
filtered predictors.

List of additional arguments passed to the filter function specified by filterFUN.

Weights applied to each sample for models which can use weights. Note weights
and balance cannot be used at the same time. Weights are not applied in filters.

Specifies method for dealing with imbalanced class data. Current options are
"randomsample” or "smote"”. See randomsample() and smote()

List of additional arguments passed to the balancing function

Character string specifying the name of a function to modify x. This can be
an imputation function for replacing missing values, or a more complex func-
tion which alters or even adds columns to x. The required return value of this
function depends on the modifyX_useY setting.

Logical value whether the x modifying function makes use of response training
data from y. If FALSE then the modifyX function simply needs to return a modi-
fied x object. If TRUE then the modifyX function must return a model type object
on which predict() can be called, so that train and test partitions of x can be
modified independently.

List of additional arguments passed to the x modifying function

String of either "cv" or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

Number of outer CV folds

Sets number of inner CV folds. Note if trControl or inner_folds is specified
then these supersede n_inner_folds.

Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.

Optional list of test fold indices for inner CV. This must be structured as a list
of the outer folds each containing a list of inner folds. Can only be supplied if
balancing is not applied. If supplied, n_inner_folds is ignored.

pass_outer_folds

cv.cores

multicore_fork

Logical indicating whether the same outer folds are used for fitting of the final
model when final CV is applied. Note this can only be applied when n_outer_folds
and the number of inner CV folds specified in n_inner_folds or trControl are

the same and that no balancing is applied.

Number of cores for parallel processing of the outer loops.

Logical whether to use forked multicore parallel processing. Forked multicore
processing uses parallel: :mclapply. It is only available on unix/mac as win-
dows does not allow forking. It is set to FALSE by default in windows and TRUE in
unix/mac. Non-forked parallel processing is executed using parallel: :parLapply
or pbapply: :pblapply if verbose is TRUE.
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metric A string that specifies what summary metric will be used to select the optimal
model. By default, "logloss" is used for classification and "RMSE" is used
for regression. Note this differs from the default setting in caret which uses
"Accuracy" for classification. See details.

trControl A list of values generated by the caret function caret: : trainControl(). This
defines how inner CV training through caret is performed. Default for the
inner loop is 10-fold CV. Setting this argument overrules n_inner_folds. See
http://topepo.github.io/caret/using-your-own-model-in-train.html.

tuneGrid Data frame of tuning values, see caret::train().

savePredictions
Indicates whether hold-out predictions for each inner CV fold should be saved
for ROC curves, accuracy etc see caret::trainControl. Default is "final” to
capture predictions for inner CV ROC.

outer_train_predict
Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

finalCV Logical whether to perform one last round of CV on the whole dataset to de-
termine the final model parameters. If set to FALSE, the median of the best
hyperparameters from outer CV folds for continuous/ ordinal hyperparameters,
or highest voted for categorical hyperparameters, are used to fit the final model.
Performance metrics are independent of this last step. If set to NA, final model
fitting is skipped altogether, which gives a useful speed boost if performance
metrics are all that is needed.

na.option Character value specifying how NAs are dealt with. "omit” is equivalent to
na.action =na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from ’x’ to preserve cases. Any
other value means that NA are ignored (a message is given).

verbose Logical whether to print messages and show progress

Arguments passed to caret::train()

Details

When finalCV = TRUE, the final fit on the whole data using is performed first. This helps flag errors
generated by caret such as missing packages. Parallelisation of the final fit when finalCV = TRUE
is performed in caret using registerDoParallel. caret itself uses foreach.

Parallelisation is performed on the outer CV folds using parallel: :mclapply by default on unix/mac
and parallel: :parLapply on windows. mclapply uses forking which is faster. But some models
use multi-threading which may cause issues in some circumstances with forked multicore process-
ing. Setting multicore_fork to FALSE is slower but can alleviate some caret errors.

If the outer folds are run using parallelisation, then parallelisation in caret must be off, otherwise an
error will be generated. Alternatively if you wish to use parallelisation in caret, then parallelisation
in nestcv. train can be fully disabled by leaving cv.cores = 1.

xgboost models fitted via caret using method = "xgbTree” or "xgbLinear" invoke openMP mul-
tithreading on linux/windows by default which causes nestcv.train to fail when cv.cores >1
(nested parallelisation). Mac OS is unaffected. In order to prevent this, nestcv.train() sets
openMP threads to 1 if cv.cores >1.
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For classification, metric defaults to using "logloss’ with the trControl arguments classProbs = TRUE, summaryFunctio
rather than ’ Accuracy’ which is the default classification metric in caret. See caret: :trainControl().

LogLoss is arguably more consistent than Accuracy for tuning parameters in datasets with small

sample size.

Models can be fitted with a single set of fixed parameters, in which case trControl defaults to

trainControl(method = "none”) which disables inner CV as it is unnecessary. See https://topepo.github.io/caret/model-

training-and-tuning. html#fitting-models-without-parameter-tuning

Value

An object with S3 class "nestcv.train"

call
output

outer_result

outer_folds

the matched call
Predictions on the left-out outer folds

List object of results from each outer fold containing predictions on left-out
outer folds, caret result and number of filtered predictors at each fold.

List of indices of outer test folds

dimx dimensions of x

xsub subset of x containing all predictors used in both outer CV folds and the final
model

y original response vector

yfinal final response vector (post-balancing)

final_fit Final fitted caret model using best tune parameters

final_vars Column names of filtered predictors entering final model

summary_vars

Summary statistics of filtered predictors

roc ROC AUC for binary classification where available.
trControl caret::trainControl object used for inner CV
bestTunes best tuned parameters from each outer fold
finalTune final parameters used for final model
summary Overall performance summary. Accuracy and balanced accuracy for classifica-
tion. ROC AUC for binary classification. RMSE for regression.
Author(s)
Myles Lewis
Examples

## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

## load iris dataset and simulate a binary outcome

data(iris)

x <= iris[, 1:4]
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colnames(x) <- c("marker1”, "marker2", "marker3", "marker4")

x <- as.data.frame(apply(x, 2, scale))

y2 <- sigmoid(0.5 * x$marker1 + 2 * x$marker2) > runif(nrow(x))
y2 <- factor(y2, labels = c("class1”, "class2"))

## Example using random forest with caret

cvrf <- nestcv.train(y2, x, method = "rf",
n_outer_folds = 3,
cv.cores = 2)

summary (cvrf)

## Example of glmnet tuned using caret

## set up small tuning grid for quick execution

## length.out of 20-100 is usually recommended for lambda
## and more alpha values ranging from 0-1

tg <- expand.grid(lambda = exp(seq(log(2e-3), log(1e@), length.out = 5)),

alpha = 1)

ncv <- nestcv.train(y = y2, x = Xx,
method = "glmnet”,
n_outer_folds = 3,
tuneGrid = tg, cv.cores = 2)
summary (ncv)

## plot tuning for outer fold #1
plot(ncv$outer_result[[1]]1$fit, xTrans = log)

## plot final ROC curve
plot(ncv$roc)

## plot ROC for left-out inner folds
inroc <- innercv_roc(ncv)
plot(inroc)

## example to show use of custom fold indices for 5 x 5-fold nested CV

library(caret)

y <- iris$Species

out_folds <- createFolds(y, k = 5)

in_folds <- lapply(out_folds, function(i) {
ytrain <- y[-i]
createFolds(ytrain, k = 5)

»

res <- nestcv.train(y, x, method="rf", cv.cores = 2,
pass_outer_folds = TRUE,
inner_folds = in_folds,
outer_folds = out_folds)

summary(res)

res$outer_folds

res$final_fit$control$indexOut # same as outer_folds

nestcv.train
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one_hot One-hot encode

Description

Fast one-hot encoding of all factor and character columns in a dataframe to convert it into a numeric
matrix by creating dummy (binary) columns.

Usage
one_hot(x, all_levels = FALSE, rename_binary = TRUE, sep = ".")
Arguments
X A dataframe, matrix or tibble. Matrices are returned untouched.
all_levels Logical, whether to create dummy variables for all levels of each factor. Default

is FALSE to avoid issues with regression models.

rename_binary Logical, whether to rename binary factors by appending the 2nd level of the
factor to aid interpretation of encoded factor levels and to allow consistency
with naming.

sep Character for separating factor variable names and levels for encoded columns.

Details

Binary factor columns and logical columns are converted to integers (0 or 1). Multi-level unordered
factors are converted to multiple columns of 0/1 (dummy variables): if all_levels is set to FALSE
(the default), then the first level is assumed to be a reference level and additional columns are created
for each additional level; if all_levels is set to TRUE one column is used for each level. Unused
levels are dropped. Character columns are first converted to factors and then encoded. Ordered
factors are replaced by their internal codes. Numeric or integer columns are left untouched.

Having dummy variables for all levels of a factor can cause problems with multicollinearity in
regression (the dummy variable trap), so all_levels is set to FALSE by default which is necessary
for regression models such as glmnet (equivalent to full rank parameterisation). However, setting
all_levels to TRUE can aid with interpretability (e.g. with SHAP values), and in some cases
filtering might result in some dummy variables being excluded. Note this function is designed to
quickly generate dummy variables for more general machine learning purposes. To create a proper
design matrix object for regression models, use model.matrix().

Value

A numeric matrix with the same number of rows as the input data. Dummy variable columns replace
the input factor or character columns. Numeric columns are left intact.

See Also

caret: :dummyVars(), model.matrix()
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Examples

data(iris)

X <- iris

x2 <- one_hot(x)

head(x2) # 3 columns for Species

x2 <- one_hot(x, all_levels = FALSE)
head(x2) # 2 columns for Species

outercv Outer cross-validation of selected models

Description

This is a convenience function designed to use a single loop of cross-validation to quickly evaluate
performance of specific models (random forest, naive Bayes, Im, glm) with fixed hyperparameters
and no tuning. If tuning of parameters on data is required, full nested CV with inner CV is needed
to tune model hyperparameters (see nestcv.train).

Usage

outercv(y, ...)

## Default S3 method:

outercv(
Y,
X,
model,
filterFUN = NULL,
filter_options = NULL,
weights = NULL,
balance = NULL,
balance_options = NULL,
modifyX = NULL,
modifyX_useY = FALSE,
modifyX_options = NULL,
outer_method = c("cv"”, "LOOCV"),
n_outer_folds = 10,
outer_folds = NULL,
cv.cores = 1,
multicore_fork = (Sys.info()["sysname”] != "Windows"),
predict_type = "prob”,
outer_train_predict = FALSE,
returnList = FALSE,
final = TRUE,
na.option = "pass”,
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)

verbose = FALSE,
suppressMsg = verbose,

## S3 method for class 'formula’
outercv(

formula,

data,

model,

outer_method = c("cv", "LOOCV"),
n_outer_folds = 10,

outer_folds = NULL,

cv.cores = 1,

multicore_fork = (Sys.info()["sysname”] != "Windows"),
predict_type = "prob”,
outer_train_predict = FALSE,
verbose = FALSE,

suppressMsg = verbose,

L

na.action = na.fail

)
Arguments
y Response vector
Optional arguments passed to the function specified by model.
X Matrix or dataframe of predictors
model Character value or function of the model to be fitted.
filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided

and is passed y and x. Must return a character vector with names of filtered
predictors. Not available if outercyv is called with a formula.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.

weights Weights applied to each sample for models which can use weights. Note weights

and balance cannot be used at the same time. Weights are not applied in filters.

balance Specifies method for dealing with imbalanced class data. Current options are

"randomsample” or "smote". Not available if outercv is called with a formula.
See randomsample() and smote()

balance_options

List of additional arguments passed to the balancing function

modifyX Character string specifying the name of a function to modify x. This can be

an imputation function for replacing missing values, or a more complex func-
tion which alters or even adds columns to x. The required return value of this
function depends on the modifyX_useY setting.

modifyX_useY  Logical value whether the x modifying function makes use of response training

data from y. If FALSE then the modifyX function simply needs to return a modi-
fied x object. If TRUE then the modifyX function must return a model type object
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on which predict() can be called, so that train and test partitions of x can be
modified independently.

modifyX_options
List of additional arguments passed to the x modifying function

outer_method String of either "cv” or "LOOCV" specifying whether to do k-fold CV or leave
one out CV (LOOCYV) for the outer folds

n_outer_folds Number of outer CV folds

outer_folds Optional list containing indices of test folds for outer CV. If supplied, n_outer_folds
is ignored.
cv.cores Number of cores for parallel processing of the outer loops.

multicore_fork Logical whether to use forked multicore parallel processing. Forked multicore
processing uses parallel: :mclapply. It is only available on unix/mac as win-
dows does not allow forking. It is set to FALSE by default in windows and TRUE in
unix/mac. Non-forked parallel processing is executed using parallel: :parLapply
or pbapply: :pblapply if verbose is TRUE.

predict_type  Only used with binary classification. Calculation of ROC AUC requires pre-
dicted class probabilities from fitted models. Most model functions use syn-
tax of the form predict(..., type ="prob"). However, some models re-
quire a different type to be specified, which can be passed to predict() via
predict_type.

outer_train_predict
Logical whether to save predictions on outer training folds to calculate perfor-
mance on outer training folds.

returnList Logical whether to return list of results after main outer CV loop without con-
catenating results. Useful for debugging.

final Logical whether to fit final model.

na.option Character value specifying how NAs are dealt with. "omit” is equivalent to

na.action=na.omit. "omitcol” removes cases if there are NA in ’y’, but
columns (predictors) containing NA are removed from X’ to preserve cases. Any
other value means that NA are ignored (a message is given).

verbose Logical whether to print messages and show progress

suppressMsg Logical whether to suppress messages and printed output from model functions.
This is necessary when using forked multicore parallelisation.

formula A formula describing the model to be fitted

data A matrix or data frame containing variables in the model.

na.action Formula S3 method only: a function to specify the action to be taken if NAs are

found. The default action is for the procedure to fail. An alternative is na.omit,
which leads to rejection of cases with missing values on any required variable.
(NOTE: If given, this argument must be named.)

Details

Some predictive model functions do not have an x & y interface. If the function specified by model
requires a formula, x & y will be merged into a dataframe with model() called with a formula
equivalenttoy ~ ..
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The S3 formula method for outercv is not really recommended with large data sets - it is envisaged
to be primarily used to compare performance of more basic models e.g. 1m() specified by formulae
for example incorporating interactions. NOTE: filtering is not available if outercv is called with a
formula - use the x-y interface instead.

An alternative method of tuning a single model with fixed parameters is to use nestcv.train with
tuneGrid set as a single row of a data.frame. The parameters which are needed for a specific model
can be identified using caret: :modellLookup().

Case weights can be passed to model function which accept these, however outercv assumes that
these are passed to the model via an argument named weights.

Note that in the case of model = "1m", although additional arguments e.g. subset, weights, of fset
are passed into the model function via "..." the scoping is known to go awry. Avoid using these
arguments with model = "1m".

NA handling differs between the default S3 method and the formula S3 method. The na.option
argument takes a character string, while the more typical na.action argument takes a function.

Value

An object with S3 class "outercv"

call the matched call
output Predictions on the left-out outer folds

outer_result  List object of results from each outer fold containing predictions on left-out
outer folds, model result and number of filtered predictors at each fold.

dimx vector of number of observations and number of predictors

outer_folds List of indices of outer test folds

final_fit Final fitted model on whole data

final_vars Column names of filtered predictors entering final model

roc ROC AUC for binary classification where available.

summary Overall performance summary. Accuracy and balanced accuracy for classifica-

tion. ROC AUC for binary classification. RMSE for regression.

Examples

## Classification example

## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

# load iris dataset and simulate a binary outcome

data(iris)

dt <- iris[, 1:4]

colnames(dt) <- c(”marker1”, "marker2", "marker3", "marker4")
dt <- as.data.frame(apply(dt, 2, scale))

x <- dt

y2 <- sigmoid(@.5 * dt$marker1 + 2 x dt$marker2) > runif(nrow(dt))
y2 <- factor(y2)
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## Random forest

library(randomForest)

cvfit <- outercv(y2, x, "randomForest")
summary (cvfit)

plot(cvfit$roc)

## Mixture discriminant analysis (MDA)

if (requireNamespace(”mda”, quietly = TRUE)) {
library(mda)
cvfit <- outercv(y2, x,
summary (cvfit)

}

" n

mda"”, predict_type = "posterior")

## Example with continuous outcome
y <- -3 + 0.5 % dt$marker1 + 2 * dt$marker2 + rnorm(nrow(dt), @, 2)
dt$outcome <- y

## simple linear model - formula interface
cvfit <- outercv(outcome ~ ., data = dt, model = "1m")
summary (cvfit)

## random forest for regression
cvfit <- outercv(y, x, "randomForest")
summary (cvfit)

## example with Im_filter() to reduce input predictors

cvfit <- outercv(y, x, "randomForest”, filterFUN = Im_filter,
filter_options = list(nfilter = 2, p_cutoff = NULL))

summary (cvfit)

plot.cva.glmnet Plot lambda across range of alphas

Description

Different types of plot showing cross-validated tuning of alpha and lambda from elastic net regres-
sion via glmnet. If xaxis is set to "1ambda”, log lambda is on the x axis while the tuning metric (log
loss, deviance, accuracy, AUC etc) is on the y axis. Multiple alpha values are shown by different
colours. If xaxis is set to "alpha”, alpha is on the x axis with the tuning metric on y, with error
bars showing metric SD. if xaxis is set to "nvar” the number of non-zero coefficients is shown on
x and how this relates to model deviance/ accuracy on y.

Usage

## S3 method for class 'cva.glmnet'
plot(
X,
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xaxis = c("lambda”, "alpha", "nvar"),
errorBar = (xaxis == "alpha"),

errorWidth = 0.015,

min.pch = NULL,

scheme = NULL,

palette = "zissou",
showLegend = "bottomright”,

Arguments

X

xaxis

errorBar

errorWidth

min.pch

scheme
palette

showLegend

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

Object of class ’cva.glmnet’

String specifying what is plotted on the x axis, either log lambda, alpha or the
number of non-zero coefficients.

Logical whether to control error bars for the standard deviation of model de-
viance when xaxis = 'lambda’. Because of overlapping lines, only the de-
viance of the top and bottom points at a given lambda are shown.

Width of error bars.

Plotting ’character’ for the minimum point of each curve. Not shown if set to
NULL. See points

Colour scheme. Overrides the palette argument.
Palette name (one of hcl.pals()) which is passed to hcl.colors
Either a keyword to position the legend or NULL to hide the legend.

Other arguments passed to plot. Use type = 'p' to plot a scatter plot instead of
a line plot.
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plot.prc Plot precision-recall curve

Description

Plots a precision-recall curve using base graphics. It accepts an S3 object of class 'prc’, see prc().

Usage
## S3 method for class 'prc'
plot(x, ...)
Arguments
X An object of class "prc’
Optional graphical arguments passed to plot()
Value

No return value

See Also

prc)

Examples

library(mlbench)

data(Sonar)

y <- Sonar$Class

x <- Sonar[, -61]

fit1 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1, cv.cores = 2)
fit1$prc <- prc(fit1) # calculate precision-recall curve

fit2 <- nestcv.train(y, x, method = "gbm"”, cv.cores = 2)
fit2$prc <- prc(fit2)

plot(fiti$prc)
lines(fit2$prc, col = "red")
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plot_alphas Plot cross-validated glmnet alpha

Description

Plot of cross-validated glmnet alpha parameter against deviance for each outer CV fold.

Usage
plot_alphas(x, col = NULL, ...)
Arguments
X Fitted "nestcv.glmnet" object
col Optional vector of line colours for each fold
other arguments passed to plot
Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

plot_caret Plot caret tuning

Description

Plots the main tuning parameter in models built using caret::train

Usage
plot_caret(x, error.col = "darkgrey", ...)

Arguments
X Object of class ’train’ generated by caret function train
error.col Colour of error bars

Other arguments passed to plot()
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Value

No return value

plot_lambdas

plot_lambdas

Plot cross-validated glmnet lambdas across outer folds

Description

Plot of cross-validated glmnet lambda parameter against deviance for each outer CV fold.

Usage

plot_lambdas(

X’

scheme = NULL,
palette = "Dark 3",

showLegend = if (x$outer_method == "cv") "topright"” else NULL,

Arguments

X
scheme
palette

showLegend

Value

No return value

Author(s)

Myles Lewis

See Also

nestcv.glmnet

Fitted "nestcv.glmnet" object
colour scheme

palette name (one of hcl.pals()) which is passed to hcl.colors

Either a keyword to position the legend or NULL to hide the legend.

other arguments passed to plot. Use type = 'p"' to plot a scatter plot instead of

a line plot.
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plot_shap_bar SHAP importance bar plot

Description

SHAP importance bar plot

Usage
plot_shap_bar(
shap,
X,
sort = TRUE,
labels = c("Negative”, "Positive"),
top = NULL
)
Arguments
shap a matrix of SHAP values
X a matrix or dataframe of feature values containing only features values from the
training data. The rows must match rows in shap. If a dataframe is supplied it
is converted to a numeric matrix using data.matrix().
sort Logical whether to sort predictors by mean absolute SHAP value
labels Character vector of labels for directionality
top Sets a limit on the number of variables plotted or NULL to plot all variables. If
top is set then variables are sorted and sort is overrode.
Value
A ggplot2 plot
plot_shap_beeswarm SHAP importance beeswarm plot
Description

SHAP importance beeswarm plot
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Usage

plot_varlmp

plot_shap_beeswarm(

shap,
X’

cex = 0.25,

corral = "random”,
corral.width = 0.7,
scheme = c("deepskyblue2”, "purple3”, "red"),

sort = TRUE,
top = NULL,

Arguments

shap

X

cex

corral
corral.width
scheme

sort

top

Value

A ggplot2 plot

a matrix of SHAP values

a matrix or dataframe of feature values containing only features values from the
training data. The rows must match rows in shap. If a dataframe is supplied it
is converted to a numeric matrix using data.matrix().

Scaling for adjusting point spacing. See ggbeeswarm: : geom_beeswarm().

String specifying method used to corral points. See ggbeeswarm: : geom_beeswarm().
Numeric specifying width of corral, passed to geom_beeswarm

Colour scheme as a vector of 3 colours

Logical whether to sort predictors by mean absolute SHAP value.

Sets a limit on the number of variables plotted or NULL to plot all variables. If
top is set then variables are sorted and sort is overrode.

Other arguments passed to ggbeeswarm: : geom_beeswarm()

plot_varImp

Variable importance plot

Description

Plot of variable importance of coefficients of a final fitted 'nestedcv.glmnet’ model using ggplot2.
Mean expression can be overlaid as the size of points as this can be informative in models of
biological attributes.

Usage

plot_varImp(x, abs = TRUE, size = TRUE)
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Arguments
X a 'nestcv.glmnet’ class object
abs Logical whether to show absolute value of glmnet coefficients
size Logical whether to show mean expression by size of points
Value
Returns a ggplot2 plot

plot_var_stability Plot variable stability

Description

Produces a ggplot2 plot of stability (as SEM) of variable importance across models trained and
tested across outer CV folds. Overlays frequency with which variables are selected across the outer
folds and optionally overlays directionality for binary response outcome.

Usage
plot_var_stability(
X ’
final = TRUE,
top = NULL,

direction = 0,

dir_labels = NULL,

scheme = c("royalblue”, "red"),
breaks = NULL,

percent = TRUE,

level =1,
sort = TRUE
)
Arguments
X anestcv.glmnet or nestcv. train fitted object
final Logical whether to restrict variables to only those which ended up in the final
fitted model or to include all variables selected across all outer folds.
top Limits number of variables plotted. Set to NULL to plot all variables.
direction Integer controlling plotting of directionality for binary or regression models. @
means no directionality is shown, 1 means directionality is overlaid as a colour, 2
means directionality is reflected in the sign of variable importance. Not available
for multiclass caret models.
dir_labels Character vector for controlling the legend when direction =1

scheme Vector of 2 colours for directionality when direction =1
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breaks Vector of continuous breaks for legend colour/size

percent Logical for nestcv.glmnet objects only, whether to scale coefficients to per-
centage of the largest coefficient in each model. If set to FALSE, model coeffi-
cients are shown and direction is ignored.

level For multinomial nestcv.glmnet models only, either an integer specifying which
level of outcome is being examined, or the level can be specified as a character
value.
sort Logical whether to sort by mean variable importance. Passed to var_stability().
Value
A ggplot2 plot
See Also

var_stability()

pls_filter Fartial Least Squares filter

Description

Filter using coefficients from partial least squares (PLS) regression to select optimal predictors.

Usage

pls_filter(
Y,
X,
force_vars = NULL,
nfilter,
ncomp = 5,
scale_x = TRUE,
type = c("index"”, "names"”, "full"),

)
Arguments
y Response vector
X Matrix of predictors
force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be filtered.
nfilter Either a single value for the total number of predictors to return. Or a vector of

length ncomp to manually return predictors from each PLS component.
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ncomp the number of components to include in the PLS model.

scale_x Logical whether to scale predictors before fitting the PLS model. This is recom-
mended.

type Type of vector returned. Default "index" returns indices, "names" returns pre-

dictor names, "full" returns a named vector of variable importance.

Other arguments passed to pls: :plsr()

Details
The best predictors may overlap between components, so if nfilter is specified as a vector, the
total number of unique predictors returned may be variable.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type =
"names") of filtered parameters. If type is "full” full output of coefficients from plsr is returned
as a list for each model component ordered by highest absolute coefficient.

prc Build precision-recall curve

Description
Builds a precision-recall curve for a 'nestedcv’ model using prediction() and performance()
functions from the ROCR package and returns an object of class ’prc’ for plotting.

Usage
prc(...)

## Default S3 method:
prc(response, predictor, positive = 2, ...)

## S3 method for class 'data.frame'
prc(output, ...)

## S3 method for class 'nestcv.glmnet'
prc(object, ...)

## S3 method for class 'nestcv.train'
prc(object, ...)

## S3 method for class 'nestcv.SuperlLearner
prc(object, ...)

## S3 method for class 'outercv'
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prc(object, ...)

## S3 method for class 'repeatcv'
prc(object, ...)

Arguments

other arguments

response binary factor vector of response of default order controls, cases.
predictor numeric vector of probabilities
positive Either an integer 1 or 2 for the level of response factor considered to be *positive’

or ‘relevant’, or a character value for that factor.

output data.frame with columns testy containing observed response from test folds,
and predyp predicted probabilities for classification

object a ‘nestcv.glmnet’, "nestcv.train’, "nestcv.SuperLearn’, ’outercv’ or ’repeatcv’ S3
class results object.

Value

An object of S3 class ’prc’ containing the following fields:

recall vector of recall values
precision vector of precision values
auc area under precision-recall curve value using trapezoid method
baseline baseline precision value
Examples
library(mlbench)
data(Sonar)

y <- Sonar$Class
x <= Sonar[, -61]

fitl <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1, cv.cores = 2)

fit1$prc <- prc(fit1) # calculate precision-recall curve
fit1$prc$auc # precision-recall AUC value

n

fit2 <- nestcv.train(y, x, method = "gbm”, cv.cores = 2)
fit2$prc <- prc(fit2)

fit2$prc$auc

plot(fiti$prc, ylim = c(0, 1))
lines(fit2$prc, col = "red")

res <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1) |>
repeatcv(n = 4, rep.cores = 2)
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res$prc <- prc(res) # precision-recall curve on repeated predictions
plot(res$prc)

predict.cva.glmnet Predict method for cva.glmnet models

Description

Makes predictions from a cross-validated glmnet model with optimal value of lambda and alpha.

Usage
## S3 method for class 'cva.glmnet'
predict(object, newx, s = "lambda.lse"”, ...)
Arguments
object Fitted cva. glmnet object.
newx Matrix of new values for x at which predictions are to be made.
s Value of penalty parameter lambda. Default value is s="1ambda. 1se” for con-

sistency with glmnet. Alternatively s="1ambda.min" can be used.

Other arguments passed to predict.cv.glmnet().

Value
Object returned depends on arguments in . . . such as type.
predict.hsstan Predict from hsstan model fitted within cross-validation
Description

Draws from the posterior predictive distribution of the outcome.

Usage

## S3 method for class 'hsstan'
predict(object, newdata = NULL, type = NULL, ...)
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Arguments
object An object of class hsstan.
newdata Optional data frame containing the variables to use to predict. If NULL (default),
the model matrix is used. If specified, its continuous variables should be stan-
dardized, since the model coefficients are learnt on standardized data.
type Option for binary outcomes only. Default NULL will return a class with the high-
est probability for each sample. If set to probs, it will return the probabilities
for outcome = 0 and for outcome = 1 for each sample.
Optional arguments passed to hsstan: :posterior_predict
Value

For a binary outcome and type = NULL, a character vector with the name of the class that has the
highest probability for each sample. For a binary outcome and type = prob, a 2-dimensional matrix
with the probability of class 0 and of class 1 for each sample. For a continuous outcome a numeric
vector with the predicted value for each sample.

Author(s)

Athina Spiliopoulou

predict.nestcv.glmnet Predict method for nestcv.glmnet fits

Description

Obtains predictions from the final fitted model from a nestcv.glmnet object.

Usage

## S3 method for class 'nestcv.glmnet'

predict(object, newdata, s = object$final_param["”lambda"], modify = FALSE, ...)
Arguments

object Fitted nestcv.glmnet object

newdata New data to predict outcome on

s Value of lambda for glmnet prediction

modify Logical whether to modify newdata based on modifyX function. See modifyX

and modifyX_useY arguments in nestcv.glmnet().

Other arguments passed to predict.glmnet.

Details

Checks for missing predictors and if these are sparse (i.e. have zero coefficients) columns of O are
automatically added to enable prediction to proceed.
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Value

Object returned depends on the . . . argument passed to predict method for glmnet objects.

See Also

glmnet::glmnet

predSummary Summarise prediction performance metrics

Description

Quick function to calculate performance metrics: confusion matrix, accuracy and balanced accuracy
for classification; ROC AUC for binary classification; RMSE and R”2 for regression. Multi-class
AUC is returned for multinomial classification.

Usage
predSummary(output, family = "")
Arguments
output data.frame with columns testy containing observed response from test folds;
predy predicted response; predyp (optional) predicted probabilities for classifi-
cation to calculate ROC AUC
family Optional character value to support specific glmnet models e.g. ’mgaussian’,
cox’.
Details

For multinomial classification, multi-class AUC as defined by Hand and Till is calculated using
pROC: :multiclass.roc().

Value

An object of class ’predSummary’. For classification a list is returned containing the confusion
matrix table and a vector containing accuracy and balanced accuracy for classification, ROC AUC
for classification. For regression a vector containing RMSE and R”2 is returned.
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pred_nestcv_glmnet Prediction wrappers to use fastshap with nestedcv

Description

Prediction wrapper functions to enable the use of the fastshap package for generating SHAP values
from nestedcv trained models.

Usage

pred_nestcv_glmnet(x, newdata)
pred_nestcv_glmnet_class1(x, newdata)
pred_nestcv_glmnet_class2(x, newdata)
pred_nestcv_glmnet_class3(x, newdata)
pred_train(x, newdata)
pred_train_class1(x, newdata)
pred_train_class2(x, newdata)
pred_train_class3(x, newdata)

pred_SuperLearner(x, newdata)

Arguments
X anestcv.glmnet or nestcv. train object
newdata a matrix of new data

Details

These prediction wrapper functions are designed to be used with the fastshap package. The func-
tions pred_nestcv_glmnet and pred_train work for nestcv.glmnet and nestcv. train models
respectively for either binary classification or regression.

For multiclass classification use pred_nestcv_glmnet_class1, 2 and 3 for the first 3 classes. Sim-
ilarly pred_train_class1 etc for nestcv.train objects. These functions can be inspected and easily
modified to analyse further classes.

Value

prediction wrapper function designed for use with fastshap: :explain()
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Examples

library(fastshap)

# Boston housing dataset

library(mlbench)

data(BostonHousing?2)

dat <- BostonHousing2

y <- dat$cmedv

x <- subset(dat, select = -c(cmedv, medv, town, chas))

# Fit a glmnet model using nested CV
# Only 3 outer CV folds and 1 alpha value for speed
fit <- nestcv.glmnet(y, x, family = "gaussian”, n_outer_folds = 3, alphaSet = 1)

# Generate SHAP values using fastshap::explain
# Only using 5 repeats here for speed, but recommend higher values of nsim
sh <- explain(fit, X=x, pred_wrapper = pred_nestcv_glmnet, nsim = 1)

# Plot overall variable importance
plot_shap_bar(sh, x)

# Plot beeswarm plot
plot_shap_beeswarm(sh, x, size = 1)

randomsample Oversampling and undersampling

Description
Random oversampling of the minority group(s) or undersampling of the majority group to compen-
sate for class imbalance in datasets.

Usage

randomsample(y, x, minor = NULL, major = 1, yminor = NULL)

Arguments

y Vector of response outcome as a factor
Matrix of predictors

minor Amount of oversampling of the minority class. If set to NULL then all classes
will be oversampled up to the number of samples in the majority class. To turn
off oversampling set minor = 1.

major Amount of undersampling of the majority class

yminor Optional character value specifying the level in y which is to be oversampled. If

NULL, this is set automatically to the class with the smallest sample size.
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Details

minor < 1 and major > 1 are ignored.

Value

List containing extended matrix x of synthesised data and extended response vector y

Examples

## Imbalanced dataset

set.seed(1, "L'Ecuyer-CMRG")

x <= matrix(rnorm(150 * 2e+04), 150, 2e+04) #' predictors

y <- factor(rbinom(150, 1, 0.2)) #' imbalanced binary response
table(y)

## first 30 parameters are weak predictors
x[, 1:30] <- rnorm(150 * 30, @, 1) + as.numeric(y)*@.5

## Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x)

y2 <- out$y
x2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by random oversampling on
## whole dataset
fit1 <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)
fit1$summary

## Balance x & y outside of CV loop by random oversampling minority group
out <- randomsample(y, x, minor=1, major=0.4)

y2 <- out$y
X2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by random undersampling on
## whole dataset
fitlb <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)
fit1b$summary

## Balance x & y outside of CV loop by SMOTE
out <- smote(y, x)

y2 <- out$y
X2 <- out$x
table(y2)

## Nested CV glmnet with unnested balancing by SMOTE on whole dataset



ranger_filter

fit2 <- nestcv.glmnet(y2, x2, family = "binomial”, alphaSet = 1,
cv.cores=2,
filterFUN = ttest_filter)

fit2$summary

## Nested CV glmnet with nested balancing by random oversampling
fit3 <- nestcv.glmnet(y, x, family = "binomial”, alphaSet = 1,
cv.cores=2,
balance = "randomsample”,
filterFUN = ttest_filter)
fit3$summary
class_balance(fit3)

## Plot ROC curves

plot(fiti$roc, col='green')

lines(fitlb$roc, col='red")

lines(fit2$roc, col='blue')

lines(fit3$roc)

legend('bottomright', legend = c("Unnested random oversampling”,
"Unnested SMOTE",
"Unnested random undersampling”,
"Nested balancing”),

col = c("green”, "blue”", "red”, "black"), lty=1, lwd=2)

ranger_filter Random forest ranger filter

Description

Fits a random forest model via the ranger package and ranks variables by variable importance.

Usage

ranger_filter(

Y,

X’

nfilter = NULL,

type = c("index"”, "names"”, "full"),
num.trees = 1000,

mtry = ncol(x) * 0.2,

Arguments

y Response vector

Matrix or dataframe of predictors
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nfilter Number of predictors to return. If NULL all predictors are returned.

type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.

num. trees Number of trees to grow. See ranger::ranger.

mtry Number of predictors randomly sampled as candidates at each split. See ranger::ranger.

Optional arguments passed to ranger::ranger.

Details
This filter uses the ranger () function from the ranger package. Variable importance is calculated
using mean decrease in gini impurity.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is
returned.

relieff_filter ReliefF filter

Description

Uses ReliefF algorithm from the CORElearn package to rank predictors in order of importance.

Usage

relieff_filter(
Y,
X)
nfilter = NULL,
estimator = "ReliefFequalK”,
type = c("index"”, "names"”, "full"),

)
Arguments
y Response vector
Matrix or dataframe of predictors
nfilter Number of predictors to return. If NULL all predictors are returned.
estimator Type of algorithm used, see CORElearn::attrEval
type Type of vector returned. Default "index" returns indices, "names" returns pre-

dictor names, "full" returns a named vector of variable importance.

Other arguments passed to CORElearn::attrEval
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Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
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= "names") of filtered parameters. If type is "full” a named vector of variable importance is

returned.

See Also

CORElearn::attrEval()

repeatcv

Repeated nested CV

Description

Performs repeated calls to a nestedcv model to determine performance across repeated runs of

nested CV.

Usage

repeatcv(
expr,
n =25,
repeat_folds
keep = TRUE,

= NULL,

extra = FALSE,
progress = TRUE,

rep.cores =

Arguments

expr

n
repeat_folds
keep

extra

progress

rep.cores

1L

An expression containing a call to nestcv.glmnet (), nestcv.train(), nestcv
or outercv().

Number of repeats
Optional list containing fold indices to be applied to the outer CV folds.
Logical whether to save repeated outer CV predictions for ROC curves etc.

Logical whether additional performance metrics are gathered for binary classi-
fication models. See metrics().

Logical whether to show progress.

Integer specifying number of cores/threads to invoke.

.SuperLearner()
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Details

We recommend using this with the R pipe |> (see examples).

When comparing models, it is recommended to fix the sets of outer CV folds used across each
repeat for comparing performance between models. The function repeatfolds() can be used to
create a fixed set of outer CV folds for each repeat.

Parallelisation over repeats is performed using parallel: :mclapply (not available on windows).
Beware that cv.cores can still be set within calls to nestedcv models (= nested parallelisation).
This means that rep.cores x cv.cores number of processes/forks will be spawned, so be careful
not to overload your CPU. In general parallelisation of repeats using rep.cores is faster than
parallelisation using cv.cores.

Value

List of S3 class 'repeatcv’ containing:

call the model call
result matrix of performance metrics
output (if keep = TRUE) a matrix or dataframe containing the outer CV predictions from

each repeat

roc (binary classification models only) a ROC curve object based on predictions
across all repeats as returned in output, generated by pROC: : roc()

Examples

data("iris")
dat <- iris
y <- dat$Species
x <- dat[, 1:4]

res <- nestcv.glmnet(y, x, family = "multinomial”, alphaSet = 1,
n_outer_folds = 4) |>
repeatcv(3, rep.cores = 2)
res
summary(res)

## set up fixed fold indices
set.seed (123, "L'Ecuyer-CMRG")
folds <- repeatfolds(y, repeats = 3, n_outer_folds = 4)
res <- nestcv.glmnet(y, x, family = "multinomial”, alphaSet = 1,
n_outer_folds = 4) |>
repeatcv(3, repeat_folds = folds, rep.cores = 2)
res
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repeatfolds Create folds for repeated nested CV

Description

Create folds for repeated nested CV

Usage

repeatfolds(y, repeats = 5, n_outer_folds = 10)

Arguments
y Outcome vector
repeats Number of repeats

n_outer_folds Number of outer CV folds

Value

List containing indices of outer CV folds

Examples

data("iris")
dat <- iris
y <- dat$Species
x <- dat[, 1:4]

## set up fixed fold indices
set.seed (123, "L'Ecuyer-CMRG")
folds <- repeatfolds(y, repeats = 3, n_outer_folds = 4)

res <- nestcv.glmnet(y, x, family = "multinomial”, alphaSet = 1,
n_outer_folds = 4, cv.cores = 2) |>
repeatcv(3, repeat_folds = folds)
res
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rf_filter Random forest filter

Description

Fits a random forest model and ranks variables by variable importance.

Usage

rf_filter(
Y,
X)
nfilter = NULL,
type = c("index”, "names”, "full"),
ntree = 1000,
mtry = ncol(x) * 0.2,

)
Arguments
y Response vector
X Matrix or dataframe of predictors
nfilter Number of predictors to return. If NULL all predictors are returned.
type Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a named vector of variable importance.
ntree Number of trees to grow. See randomForest::randomForest.
mtry Number of predictors randomly sampled as candidates at each split. See ran-
domForest::randomForest.
Optional arguments passed to randomForest::randomForest.
Details

This filter uses the randomForest() function from the randomForest package. Variable impor-
tance is calculated using the randomForest::importance function, specifying type 1 = mean decrease
in accuracy. See randomForest::importance.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters. If type is "full” a named vector of variable importance is
returned.
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smote SMOTE

Description
Synthetic Minority Oversampling Technique (SMOTE) algorithm for imbalanced classification
data.

Usage

smote(y, x, k = 5, over = NULL, yminor = NULL)

Arguments
y Vector of response outcome as a factor
X Matrix of predictors
k Range of KNN to consider for generation of new data
over Amount of oversampling of the minority class. If set to NULL then all classes
will be oversampled up to the number of samples in the majority class.
yminor Optional character value specifying the level in y which is to be oversampled. If
NULL, this is set automatically to the class with the smallest sample size.
Value

List containing extended matrix x of synthesised data and extended response vector y

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.

stat_filter Univariate filter for binary classification with mixed predictor
datatypes

Description

Univariate statistic filter for dataframes of predictors with mixed numeric and categorical datatypes.
Different statistical tests are used depending on the data type of response vector and predictors:

Binary class response: bin_stat_filter() t-test for continuous data, chi-squared test for cate-
gorical data

Multiclass response: class_stat_filter() one-way ANOVA for continuous data, chi-squared
test for categorical data

Continuous response: cor_stat_filter() correlation (or linear regression) for continuous data
and binary data, one-way ANOVA for categorical data
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Usage

stat_filter(y, x, ...)

bin_stat_filter(
Y,
X!
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
type = c("index"”, "names”, "full”, "list"),

)

class_stat_filter(
Y,
X)
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
type = c("index"”, "names”, "full"”, "list"),

)
cor_stat_filter(
Y,
X’
cor_method = c("pearson”, "spearman”, "1m"),

force_vars = NULL,

nfilter = NULL,

p_cutoff = 0.05,

rsg_cutoff = NULL,

rsg_method = "pearson”,

type = c("index"”, "names”, "full"”, "list"),

)
Arguments

y Response vector

X Matrix or dataframe of predictors
optional arguments, e.g. rsg_method: see collinear().

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p-values < p_cutoff

are returned.
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p_cutoff p value cut-off

rsq_cutoff 2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on t-test. If 2 or more predic-
tors are collinear, the first ranked predictor by t-test is retained, while the other

collinear predictors are removed. See collinear().

Type of vector returned. Default "index" returns indices, "names" returns pre-
dictor names, "full" returns a dataframe of statistics, "list" returns a list of 2
matrices of statistics, one for continuous predictors, one for categorical predic-
tors.

type

n on

For cor_stat_filter() only, either "pearson”, "spearman” or "1m" control-
ling whether continuous predictors are filtered by correlation (faster) or regres-
sion (slower but allows inclusion of covariates via force_vars).

cor_method

rsq_method character string indicating which correlation coefficient is to be computed. One

of "pearson" (default), "kendall", or "spearman". See collinear().

Details

stat_filter() is a wrapper which callsbin_stat_filter(), class_stat_filter() orcor_stat_filter()
depending on whether y is binary, multiclass or continuous respectively. Ordered factors are con-
verted to numeric (integer) levels and analysed as if continuous.

Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of test p-value. If type is "full” full output is returned
containing a dataframe of statistical results. If type is "1ist"” the output is returned as a list of 2
matrices containing statistical results separated by continuous and categorical predictors.

Examples

library(mlbench)

data(BostonHousing2)

dat <- BostonHousing2

y <- dat$cmedv ## continuous outcome

x <- subset(dat, select = -c(cmedv, medv, town))

stat_filter(y, x,
stat_filter(y, x,
stat_filter(y, x)

type = "full")
nfilter = 5, type

"names")

data(iris)

y <- iris$Species
X <- subset(iris,
stat_filter(y, x,

## 3 class outcome
select = -Species)
type = "full")
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summary_vars Summarise variables

Description

Summarise variables

Usage

summary_vars(x)

Arguments

X Matrix or dataframe with variables in columns

Value

A matrix with variables in rows and mean, median and SD for each variable or number of levels if
the variable is a factor. If NA are detected, an extra column n.NA is added with the numbers of NA
for each variable.

supervisedPCA Supervised PCA plot

Description

Performs supervised principle component analysis (PCA) after filtering dataset to help determine
whether filtering has been useful for separating samples according to the outcome variable.

Usage
supervisedPCA(y, x, filterFUN = NULL, filter_options = NULL, plot = TRUE, ...)
Arguments
y Response vector
X Matrix of predictors
filterFUN Filter function, e.g. ttest_filter or relieff_filter. Any function can be provided
and is passed y and x. Must return a character vector with names of filtered
predictors.

filter_options Listof additional arguments passed to the filter function specified by filterFUN.
plot Logical whether to plot a ggplot2 object or return the PC scores
Optional arguments passed to princomp()

Value

If plot=TRUE returns a ggplot2 plot, otherwise returns the principle component scores.
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train_preds Outer training fold predictions

Description
Obtain predictions on outer training folds which can be used for performance metrics and ROC
curves.

Usage

train_preds(x)

Arguments

X anestcv.glmnet, nestcv. train or outercyv fitted object

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet,
nestcv.train or outercv.

Value

Dataframe with columns ytrain and predy containing observed and predicted values from training
folds. For binomial and multinomial models additional columns are added with class probabilities
or log likelihood values.

train_roc Build ROC curve from outer CV training folds

Description

Build ROC (receiver operating characteristic) curve from outer training folds. Object can be plotted
using plot () or passed to functions auc() etc.

Usage
train_roc(x, direction = "<", ...)

Arguments
X anestcv.glmnet, nestcv. train or outercv object
direction Set ROC directionality pROC::roc

Other arguments passed to pROC::roc
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Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv. glmnet,
nestcv.train or outercv.

Value

"roc"” object, see pROC::roc

train_summary Summarise performance on outer training folds

Description

Calculates performance metrics on outer training folds: confusion matrix, accuracy and balanced
accuracy for classification; ROC AUC for binary classification; RMSE, R*2 and mean absolute
error (MAE) for regression.

Usage

train_summary(x)

Arguments

X anestcv.glmnet, nestcv. train or outercv object

Details
Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet,
nestcv.train or outercv.

Value

Returns performance metrics from outer training folds, see predSummary

See Also

predSummary

Examples

data(iris)
X <- iris[, 1:4]
y <- iris[, 5]

fit <- nestcv.glmnet(y, x,
family = "multinomial”,
alpha = 1,
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outer_train_predict = TRUE,
n_outer_folds = 3)

summary (fit)

innercv_summary(fit)

train_summary(fit)

fit2 <- nestcv.train(y, x,
model="svm",
outer_train_predict = TRUE,
n_outer_folds = 3,
cv.cores = 2)

summary (fit2)

innercv_summary(fit2)

train_summary(fit2)

ttest_filter Univariate filters

Description

A selection of simple univariate filters using t-test, Wilcoxon test, one-way ANOVA or correlation

(Pearson or Spearman) for ranking variables. These filters are designed for speed. ttest_filter

uses the Rfast package, wilcoxon_filter (Mann-Whitney) test uses matrixTests::row_wilcoxon_twosample,
anova_filter uses matrixTests::col_oneway_welch (Welch’s F-test) from the matrixTests pack-

age. Can be applied to all or a subset of predictors. For mixed datasets (combined continuous &
categorical) see stat_filter()

Usage

ttest_filter(
Y,
X,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
type = c("index"”, "names”, "full"),
keep_factors = TRUE,

anova_filter(
Y,
X,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
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rsq_cutoff = NULL,
type = c("index"”, "names"”, "full"),
keep_factors = TRUE,

)

wilcoxon_filter(
Y,
X,
force_vars = NULL,
nfilter = NULL,
p_cutoff = 0.05,
rsg_cutoff = NULL,
type = c("index"”, "names"”, "full"),
exact = FALSE,
keep_factors = TRUE,

)
correl_filter(
Y,
X)
method = "pearson”,

force_vars = NULL,

nfilter = NULL,

p_cutoff = 0.05,

rsq_cutoff = NULL,

type = c("index”, "names”, "full"),
keep_factors = TRUE,

)
Arguments

y Response vector

X Matrix or dataframe of predictors

force_vars Vector of column names within x which are always retained in the model (i.e.
not filtered). Default NULL means all predictors will be passed to filterFUN.

nfilter Number of predictors to return. If NULL all predictors with p-values < p_cutoff
are returned.

p_cutoff p value cut-off

rsg_cutoff 2 cutoff for removing predictors due to collinearity. Default NULL means no
collinearity filtering. Predictors are ranked based on t-test. If 2 or more predic-
tors are collinear, the first ranked predictor by t-test is retained, while the other
collinear predictors are removed. See collinear().

type Type of vector returned. Default "index" returns indices, "names" returns pre-

dictor names, "full" returns a matrix of p values.
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keep_factors  Logical affecting factors with 3 or more levels. Dataframes are coerced to a
matrix using data.matrix. Binary factors are converted to numeric values 0/1
and analysed as such. If keep_factors is TRUE (the default), factors with 3 or
more levels are not filtered and are retained. If keep_factors is FALSE, they are

removed.

optional arguments, including rsq_method passed to collinear() or argu-
ments passed to matrixTests::row_wilcoxon_twosample in wilcoxon_filter().

exact Logical whether exact or approximate p-value is calculated. Default is FALSE
for speed.
method Type of correlation, either "pearson” or "spearman".
Value

Integer vector of indices of filtered parameters (type = "index") or character vector of names (type
= "names") of filtered parameters in order of t-test p-value. If type is "full” full output from

Rfast::ttests is returned.

See Also

Im_filter() stat_filter()

Examples

## sigmoid function
sigmoid <- function(x) {1 / (1 + exp(-x))}

## load iris dataset and simulate a binary outcome

data(iris)
dt <- iris[, 1:4]
colnames(dt) <- c(”marker1”, "marker2", "marker3", "marker4")

dt <- as.data.frame(apply(dt, 2, scale))

y2 <- sigmoid(@.5 * dt$marker1 + 2 x dt$marker2) > runif(nrow(dt))

y2 <- factor(y2, labels = c("C1", "C2"))

ttest_filter(y2, dt) # returns index of filtered predictors
ttest_filter(y2, dt, type = "name"”) # shows names of predictors
ttest_filter(y2, dt, type = "full”) # full results table

data(iris)

dt <- iris[, 1:4]

y3 <- iris[, 5]

anova_filter(y3, dt) # returns index of filtered predictors
anova_filter(y3, dt, type = "full”) # shows names of predictors
anova_filter(y3, dt, type = "name"”) # full results table



72 txtProgressBar2

txtProgressBar?2 Text Progress Bar 2

Description

Text progress bar in the R console. Modified from utils: : txtProgressBar() to include title and

timing.
Usage
txtProgressBar2(
min = 0,
max = 1,
initial = 9,
char = "=",
width = NA,
title = "
)
Arguments
min Numeric value for minimum of the progress bar.
max Numeric value for maximum of the progress bar.
initial Initial value for the progress bar.
char The character (or character string) to form the progress bar.
width The width of the progress bar, as a multiple of the width of char. If NA, the
default, the number of characters is that which fits into getOption("width").
title Title for the progress bar.
Details

Use utils: :setTxtProgressBar() to set the progress bar and close() to close it.

Value

An object of class "txtProgressBar".
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var_direction Variable directionality

Description
Determines directionality of final predictors for binary or regression models, using the sign of the
t-statistic or correlation coefficient respectively for each variable compared to the outcomes.
Usage

var_direction(object)

Arguments

object anestcv.glmnet or nestcv. train fitted model

Details

Categorical features with >2 levels are assumed to have a meaningful order for the purposes of
directionality. Factors are coerced to ordinal using data.matrix(). If factors are multiclass then
directionality results should be ignored.

Value

named vector showing the directionality of final predictors. If the response vector is multinomial
NULL is returned.

var_stability Variable stability

Description

Uses variable importance across models trained and tested across outer CV folds to assess stability
of variable importance. For glmnet, variable importance is measured as the absolute model coef-
ficients, optionally scaled as a percentage. The frequency with which each variable is selected in
outer folds as well as the final model is also returned which is helpful for sparse models or with
filters to determine how often variables end up in the model in each fold. For glmnet, the direc-
tion of effect is taken directly from the sign of model coefficients. For caret models, direction of
effect is not readily available, so as a substitute, the directionality of each predictor is determined
by the function var_direction() using the sign of a t-test for binary classification or the sign of
regression coefficient for continuous outcomes (not available for multiclass caret models). To better
understand direction of effect of each predictor within the final model, we recommend using SHAP
values - see the vignette "Explaining nestedcv models with Shapley values". See pred_train() for
an example.
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Usage
var_stability(x, ...)

## S3 method for class 'nestcv.glmnet'
var_stability(x, percent = TRUE, level = 1, sort = TRUE, ...)

## S3 method for class 'nestcv.train'

var_stability(x, sort = TRUE, ...)
Arguments
X anestcv.glmnet or nestcv. train fitted object

Optional arguments for compatibility

percent Logical for nestcv.glmnet objects only, whether to scale coefficients to per-
centage of the largest coefficient in each model
level For multinomial nestcv. glmnet models only, either an integer specifying which
level of outcome is being examined, or the level can be specified as a character
value
sort Logical whether to sort variables by mean importance
Details

Note that for caret models caret: :varImp() may require the model package to be fully loaded in
order to function. During the fitting process caret often only loads the package by namespace.
Value
Dataframe containing mean, sd, sem of variable importance and frequency by which each variable
is selected in outer folds.
See Also

cv_coef () cv_varImp() pred_train()

weight Calculate weights for class imbalance

Description

Calculate weights for class imbalance

Usage

weight(y)
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Arguments
y Factor or character response vector. If a character vector is supplied it is coerced
into a factor. Unused levels are dropped.
Value

Vector of weights
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