
Package ‘mlmc’
November 11, 2024

Type Package

Title Multi-Level Monte Carlo

Version 2.1.1

Maintainer Louis Aslett <louis.aslett@durham.ac.uk>

Description An implementation of MLMC (Multi-Level Monte Carlo), Giles (2008)
<doi:10.1287/opre.1070.0496>, Heinrich (1998) <doi:10.1006/jcom.1998.0471>,
for R. This package builds on the original 'Matlab' and 'C++' implementations
by Mike Giles to provide a full MLMC driver and example level samplers.
Multi-core parallel sampling of levels is provided built-in.

BugReports https://github.com/louisaslett/mlmc/issues

URL https://mlmc.louisaslett.com/, https://github.com/louisaslett/mlmc

Imports ggplot2, grid, parallel, Rcpp

License GPL-2

RoxygenNote 7.3.2

Encoding UTF-8

LinkingTo Rcpp

NeedsCompilation yes

Author Louis Aslett [cre, aut, trl] (<https://orcid.org/0000-0003-2211-233X>),
Mike Giles [ctb] (<https://orcid.org/0000-0002-5445-3721>),
Tigran Nagapetyan [ctb] (<https://orcid.org/0000-0002-0379-1157>),
Sebastian Vollmer [ctb] (<https://orcid.org/0000-0003-2831-1401>)

Repository CRAN

Date/Publication 2024-11-11 18:30:01 UTC

Contents
mcqmc06_l . 2
mlmc . 4
mlmc.test . 7
opre_l . 10
plot.mlmc.test . 12

1

https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1006/jcom.1998.0471
https://github.com/louisaslett/mlmc/issues
https://mlmc.louisaslett.com/
https://github.com/louisaslett/mlmc
https://orcid.org/0000-0003-2211-233X
https://orcid.org/0000-0002-5445-3721
https://orcid.org/0000-0002-0379-1157
https://orcid.org/0000-0003-2831-1401

2 mcqmc06_l

Index 14

mcqmc06_l Financial options using a Milstein discretisation

Description

Financial options based on scalar geometric Brownian motion, similar to Mike Giles’ MCQMC06
paper, Giles (2008), using a Milstein discretisation.

Usage

mcqmc06_l(l, N, option)

Arguments

l the level to be simulated.

N the number of samples to be computed.

option the option type, between 1 and 5. The options are:

1 = European call;
2 = Asian call;
3 = lookback call;
4 = digital call;
5 = barrier call.

Details

This function is based on GPL-2 C++ code by Mike Giles.

Value

A named list containing:

sums is a vector of length six
(∑

Yi,
∑

Y 2
i ,

∑
Y 3
i ,

∑
Y 4
i ,

∑
Xi,

∑
X2

i

)
where Yi are iid simula-

tions with expectation E[P0] when l = 0 and expectation E[Pl − Pl−1] when l > 0, and Xi

are iid simulations with expectation E[Pl]. Note that only the first two components of this are
used by the main mlmc() driver, the full vector is used by mlmc.test() for convergence tests
etc;

cost is a scalar with the total cost of the paths simulated, computed as N × 2l for level l.

Author(s)

Louis Aslett <louis.aslett@durham.ac.uk>

Mike Giles <Mike.Giles@maths.ox.ac.uk>

mcqmc06_l 3

References

Giles, M. (2008) ’Improved Multilevel Monte Carlo Convergence using the Milstein Scheme’, in A.
Keller, S. Heinrich, and H. Niederreiter (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006.
Berlin, Heidelberg: Springer, pp. 343–358. Available at: doi:10.1007/9783540744962_20.

Examples

These are similar to the MLMC tests for the MCQMC06 paper
using a Milstein discretisation with 2^l timesteps on level l
#
The figures are slightly different due to:
-- change in MSE split
-- change in cost calculation
-- different random number generation
-- switch to S_0=100
#
Note the following takes quite a while to run, for a toy example see after
this block.

N0 <- 200 # initial samples on coarse levels
Lmin <- 2 # minimum refinement level
Lmax <- 10 # maximum refinement level

test.res <- list()
for(option in 1:5) {

if(option == 1) {
cat("\n ---- Computing European call ---- \n")
N <- 20000 # samples for convergence tests
L <- 8 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

} else if(option == 2) {
cat("\n ---- Computing Asian call ---- \n")
N <- 20000 # samples for convergence tests
L <- 8 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

} else if(option == 3) {
cat("\n ---- Computing lookback call ---- \n")
N <- 20000 # samples for convergence tests
L <- 10 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

} else if(option == 4) {
cat("\n ---- Computing digital call ---- \n")
N <- 200000 # samples for convergence tests
L <- 8 # levels for convergence tests
Eps <- c(0.01, 0.02, 0.05, 0.1, 0.2)

} else if(option == 5) {
cat("\n ---- Computing barrier call ---- \n")
N <- 200000 # samples for convergence tests
L <- 8 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

}

https://doi.org/10.1007/978-3-540-74496-2_20

4 mlmc

test.res[[option]] <- mlmc.test(mcqmc06_l, N, L, N0, Eps, Lmin, Lmax, option = option)

print exact analytic value, based on S0=K
T <- 1
r <- 0.05
sig <- 0.2
K <- 100
B <- 0.85*K

k <- 0.5*sig^2/r;
d1 <- (r+0.5*sig^2)*T / (sig*sqrt(T))
d2 <- (r-0.5*sig^2)*T / (sig*sqrt(T))
d3 <- (2*log(B/K) + (r+0.5*sig^2)*T) / (sig*sqrt(T))
d4 <- (2*log(B/K) + (r-0.5*sig^2)*T) / (sig*sqrt(T))

if(option == 1) {
val <- K*(pnorm(d1) - exp(-r*T)*pnorm(d2))

} else if(option == 2) {
val <- NA

} else if(option == 3) {
val <- K*(pnorm(d1) - pnorm(-d1)*k - exp(-r*T)*(pnorm(d2) - pnorm(d2)*k))

} else if(option == 4) {
val <- K*exp(-r*T)*pnorm(d2)

} else if(option == 5) {
val <- K*(pnorm(d1) - exp(-r*T)*pnorm(d2) -

((K/B)^(1-1/k))*((B^2)/(K^2)*pnorm(d3) - exp(-r*T)*pnorm(d4)))
}

if(is.na(val)) {
cat(sprintf("\n Exact value unknown, MLMC value: %f \n", test.res[[option]]$P[1]))

} else {
cat(sprintf("\n Exact value: %f, MLMC value: %f \n", val, test.res[[option]]$P[1]))

}

plot results
plot(test.res[[option]])

}

The level sampler can be called directly to retrieve the relevant level sums:
mcqmc06_l(l = 7, N = 10, option = 1)

mlmc Multi-level Monte Carlo estimation

Description

This function is the Multi-level Monte Carlo driver which will sample from the levels of user spec-
ified function.

mlmc 5

Usage

mlmc(
Lmin,
Lmax,
N0,
eps,
mlmc_l,
alpha = NA,
beta = NA,
gamma = NA,
parallel = NA,
...

)

Arguments

Lmin the minimum level of refinement. Must be ≥ 2.

Lmax the maximum level of refinement. Must be ≥ Lmin.

N0 initial number of samples which are used for the first 3 levels and for any subse-
quent levels which are automatically added. Must be > 0.

eps the target accuracy of the estimate (root mean square error). Must be > 0.

mlmc_l a user supplied function which provides the estimate for level l. It must take at
least two arguments, the first is the level number to be simulated and the second
the number of paths. Additional arguments can be taken if desired: all addi-
tional ... arguments to this function are forwarded to the user defined mlmc_l
function.
The user supplied function should return a named list containing one element
named sums and second named cost, where:

sums is a vector of length at least two. The first two elements should be
(∑

Yi,
∑

Y 2
i

)
where Yi are iid simulations with expectation E[P0] when l = 0 and ex-
pectation E[Pl − Pl−1] when l > 0. Note that typically the user supplied
level sampler will actually return a vector of length six, also enabling use of
the mlmc.test() function to perform convergence tests, kurtosis, and tele-
scoping sum checks. See mlmc.test() for the definition of these remaining
four elements.

cost is a scalar with the total cost of the paths simulated. For example, in
the financial options samplers included in this package, this is calculated
as NM l, where N is the number of paths requested in the call to the user
function mlmc_l, M is the refinement cost factor (M = 2 for mcqmc06_l()
and M = 4 for opre_l()), and l is the level being sampled.

See the function (and source code of) opre_l() and mcqmc06_l() in this pack-
age for an example of user supplied level samplers.

alpha the weak error, O(2−αl). Must be > 0 if specified. If NA then alpha will be
estimated.

beta the variance, O(2−βl). Must be > 0 if specified. If NA then beta will be esti-
mated.

6 mlmc

gamma the sample cost, O(2γl). Must be > 0 if specified. If NA then gamma will be
estimated.

parallel if an integer is supplied, R will fork parallel parallel processes and spread the
simulations required at each level as evenly as possible across all cores.

... additional arguments which are passed on when the user supplied mlmc_l func-
tion is called.

Details

The Multilevel Monte Carlo Method method originated in the works Giles (2008) and Heinrich
(1998).

Consider a sequence P0, P1, . . ., which approximates PL with increasing accuracy, but also increas-
ing cost, we have the simple identity

E[PL] = E[P0] +
L∑

l=1

E[Pl − Pl−1],

and therefore we can use the following unbiased estimator for E[PL],

N−1
0

N0∑
n=1

P
(0,n)
0 +

L∑
l=1

{
N−1

l

Nl∑
n=1

(
P

(l,n)
l − P

(l,n)
l−1

)}
where Nl samples are produced at level l. The inclusion of the level l in the superscript (l, n)
indicates that the samples used at each level of correction are independent.

Set C0, and V0 to be the cost and variance of one sample of P0, and Cl, Vl to be the cost and
variance of one sample of Pl − Pl−1, then the overall cost and variance of the multilevel estimator
is
∑L

l=0 NlCl and
∑L

l=0 N
−1
l Vl, respectively.

The idea behind the method, is that provided that the product VlCl decreases with l, i.e. the cost
increases with level slower than the variance decreases, then one can achieve significant computa-
tional savings, which can be formalised as in Theorem 1 of Giles (2015).

For further information on multilevel Monte Carlo methods, see the webpage https://people.
maths.ox.ac.uk/gilesm/mlmc_community.html which lists the research groups working in the
area, and their main publications.

This function is based on GPL-2 ’Matlab’ code by Mike Giles.

Value

A named list containing:

P The MLMC estimate;
Nl A vector of the number of samples performed on each level;
Cl Per sample cost at each level.

Author(s)

Louis Aslett <louis.aslett@durham.ac.uk>

Mike Giles <Mike.Giles@maths.ox.ac.uk>

Tigran Nagapetyan <nagapetyan@stats.ox.ac.uk>

https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
https://people.maths.ox.ac.uk/gilesm/mlmc_community.html

mlmc.test 7

References

Giles, M.B. (2008) ’Multilevel Monte Carlo Path Simulation’, Operations Research, 56(3), pp.
607–617. Available at: doi:10.1287/opre.1070.0496.

Giles, M.B. (2015) ’Multilevel Monte Carlo methods’, Acta Numerica, 24, pp. 259–328. Available
at: doi:10.1017/S096249291500001X.

Heinrich, S. (1998) ’Monte Carlo Complexity of Global Solution of Integral Equations’, Journal of
Complexity, 14(2), pp. 151–175. Available at: doi:10.1006/jcom.1998.0471.

Examples

mlmc(2, 6, 1000, 0.01, opre_l, option = 1)

mlmc(2, 10, 1000, 0.01, mcqmc06_l, option = 1)

mlmc.test Multi-level Monte Carlo estimation test suite

Description

Computes a suite of diagnostic values for an MLMC estimation problem.

Usage

mlmc.test(
mlmc_l,
N,
L,
N0,
eps.v,
Lmin,
Lmax,
alpha = NA,
beta = NA,
gamma = NA,
parallel = NA,
silent = FALSE,
...

)

Arguments

mlmc_l a user supplied function which provides the estimate for level l. It must take at
least two arguments, the first is the level number to be simulated and the second
the number of paths. Additional arguments can be taken if desired: all addi-
tional ... arguments to this function are forwarded to the user defined mlmc_l
function.

https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1017/S096249291500001X
https://doi.org/10.1006/jcom.1998.0471

8 mlmc.test

The user supplied function should return a named list containing one element
named sums and second named cost, where:

sums is a vector of length six
(∑

Yi,
∑

Y 2
i ,

∑
Y 3
i ,

∑
Y 4
i ,

∑
Xi,

∑
X2

i

)
where

Yi are iid simulations with expectation E[P0] when l = 0 and expectation
E[Pl − Pl−1] when l > 0, and Xi are iid simulations with expectation
E[Pl]. Note that this differs from the main mlmc() driver, which only re-
quires the first two of these elements in order to calculate the estimate. The
remaining elements are required by mlmc.test() since they are used for
convergence tests, kurtosis, and telescoping sum checks.

cost is a scalar with the total cost of the paths simulated. For example, in
the financial options samplers included in this package, this is calculated
as NM l, where N is the number of paths requested in the call to the user
function mlmc_l, M is the refinement cost factor (M = 2 for mcqmc06_l()
and M = 4 for opre_l()), and l is the level being sampled.

See the function (and source code of) opre_l() and mcqmc06_l() in this pack-
age for an example of user supplied level samplers.

N number of samples to use in convergence tests, kurtosis, telescoping sum check.

L number of levels to use in convergence tests, kurtosis, telescoping sum check.

N0 initial number of samples which are used for the first 3 levels and for any sub-
sequent levels which are automatically added in the complexity tests. Must be
> 0.

eps.v a vector of one or more target accuracies for the complexity tests. Must all be
> 0.

Lmin the minimum level of refinement for complexity tests. Must be ≥ 2.

Lmax the maximum level of refinement for complexity tests. Must be ≥ Lmin.

alpha the weak error, O(2−αl). Must be > 0 if specified. If NA then alpha will be
estimated.

beta the variance, O(2−βl). Must be > 0 if specified. If NA then beta will be esti-
mated.

gamma the sample cost, O(2γl). Must be > 0 if specified. If NA then gamma will be
estimated.

parallel if an integer is supplied, R will fork parallel parallel processes. This is done
for the convergence tests section by splitting the N samples as evenly as possible
across cores when sampling each level. This is also done for the MLMC com-
plexity tests by passing the parallel argument on to the mlmc() driver when
targeting each accuracy level in eps.

silent set to TRUE to supress running output (identical output can still be printed by
printing the return result)

... additional arguments which are passed on when the user supplied mlmc_l func-
tion is called

Details

See one of the example level sampler functions (e.g. opre_l()) for example usage.

This function is based on GPL-2 ’Matlab’ code by Mike Giles.

mlmc.test 9

Value

An mlmc.test object which contains all the computed diagnostic values. This object can be printed
or plotted (see plot.mlmc.test).

Author(s)

Louis Aslett <louis.aslett@durham.ac.uk>

Mike Giles <Mike.Giles@maths.ox.ac.uk>

Tigran Nagapetyan <nagapetyan@stats.ox.ac.uk>

Examples

Example calls with realistic arguments
Financial options using an Euler-Maruyama discretisation
tst <- mlmc.test(opre_l, N = 2000000,

L = 5, N0 = 1000,
eps.v = c(0.005, 0.01, 0.02, 0.05, 0.1),
Lmin = 2, Lmax = 6,
option = 1)

tst
plot(tst)

Financial options using a Milstein discretisation
tst <- mlmc.test(mcqmc06_l, N = 20000,

L = 8, N0 = 200,
eps.v = c(0.005, 0.01, 0.02, 0.05, 0.1),
Lmin = 2, Lmax = 10,
option = 1)

tst
plot(tst)

Toy versions for CRAN tests
tst <- mlmc.test(opre_l, N = 10000,

L = 5, N0 = 1000,
eps.v = c(0.025, 0.1),
Lmin = 2, Lmax = 6,
option = 1)

tst <- mlmc.test(mcqmc06_l, N = 10000,
L = 8, N0 = 1000,
eps.v = c(0.025, 0.1),
Lmin = 2, Lmax = 10,
option = 1)

10 opre_l

opre_l Financial options using an Euler-Maruyama discretisation

Description

Financial options based on scalar geometric Brownian motion and Heston models, similar to Mike
Giles’ original 2008 Operations Research paper, Giles (2008), using an Euler-Maruyama discreti-
sation

Usage

opre_l(l, N, option)

Arguments

l the level to be simulated.

N the number of samples to be computed.

option the option type, between 1 and 5. The options are:

1 = European call;
2 = Asian call;
3 = lookback call;
4 = digital call;
5 = Heston model.

Details

This function is based on GPL-2 ’Matlab’ code by Mike Giles.

Value

A named list containing:

sums is a vector of length six
(∑

Yi,
∑

Y 2
i ,

∑
Y 3
i ,

∑
Y 4
i ,

∑
Xi,

∑
X2

i

)
where Yi are iid simula-

tions with expectation E[P0] when l = 0 and expectation E[Pl − Pl−1] when l > 0, and Xi

are iid simulations with expectation E[Pl]. Note that only the first two components of this are
used by the main mlmc() driver, the full vector is used by mlmc.test() for convergence tests
etc;

cost is a scalar with the total cost of the paths simulated, computed as N × 4l for level l.

Author(s)

Louis Aslett <louis.aslett@durham.ac.uk>

Mike Giles <Mike.Giles@maths.ox.ac.uk>

Tigran Nagapetyan <nagapetyan@stats.ox.ac.uk>

opre_l 11

References

Giles, M.B. (2008) ’Multilevel Monte Carlo Path Simulation’, Operations Research, 56(3), pp.
607–617. Available at: doi:10.1287/opre.1070.0496.

Examples

These are similar to the MLMC tests for the original
2008 Operations Research paper, using an Euler-Maruyama
discretisation with 4^l timesteps on level l.
#
The differences are:
-- the plots do not have the extrapolation results
-- two plots are log_2 rather than log_4
-- the new MLMC driver is a little different
-- switch to X_0=100 instead of X_0=1
#
Note the following takes quite a while to run, for a toy example see after
this block.

N0 <- 1000 # initial samples on coarse levels
Lmin <- 2 # minimum refinement level
Lmax <- 6 # maximum refinement level

test.res <- list()
for(option in 1:5) {

if(option == 1) {
cat("\n ---- Computing European call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

} else if(option == 2) {
cat("\n ---- Computing Asian call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

} else if(option == 3) {
cat("\n ---- Computing lookback call ---- \n")
N <- 1000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.01, 0.02, 0.05, 0.1, 0.2)

} else if(option == 4) {
cat("\n ---- Computing digital call ---- \n")
N <- 4000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.02, 0.05, 0.1, 0.2, 0.5)

} else if(option == 5) {
cat("\n ---- Computing Heston model ---- \n")
N <- 2000000 # samples for convergence tests
L <- 5 # levels for convergence tests
Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)

}

https://doi.org/10.1287/opre.1070.0496

12 plot.mlmc.test

test.res[[option]] <- mlmc.test(opre_l, N, L, N0, Eps, Lmin, Lmax, option = option)

print exact analytic value, based on S0=K
T <- 1
r <- 0.05
sig <- 0.2
K <- 100

k <- 0.5*sig^2/r;
d1 <- (r+0.5*sig^2)*T / (sig*sqrt(T))
d2 <- (r-0.5*sig^2)*T / (sig*sqrt(T))

if(option == 1) {
val <- K*(pnorm(d1) - exp(-r*T)*pnorm(d2))

} else if(option == 2) {
val <- NA

} else if(option == 3) {
val <- K*(pnorm(d1) - pnorm(-d1)*k - exp(-r*T)*(pnorm(d2) - pnorm(d2)*k))

} else if(option == 4) {
val <- K*exp(-r*T)*pnorm(d2)

} else if(option == 5) {
val <- NA

}

if(is.na(val)) {
cat(sprintf("\n Exact value unknown, MLMC value: %f \n", test.res[[option]]$P[1]))

} else {
cat(sprintf("\n Exact value: %f, MLMC value: %f \n", val, test.res[[option]]$P[1]))

}

plot results
plot(test.res[[option]])

}

The level sampler can be called directly to retrieve the relevant level sums:
opre_l(l = 7, N = 10, option = 1)

plot.mlmc.test Plot an mlmc.test object

Description

Produces diagnostic plots on the result of an mlmc.test function call.

Usage

S3 method for class 'mlmc.test'
plot(x, which = "all", cols = NA, ...)

plot.mlmc.test 13

Arguments

x an mlmc.test object as produced by a call to the mlmc.test function.

which a vector of strings specifying which plots to produce, or "all" to do all diag-
nostic plots The options are:

"var" = log2 of variance against level;
"mean" = log2 of the absolute value of the mean against level;
"consis" = consistency against level;
"kurt" = kurtosis against level;
"Nl" = log2 of number of samples against level;
"cost" = log10 of cost against log10 of epsilon (accuracy).

cols the number of columns across to plot to override the default value.

... additional arguments which are passed on to plotting functions.

Details

Most of the plots produced are relatively self-explanatory. However, the consistency and kurtosis
plots in particular may require some background. It is highly recommended to refer to Section 3.3
of Giles (2015), where the rationale for these diagnostic plots is addressed in full detail.

Value

No return value, called for side effects.

Author(s)

Louis Aslett <louis.aslett@durham.ac.uk>

References

Giles, M.B. (2015) ’Multilevel Monte Carlo methods’, Acta Numerica, 24, pp. 259–328. Available
at: doi:10.1017/S096249291500001X.

Examples

tst <- mlmc.test(opre_l, N = 2000000,
L = 5, N0 = 1000,
eps.v = c(0.005, 0.01, 0.02, 0.05, 0.1),
Lmin = 2, Lmax = 6,
option = 1)

tst
plot(tst)

https://doi.org/10.1017/S096249291500001X

Index

mcqmc06_l, 2
mcqmc06_l(), 5, 8
mlmc, 4
mlmc(), 2, 8, 10
mlmc.test, 7, 12, 13
mlmc.test(), 2, 5, 10

opre_l, 10
opre_l(), 5, 8

plot.mlmc.test, 9, 12

14

	mcqmc06_l
	mlmc
	mlmc.test
	opre_l
	plot.mlmc.test
	Index

