## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----------------------------------------------------------------------------- library(metasnf) # We'll just use the first few columns for this demo cort_sa_minimal <- cort_sa[, 1:5] # And one more mock categorical feature for demonstration purposes city <- fav_colour city$"city" <- sample( c("toronto", "montreal", "vancouver"), size = nrow(city), replace = TRUE ) city <- city |> dplyr::select(-"colour") # Make sure to throw in all the data you're interested in visualizing for this # data_list, including out-of-model measures and confounding features. data_list <- generate_data_list( list(cort_sa_minimal, "cortical_sa", "neuroimaging", "continuous"), list(income, "household_income", "demographics", "ordinal"), list(pubertal, "pubertal_status", "demographics", "continuous"), list(fav_colour, "favourite_colour", "demographics", "categorical"), list(city, "city", "demographics", "categorical"), list(anxiety, "anxiety", "behaviour", "ordinal"), list(depress, "depressed", "behaviour", "ordinal"), uid = "unique_id" ) summarize_dl(data_list) # This matrix contains all the pairwise association p-values assoc_pval_matrix <- calc_assoc_pval_matrix(data_list) assoc_pval_matrix[1:3, 1:3] ## ----eval = FALSE------------------------------------------------------------- # ap_heatmap <- assoc_pval_heatmap( # assoc_pval_matrix # ) # # save_heatmap( # ap_heatmap, # "assoc_pval_heatmap.png", # width = 650, # height = 500, # res = 100 # ) ## ----eval = FALSE------------------------------------------------------------- # ap_heatmap2 <- assoc_pval_heatmap( # assoc_pval_matrix, # confounders = list( # "Colour" = "colour", # "Pubertal Status" = "pubertal_status" # ), # out_of_models = list( # "City" = "city" # ) # ) # # save_heatmap( # ap_heatmap2, # "assoc_pval_heatmap2.png", # width = 680, # height = 500, # res = 100 # ) ## ----eval = FALSE------------------------------------------------------------- # ap_heatmap3 <- assoc_pval_heatmap( # assoc_pval_matrix, # confounders = list( # "Colour" = "colour", # "Pubertal Status" = "pubertal_status" # ), # out_of_models = list( # "City" = "city" # ), # row_km = 3, # column_km = 3 # ) # # save_heatmap( # ap_heatmap3, # "assoc_pval_heatmap3.png", # width = 680, # height = 500, # res = 100 # ) ## ----eval = FALSE------------------------------------------------------------- # ap_heatmap4 <- assoc_pval_heatmap( # assoc_pval_matrix, # confounders = list( # "Colour" = "colour", # "Pubertal Status" = "pubertal_status" # ), # out_of_models = list( # "City" = "city" # ), # data_list = data_list, # split_by_domain = TRUE # ) # # save_heatmap( # ap_heatmap4, # "assoc_pval_heatmap4.png", # width = 700, # height = 500, # res = 100 # )