
Package ‘eyeris’
September 17, 2025

Type Package

Title Flexible, Extensible, & Reproducible Pupillometry Preprocessing

Version 3.0.0

Date 2025-09-16

Language en-US

Description Pupillometry offers a non-invasive window into the mind and has been used exten-
sively as a psychophysiological readout of arousal signals linked with cognitive processes like at-
tention, stress, and emotional states [Clewett et al. (2020) <doi:10.1038/s41467-020-17851-
9>; Kret & Sjak-Shie (2018) <doi:10.3758/s13428-018-1075-
y>; Strauch (2024) <doi:10.1016/j.tins.2024.06.002>]. Yet, despite decades of pupillometry re-
search, many established packages and workflows to date lack design patterns based on Findabil-
ity, Accessibility, Interoperability, and Reusability (FAIR) principles [see Wilkin-
son et al. (2016) <doi:10.1038/sdata.2016.18>]. 'eyeris' provides a modular, performant, and ex-
tensible preprocessing framework for pupillometry data with BIDS-like organization and interac-
tive output reports [Esteban et al. (2019) <doi:10.1038/s41592-018-0235-4>; Gor-
golewski et al. (2016) <doi:10.1038/sdata.2016.44>]. Development was sup-
ported, in part, by the Stanford Wu Tsai Human Performance Alliance, Stanford Ric Wei-
land Graduate Fellowship, Stanford Center for Mind, Brain, Computation and Technol-
ogy, NIH National Institute on Aging Grants (R01-AG065255, R01-
AG079345), NSF GRFP (DGE-2146755), McKnight Brain Research Foundation Clinical Trans-
lational Research Scholarship in Cognitive Aging and Age-Related Memory Loss, Ameri-
can Brain Foundation, and the American Academy of Neurology.

Encoding UTF-8

Depends R (>= 4.1)

Imports eyelinker, dplyr, gsignal, purrr, zoo, cli, rlang, stringr,
utils, stats, graphics, grDevices, tidyr, progress, data.table,
withr, lifecycle, MASS, viridis, fields, jsonlite, rmarkdown,
DBI, glue, base64enc, arrow

RoxygenNote 7.3.3

Suggests duckdb, knitr, testthat (>= 3.0.0), devtools

VignetteBuilder knitr

License MIT + file LICENSE

1

https://doi.org/10.1038/s41467-020-17851-9
https://doi.org/10.1038/s41467-020-17851-9
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.1016/j.tins.2024.06.002
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/sdata.2016.44


2 Contents

Config/testthat/edition 3

URL https://shawnschwartz.com/eyeris/,

https://github.com/shawntz/eyeris/

BugReports https://github.com/shawntz/eyeris/issues

NeedsCompilation no

Author Shawn Schwartz [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6444-8451>),

Mingjian He [ctb],
Haopei Yang [ctb],
Alice Xue [ctb],
Gustavo Santiago-Reyes [ctb]

Maintainer Shawn Schwartz <shawn.t.schwartz@gmail.com>

Repository CRAN

Date/Publication 2025-09-17 07:50:02 UTC

Contents
bidsify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
deblink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
detransient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
detrend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
downsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
eyelink_asc_binocular_demo_dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
eyelink_asc_demo_dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
eyelogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
eyeris_color_palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
eyeris_db_collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
eyeris_db_connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
eyeris_db_disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
eyeris_db_list_tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
eyeris_db_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
eyeris_db_reconstruct_from_chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
eyeris_db_split_for_sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
eyeris_db_summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
eyeris_db_to_chunked_files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
eyeris_db_to_parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
glassbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
load_asc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
lpfilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
pipeline_handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
plot.eyeris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

https://shawnschwartz.com/eyeris/
https://github.com/shawntz/eyeris/
https://github.com/shawntz/eyeris/issues
https://orcid.org/0000-0001-6444-8451


bidsify 3

plot_binocular_correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
plot_gaze_heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
process_chunked_query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
read_eyeris_parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
summarize_confounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
zscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Index 55

bidsify Save out pupil time series data in a BIDS-like structure

Description

This method provides a structured way to save out pupil data in a BIDS-like structure. The method
saves out epoched data as well as the raw pupil time series, and formats the directory and filename
structures based on the metadata you provide.

Usage

bidsify(
eyeris,
save_all = TRUE,
epochs_list = NULL,
bids_dir = NULL,
participant_id = NULL,
session_num = NULL,
task_name = NULL,
run_num = NULL,
save_raw = TRUE,
html_report = TRUE,
report_seed = 0,
report_epoch_grouping_var_col = "matched_event",
verbose = TRUE,
csv_enabled = TRUE,
db_enabled = FALSE,
db_path = "my-project",
parallel_processing = FALSE,
merge_epochs = deprecated(),
merge_runs = deprecated(),
pdf_report = deprecated()

)

Arguments

eyeris An object of class eyeris derived from load_asc()

save_all Logical flag indicating whether all epochs are to be saved or only a subset of
them. Defaults to TRUE



4 bidsify

epochs_list List of epochs to be saved. Defaults to NULL

bids_dir Base bids_directory. Defaults to NULL

participant_id BIDS subject ID. Defaults to NULL

session_num BIDS session ID. Defaults to NULL

task_name BIDS task ID. Defaults to NULL

run_num BIDS run ID. Optional override for the run number when there’s only one block
of data present in a given .asc file. This allows you to manually specify a
run number (e.g., "03") instead of using the default block number in .asc files
(1). This is especially useful if you have a single .asc file for a single run of
a task and want your BIDSified derivatives to be labeled correctly. However,
for files with multiple recording blocks embedded within the same .asc file,
this parameter is ignored and blocks are automatically numbered as runs (block
1 = run-01, block 2 = run-02, etc.) in the order they appeared/were recorded.
Defaults to NULL (no override)

save_raw Logical flag indicating whether to save_raw pupil data in addition to epoched
data. Defaults to TRUE

html_report Logical flag indicating whether to save out the eyeris preprocessing summary
report as an HTML file. Defaults to TRUE

report_seed Random seed for the plots that will appear in the report Defaults to 0. See
plot() for a more detailed description

report_epoch_grouping_var_col

String name of grouping column to use for epoch-by-epoch diagnostic plots in
an interactive rendered HTML report. Column name must exist (i.e., be a custom
grouping variable name set within the metadata template of your epoch() call).
Defaults to "matched_event", which all epoched data frames have as a valid
column name. To disable these epoch-level diagnostic plots, set to NULL

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to FALSE to suppress messages about the current processing step and run
silently

csv_enabled Logical flag indicating whether to write CSV output files. Defaults to TRUE. Set
to FALSE to disable CSV file generation, useful for large-scale cloud compute
environments when using database storage only

db_enabled Logical flag indicating whether to write data to a DuckDB database. Defaults to
FALSE. When TRUE, creates or connects to a database for centralized data storage
and querying

db_path Database filename or path. Defaults to "eyeris-proj.eyerisdb". If just a
filename, the database will be created in the derivatives/ directory. If a full
path is provided, it will be used as specified

parallel_processing

Logical flag to manually enable parallel database processing. When TRUE, uses
temporary databases to avoid concurrency issues. Defaults to FALSE (auto-detect
based on environment variables)

merge_epochs (Deprecated) This parameter is deprecated and will be ignored. All epochs are
now saved as separate files following BIDS conventions. This parameter will be
removed in a future version



bidsify 5

merge_runs (Deprecated) This parameter is deprecated and will be ignored. All runs are
now saved as separate files following BIDS conventions. This parameter will be
removed in a future version

pdf_report (Deprecated) Use html_report = TRUE instead

Details

In the future, we intend for this function to save out the data in an official BIDS format for eyetrack-
ing data (see the proposal currently under review here). At this time, however, this function instead
takes a more BIDS-inspired approach to organizing the output files for preprocessed pupil data.

Value

Invisibly returns NULL. Called for its side effects

See Also

lifecycle::deprecate_warn()

Examples

# bleed around blink periods just long enough to remove majority of
# deflections due to eyelid movements

demo_data <- eyelink_asc_demo_dataset()

# example with unepoched data
demo_data |>

eyeris::glassbox() |>
eyeris::bidsify(
bids_dir = tempdir(), # <- MAKE SURE TO UPDATE TO YOUR DESIRED LOCAL PATH
participant_id = "001",
session_num = "01",
task_name = "assocret",
run_num = "01",
save_raw = TRUE, # save out raw time series
html_report = TRUE, # generate interactive report document
report_seed = 0 # make randomly selected plot epochs reproducible

)

# example with epoched data
demo_data |>

eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1), # grab 1 second prior to and 1 second post event
label = "prePostProbe" # custom epoch label name

) |>
eyeris::bidsify(

bids_dir = tempdir(), # <- MAKE SURE TO UPDATE TO YOUR DESIRED LOCAL PATH
participant_id = "001",
session_num = "01",

https://github.com/bids-standard/bids-specification/pull/1128


6 bidsify

task_name = "assocret",
run_num = "01"

)

# example with run_num for single block data
demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1),
label = "prePostProbe"

) |>
eyeris::bidsify(

bids_dir = tempdir(),
participant_id = "001",
session_num = "01",
task_name = "assocret",
run_num = "03" # override default run-01 (block_1) to use run-03 instead

)

# example with database storage enabled
demo_data |>

eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1),
label = "prePostProbe"

) |>
eyeris::bidsify(

bids_dir = tempdir(),
participant_id = "001",
session_num = "01",
task_name = "assocret",
db_enabled = TRUE, # enable eyerisdb database storage
db_path = "my-project" # custom project database name

)

# example for large-scale cloud compute (database only, no CSV files)
demo_data |>

eyeris::glassbox() |>
eyeris::bidsify(

bids_dir = tempdir(),
participant_id = "001",
session_num = "01",
task_name = "assocret",
csv_enabled = FALSE, # disable CSV files
db_enabled = TRUE # database storage only

)



bin 7

bin Bin pupil time series by averaging within time bins

Description

This function bins pupillometry data by dividing time into equal intervals and averaging the data
within each bin. Unlike downsampling, binning averages data points within each time bin.

Usage

bin(eyeris, bins_per_second, method = "mean", call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

bins_per_second

The number of bins to create per second of data

method The binning method: "mean" (default) or "median"

call_info A list of call information and parameters. If not provided, it will be generated
from the function call. Defaults to NULL

Details

Binning divides one second of pupillary data into X bins and averages pupillometry data around
each bin center. The resulting time points will be: 1/2X, 3/2X, 5/2X, ..., etc. where X is the number
of bins per second.

This approach is commonly used in pupillometry research to study temporal dynamics of pupil
dilatory response; however, it should be used with caution (as averaging within bins can distort the
pupillary dynamics).

Value

An eyeris object with binned data and updated sampling rate

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via bin = list(...).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline downsample() for downsampling functionality



8 deblink

Examples

demo_data <- eyelink_asc_demo_dataset()

# bin data into 10 bins per second using the (default) "mean" method
demo_data |>

eyeris::glassbox(bin = list(bins_per_second = 10, method = "mean")) |>
plot(seed = 0)

deblink NA-pad blink events / missing data

Description

Deblinking (a.k.a. NA-padding) of time series data. The intended use of this method is to remove
blink-related artifacts surrounding periods of missing data. For instance, when an individual blinks,
there are usually rapid decreases followed by increases in pupil size, with a chunk of data missing
in-between these ’spike’-looking events. The deblinking procedure here will NA-pad each missing
data point by your specified number of ms.

Usage

deblink(eyeris, extend = 50, call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

extend Either a single number indicating the number of milliseconds to pad forward/backward
around each missing sample, or, a vector of length two indicating different num-
bers of milliseconds pad forward/backward around each missing sample, in the
format c(backward, forward)

call_info A list of call information and parameters. If not provided, it will be generated
from the function call

Details

This function is automatically called by glassbox() by default. If needed, customize the param-
eters for deblink by providing a parameter list. Use glassbox(deblink = FALSE) to disable this
step as needed.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Value

An eyeris object with a new column: pupil_raw_{...}_deblink



detransient 9

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via deblink = list(...).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline

Examples

demo_data <- eyelink_asc_demo_dataset()

# 50 ms in both directions (the default)
demo_data |>

eyeris::glassbox(deblink = list(extend = 50)) |>
plot(seed = 0)

# 40 ms backward, 50 ms forward
demo_data |>

# set deblink to FALSE (instead of a list of params)
# to skip step (not recommended)
eyeris::glassbox(deblink = list(extend = c(40, 50))) |>
plot(seed = 0)

detransient Remove pupil samples that are physiologically unlikely

Description

The intended use of this method is for removing pupil samples that emerge more quickly than would
be physiologically expected. This is accomplished by rejecting samples that exceed a "speed"-based
threshold (i.e., median absolute deviation from sample-to-sample). This threshold is computed
based on the constant n, which defaults to the value 16.

Usage

detransient(eyeris, n = 16, mad_thresh = NULL, call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

n A constant used to compute the median absolute deviation (MAD) threshold.
Defaults to 16



10 detransient

mad_thresh Default NULL. This parameter provides alternative options for handling edge
cases where the computed properties here within detransient()mad_val and
median_speed are very small. For example, if

mad_val = 0 and median_speed = 1,

then, with the default multiplier n = 16,

mad_thresh = median_speed+ (n×mad_val) = 1 + (16× 0) = 1.

In this situation, any speed pi ≥ 1 would be flagged as a transient, which might
be overly sensitive. To reduce this sensitivity, two possible adjustments are avail-
able:

1. If mad_thresh = 1, the transient detection criterion is modified from

pi ≥ mad_thresh

to
pi > mad_thresh.

2. If mad_thresh is very small, the user may manually adjust the sensitivity
by supplying an alternative threshold value here directly via this mad_thresh
parameter.

call_info A list of call information and parameters. If not provided, it will be generated
from the function call. Defaults to NULL

Details

This function is automatically called by glassbox() by default. If needed, customize the param-
eters for detransient by providing a parameter list. Use glassbox(detransient = FALSE) to
disable this step as needed.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Computed properties:

• pupil_speed: Compute speed of pupil by approximating the derivative of x (pupil) with
respect to y (time) using finite differences.

– Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two numeric vectors with n ≥ 2;
then, the finite differences are computed as:

δi =
xi+1 − xi

yi+1 − yi
, i = 1, 2, . . . , n− 1.

– This produces an output vector p = (p1, p2, . . . , pn) defined by:

* For the first element:
p1 = |δ1|,

* For the last element:
pn = |δn−1|,



detransient 11

* For the intermediate elements (i = 2, 3, . . . , n− 1):

pi = max{|δi−1|, |δi|}.

• median_speed: The median of the computed pupil_speed:

median_speed = median(p)

• mad_val: The median absolute deviation (MAD) of pupil_speed from the median:

mad_val = median(|p−median_speed|)

• mad_thresh: A threshold computed from the median speed and the MAD, using a constant
multiplier n (default value: 16):

mad_thresh = median_speed+ (n×mad_val)

Value

An eyeris object with a new column in time series: pupil_raw_{...}_detransient

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via detransient = list(...).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline.

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox(
detransient = list(n = 16) # set to FALSE to skip step (not recommended)

) |>
plot(seed = 0)



12 detrend

detrend Detrend the pupil time series

Description

Linearly detrend_pupil data by fitting a linear model of pupil_data ~ time, and return the fitted
betas and the residuals (pupil_data - fitted_values).

Usage

detrend(eyeris, call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

call_info A list of call information and parameters. If not provided, it will be generated
from the function call. Defaults to NULL

Details

This function is automatically called by glassbox() if detrend = TRUE.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Value

An eyeris object with two new columns in time series: detrend_fitted_betas, and pupil_raw_{...}_detrend

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Use glassbox(detrend = TRUE).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox(detrend = TRUE) |> # set to FALSE to skip step (default)
plot(seed = 0)



downsample 13

downsample Downsample pupil time series with anti-aliasing filtering

Description

This function downsamples pupillometry data by applying an anti-aliasing filter before decimation.
Unlike binning, downsampling preserves the original temporal dynamics without averaging within
bins.

Usage

downsample(
eyeris,
target_fs,
plot_freqz = FALSE,
rp = 1,
rs = 35,
call_info = NULL

)

Arguments

eyeris An object of class eyeris derived from load_asc().

target_fs The target sampling frequency in Hz after downsampling.

plot_freqz Boolean flag for displaying filter frequency response (default FALSE).

rp Passband ripple in dB (default 1).

rs Stopband attenuation in dB (default 35).

call_info A list of call information and parameters. If not provided, it will be generated
from the function call.

Details

Downsampling reduces the sampling frequency by decimating data points. The function automati-
cally designs an anti-aliasing filter using the lpfilt() function with carefully chosen parameters:

• ws (stopband frequency) = Fs_new / 2 (Nyquist freq of new sampling rate)

• wp (passband frequency) = ws - max(5, Fs_nq * 0.2)

• An error is raised if wp < 4 to prevent loss of pupillary responses

The resulting time points will be: 0, 1/X, 2/X, 3/X, ..., etc. where X is the new sampling frequency.

Value

An eyeris object with downsampled data and updated sampling rate.



14 epoch

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via downsample = list(...).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline. bin() for binning functionality.

Examples

demo_data <- eyelink_asc_demo_dataset()

# downsample pupil data recorded at 1000 Hz to 100 Hz with the default params
demo_data |>

eyeris::glassbox(downsample = list(target_fs = 100)) |>
plot(seed = 0)

epoch Epoch (and baseline) pupil data based on custom event message struc-
ture

Description

Intended to be used as the final preprocessing step. This function creates data epochs of either
fixed or dynamic durations with respect to provided events and time limits, and also includes an
intuitive metadata parsing feature where additional trial data embedded within event messages can
easily be identified and joined into the resulting epoched data frames.

Usage

epoch(
eyeris,
events,
limits = NULL,
label = NULL,
baseline = FALSE,
baseline_type = c("sub", "div"),
baseline_events = NULL,
baseline_period = NULL,
hz = NULL,
verbose = TRUE,
call_info = NULL,
calc_baseline = deprecated(),
apply_baseline = deprecated()

)



epoch 15

Arguments

eyeris An object of class eyeris derived from load_asc()

events Either (1) a single string representing the event message to perform trial extrac-
tion around, using specified limits to center the epoch around or no limits
(which then just grabs the data epochs between each subsequent event string
of the same type); (2) a vector containing both start and end event message
strings – here, limits will be ignored and the duration of each trial epoch will
be the number of samples between each matched start and end event mes-
sage pair; or (3) a list of 2 data frames that manually specify start/end event
timestamp-message pairs to pull out of the raw time series data – here, it is re-
quired that each raw timestamp and event message be provided in the following
format:
list( data.frame(time = c(...), msg = c(...)), # start events data.frame(time = c(...),
msg = c(...)), # end events 1 # block number )
where the first data.frame indicates the start event timestamp and message
string pairs, and the second data.frame indicates the end event timestamp and
message string pairs. Additionally, manual epoching only words with 1 block
at a time for event-modes 2 and 3; thus, please be sure to explicitly indicate the
block number in your input list (for examples, see above as well as example #9
below for more details)
For event-modes 1 and 2, the way in which you pass in the event message string
must conform to a standardized protocol so that eyeris knows how to find your
events and (optionally) parse any included metadata into the tidy epoch data
outputs. You have two primary choices: either (a) specify a string followed
by a * wildcard expression (e.g., "PROBE_START*), which will match any mes-
sages that have "PROBE_START ..." (... referring to potential metadata, such
as trial number, stim file, etc.); or (b) specify a string using the eyeris syntax:
(e.g., "PROBE_{type}_{trial}"), which will match the messages that follow
a structure like this "PROBE_START_1" and "PROBE_STOP_1", and generate
two additional metadata columns: type and trial, which would contain the fol-
lowing values based on these two example strings: type: ('START', 'STOP'),
and trial: (1, 1)

limits A vector of 2 values (start, end) in seconds, indicating where trial extraction
should occur centered around any given start message string in the events
parameter

label An (optional) string you can provide to customize the name of the resulting
eyeris class object containing the epoched data frame. If left as NULL (default),
then list item will be called epoch_xyz, where xyz will be a sanitized version
of the original start event string you provided for matching. If you choose
to specify a label here, then the resulting list object name will take the form:
epoch_label. Warning: if no label is specified and there are no event mes-
sage strings to sanitize, then you may obtain a strange-looking epoch list
element in your output object (e.g., $epoch_, or $epoch_nana, etc.). The
data should still be accessible within this nested lists, however, to avoid am-
biguous list objects, we recommend you provide an epoch label here to be
safe



16 epoch

baseline (New) A single parameter that controls baseline correction. Set to TRUE to both
calculate and apply baseline correction, or FALSE to skip it. This replaces the
deprecated calc_baseline and apply_baseline parameters

baseline_type Whether to perform subtractive (sub) or divisive (div) baseline correction. De-
faults to sub

baseline_events

Similar to events, baseline_events, you can supply either (1) a single string
representing the event message to center the baseline calculation around, as indi-
cated by baseline_period; or (2) a single vector containing both a start and
an end event message string – here, baseline_period will be ignored and the
duration of each baseline period that the mean will be calculated on will be the
number of samples between each matched start and end event message pair,
as opposed to a specified fixed duration (as described in 1). Please note, pro-
viding a list of trial-level start/end message pairs (like in the events parameter)
to manually indicate unique start/end chunks for baselining is currently unsup-
ported. Though, we intend to add this feature in a later version of eyeris, given
it likely won’t be a heavily utilized / in demand feature.

baseline_period

A vector of 2 values (start, end) in seconds, indicating the window of data that
will be used to perform the baseline correction, which will be centered around
the single string "start" message string provided in baseline_events. Again,
baseline_period will be ignored if both a "start" and "end" message string are
provided to the baseline_events argument

hz Data sampling rate. If not specified, will use the value contained within the
tracker’s metadata

verbose A flag to indicate whether to print detailed logging messages Defaults to TRUE.
Set to False to suppress messages about the current processing step and run
silently

call_info A list of call information and parameters. If not provided, it will be generated
from the function call

calc_baseline (Deprecated) Use baseline instead

apply_baseline (Deprecated) Use baseline instead

Value

An eyeris object with a new nested list of data frames: $epoch_*. The epochs are organized
hierarchically by block and preprocessing step. Each epoch contains the pupil time series data for
the specified time window around each event message, along with metadata about the event.

When using bidsify() to export the data, filenames will include both epoch and baseline event
information for clarity.

See Also

lifecycle::deprecate_warn()



epoch 17

Examples

demo_data <- eyelink_asc_demo_dataset()
eye_preproc <- eyeris::glassbox(demo_data)

# example 1: select 1 second before/after matched event message "PROBE*"
eye_preproc |>

eyeris::epoch(events = "PROBE*", limits = c(-1, 1))

# example 2: select all samples between each trial
eye_preproc |>

eyeris::epoch(events = "TRIALID {trial}")

# example 3: grab the 1 second following probe onset
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(0, 1)

)

# example 4: 1 second prior to and 1 second after probe onset
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(-1, 1),
label = "prePostProbe" # custom epoch label name

)

# example 5: manual start/end event pairs
# note: here, the `msg` column of each data frame is optional
eye_preproc |>

eyeris::epoch(
events = list(

data.frame(time = c(11334491), msg = c("TRIALID 22")), # start events
data.frame(time = c(11337158), msg = c("RESPONSE_22")), # end events
1 # block number

),
label = "example5"

)

# example 6: manual start/end event pairs
# note: set `msg` to NA if you only want to pass in start/end timestamps
eye_preproc |>

eyeris::epoch(
events = list(

data.frame(time = c(11334491), msg = NA), # start events
data.frame(time = c(11337158), msg = NA), # end events
1 # block number

),
label = "example6"

)

## examples with baseline arguments enabled



18 eyelink_asc_binocular_demo_dataset

# example 7: use mean of 1-s preceding "PROBE_START" (i.e. "DELAY_STOP")
# to perform subtractive baselining of the 1-s PROBE epochs.
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(0, 1), # grab 0 seconds prior to and 1 second post PROBE event
label = "prePostProbe", # custom epoch label name
baseline = TRUE, # calculate and apply baseline correction
baseline_type = "sub", # "sub"tractive baseline calculation is default
baseline_events = "DELAY_STOP_*",
baseline_period = c(-1, 0)

)

# example 8: use mean of time period between set start/end event messages
# (i.e. between "DELAY_START" and "DELAY_STOP"). In this case, the
# `baseline_period` argument will be ignored since both a "start" and "end"
# message string are provided to the `baseline_events` argument.
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(0, 1), # grab 0 seconds prior to and 1 second post PROBE event
label = "prePostProbe", # custom epoch label name
baseline = TRUE, # calculate and apply baseline correction
baseline_type = "sub", # "sub"tractive baseline calculation is default
baseline_events = c(

"DELAY_START_*",
"DELAY_STOP_*"

)
)

# example 9: additional (potentially helpful) example
start_events <- data.frame(

time = c(11334491, 11338691),
msg = c("TRIALID 22", "TRIALID 23")

)
end_events <- data.frame(

time = c(11337158, 11341292),
msg = c("RESPONSE_22", "RESPONSE_23")

)
block_number <- 1

eye_preproc |>
eyeris::epoch(

events = list(start_events, end_events, block_number),
label = "example9"

)



eyelink_asc_demo_dataset 19

eyelink_asc_binocular_demo_dataset

Access example EyeLink .asc binocular mock dataset file provided by
the eyeris package.

Description

Returns the file path to the demo binocular .asc EyeLink pupil data file included in the eyeris
package.

Usage

eyelink_asc_binocular_demo_dataset()

Details

This dataset is a mock dataset trimmed from a larger data file. The original data file was obtained
from: https://github.com/scott-huberty/eyelinkio/blob/main/src/eyelinkio/tests/data/test_raw_binocular.edf

Value

A character string giving the full file path to the demo .asc EyeLink pupil data file

Examples

path_to_binocular_demo_dataset <- eyelink_asc_binocular_demo_dataset()
print(path_to_binocular_demo_dataset)

eyelink_asc_demo_dataset

Access example EyeLink .asc demo dataset file provided by the eyeris
package.

Description

Returns the file path to the demo .asc EyeLink pupil data file included in the eyeris package.

Usage

eyelink_asc_demo_dataset()

Value

A character string giving the full file path to the demo .asc EyeLink pupil data file



20 eyelogger

Examples

path_to_demo_dataset <- eyelink_asc_demo_dataset()
print(path_to_demo_dataset)

eyelogger Run eyeris commands with automatic logging of R console’s stdout
and stderr

Description

This utility function evaluates eyeris commands while automatically capturing and recording both
standard output (stdout) and standard error (stderr) to timestamped log files in your desired log
directory.

Usage

eyelogger(
eyeris_cmd,
log_dir = file.path(tempdir(), "eyeris_logs"),
timestamp_format = "%Y%m%d_%H%M%S"

)

Arguments

eyeris_cmd An eyeris command, wrapped in {} if multiline

log_dir Character path to the desired log directory. Is set to the temporary directory
given by tempdir() by default

timestamp_format

Format string passed to format(Sys.time()) for naming the log files. Defaults
to "%Y%m%d_%H%M%S"

Details

Each run produces two log files:

• <timestamp>.out: records all console output
• <timestamp>.err: records all warnings and errors

Value

The result of the evaluated eyeris command (invisibly)



eyeris_color_palette 21

Examples

eyelogger({
message("eyeris `glassbox()` completed successfully.")
warning("eyeris `glassbox()` completed with warnings.")
print("some eyeris-related information.")

})

eyelogger({
glassbox(eyelink_asc_demo_dataset(), interactive_preview = FALSE)

}, log_dir = file.path(tempdir(), "eyeris_logs"))

eyeris_color_palette Default color palette for eyeris plotting functions

Description

A custom color palette designed for visualizing pupil data preprocessing steps. This palette is
based on the RColorBrewer Set1 palette and provides distinct, visually appealing colors for different
preprocessing stages.

Usage

eyeris_color_palette()

Details

The palette includes 7 colors optimized for:

• High contrast and visibility
• Colorblind-friendly design
• Consistent visual hierarchy across preprocessing steps
• Professional appearance in reports and publications

Colors are designed to work well with both light and dark backgrounds and maintain readability
when overlaid in time series plots.

Value

A character vector of 7 hex color codes representing the default eyeris color palette

Examples

# get the default color palette
colors <- eyeris_color_palette()
print(colors)

# use in a plot
plot(1:7, 1:7, col = colors, pch = 19, cex = 3)



22 eyeris_db_collect

eyeris_db_collect Extract and aggregate eyeris data across subjects from database

Description

A comprehensive wrapper function that simplifies extracting eyeris data from the database. Pro-
vides easy one-liner access to aggregate data across multiple subjects for each data type, without
requiring SQL knowledge.

Usage

eyeris_db_collect(
bids_dir,
db_path = "my-project",
subjects = NULL,
data_types = NULL,
sessions = NULL,
tasks = NULL,
epoch_labels = NULL,
eye_suffixes = NULL,
verbose = TRUE

)

Arguments

bids_dir Path to the BIDS directory containing the database

db_path Database name (defaults to "my-project", becomes "my-project.eyerisdb")

subjects Vector of subject IDs to include. If NULL (default), includes all subjects

data_types Vector of data types to extract. If NULL (default), extracts all available types.
Valid types: "blinks", "events", "timeseries", "epochs", "epoch_summary", "run_confounds",
"confounds_events", "confounds_summary"

sessions Vector of session IDs to include. If NULL (default), includes all sessions

tasks Vector of task names to include. If NULL (default), includes all tasks

epoch_labels Vector of epoch labels to include. If NULL (default), includes all epochs. Only
applies to epoch-related data types

eye_suffixes Vector of eye suffixes to include. If NULL (default), includes all eyes. Typically
c("eye-L", "eye-R") for binocular data

verbose Logical. Whether to print progress messages (default TRUE)

Value

A named list of data frames, one per data type



eyeris_db_connect 23

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1),
label = "prePostProbe"

) |>
eyeris::bidsify(

bids_dir = tempdir(),
participant_id = "001",
session_num = "01",
task_name = "assocret",
run_num = "03", # override default run-01 (block_1) to use run-03 instead
db_enabled = TRUE # enable database storage

)

# extract all data for all subjects (returns list of data frames)
all_data <- eyeris_db_collect(tempdir())

# view available data types
names(all_data)

# access specific data type
blinks_data <- all_data$blinks
epochs_data <- all_data$epochs

# extract specific subjects and data types
subset_data <- eyeris_db_collect(

bids_dir = tempdir(),
subjects = c("001"),
data_types = c("blinks", "epochs", "timeseries")

)

# extract epoch data for specific epoch label
epoch_data <- eyeris_db_collect(

bids_dir = tempdir(),
data_types = "epochs",
epoch_labels = "prepostprobe"

)

eyeris_db_connect Connect to eyeris project database (user-facing)



24 eyeris_db_connect

Description

User-friendly function to connect to an existing eyeris project database. This function provides
easy access for users to query their eyeris data.

Usage

eyeris_db_connect(bids_dir, db_path = "my-project")

Arguments

bids_dir Path to the BIDS directory containing the database

db_path Database name (defaults to "my-project", becomes "my-project.eyerisdb") If
just a filename, will look in derivatives/ directory. If includes path, will use
as provided.

Value

Database connection object for use with other eyeris database functions

Examples

# step 1: create a database using bidsify with db_enabled = TRUE
# (This example assumes you have already run bidsify to create a database)

# temp dir for testing
temp_dir <- tempdir()

# step 2: connect to eyeris DB (will fail gracefully if no DB exists)
tryCatch({

con <- eyeris_db_connect(temp_dir)

tables <- eyeris_db_list_tables(con)

# read timeseries data for a specific subject
data <- eyeris_db_read(con, data_type = "timeseries", subject = "001")

# close connection when done
eyeris_db_disconnect(con)

}, error = function(e) {
message("No eyeris DB found - create one first with bidsify(db_enabled = TRUE)")

})



eyeris_db_disconnect 25

eyeris_db_disconnect Disconnect from eyeris database (user-facing)

Description

User-friendly function to disconnect from the eyeris project database.

Usage

eyeris_db_disconnect(con)

Arguments

con Database connection object

Value

Logical indicating success

eyeris_db_list_tables List available tables in eyeris database

Description

Lists all tables in the eyeris project database with optional filtering.

Usage

eyeris_db_list_tables(con, data_type = NULL, subject = NULL)

Arguments

con Database connection

data_type Optional filter by data type

subject Optional filter by subject ID

Value

Character vector of table names



26 eyeris_db_read

eyeris_db_read Read eyeris data from database

Description

Reads eyeris data from the project database with dplyr-style interface.

Usage

eyeris_db_read(
con,
data_type = NULL,
subject = NULL,
session = NULL,
task = NULL,
run = NULL,
eye_suffix = NULL,
epoch_label = NULL,
table_name = NULL

)

Arguments

con Database connection

data_type Type of data to read ("timeseries", "epochs", "epoch_timeseries", "epoch_summary",
"events", "blinks")

subject Optional subject ID filter

session Optional session ID filter

task Optional task name filter

run Optional run number filter

eye_suffix Optional eye suffix filter

epoch_label Optional epoch label filter (for epoched data)

table_name Exact table name (overrides other parameters)

Value

Data frame with requested data



eyeris_db_reconstruct_from_chunks 27

eyeris_db_reconstruct_from_chunks

Reconstruct eyerisdb from chunked files

Description

Merges multiple chunked eyerisdb files back into a single database file. Uses the reconstruction
metadata file created by eyeris_db_split_for_sharing() to ensure proper reconstruction.

Usage

eyeris_db_reconstruct_from_chunks(
chunked_dir,
output_path,
reconstruction_file = NULL,
verbose = TRUE

)

Arguments

chunked_dir Directory containing the chunked database files and reconstruction metadata
output_path Full path for the reconstructed database (e.g., "/path/to/reconstructed.eyerisdb")
reconstruction_file

Path to the reconstruction metadata JSON file. If NULL (default), searches for
"*_reconstruction_info.json" in chunked_dir

verbose Whether to print progress messages (default: TRUE)

Value

List containing information about the reconstruction process

Examples

## Not run:
# Reconstruct database from chunked files
reconstruction_info <- eyeris_db_reconstruct_from_chunks(

chunked_dir = "/path/to/chunked_db/project-name",
output_path = "/path/to/reconstructed-project.eyerisdb"

)

# Specify custom reconstruction file location
reconstruction_info <- eyeris_db_reconstruct_from_chunks(

chunked_dir = "/path/to/chunked_db/project-name",
output_path = "/path/to/reconstructed-project.eyerisdb",
reconstruction_file = "/path/to/custom_reconstruction_info.json"

)

## End(Not run)



28 eyeris_db_split_for_sharing

eyeris_db_split_for_sharing

Split eyerisdb for data sharing and distribution

Description

Creates multiple smaller eyerisdb files from a single large database for easier distribution via plat-
forms with file size limits (GitHub, OSF, data repositories, etc.). Data can be chunked by data type,
by number of chunks, or by maximum file size. Includes metadata to facilitate reconstruction of the
original database.

Usage

eyeris_db_split_for_sharing(
bids_dir,
db_path = "my-project",
output_dir = NULL,
chunk_strategy = "by_data_type",
n_chunks = 4,
max_chunk_size_mb = 100,
data_types = NULL,
group_by_epoch_label = TRUE,
include_metadata = TRUE,
verbose = TRUE

)

Arguments

bids_dir Path to the BIDS directory containing the source database

db_path Source database name (defaults to "my-project", becomes "my-project.eyerisdb")

output_dir Directory to save chunked databases (defaults to bids_dir/derivatives/chunked_db)

chunk_strategy Strategy for chunking: "by_data_type", "by_count", or "by_size" (default: "by_data_type")

n_chunks Number of chunks to create when chunk_strategy = "by_count" (default: 4)
max_chunk_size_mb

Maximum size per chunk in MB when chunk_strategy = "by_size" (default:
100)

data_types Vector of data types to include. If NULL (default), includes all available
group_by_epoch_label

If TRUE (default), processes epoch-related data types separately by epoch label
include_metadata

Whether to include eyeris metadata columns in chunked databases (default:
TRUE)

verbose Whether to print progress messages (default: TRUE)



eyeris_db_summary 29

Value

List containing information about created chunked databases and reconstruction instructions

Examples

## Not run:
# These examples require an existing eyeris database

# Chunk by data type (each data type gets its own database file)
chunk_info <- eyeris_db_split_for_sharing(

bids_dir = "/path/to/bids",
db_path = "large-project",
chunk_strategy = "by_data_type"

)

# Chunk into 6 files by count
chunk_info <- eyeris_db_split_for_sharing(

bids_dir = "/path/to/bids",
db_path = "large-project",
chunk_strategy = "by_count",
n_chunks = 6

)

# Chunk by size (max 50MB per file)
chunk_info <- eyeris_db_split_for_sharing(

bids_dir = "/path/to/bids",
db_path = "large-project",
chunk_strategy = "by_size",
max_chunk_size_mb = 50

)

## End(Not run)

eyeris_db_summary Get summary statistics for eyeris database

Description

Provides a quick overview of the contents of an eyeris database, including available subjects,
sessions, tasks, and data types.

Usage

eyeris_db_summary(bids_dir, db_path = "my-project", verbose = TRUE)



30 eyeris_db_summary

Arguments

bids_dir Path to the BIDS directory containing the database

db_path Database name (defaults to "my-project", becomes "my-project.eyerisdb")

verbose Logical. Whether to print detailed output (default TRUE)

Value

A named list containing summary information about the database contents

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1),
label = "prePostProbe"

) |>
eyeris::bidsify(

bids_dir = file.path(tempdir(), "my-cool-memory-project"),
participant_id = "001",
session_num = "01",
task_name = "assocret",
run_num = "03", # override default run-01 (block_1) to use run-03 instead
db_enabled = TRUE,
db_path = "my-cool-memory-study",

)

# get database summary
summary <- eyeris_db_summary(

file.path(
tempdir(),
"my-cool-memory-project"

),
db_path = "my-cool-memory-study"

)

# view available subjects
summary$subjects

# view available data types
summary$data_types

# view table counts
summary$table_counts



eyeris_db_to_chunked_files 31

eyeris_db_to_chunked_files

Export eyeris database to chunked files

Description

High-level wrapper function to export large eyeris databases to chunked CSV or Parquet files by
data type. Uses chunked processing to handle very large datasets without memory issues.

Usage

eyeris_db_to_chunked_files(
bids_dir,
db_path = "my-project",
output_dir = NULL,
chunk_size = 1e+06,
file_format = "csv",
data_types = NULL,
subjects = NULL,
max_file_size_mb = 50,
group_by_epoch_label = TRUE,
verbose = TRUE

)

Arguments

bids_dir Path to the BIDS directory containing the database

db_path Database name (defaults to "my-project", becomes "my-project.eyerisdb")

output_dir Directory to save output files (defaults to bids_dir/derivatives/eyerisdb_export)

chunk_size Number of rows to process per chunk (default: 1000000)

file_format Output format: "csv" or "parquet" (default: "csv")

data_types Vector of data types to export. If NULL (default), exports all available

subjects Vector of subject IDs to include. If NULL (default), includes all subjects
max_file_size_mb

Maximum file size in MB per output file (default: 50). When exceeded, auto-
matically creates numbered files (e.g., data_01-of-03.csv, data_02-of-03.csv)

group_by_epoch_label

If TRUE (default), processes epoch-related data types separately by epoch la-
bel to reduce memory footprint and produce label-specific files. When FALSE,
epochs with different labels are merged into single large files (not recommended).

verbose Whether to print progress messages (default: TRUE)

Value

List containing information about exported files



32 eyeris_db_to_parquet

Examples

## Not run:
# These examples require an existing eyeris database

# Export entire database to CSV files
if (file.exists(file.path(tempdir(), "derivatives", "large-project.eyerisdb"))) {

export_info <- eyeris_db_to_chunked_files(
bids_dir = tempdir(),
db_path = "large-project",
chunk_size = 50000,
file_format = "csv"

)
}

# Export specific data types to Parquet
if (file.exists(file.path(tempdir(), "derivatives", "large-project.eyerisdb"))) {

export_info <- eyeris_db_to_chunked_files(
bids_dir = tempdir(),
db_path = "large-project",
data_types = c("timeseries", "events"),
file_format = "parquet",
chunk_size = 75000

)
}

## End(Not run)

eyeris_db_to_parquet Split eyeris database into N parquet files by data type

Description

Utility function that takes an eyerisdb DuckDB database and splits it into N reasonably sized parquet
files for easy management with GitHub, downloading, and distribution. Data is first grouped by
table type (timeseries, epochs, events, etc.) since each has different columnar structures, then each
group is split into the specified number of files. Files are organized in folders matching the database
name for easy identification.

Usage

eyeris_db_to_parquet(
bids_dir,
db_path = "my-project",
n_files_per_type = 1,
output_dir = NULL,
max_file_size = 512,
data_types = NULL,
verbose = TRUE,



eyeris_db_to_parquet 33

include_metadata = TRUE,
epoch_labels = NULL,
group_by_epoch_label = TRUE

)

Arguments

bids_dir Path to the BIDS directory containing the database

db_path Database name (defaults to "my-project", becomes "my-project.eyerisdb")
n_files_per_type

Number of parquet files to create per data type (default: 1)

output_dir Directory to save parquet files (defaults to bids_dir/derivatives/parquet)

max_file_size Maximum file size in MB per parquet file (default: 512) Used as a constraint
when n_files_per_type would create files larger than this

data_types Vector of data types to include. If NULL (default), includes all available. Valid
types: "timeseries", "epochs", "epoch_summary", "events", "blinks", "confounds_*"

verbose Whether to print progress messages (default: TRUE)
include_metadata

Whether to include eyeris metadata columns in output (default: TRUE)

epoch_labels Optional character vector of epoch labels to include (e.g., "prepostprobe"). Only
applies to epoch-related data types. If NULL, includes all labels.

group_by_epoch_label

If TRUE, processes epoch-related data types separately by epoch label to reduce
memory footprint and produce label-specific parquet files (default: TRUE).

Value

List containing information about created parquet files

Database Safety

This function creates temporary tables during parquet export when the arrow package is not avail-
able. All temporary tables are automatically cleaned up, but if the process crashes, leftover tables
may remain. The function checks for and warns about existing temporary tables before starting.

Examples

# create demo database
demo_data <- eyelink_asc_demo_dataset()
demo_data |>

eyeris::glassbox() |>
eyeris::epoch(

events = "PROBE_{startstop}_{trial}",
limits = c(-1, 1),
label = "prePostProbe"

) |>
eyeris::bidsify(

bids_dir = tempdir(),



34 glassbox

participant_id = "001",
session_num = "01",
task_name = "memory",
db_enabled = TRUE,
db_path = "memory-task"

)

# split into 3 parquet files per data type - creates memory-task/ folder
split_info <- eyeris_db_to_parquet(

bids_dir = tempdir(),
db_path = "memory-task",
n_files_per_type = 3

)

# split with size constraint and specific data types using the same database
split_info <- eyeris_db_to_parquet(

bids_dir = tempdir(),
db_path = "memory-task",
n_files_per_type = 5,
max_file_size = 50, # max 50MB per file
data_types = c("timeseries", "epochs", "events")

)

glassbox The opinionated "glass box" eyeris pipeline

Description

This glassbox function (in contrast to a "black box" function where you run it and get a result
but have no (or little) idea as to how you got from input to output) has a few primary benefits over
calling each exported function from eyeris separately.

Usage

glassbox(
file,
interactive_preview = FALSE,
preview_n = 3,
preview_duration = 5,
preview_window = NULL,
verbose = TRUE,
...,
confirm = deprecated(),
num_previews = deprecated(),
detrend_data = deprecated(),
skip_detransient = deprecated()

)



glassbox 35

Arguments

file An SR Research EyeLink .asc file generated by the official EyeLink edf2asc
command

interactive_preview

A flag to indicate whether to run the glassbox pipeline autonomously all the
way through (set to FALSE by default), or to interactively provide a visualization
after each pipeline step, where you must also indicate "(y)es" or "(n)o" to either
proceed or cancel the current glassbox pipeline operation (set to TRUE)

preview_n Number of random example "epochs" to generate for previewing the effect of
each preprocessing step on the pupil time series

preview_duration

Time in seconds of each randomly selected preview

preview_window The start and stop raw timestamps used to subset the preprocessed data from
each step of the eyeris workflow for visualization. Defaults to NULL, mean-
ing random epochs as defined by preview_n and preview_duration will be
plotted. To override the random epochs, set preview_window here to a vec-
tor with relative start and stop times (in seconds), for example – c(5,6) – to
indicate the raw data from 5-6 secs on data that were recorded at 1000 Hz).
Note, the start/stop time values indicated here are in seconds because eyeris
automatically computes the indices for the supplied range of seconds using the
$info$sample.rate metadata in the eyeris S3 class object

verbose A logical flag to indicate whether to print status messages to the console. De-
faults to TRUE. Set to FALSE to suppress messages about the current processing
step and run silently

... Additional arguments to override the default, prescribed settings

confirm (Deprecated) Use interactive_preview instead

num_previews (Deprecated) Use preview_n instead

detrend_data (Deprecated) A flag to indicate whether to run the detrend step (set to FALSE by
default). Detrending your pupil time series can have unintended consequences;
we thus recommend that users understand the implications of detrending – in
addition to whether detrending is appropriate for the research design and ques-
tion(s) – before using this function

skip_detransient

(Deprecated) A flag to indicate whether to skip the detransient step (set to
FALSE by default). In most cases, this should remain FALSE. For a more detailed
description about likely edge cases that would prompt you to set this to TRUE,
see the docs for detransient()

Details

First, this glassbox function provides a highly opinionated prescription of steps and starting pa-
rameters we believe any pupillometry researcher should use as their defaults when preprocessing
pupillometry data.

Second, and not mutually exclusive from the first point, using this function should ideally reduce the
probability of accidental mishaps when "reimplementing" the steps from the preprocessing pipeline



36 glassbox

both within and across projects. We hope to streamline the process in such a way that you could
collect a pupillometry dataset and within a few minutes assess the quality of those data while simul-
taneously running a full preprocessing pipeline in 1-ish line of code!

Third, glassbox provides an "interactive" framework where you can evaluate the consequences of
the parameters within each step on your data in real time, facilitating a fairly easy-to-use workflow
for parameter optimization on your particular dataset. This process essentially takes each of the
opinionated steps and provides a pre-/post-plot of the time series data for each step so you can
adjust parameters and re-run the pipeline until you are satisfied with the choices of your parameters
and their consequences on your pupil time series data.

Value

Preprocessed pupil data contained within an object of class eyeris

See Also

lifecycle::deprecate_warn()

Examples

demo_data <- eyelink_asc_demo_dataset()

# (1) examples using the default prescribed parameters and pipeline recipe

## (a) run an automated pipeline with no real-time inspection of parameters
output <- eyeris::glassbox(demo_data)

start_time <- min(output$timeseries$block_1$time_secs)
end_time <- max(output$timeseries$block_1$time_secs)

# by default, verbose = TRUE. To suppress messages, set verbose = FALSE.
plot(

output,
steps = c(1, 5),
preview_window = c(start_time, end_time),
seed = 0

)

## (b) run a interactive workflow (with confirmation prompts after each step)

output <- eyeris::glassbox(demo_data, interactive_preview = TRUE, seed = 0)

# (2) examples of overriding the default parameters
output <- eyeris::glassbox(

demo_data,
interactive_preview = FALSE, # TRUE to visualize each step in real-time
deblink = list(extend = 40),
lpfilt = list(plot_freqz = TRUE) # overrides verbose parameter

)



interpolate 37

# to suppress messages, set verbose = FALSE in plot():
plot(output, seed = 0, verbose = FALSE)

# (3) examples of disabling certain steps
output <- eyeris::glassbox(

demo_data,
detransient = FALSE,
detrend = FALSE,
zscore = FALSE

)

plot(output, seed = 0)

interpolate Interpolate missing pupil samples

Description

Linear interpolation of time series data. The intended use of this method is for filling in missing
pupil samples (NAs) in the time series. This method uses "na.approx()" function from the zoo
package, which implements linear interpolation using the "approx()" function from the stats pack-
age. Currently, NAs at the beginning and the end of the data are replaced with values on either end,
respectively, using the "rule = 2" argument in the approx() function.

Usage

interpolate(eyeris, verbose = TRUE, call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to FALSE to suppress messages about the current processing step and run
silently

call_info A list of call information and parameters. If not provided, it will be generated
from the function call

Details

This function is automatically called by glassbox() by default. Use glassbox(interpolate =
FALSE) to disable this step as needed.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Value

An eyeris object with a new column in timeseries: pupil_raw_{...}_interpolate



38 load_asc

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Use glassbox(interpolate = TRUE).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline.

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
# set to FALSE to skip (not recommended)
eyeris::glassbox(interpolate = TRUE) |>
plot(seed = 0)

load_asc Load and parse SR Research EyeLink .asc files

Description

This function builds upon the eyelinker::read.asc() function to parse the messages and meta-
data within the EyeLink .asc file. After loading and additional processing, this function returns an
S3 eyeris class for use in all subsequent eyeris pipeline steps and functions.

Usage

load_asc(
file,
block = "auto",
binocular_mode = c("average", "left", "right", "both"),
verbose = TRUE

)

Arguments

file An SR Research EyeLink .asc file generated by the official EyeLink edf2asc
command

block Optional block number specification. The following are valid options:

• "auto" (default): Automatically handles multiple recording segments em-
bedded within the same .asc file. We recommend using this default as this
is likely the safer choice then assuming a single-block recording (unless
you know what you’re doing).



load_asc 39

• NULL: Omits block column. Suitable for single-block recordings.
• Numeric value: Manually sets block number based on the value provided

here.

binocular_mode Optional binocular mode specification. The following are valid options:

• "average" (default): Averages the left and right eye pupil sizes.
• "left": Uses only the left eye pupil size.
• "right": Uses only the right eye pupil size.
• "both": Uses both the left and right eye pupil sizes independently.

verbose Logical. Whether to print verbose output (default TRUE).

Details

This function is automatically called by glassbox() by default. If needed, customize the parame-
ters for load_asc by providing a parameter list.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Value

An object of S3 class eyeris with the following attributes:

1. file: Path to the original .asc file.

2. timeseries: Data frame of all raw time series data from the tracker.

3. events: Data frame of all event messages and their time stamps.

4. blinks: Data frame of all blink events.

5. info: Data frame of various metadata parsed from the file header.

6. latest: eyeris variable for tracking pipeline run history.

For binocular data with binocular_mode = "both", returns a list containing:

1. left: An eyeris object for the left eye data.

2. right: An eyeris object for the right eye data.

3. original_file: Path to the original .asc file.

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via load_asc = list(...).

Advanced users may call it directly if needed.

See Also

eyelinker::read.asc() which this function wraps.

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline.



40 lpfilt

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox(load_asc = list(block = 1))

# Other useful parameter configurations
## (1) Basic usage (no block column specified)
demo_data |>

eyeris::load_asc()

## (2) Manual specification of block number
demo_data |>

eyeris::load_asc(block = 3)

## (3) Auto-detect multiple recording segments embedded within the same
## file (i.e., the default behavior)
demo_data |>

eyeris::load_asc(block = "auto")

## (4) Omit block column
demo_data |>

eyeris::load_asc(block = NULL)

lpfilt Lowpass filtering of time series data

Description

The intended use of this method is for smoothing, although by specifying wp and ws differently one
can achieve highpass or bandpass filtering as well. However, only lowpass filtering should be done
on pupillometry data.

Usage

lpfilt(
eyeris,
wp = 4,
ws = 8,
rp = 1,
rs = 35,
plot_freqz = FALSE,
call_info = NULL

)



lpfilt 41

Arguments

eyeris An object of class eyeris derived from load_asc()

wp The end of passband frequency in Hz (desired lowpass cutoff). Defaults to 4

ws The start of stopband frequency in Hz (required lowpass cutoff). Defaults to 8

rp Required maximal ripple within passband in dB. Defaults to 1

rs Required minimal attenuation within stopband in dB. Defaults to 35

plot_freqz A flag to indicate whether to display the filter frequency response. Defaults to
FALSE

call_info A list of call information and parameters. If not provided, it will be generated
from the function call. Defaults to NULL

Details

This function is automatically called by glassbox() by default. If needed, customize the parame-
ters for lpfilt by providing a parameter list. Use glassbox(lpfilt = FALSE) to disable this step
as needed.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

Value

An eyeris object with a new column in time series: pupil_raw_{...}_lpfilt

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Provide parameters via lpfilt = list(...).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
# set lpfilt to FALSE (instead of a list of params) to skip step
eyeris::glassbox(lpfilt = list(plot_freqz = TRUE)) |>
plot(seed = 0)



42 pipeline_handler

pipeline_handler Build a generic operation (extension) for the eyeris pipeline

Description

pipeline_handler enables flexible integration of custom data processing functions into the eyeris
pipeline. Under the hood, each preprocessing function in eyeris is a wrapper around a core op-
eration that gets tracked, versioned, and stored using this pipeline_handler method. As such,
custom pipeline steps must conform to the eyeris protocol for maximum compatibility with the
downstream functions we provide.

Usage

pipeline_handler(eyeris, operation, new_suffix, ...)

Arguments

eyeris An object of class eyeris containing time series data in a list of data frames
(one per block), various metadata collected by the tracker, and eyeris specific
pointers for tracking the preprocessing history for that specific instance of the
eyeris object

operation The name of the function to apply to the time series data. This custom function
should accept a data frame x, a string prev_op (i.e., the name of the previous
pupil column – which you DO NOT need to supply as a literal string as this
is inferred from the latest pointer within the eyeris object), and any custom
parameters you would like

new_suffix A character string indicating the suffix you would like to be appended to the
name of the previous operation’s column, which will be used for the new column
name in the updated preprocessed data frame(s)

... Additional (optional) arguments passed to the operation method

Details

Following the eyeris protocol also ensures:

• all operations follow a predictable structure, and

• that new pupil data columns based on previous operations in the chain are able to be dynami-
cally constructed within the core time series data frame.

Value

An updated eyeris object with the new column added to the timeseries data frame and the
latest pointer updated to the name of the most recently added column plus all previous columns
(ie, the history "trace" of preprocessing steps from start-to-present)



pipeline_handler 43

See Also

For more details, please check out the following vignettes:

• Anatomy of an eyeris Object

vignette("anatomy", package = "eyeris")

• Building Your Own Custom Pipeline Extensions

vignette("custom-extensions", package = "eyeris")

Examples

# first, define your custom data preprocessing function
winsorize_pupil <- function(x, prev_op, lower = 0.01, upper = 0.99) {

vec <- x[[prev_op]]
q <- quantile(vec, probs = c(lower, upper), na.rm = TRUE)
vec[vec < q[1]] <- q[1]
vec[vec > q[2]] <- q[2]
vec

}

# second, construct your `pipeline_handler` method wrapper
winsorize <- function(eyeris, lower = 0.01, upper = 0.99, call_info = NULL) {

# create call_info if not provided
call_info <- if (is.null(call_info)) {
list(

call_stack = match.call(),
parameters = list(lower = lower, upper = upper)

)
} else {

call_info
}

# handle binocular objects
if (eyeris:::is_binocular_object(eyeris)) {

# process left and right eyes independently
left_result <- eyeris$left |>

pipeline_handler(
winsorize_pupil,
"winsorize",
lower = lower,
upper = upper,
call_info = call_info

)

right_result <- eyeris$right |>
pipeline_handler(

winsorize_pupil,
"winsorize",
lower = lower,
upper = upper,
call_info = call_info



44 plot.eyeris

)

# return combined structure
list_out <- list(

left = left_result,
right = right_result,
original_file = eyeris$original_file,
raw_binocular_object = eyeris$raw_binocular_object

)

class(list_out) <- "eyeris"

return(list_out)
} else {

# regular eyeris object, process normally
eyeris |>

pipeline_handler(
winsorize_pupil,
"winsorize",
lower = lower,
upper = upper,
call_info = call_info

)
}

}

# and voilà, you can now connect your custom extension
# directly into your custom `eyeris` pipeline definition!
custom_eye <- system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc(block = "auto") |>
eyeris::deblink(extend = 50) |>
winsorize()

plot(custom_eye, seed = 1)

plot.eyeris Plot pre-processed pupil data from eyeris

Description

S3 plotting method for objects of class eyeris. Plots a single-panel timeseries for a subset of the
pupil time series at each preprocessing step. The intended use of this function is to provide a simple
method for qualitatively assessing the consequences of the preprocessing recipe and parameters on
the raw pupillary signal.

Usage

## S3 method for class 'eyeris'
plot(



plot.eyeris 45

x,
...,
steps = NULL,
preview_n = NULL,
preview_duration = NULL,
preview_window = NULL,
seed = NULL,
block = 1,
plot_distributions = FALSE,
suppress_prompt = TRUE,
verbose = TRUE,
add_progressive_summary = FALSE,
eye = c("left", "right", "both"),
num_previews = deprecated()

)

Arguments

x An object of class eyeris derived from load_asc()

... Additional arguments to be passed to plot

steps Which steps to plot; defaults to all (i.e., plot all steps). Otherwise, pass in a
vector containing the index of the step(s) you want to plot, with index 1 being
the original raw pupil time series

preview_n Number of random example "epochs" to generate for previewing the effect of
each preprocessing step on the pupil time series

preview_duration

Time in seconds of each randomly selected preview

preview_window The start and stop raw timestamps used to subset the preprocessed data from
each step of the eyeris workflow for visualization Defaults to NULL, mean-
ing random epochs as defined by preview_n and preview_duration will be
plotted. To override the random epochs, set preview_window here to a vec-
tor with relative start and stop times (in seconds), for example – c(5,6) – to
indicate the raw data from 5-6 secs on data that were recorded at 1000 Hz).
Note, the start/stop time values indicated here are in seconds because eyeris
automatically computes the indices for the supplied range of seconds using the
$info$sample.rate metadata in the eyeris S3 class object

seed Random seed for current plotting session. Leave NULL to select preview_n
number of random preview "epochs" (of preview_duration) each time. Other-
wise, choose any seed-integer as you would normally select for base::set.seed(),
and you will be able to continue re-plotting the same random example pupil
epochs each time – which is helpful when adjusting parameters within and
across eyeris workflow steps

block For multi-block recordings, specifies which block to plot. Defaults to 1. When
a single .asc data file contains multiple recording blocks, this parameter de-
termines which block’s time series to visualize. Must be a positive integer not
exceeding the total number of blocks in the recording



46 plot.eyeris

plot_distributions

Logical flag to indicate whether to plot both diagnostic pupil time series and
accompanying histograms of the pupil samples at each processing step. Defaults
to FALSE

suppress_prompt

Logical flag to disable interactive confirmation prompts during plotting. De-
faults to TRUE, which avoids hanging behavior in non-interactive or automated
contexts (e.g., RMarkdown, scripts) Set to FALSE only when running inside
glassbox() with interactive_preview = TRUE, where prompting after each
step is desired, as well as in the generation of interactive HTML reports with
bidsify

verbose A logical flag to indicate whether to print status messages to the console. De-
faults to TRUE. Set to FALSE to suppress messages about the current processing
step and run silently

add_progressive_summary

Logical flag to indicate whether to add a progressive summary plot after plotting.
Defaults to FALSE. Set to TRUE to enable the progressive summary plot (useful
for interactive exploration). Set to FALSE to disable the progressive summary
plot (useful in automated contexts like bidsify reports)

eye For binocular data, specifies which eye to plot: "left", "right", or "both". De-
faults to "left". For "both", currently plots left eye data (use eye="right" for
right eye data)

num_previews (Deprecated) Use preview_n instead

Value

No return value; iteratively plots a subset of the pupil time series from each preprocessing step run

See Also

lifecycle::deprecate_warn()

Examples

# first, generate the preprocessed pupil data
my_eyeris_data <- system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::zscore()

# controlling the time series range (i.e., preview window) in your plots:

## example 1: using the default 10000 to 20000 ms time subset
plot(my_eyeris_data, seed = 0, add_progressive_summary = TRUE)

## example 2: using a custom time subset (i.e., 1 to 500 ms)
plot(



plot_binocular_correlation 47

my_eyeris_data,
preview_window = c(0.01, 0.5),
seed = 0,
add_progressive_summary = TRUE

)

# controlling which block of data you would like to plot:

## example 1: plots first block (default)
plot(my_eyeris_data, seed = 0)

## example 2: plots a specific block
plot(my_eyeris_data, block = 1, seed = 0)

## example 3: plots a specific block along with a custom preview window
## (i.e., 1000 to 2000 ms)
plot(

my_eyeris_data,
block = 1,
preview_window = c(1, 2),
seed = 0

)

plot_binocular_correlation

Plot binocular correlation between left and right eye data

Description

Creates correlation plots showing the relationship between left and right eye measurements for pupil
size, x-coordinates, and y-coordinates. This function is useful for validating binocular data quality
and assessing the correlation between the two eyes.

Usage

plot_binocular_correlation(
eyeris,
block = 1,
variables = c("pupil", "x", "y"),
main = "",
col_palette = "viridis",
sample_rate = NULL,
verbose = TRUE

)



48 plot_gaze_heatmap

Arguments

eyeris An object of class eyeris derived from load_asc() with binocular data, or a
list containing left and right eyeris objects (from binocular_mode = "both")

block Block number to plot (default: 1)

variables Variables to plot correlations for. Defaults to c("pupil", "x", "y") for pupil
size, x-coordinates, and y-coordinates

main Title for the overall plot (default: "Binocular Correlation")

col_palette Color palette for the plots (default: "viridis")

sample_rate Sample rate in Hz (optional, for time-based sampling)

verbose Logical flag to indicate whether to print status messages (default: TRUE)

Value

No return value; creates correlation plots

Examples

# For binocular data loaded with binocular_mode = "both"
binocular_data <- load_asc(eyelink_asc_binocular_demo_dataset(), binocular_mode = "both")
plot_binocular_correlation(binocular_data)

# For binocular data loaded with binocular_mode = "average"
# (correlation plot will show original left vs right before averaging)
avg_data <- load_asc(eyelink_asc_binocular_demo_dataset(), binocular_mode = "average")
plot_binocular_correlation(avg_data$raw_binocular_object)

plot_gaze_heatmap Create gaze heatmap of eye coordinates

Description

Creates a heatmap showing the distribution of eye_x and eye_y coordinates across the entire screen
area. The heatmap shows where the participant looked most frequently during the recording period.

Usage

plot_gaze_heatmap(
eyeris,
block = 1,
screen_width = NULL,
screen_height = NULL,
n_bins = 50,
col_palette = "viridis",
main = "Gaze Heatmap",
xlab = "Screen X (pixels)",



process_chunked_query 49

ylab = "Screen Y (pixels)",
sample_rate = NULL,
eye_suffix = NULL

)

Arguments

eyeris An object of class eyeris derived from load_asc()

block Block number to plot (default: 1)
screen_width Screen width in pixels from eyeris$info$screen.x

screen_height Screen height in pixels from eyeris$info$screen.y

n_bins Number of bins for the heatmap grid (default: 50)
col_palette Color palette for the heatmap (default: "viridis")
main Title for the plot (default: "Fixation Heatmap")
xlab X-axis label (default: "Screen X (pixels)")
ylab Y-axis label (default: "Screen Y (pixels)")
sample_rate Sample rate in Hz (optional)
eye_suffix Eye suffix for binocular data (default: NULL)

Value

No return value; creates a heatmap plot

Examples

demo_data <- eyelink_asc_demo_dataset()
eyeris_preproc <- glassbox(demo_data)
plot_gaze_heatmap(eyeris = eyeris_preproc, block = 1)

process_chunked_query Process large database query in chunks

Description

Handles really large databases by processing queries in reasonably sized chunks to avoid memory
issues. Data can be written to CSV or Parquet files as it’s processed.

Usage

process_chunked_query(
con,
query,
chunk_size = 1e+06,
output_file = NULL,
process_chunk = NULL,
verbose = TRUE

)



50 process_chunked_query

Arguments

con Database connection

query SQL query string to execute

chunk_size Number of rows to fetch per chunk (default: 1000000)

output_file Optional output file path for writing chunks. If provided, chunks will be ap-
pended to this file. File format determined by extension (.csv or .parquet)

process_chunk Optional function to process each chunk. Function should accept a data.frame
and return logical indicating success. If not provided and output_file is specified,
chunks are written to file.

verbose Whether to print progress messages (default: TRUE)

Value

List containing summary information about the chunked processing

Examples

## Not run:
# These examples require an existing eyeris database

con <- eyeris_db_connect("/path/to/bids", "my-project")

# Process large query and write to CSV
process_chunked_query(

con,
"SELECT * FROM large_table WHERE condition = 'something'",
chunk_size = 50000,
output_file = "large_export.csv"

)

# Process large query with custom chunk processing
process_chunked_query(

con,
"SELECT * FROM large_table",
chunk_size = 25000,
process_chunk = function(chunk) {

# Custom processing here
processed_data <- some_analysis(chunk)
return(TRUE)

}
)

eyeris_db_disconnect(con)

## End(Not run)



read_eyeris_parquet 51

read_eyeris_parquet Read parquet files back into R

Description

Convenience function to read the parquet files created by eyeris_db_to_parquet back into a single
data frame or list of data frames by data type.

Usage

read_eyeris_parquet(
parquet_dir,
db_name = NULL,
data_type = NULL,
return_list = FALSE,
pattern = "*.parquet",
verbose = TRUE

)

Arguments

parquet_dir Directory containing the parquet files, or path to database-specific folder

db_name Optional database name to read from (if parquet_dir contains multiple database
folders)

data_type Optional data type to read (if NULL, reads all data types)

return_list Whether to return a list by data type (TRUE) or combined data frame (FALSE,
default)

pattern Pattern to match parquet files (default: "*.parquet")

verbose Whether to print progress messages (default: TRUE)

Value

Combined data frame from all parquet files, or list of data frames by data type

Examples

# Minimal self-contained example that avoids database creation
if (requireNamespace("arrow", quietly = TRUE)) {

# create a temporary folder structure: parquet/<db_name>
base_dir <- file.path(tempdir(), "derivatives", "parquet")
db_name <- "example-db"
dir.create(file.path(base_dir, db_name), recursive = TRUE, showWarnings = FALSE)

# write two small parquet parts for a single data type
part1 <- data.frame(time = 1:5, value = 1:5)
part2 <- data.frame(time = 6:10, value = 6:10)
arrow::write_parquet(



52 summarize_confounds

part1,
file.path(

base_dir, db_name, paste0(db_name, "_timeseries_part-01-of-02.parquet")
)

)
arrow::write_parquet(

part2,
file.path(

base_dir, db_name, paste0(db_name, "_timeseries_part-02-of-02.parquet")
)

)

# read them back as combined data frame
data <- read_eyeris_parquet(base_dir, db_name = db_name)

# read as list by data type
data_by_type <- read_eyeris_parquet(base_dir, db_name = db_name, return_list = TRUE)

# read specific data type only
timeseries_data <- read_eyeris_parquet(base_dir, db_name = db_name, data_type = "timeseries")

}

summarize_confounds Extract confounding variables calculated separately for each pupil
data file

Description

Calculates various confounding variables for pupil data, including blink statistics, gaze position
metrics, and pupil size characteristics. These confounds are calculated separately for each prepro-
cessing step, recording block, and epoched time series in the eyeris object.

Usage

summarize_confounds(eyeris)

Arguments

eyeris An object of class eyeris derived from load_asc()

Value

An eyeris object with a new nested list of data frames: $confounds The confounds are organized
hierarchically by block and preprocessing step. Each step contains metrics such as:

• Blink rate and duration statistics
• Gaze position (x,y) mean and standard deviation
• Pupil size mean, standard deviation, and range
• Missing data percentage



zscore 53

Examples

# load demo dataset
demo_data <- eyelink_asc_demo_dataset()

# calculate confounds for all blocks and preprocessing steps
confounds <- demo_data |>

eyeris::glassbox() |>
eyeris::epoch(
events = "PROBE_{type}_{trial}",
limits = c(-1, 1), # grab 1 second prior to and 1 second post event
label = "prePostProbe" # custom epoch label name

) |>
eyeris::summarize_confounds()

# access confounds for entire time series for a specific block and step
confounds$confounds$unepoched_timeseries

# access confounds for a specific epoched time series
# for a specific block and step
confounds$confounds$epoched_timeseries
confounds$confounds$epoched_epoch_wide

zscore Z-score pupil time series data

Description

The intended use of this method is to scale the arbitrary units of the pupil size time series to have a
mean of 0 and a standard deviation of 1. This is accomplished by mean centering the data points and
then dividing them by their standard deviation (i.e., z-scoring the data, similar to base::scale()).
Opting to z-score your pupil data helps with trial-level and between-subjects analyses where arbi-
trary units of pupil size recorded by the tracker do not scale across participants, and therefore make
analyses that depend on data from more than one participant difficult to interpret.

Usage

zscore(eyeris, call_info = NULL)

Arguments

eyeris An object of class eyeris derived from load_asc()

call_info A list of call information and parameters. If not provided, it will be generated
from the function call



54 zscore

Details

This function is automatically called by glassbox() by default. Use glassbox(zscore = FALSE)
to disable this step as needed.

Users should prefer using glassbox() rather than invoking this function directly unless they have
a specific reason to customize the pipeline manually.

In general, it is common to z-score pupil data within any given participant, and furthermore, z-
score that participant’s data as a function of block number (for tasks/experiments where partici-
pants complete more than one block of trials) to account for potential time-on-task effects across
task/experiment blocks.

As such, if you use the eyeris package as intended, you should NOT need to specify any groups
for the participant/block-level situations described above. This is because eyeris is designed to
preprocess a single block of pupil data for a single participant, one at a time. Therefore, when you
later merge all of the preprocessed data from eyeris, each individual, preprocessed block of data
for each participant will have already been independently scaled from the others.

Additionally, if you intend to compare mean z-scored pupil size across task conditions, such as that
for memory successes vs. memory failures, then do NOT set your behavioral outcome (i.e., suc-
cess/failure) variable as a grouping variable within your analysis. If you do, you will consequently
obtain a mean pupil size of 0 and standard deviation of 1 within each group (since the scaled pupil
size would be calculated on the time series from each outcome variable group, separately). Instead,
you should compute the z-score on the entire pupil time series (before epoching the data), and then
split and take the mean of the z-scored time series as a function of condition variable.

Value

An eyeris object with a new column in time series: pupil_raw_{...}_z

Note

This function is part of the glassbox() preprocessing pipeline and is not intended for direct use in
most cases. Use glassbox(zscore = TRUE).

Advanced users may call it directly if needed.

See Also

glassbox() for the recommended way to run this step as part of the full eyeris glassbox prepro-
cessing pipeline

Examples

demo_data <- eyelink_asc_demo_dataset()

demo_data |>
eyeris::glassbox(zscore = TRUE) |> # set to FALSE to skip (not recommended)
plot(seed = 0)



Index

base::scale(), 53
base::set.seed(), 45
bidsify, 3, 46
bin, 7
bin(), 14

deblink, 8
detransient, 9
detransient(), 10, 35
detrend, 12
downsample, 13
downsample(), 7

epoch, 14
eyelink_asc_binocular_demo_dataset, 18
eyelink_asc_demo_dataset, 19
eyelinker::read.asc(), 38, 39
eyelogger, 20
eyeris_color_palette, 21
eyeris_db_collect, 22
eyeris_db_connect, 23
eyeris_db_disconnect, 25
eyeris_db_list_tables, 25
eyeris_db_read, 26
eyeris_db_reconstruct_from_chunks, 27
eyeris_db_split_for_sharing, 28
eyeris_db_summary, 29
eyeris_db_to_chunked_files, 31
eyeris_db_to_parquet, 32

glassbox, 34
glassbox(), 7, 9, 11, 12, 14, 38, 39, 41, 54

interpolate, 37

lifecycle::deprecate_warn(), 5, 16, 36,
46

load_asc, 38
load_asc(), 3, 7–9, 12, 13, 15, 37, 41, 45, 48,

49, 52, 53
lpfilt, 40

pipeline_handler, 42
plot(), 4
plot.eyeris, 44
plot_binocular_correlation, 47
plot_gaze_heatmap, 48
process_chunked_query, 49

read_eyeris_parquet, 51

summarize_confounds, 52

tempdir(), 20

zscore, 53

55


	bidsify
	bin
	deblink
	detransient
	detrend
	downsample
	epoch
	eyelink_asc_binocular_demo_dataset
	eyelink_asc_demo_dataset
	eyelogger
	eyeris_color_palette
	eyeris_db_collect
	eyeris_db_connect
	eyeris_db_disconnect
	eyeris_db_list_tables
	eyeris_db_read
	eyeris_db_reconstruct_from_chunks
	eyeris_db_split_for_sharing
	eyeris_db_summary
	eyeris_db_to_chunked_files
	eyeris_db_to_parquet
	glassbox
	interpolate
	load_asc
	lpfilt
	pipeline_handler
	plot.eyeris
	plot_binocular_correlation
	plot_gaze_heatmap
	process_chunked_query
	read_eyeris_parquet
	summarize_confounds
	zscore
	Index

