---
title: "denim DSL"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{denim DSL}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(denim)
```
## Model definition in denim
In denim, model is defined by a set of transitions between compartments. Each transition is provided in the form of a *key-value* pair, where:
- *key* show the transition direction between 2 compartments.
- *value* is an expression that describe the transition, either as a rate given by a ***math expression*** or as a distribution of dwell-time in the origin compartment. This distribution can be specified parametrically using the ***built-in distribution function*** or through providing of ***histogram numeric values***.
These *key-value* pairs can be provided in 2 ways
- Using denim domain-specific language (DSL).
- Define as a `list` in R.
## Denim DSL
In denim, each line of code must be a transition. The syntax for defining a transition in denim DSL is as followed:
`from -> to = [transition]`
Model definition written in denim DSL must be parsed by the function `denim_dsl()`
***Math expression***
For math expression, some basic supported operators include: `+` for addition, `-` for minus, `*` for multiplication, `/` for division, `^` for power. The users can also define additional model parameters in the math expression.
Math expressions in denim are parsed using muparser. For a full list of operators, visit the muparser website at .
***Distribution functions***
Several built-in functions are provided to describe transitions based on the distribution of dwell time:
- For parametric distributions: `d_lognormal()`, `d_gamma()`, `d_weibull()`, `d_exponential()`
- For non-parametric distributions: `nonparametric()`
Each of these functions accepts either [fixed numerical values]{.underline} or [model parameters]{.underline} as inputs for their distributional parameters.
### Define a classic SIR model
A classic SIR model can be defined in denim as followed
```{r}
sir_model <- denim_dsl({
S -> I = beta * (I/N) * S
I -> R = d_exponential(rate = gamma)
})
```
`denim_dsl()` parses the given expression and return an R `list` as followed.
```{r}
sir_model
```
In this example, model parameters are: `N`, `beta`, `gamma`.
Users can also choose to provide fixed values as the distributional parameter as followed.
```{r eval=FALSE}
sir_model <- denim_dsl({
S -> I = beta*(I/N)*S
I -> R = d_exponential(rate = 1/4)
})
```
Similar to R, the users can also add comments in denim DSL by starting the comment with `#` sign.
```{r eval=FALSE}
sir_model <- denim_dsl({
# this is a comment
S -> I = beta*(I/N)*S
I -> R = d_exponential(rate = 1/4) # this is another comment
})
```
***Run model***
To run the model, the users must provide:
- Values for model parameters (in this example, `N`, `beta`, and `gamma`).
- Initial population for the compartments.
- Simulation configurations.
Parameters and initial values can be defined as [named vectors]{.underline} or [named lists]{.underline} in R.
```{r}
# parameters for the model
parameters <- c(
beta = 0.4,
N = 1000,
gamma = 1/7
)
# initial population for each compartment
initValues <- c(
S = 999,
I = 50,
R = 0
)
```
Simulation configurations are provided as parameters for `sim()` function which runs the model, where:
- `timeStep` is the duration of each time step in the model.
- `simulationDuration` is the duration to run the simulation.
```{r}
mod <- sim(sir_model,
parameters = parameters,
initialValues = initValues,
timeStep = 0.01,
simulationDuration = 40)
```
```{r}
plot(mod, ylim = c(1, 1000))
```
### Time varying transition
variable `time` is a special variable in denim for time varying transition (e.g. for modeling seasonality). Note that this variable can ONLY be used within math expression.
Example: time varying transition
```{r}
time_varying_mod <- denim_dsl({
A -> B = 20 * (1+cos(omega * time))
})
# parameters for the model
parameters <- c(
omega = 2*pi/10
)
# initial population for each compartment
initValues <- c(A = 1000, B = 0)
mod <- sim(time_varying_mod,
parameters = parameters,
initialValues = initValues,
timeStep = 0.01,
simulationDuration = 40)
plot(mod, ylim = c(0, 1000))
```
## R list
Users can define the model structure directly as a list in R. For example, the SIR model from previous example can be represented as followed.
```{r}
sir_model_list <- list(
"S -> I" = "beta * (I/N) * S",
"I -> R" = d_exponential(rate = "gamma")
)
sir_model_list
```
Note that the transitions (`S -> I`, `I -> R`), mathematical expression (`beta * (I/N) * S`), and the model parameter (`gamma`) must now be provided as strings.
We can then run the model in the same manner as previously demonstrated.
```{r}
# parameters for the model
parameters <- c(
beta = 0.4,
N = 1000,
gamma = 1/7
)
# initial population for each compartment
initValues <- c(
S = 999,
I = 50,
R = 0
)
# run the simulation
mod <- sim(sir_model_list,
parameters = parameters,
initialValues = initValues,
timeStep = 0.01,
simulationDuration = 40)
# plot output
plot(mod, ylim = c(1, 1000))
```
***When should I define model as a list in R?***
While denim DSL offers cleaner and more readable syntax to define model structure, using R list may be more familiar to R users and better suited for integration to a more R-centric workflow.
For example, consider a use case below, where we explore how model dynamics change under three different `I -> R` dwell time distributions (`d_gamma`, `d_weibull`, `d_lognormal`) using `map2`.
```{r message=FALSE, warning=FALSE}
library(tidyverse)
# configurations for 3 different I->R transitions
model_config <- tibble(
IR_dists = c(d_gamma, d_weibull, d_lognormal),
IR_pars = list(c(rate = 0.1, shape = 3), c(scale = 5, shape = 0.3), c(mu = 0.3, sigma = 2))
)
walk2(
model_config$IR_dists, model_config$IR_pars, \(dist, par){
transitions <- list(
"S -> I" = "beta * S * (I / N)",
# This is not applicable when using denim_dsl()
"I -> R" = do.call(dist, as.list(par))
)
# model settings
denimInitialValues <- c(S = 980, I = 20, R = 0)
parameters <- c(
beta = 0.4,
N = 1000
)
# compare output
mod <- sim(transitions = transitions,
initialValues = denimInitialValues,
parameters = parameters,
simulationDuration = 60,
timeStep = 0.05)
plot(mod, ylim = c(0,1000))
})
```