Package ‘cirls’

September 12, 2025

Title Constrained Iteratively Reweighted Least Squares
Version 0.4.0

Description
Fitting and inference functions for generalized linear models with constrained coefficients.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports quadprog, osqp, coneproj, TruncatedNormal, stats, limSolve
Depends R (>=4.1.0)

Suggests dlnm, splines, testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/PierreMasselot/cirls
NeedsCompilation no

Author Pierre Masselot [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7326-1290>),
Antonio Gasparrini [aut] (ORCID:
<https://orcid.org/0000-0002-2271-3568>)

Maintainer Pierre Masselot <pierre.masselot@lshtm.ac.uk>
Repository CRAN
Date/Publication 2025-09-12 16:50:02 UTC

Contents
buildCmat 2
checkCmat e e e e e e e 3
cirls.control L e e e e 5
crls.fit e 6
dmat e e e 10
edf . . e e e e 11
loglik.cirls L e 13

https://github.com/PierreMasselot/cirls
https://orcid.org/0000-0002-7326-1290
https://orcid.org/0000-0002-2271-3568

buildCmat

ShapeConstr e e e e e e e e e 14
simulCoef e e e 16
UNCONS & v v v v v e e e e e e e e e e e e e e e e e e 18
zeroSUMCONSIT e e e e e e e 19
Index 20
buildCmat Build a constraint matrix
Description

Function building a full constraint matrix from a list of constraint matrices and/or a formula provid-
ing specific constraints. Mainly used internally by cirls.fit.

Usage

buildCmat(mf, constr = NULL, Cmat = NULL, 1lb = @, ub = Inf)

Arguments
mf A model.frame or a list of variables.
constr A formula specifying constraints.
Cmat A named list of constraint matrices where names should be found among the
terms in mf.
1b, ub Vector or list of vectors containing constraint bounds. If a vector, is used as
default bounds for terms with no specified bounds. If a named list, is matched
to Cmat to provide corresponding bounds.
Details

This function is called internally by cirls.fit whenever Cmat is not a matrix, and provides a way
to specify constraints without having to build a full constraint matrix beforehand. It uses the model
frame in mf to match specific constraints to the right columns in the design matrix.

The argument constr provides a simple way to specify potentially complex constraints. It is a
formula of the form ~ shape(x, ...) where shape specifies the constraint and x the term in mf to
which it applies. Internally, the formula will look for a function named shapeConstr to be called
on variable x (which allows for several columns). The . . . represent potential additional arguments
for the shapeConstr function. For the list of available constraints and how to create new ones, see
upcoming.

The argument Cmat is used to provide a named list of constraint matrices, where names should
correspond to terms in mf. This allows providing custom constraint matrices to specific terms that
wouldn’t be available through constr. Names in Cmat can include several terms, which should be
separated by a ;, for instance x1; x2. Although not mandatory, elements in Cmat can have attributes
1b, ub and vars to provide lower and upper bounds, and term names, respectively.

1b and ub are meant to be used in conjunction with Cmat. If a simple value or vector, they will be
used as default values for elements in Cmat for which no bounds is specified in its attributes. If lists,

checkCmat 3

they provide bounds for constraint matrices in Cmat. In this case, all the names in Cmat should be
found in 1b and ub.

Note that both constr and Cmat can be used at the same time, and neither is mandatory. If both are
NULL, an empty constraint matrix will be returned.

Value

A list with containing elements Cmat, 1b and ub containing the full constraint matrix, lower and
upper bounds for the model specified in argument mf. Cmat additionally include an attribute called
terms which maps constraints represented in the matrix to individual terms in the model.

Examples

####HH# Upcoming

checkCmat Check constraint matrix irreducibility

Description

Checks a constraint matrix does not contains redundant rows

Usage

checkCmat (Cmat)

Arguments

Cmat A constraint matrix as passed to cirls.fit()

Details

The user typically doesn’t need to use checkCmat as it is internally called by cirls.control().
However, it might be useful to undertsand if Cmat can be reduced for inference purpose. See the
note in confint.cirls().

A constraint matrix is irreducible if no row can be expressed as a positive linear combination of
the other rows. When it happens, it means the constraint is actually implicitly included in other
constraints in the matrix and can be dropped. Note that this a less restrictive condition than the
constraint matrix having full row rank (see some examples).

The function starts by checking if some constraints are redundant and, if so, checks if they underline
equality constraints. In the latter case, the constraint matrix can be reduced by expressing these
constraints as a single equality constraint with identical lower and upper bounds (see cirls.fit()).

The function also checks whether there are "zero constraints” i.e. constraints with only zeros in
Cmat in which case they will be labelled as redundant.

4 checkCmat

Value

A list with three elements:

redundant Logical vector of indicating redundant constraints
equality Logical vector indicating which constraints are part of an underlying equality
constraint
References

Meyer, M.C., 1999. An extension of the mixed primal—dual bases algorithm to the case of more
constraints than dimensions. Journal of Statistical Planning and Inference 81, 13-31. doi:10.1016/
S03783758(99)000257

See Also

confint.cirls()

Examples

B S S S
Example of reducible matrix

Constraints: successive coefficients should increase and be convex
p<-5
cmatic <- rbind(diff(diag(p)), diff(diag(p), diff = 2))

Checking indicates that constraints 2 to 4 are redundant.
Intuitively, if the first two coefficients increase,

then convexity forces the rest to increase
checkCmat(cmatic)

Check without contraints
checkCmat(cmatic[-(2:4),1)

B S S S S R
Example of irreducible matrix

Constraints: coefficients form an S-shape
p <-4
cmats <- rbind(
diag(p)[1,], # positive
diff(diag(p))Lc(1, p - 1),]1, # Increasing at both end
diff(diag(p), diff = 2)[1:(p/2 - 1),]1, # First half convex
-diff(diag(p), diff = 2)[(p/2):(p-2),] # second half concave
)

Note, this matrix is not of full row rank
gr(t(cmats))$rank
all.equal(cmats[2,] + cmats[4,] - cmats[5,], cmats[3,])

However, it is irreducible: all constraints are necessary

https://doi.org/10.1016/S0378-3758%2899%2900025-7
https://doi.org/10.1016/S0378-3758%2899%2900025-7

cirls.control 5

checkCmat (cmats)

AR AR AR
Example of underlying equality constraint

Contraint: Parameters sum is >= @ and sum is <= @
cmateq <- rbind(rep(1, 3), rep(-1, 3))

Checking indicates that both constraints imply equality constraint (sum == 0)
checkCmat (cmateq)
cirls.control Parameters controlling CIRLS fitting
Description

Internal function controlling the glm fit with linear constraints. Typically only used internally by
cirls.fit, but may be used to construct a control argument.

Usage

cirls.control(constr = NULL, Cmat = NULL, 1lb = @QL, ub = Inf,
epsilon = 1e-08, maxit = 25, trace = FALSE, gp_solver = "quadprog",
gp_pars = list())

Arguments

constr A formula specifying constraints to be applied to specific terms in the model.

Cmat Constraint matrix specifying the linear constraints applied to coefficients. Can
also be provided as a list of matrices for specific terms.

1b, ub Lower and upper bound vectors for the linear constraints. Identical values in 1b
and ub identify equality constraints. As for Cmat can be provided as a list of
terms. If some terms are provided in Cmat but not in 1b or ub, default values of
0 and Inf will be used, respectively.

epsilon Positive convergence tolerance. The algorithm converges when the relative
change in deviance is smaller than epsilon.

maxit Integer giving the maximal number of CIRLS iterations.

trace Logical indicating if output should be produced for each iteration.

gp_solver The quadratic programming solver. One of "quadprog” (the default), "osqp”
or "coneproj”.

gp_pars List of parameters specific to the quadratic programming solver. See respective

packages help.

6 cirls.fit

Details

The control argument of glm is by default passed to the control argument of cirls.fit, which uses
its elements as arguments for cirls.control: the latter provides defaults and sanity checking. The
control parameters can alternatively be passed through the . . . argument of glm. See glm.control for
details on general GLM fitting control, and cirls.fit for details on arguments specific to constrained
GLMs.

Value

A named list containing arguments to be used in cirls.fit.

See Also

the main function cirls.fit, and glm.control.

Examples

Simulate predictors and response with some negative coefficients
set.seed(111)

n <- 100

p <- 10

betas <- rep_len(c(1, -1), p)

x <= matrix(rnorm(n * p), nrow = n)

y <= x %*% betas + rnorm(n)

Define constraint matrix (includes intercept)
By default, bounds are @ and +Inf
Cmat <- cbind(@, diag(p))

Fit GLM by CIRLS
resl <- glm(y ~ x, method = cirls.fit, Cmat = Cmat)
coef(res1)

Same as passing Cmat through the control argument
res2 <- glm(y ~ x, method = cirls.fit, control = list(Cmat = Cmat))
identical (coef(resl1), coef(res2))

cirls.fit Constrained Iteratively Reweighted Least-Squares

Description

Fits a generalized linear model with linear constraints on the coefficients through a Constrained
Iteratively Reweighted Least-Squares (CIRLS) algorithm. This function is the constrained counter-
part to glm.fit and is meant to be called by glm through its method argument. See details for the
main differences.

cirls.fit 7

Usage

cirls.fit(x, y, weights = rep.int(1, nobs), start = NULL,
etastart = NULL, mustart = NULL, offset = rep.int(@, nobs),
family = stats::gaussian(), control = list(), intercept = TRUE,
singular.ok = TRUE)

Arguments
X,y x is a design matrix and y is a vector of response observations. Usually internally
computed by glm.
weights An optional vector of observation weights.
start Starting values for the parameters in the linear predictor.
etastart Starting values for the linear predictor.
mustart Starting values for the vector or means.
offset An optional vector specifying a known component in the model. See model.offset.
family The result of a call to a family function, describing the error distribution and link
function of the model. See family for details of available family functions.
control A list of parameters controlling the fitting process. See details and cirls.control.
intercept Logical. Should an intercept be included in the null model?
singular.ok Logical. If FALSE, the function returns an error for singular fits.
Details

This function is a plug-in for glm and works similarly to glm.fit. In addition to the parameters
already available in glm.fit, cirls.fit allows the specification of a constraint matrix Cmat with
bound vectors 1b and ub on the regression coefficients. These additional parameters can be passed
through the control list or through ... in glm but not both. If any parameter is passed through
control, then . .. will be ignored.

The CIRLS algorithm is a modification of the classical IRLS algorithm in which each update of the
regression coefficients is performed by a quadratic program (QP), ensuring the update stays within
the feasible region defined by Cmat, 1b and ub. More specifically, this feasible region is defined as
1b <= Cmat %*% coefficients <= ub

where coefficients is the coefficient vector returned by the model. This specification allows for
any linear constraint, including equality ones.

Specifying constraints:

The package includes several mechanisms to specify constraints. The most straightforward is to
pass a full matrix to Cmat with associated bound vectors in 1b and ub. In this case, the number
of columns in Cmat must match the number of coefficients estimated by glm. This includes all
variables that are not involved in any constraint, potential expansion such as factors or splines for
instance, as well as the intercept. By default 1b and ub are set to @ and Inf, respectively, but
any bounds are possible. When some elements of 1b and ub are identical, they define equality
constraints. Setting 1b = -Inf and ub = Inf disable the constraints.

To avoid pre-constructing potentially large and complex Cmat objects, the arguments Cmat and
constr can be combined to conveniently specify constraints for the coefficients. More specifi-
cally, Cmat can alternatively take a named list of matrices to constrain only specific terms in the

8 cirls.fit

model. The argument constr provides a formula interface to specify built-in common constraints.
The documentation of buildCmat provides full details on how to specify constraints along with
examples.

Quadratic programming solvers:

The function cirls.fit relies on a quadratic programming solver. Several solver are currently avail-
able.

» "quadprog” (the default) performs a dual algorithm to solve the quadratic program. It relies
on the function solve.QP.

* "osqgp” solves the quadratic program via the Alternating Direction Method of Multipliers
(ADMM). Internally it calls the function solve_osqp.

e "coneproj" solves the quadratic program by a cone projection method. It relies on the
function gprog.

Each solver has specific parameters that can be controlled through the argument gp_pars. Sen-
sible defaults are set within cirls.control and the user typically doesn’t need to provide custom
parameters. "quadprog” is set as the default being generally more reliable than the other solvers.
"osqp"” is faster but can be less accurate, in which case it is recommended to increase convergence
tolerance at the cost of speed.

Value

A cirls object inheriting from the class glm. At the moment, two non-standard methods specific
to cirls objects are available: vcov.cirls to obtain the coefficients variance-covariance matrix and
confint.cirls to obtain confidence intervals. These custom methods account for the reduced degrees
of freedom resulting from the constraints, see vcov.cirls and confint.cirls.

An object of class cirls includes all components from glm objects, with the addition of:

Cmat, 1b, ub the constraint matrix, and lower and upper bound vectors. If provided as lists,
the full expanded matrix and vectors are returned.

active.cons vector of indices of the active constraints in the fitted model.

inner.iter number of iterations performed by the last call to the QP solver.

etastart the initialisation of the linear predictor eta. The same as etastart when pro-
vided.

singular.ok the value of the singular.ok argument.

Any method for glm objects can be used on cirls objects. Several methods specific to cirls
are available: vcov.cirls to obtain the coefficients variance-covariance matrix, confint.cirls to ob-
tain confidence intervals, and logLik.cirls to extract the log-likelihood with appropriate degrees of
freedom.

References

Goldfarb, D., Idnani, A., 1983. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming 27, 1-33. doi:10.1007/BF02591962

Meyer, M.C., 2013. A Simple New Algorithm for Quadratic Programming with Applications in
Statistics. Communications in Statistics - Simulation and Computation 42, 1126-1139. doi:10.1080/
03610918.2012.659820

https://doi.org/10.1007/BF02591962
https://doi.org/10.1080/03610918.2012.659820
https://doi.org/10.1080/03610918.2012.659820

cirls.fit 9

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., 2020. OSQP: an operator splitting
solver for quadratic programs. Math. Prog. Comp. 12, 637-672. doi:10.1007/s12532020001792

See Also

veov.cirls, confint.cirls, logLik.cirls and edf for methods specific to cirls objects. cirls.control for
fitting parameters specific to cirls.fit. glm for details on glm objects.

Examples

HHHHHHAEEEE A AR
Simple non-negative least squares

Simulate predictors and response with some negative coefficients
set.seed(111)

n <- 100

p <-10

betas <- rep_len(c(1, -1), p)

x <= matrix(rnorm(n * p), nrow = n)

y <= X %*% betas + rnorm(n)

Define constraint matrix (includes intercept)
By default, bounds are @ and +Inf
Cmat <- cbind(@, diag(p))

Fit GLM by CIRLS
resl <- glm(y ~ x, method = cirls.fit, Cmat = Cmat)
coef(resl)

Same as passing Cmat through the control argument
res2 <- glm(y ~ x, method = cirls.fit, control = list(Cmat = Cmat))
identical(coef(res1), coef(res2))

HHHHHHHEHE A AR
Increasing coefficients

Generate two group of variables: an isotonic one and an unconstrained one
set.seed(222)

pl <-5; p2<-3

x1 <= matrix(rnorm(100 * p1), 100, pl1)

x2 <= matrix(rnorm(100 * p2), 100, p2)

Generate coefficients: those in b1 should be increasing
b1 <= runif(p1) |> sort()
b2 <- runif(p2)

Generate full data
y <= x1 %*% b1l + x2 %*% b2 + rnorm(100, sd = 2)

H#-———= Fit model

Create constraint matrix and expand for intercept and unconstrained variables

https://doi.org/10.1007/s12532-020-00179-2

10 dmat

Ciso <- diff(diag(p1))
Cmat <- cbind(@, Ciso, matrix(@, nrow(Ciso), p2))

Fit model
resiso <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = Cmat)
coef(resiso)

Compare with unconstrained
plot(c(@, b1, b2), pch = 16)
points(coef(resiso), pch = 16, col
points(coef(glm(y ~ x1 + x2)), col

3)
2)

#--—-- More convenient specification

Cmat can be provided as a list
resiso2 <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso))

Internally Cmat is expanded and we obtain the same result
identical(resiso$Cmat, resiso2$Cmat)
identical(coef(resiso), coef(resiso2))

#-—-—- Adding bounds to the constraints

Difference between coefficients must be above a lower bound and below 1
b <=1/ (p1 * 2)

ub <- 1

Re-fit the model
resiso3 <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso),
1b = 1b, ub = ub)

Compare the fit

plot(c(@, b1, b2), pch = 16)
points(coef(resiso), pch = 16, col = 3)
points(coef(glm(y ~ x1 + x2)), col = 2)
points(coef(resiso3), pch = 16, col = 4)

dmat Spline derivative matrix

Description

Computes a derivative matrix for B-splines that can then be used for shape-constraints. It is inter-
nally called by shapeConstr and should not be used directly.

Usage

dmat(d, s, knots, ord)

edf

Arguments

d

s
knots

ord

Details

Non-negative integer giving the order of derivation
ord - 2.

Sign of the derivative.
Vector of ordered knots from the spline bases.

Non-negative integer giving the order of the spline.

11

. Should be between 0 and

Does the heavy lifting in shapeConstr to create a constraint matrix for shape-constrained B-splines.
Only useful for advanced users to create constraint matrices without passing an object to one of the
shapeConstr methods.

Value

A matrix of weighted differences that can be used to constrain B-spline bases.

Note

dmat doesn’t perform any checks of the parameters so use carefully. In normal usage, checks are
done by shapeConstr methods.

Examples

A second derivative matrix for cubic B-Splines with regularly spaced knots
Can be used to enforce convexity
cirls:::dmat(2, 1, 1:15, 4)

edf

Expected degrees of freedom

Description

Estimate expected degrees of freedom of a cirls object through simulations.

Usage

edf(object, nsim = 10000, seed = NULL)

Arguments
object
nsim

seed

The number of simulations.

A cirls object or any object inheriting from 1m, see details.

An optional seed for the random number generator. See set.seed.

12 edf

Details

Simulates coefficient vectors from their unconstrained distribution, which is the non-truncated mul-
tivariate normal distribution. For each simulated vector, counts the number of violated constraints
as the number of active constraints under the constrained distribution. The expected degrees of
freedom is then the number of parameters minus the average number of active constraints.

This procedure allows to account for the randomness of degrees of freedom for the constrained
model. Indeed, the observed degrees of freedom is the number of parameters minus the number
of active constraints. However, the number of active constraints is random as, some constraints
can be active or not depending on the observed data. For instance, in a model for which the con-
straints are binding, the expected degrees of freedom will be close to the observed one, while in a
model in which the constraints are irrelevant, the expected degrees of freedom will be closer to the
unconstrained (usual) ones.

Value

A vector of length three with components:

udf The unconstrained degrees of freedom, i.e. the rank plus any dispersion param-
eter for glm objects.

odf The observed degrees of freedom, that is udf minus the number of active con-
straints.

edf The expected degrees of freedom estimated by simulation as described in the

details section. For any other object inheriting from 1m, attempts to retrieve the
effective degrees of freedom.

For cirls objects, the vector includes the simulated distribution of the number of active constraints
as an actfreq attribute.

Note

This function is implemented mainly for cirls objects and can return idiosyncratic results for other
objects inheriting from 1m. In this case, it will attempt to retrieve an "edf’ value, but simply return
the rank of the model if this fails. For glm models for instance, it will return thrice the same value.

References
Meyer, M.C., 2013. Semi-parametric additive constrained regression. Journal of Nonparametric
Statistics 25, 715-730. doi:10.1080/10485252.2013.797577

See Also

logLik.cirls which internally calls edf to compute degrees of freedom.

Examples

Simulate a simple dataset
set.seed(5)

X <= rnorm(100)

y <= x + rnorm(100)

https://doi.org/10.1080/10485252.2013.797577

logLik.cirls 13

#i### Model with a sensible constraint

Reduces edf compared to udf as the constraint is sometimes active
modl <- glm(y ~ x, method = "cirls.fit", Cmat = list(x = 1), 1lb = 1)
edf (mod1)

#i### Model with an almost surely binding constraint

In this case edf is very close to odf as the constraint is often active
mod2 <- glm(y ~ x, method = "cirls.fit"”, Cmat = list(x = 1), 1lb = 1.5)
edf (mod2)

Model with an irrelevant constraint

Here the constraint is useless and edf is equal to unconstrained df
mod3 <- glm(y ~ x, method = "cirls.fit"”, Cmat = list(x = 1), 1lb = -5)
edf (mod3)

loglik.cirls Log-Likelihood for a fitted cirls object

Description

Extracts the log-likelihood for a fitted cirls object to be typically used by AIC.

Usage
S3 method for class 'cirls'
logLik(object, df = "edf"”, ...)
Arguments
object A cirls object.
df The type of degrees of freedom to assign to the log-Likelihood. Default to ex-

pected degrees of freedom. See edf ().

Arguments to be passed to edf to compute degrees of freedom.

Details

The argument df provide the type of degrees of freedom attributed to the returned log-likelihood
value. This is typically used in the computation of AIC and BIC and changing the degrees of
freedom can ultimately change the values of the information criteria. By default, the expected
number of freedom given the constraints is used. See edf for details on the computation and for the
returned types of degrees of freedom.

Value

A numeric value of class loglLik with attributes df (degrees of freedom, see details) and nobs
(number of observations used in the estimation).

14 shapeConstr

See Also

edf to compute expected degrees of freedom.

shapeConstr Create shape constraints

Description

Creates a constraint matrix to shape-constrain a set of coefficients. Mainly intended for splines but
can constrain various bases or set of variables. Will typically be called from within cirls.fit but can
be used to generate constraint matrices.

Usage
shapeConstr(x, shape, ...)

Default S3 method:
shapeConstr(x, shape, intercept = FALSE, ...)

S3 method for class 'factor'

shapeConstr(x, shape, intercept = FALSE, ...)
Arguments
X An object representing a design matrix of predictor variables, typically basis

functions. See details for supported objects.

shape A character vector indicating one or several shape-constraints. See details for
supported shapes.

Additional parameters passed to or from other methods.

intercept For the default method, a logical value indicating if the design matrix includes
an intercept. In most cases will be automatically extracted from x.

Details

The recommended usage is to directly specify the shape constraint through the shape argument
in the call to glm with cirls.fit. This method is then called internally to create the constraint ma-
trix. However, shapeConstr can nonetheless be called directly to manually build or inspect the
constraint matrix for a given shape and design matrix.

The parameters necessary to build the constraint matrix (e.g. knots and ord for splines) are typi-
cally extracted from the x object. This is also true for the intercept for most of the object, except
for the default method for which it can be useful to explicitly provide it. In a typical usage in which
shapeConstr would only be called within cirls.fit, intercept is automatically determined from
the glm formula.

shapeConstr 15

Allowed shapes:
The shape argument allows to define a specific shape for the association between the expanded
term in x and the response of the regression model. This shape can describe the relation between
coefficients for the default method, or the shape of the smooth term for spline bases. At the
moment, six different shapes are supported, with up to three allowed simultaneously (one from
each category):

* "pos” or "neg": Positive/Negative. Applies to the full association.

e "inc” or "dec"”: Monotonically Increasing/Decreasing.

e "cvx" or "ccv": Convex/Concave.

Available methods:

In addition to the default method, shapeConstr currently supports several objects, creating an
appropriate shape-constraint matrix depending on the object. The full list can be obtained by
methods (shapeConstr).

General:

e factor(): for categorical variables. Extract the contrasts to define the constraint matrix.
here the intercept argument has the same interpretation as in the default method, i.e. if set
to TRUE it means the glm model doesn’t include an intercept externally to the factor. Note
that, in this case, a simple dummy coding is done in R.

From the splines package:
* bs: B-splines.

* ns: Natural splines.

From the dinm package:
* onebasis: General method for basis functions generated in the package.
¢ ps: Penalised splines (P-Splines).

Value

A constraint matrix to be passed to Cmat in cirls.fit.

References
Zhou, S. & Wolfe, D. A., 2000, On derivative estimation in spline regression. Statistica Sinica 10,
93-108.

See Also

cirls.fit() which typically calls shapeConstr internally.

Examples

example code

16 simulCoef

simulCoef Simulate coefficients, calculate Confidence Intervals and Variance-
Covariance Matrix for a cirls object.

Description

Simulates coefficients for a fitted cirls object. confint and vcov compute confidence intervals
and the Variance-Covariance matrix for coefficients from a fitted cirls object. These methods
supersede the default methods for cirls objects.

Usage

simulCoef (object, nsim = 1, seed = NULL, complete = TRUE,
constrained = TRUE)

S3 method for class 'cirls'
confint(object, parm, level = 0.95, nsim = 1000,
complete = TRUE, ...)

S3 method for class 'cirls'
vcov(object, complete = TRUE, nsim = 1000, trunc = TRUE,

.2
Arguments
object A fitted cirls object.
nsim The number of simulations to perform.
seed Either NULL or an integer that will be used in a call to set.seed() before
simulating the coefficients.
complete If FALSE, doesn’t return inference for undetermined coefficients in case of an
over-determined model.
constrained A logical switch indicating Whether to simulate from the constrained (the de-
fault) or unconstrained coefficients distribution.
parm A specification of which parameters to compute the confidence intervals for.
Either a vector of numbers or a vector of names. If missing, all parameters are
considered.
level The confidence level required.
Further arguments passed to or from other methods. For vcov and confint can
be used to provide a seed for the internal coefficient simulation.
trunc If set to FALSE the unmodified GLM variance-covariance computed within summary . glm()

is returned.

simulCoef 17

Details

confint and vcov are custom methods for cirls objects to supersede the default methods used for
glm objects. Internally, they both call simulCoef to generate coefficient vectors from a Truncated
Multivariate Normal Distribution using the TruncatedNormal: : rtmvnorm() function. This distri-
bution accounts for truncation by constraints, ensuring all coefficients are feasible with respect to
the constraint matrix. simulCoef typically doesn’t need to be used directly for confidence intervals
and variance-covariance matrices, but it can be used to check other summaries of the coefficients
distribution.

These methods only work when Cmat is of full row rank, i.e. if there are less constraints than
variables in object.

Value

For simulCoef, a matrix with nsim rows containing simulated coefficients.

For confint, a two-column matrix with columns giving lower and upper confidence limits for each
parameter.

For vcov, a matrix of the estimated covariances between the parameter estimates of the model.

Note

By default, the Variance-Covariance matrix generated by vcov is different than the one returned by
summary (obj)$cov.scaled. The former accounts for the reduction in degrees of freedom resulting
from the constraints, while the latter is the unconstrained GLM Variance-Covariance. Note that the
unconstrained one can be obtained from vcov by setting constrained = FALSE.

References

Geweke, J.F., 1996. Bayesian Inference for Linear Models Subject to Linear Inequality Constraints,
in: Lee, J.C., Johnson, W.O., Zellner, A. (Eds.), Modelling and Prediction Honoring Seymour
Geisser. Springer, New York, NY, pp. 248-263. doi:10.1007/9781461224143_15

Botev, Z.1., 2017, The normal law under linear restrictions: simulation and estimation via minimax
tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1-24.

See Also

rtmvnorm for the underlying routine to simulate from a TMVN. checkCmat () to check if the con-
traint matrix can be reduced.

Examples
HHHHHHAEHE R R
Isotonic regression

#-—-—- Perform isotonic regression

Generate data
set.seed(222)
pl <= 5; p2<-3

https://doi.org/10.1007/978-1-4612-2414-3_15

18

x1 <- matrix(rnorm(100 * p1), 100, p1)

X2 <- matrix(rnorm(100 * p2), 100, p2)

b1 <= runif(pl) [> sort()

b2 <- runif(p2)

y <= x1 %*% b1l + x2 %*% b2 + rnorm(100, sd = 2)

Fit model
Ciso <- diff(diag(p1))

resiso <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso))

#--——- Extract uncertainty

Extract variance covariance
vcov(resiso)

Extract confidence intervals
confint(resiso)

We can extract the usual unconstrained matrix
vcov(resiso, constrained = FALSE)

all.equal(vcov(resiso, constrained = FALSE), summary(resiso)$cov.scaled)

Simulate from the distribution of coefficients
sims <- simulCoef(resiso, nsim = 10)

Check that all simulated coefficient vectors are feasible
apply(resiso$Cmat %*% t(sims) >= resiso$lb, 2, all)

uncons

uncons Unconstrained model

Description

Takes a fitted cirls object and returns the corresponding unconstrained model.

Usage

uncons(object)

Arguments

object Fitted ’cirls’ object.

Details

Note on starting values:

If any starting values were provided to fit the cirls object, they are not transferred to the fitting

of the unconstrained model.

zerosumConstr

Value

A cirls object.

Examples

Generate some data

n <- 1000

betas <- c(0, 1, 2, -1, 1)

p <- length(betas)

x <= matrix(rnorm(n * p), n, p)
eta <- 5 + x %*% betas

y <- eta + rnorm(n, 0, .2)

Fit two cirls models, passing Cmat through the two different pathways

cinc <- diff(diag(p))

resl <- glm(y ~ x, method = cirls.fit, Cmat = list(x = cinc))

res2 <- glm(y ~ x, method = cirls.fit, control = list(Cmat = list(x = cinc)))

'Unconstrain' the models
ucl <- uncons(res1)
uc2 <- uncons(res2)

19

zerosumConstr

Zero-sum constraint matrix

Description

Build constraint matrix and bounds for coefficients summing to zero.

Usage
zerosumConstr(..., group = FALSE)
Arguments
Variables to be included in the constraint.
group If set to TRUE, the constraint is build independently for each variable in . . .

Index

AIC, 13

BIC, I3
bs, 15
buildCmat, 2, 8

checkCmat, 3

checkCmat(), 17
cirls, 11, 12,17
cirls.control, 5, 6-9
cirls.control(), 3
cirls.fit,2,5,6,6,8, 9,14, 15
cirls.fit(), 3,15
confint.cirls, 8, 9
confint.cirls (simulCoef), 16
confint.cirls(), 3, 4
contrasts, 15

dlnm, 15
dmat, 10

edf, 9,11, 13, 14
edf(), 13

factor(), 15
family, 7

glm, 5-9, 14, 17
glm.control, 6

glm.fit, 6,7
loglik.cirls, 8, 9,12,13

model. frame, 2
model.offset, 7

ns, 15
onebasis, 15

ps, 15

20

gprog, 8
rtmvnorm, /7

set.seed, /]
set.seed(), 16
shapeConstr, 10, 11, 14
simulCoef, 16
solve.QP, 8
solve_osqgp, 8
splines, 15
summary.glm(), 16

TruncatedNormal: :rtmvnorm(), 17
uncons, 18

vcov.cirls, 8, 9
vcov.cirls (simulCoef), 16

zerosumConstr, 19

	buildCmat
	checkCmat
	cirls.control
	cirls.fit
	dmat
	edf
	logLik.cirls
	shapeConstr
	simulCoef
	uncons
	zerosumConstr
	Index

