count(handle = author_handle, sort = T) |>
slice(1:10) |>
mutate(handle = forcats::fct_reorder(handle, n)) |>
ggplot(aes(handle, n)) +
geom_col() +
coord_flip() +
theme_minimal()
```
### Recognizing Influential Voices
Volume doesn't always translate to influence. Some users may post less frequently but their contributions resonate deeply with the community.
``` r
# Identifying top 10 influential voices based on likes
rstat_posts |>
group_by(author_handle) |>
summarize(like_count = sum(like_count)) |>
ungroup() |>
arrange(desc(like_count)) |>
slice(1:10) |>
mutate(handle = forcats::fct_reorder(author_handle, like_count)) |>
ggplot(aes(handle, like_count)) +
geom_col() +
coord_flip() +
theme_minimal()
```
### Most Famous #rstats skeet
``` r
# Finding the standout post in the rstats feed
rstat_posts |>
mutate(total_interactions = reply_count + repost_count + like_count) |>
arrange(desc(total_interactions)) |>
slice(1) |>
select(author_handle, total_interactions, text) |>
dplyr::glimpse() |>
pull(text)
#> Rows: 1
#> Columns: 3
#> $ author_handle "omearabrian.bsky.soci…
#> $ total_interactions 42
#> $ text "New paper! \"dentist:…
#> [1] "New paper! \"dentist: Quantifying uncertainty by sampling points around maximum likelihood estimates\". Easy thing to plug into R workflows for getting better confidence intervals and detecting potential identifiability issues. #OpenAccess paper at doi.org/10.1111/2041...\n\n#Rstats #OpenSource"
```