## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", # fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "85%" ) ## ----setup-------------------------------------------------------------------- # loading the package library(LaMa) ## ----parameters--------------------------------------------------------------- # state-dependent rates lambda = c(2, 15) # generator matrix of the underlying Markov chain Q = matrix(c(-0.5,0.5,2,-2), nrow = 2, byrow = TRUE) ## ----simulation--------------------------------------------------------------- set.seed(123) k = 200 # number of state switches trans_times = s = rep(NA, k) # time points where the chain transitions s[1] = sample(1:2, 1) # initial distribuion c(0.5, 0.5) # exponentially distributed waiting times trans_times[1] = rexp(1, -Q[s[1],s[1]]) # in a fixed interval, the number of arrivals is Pois(lambda * interval_length) n_arrivals = rpois(1, lambda[s[1]]*trans_times[1]) # arrival times within fixed interval are uniformly distributed arrival_times = runif(n_arrivals, 0, trans_times[1]) for(t in 2:k){ s[t] = c(1,2)[-s[t-1]] # for 2-states, always a state swith when transitioning # exponentially distributed waiting times trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t], s[t]]) # in a fixed interval, the number of arrivals is Pois(lambda * interval_length) n_arrivals = rpois(1, lambda[s[t]]*(trans_times[t]-trans_times[t-1])) # arrival times within fixed interval are uniformly distributed arrival_times = c(arrival_times, runif(n_arrivals, trans_times[t-1], trans_times[t])) } arrival_times = sort(arrival_times) ## ----vis_MMPP----------------------------------------------------------------- n = length(arrival_times) color = c("orange", "deepskyblue") plot(arrival_times[1:100], rep(0.5,100), type = "h", bty = "n", ylim = c(0,1), yaxt = "n", xlab = "arrival times", ylab = "") segments(x0 = c(0,trans_times[1:98]), x1 = trans_times[1:99], y0 = rep(0,100), y1 = rep(0,100), col = color[s[1:99]], lwd = 4) legend("top", lwd = 2, col = color, legend = c("state 1", "state 2"), box.lwd = 0) ## ----mllk--------------------------------------------------------------------- nll = function(par, timediff, N){ lambda = exp(par[1:N]) # state specific rates Q = generator(par[N+1:(N*(N-1))]) Pi = stationary_cont(Q) Qube = tpm_cont(Q - diag(lambda), timediff) # exp((Q-Lambda) * dt) allprobs = matrix(lambda, nrow = length(timediff + 1), ncol = N, byrow = T) allprobs[1,] = 1 -forward_g(Pi, Qube, allprobs) } ## ----model, warning=FALSE----------------------------------------------------- par = log(c(2, 15, # lambda 2, 0.5)) # off-diagonals of Q timediff = diff(arrival_times) system.time( mod <- nlm(nll, par, timediff = timediff, N = 2, stepmax = 10) ) # we often need the stepmax, as the matrix exponential can be numerically unstable ## ----results------------------------------------------------------------------ (lambda = exp(mod$estimate[1:2])) (Q = generator(mod$estimate[3:4])) (Pi = stationary_cont(Q)) ## ----parameters2-------------------------------------------------------------- # state-dependent rates lambda = c(1, 5, 20) # generator matrix of the underlying Markov chain Q = matrix(c(-0.5, 0.3, 0.2, 0.7, -1, 0.3, 1, 1, -2), nrow = 3, byrow = TRUE) # parmeters for distributions of state-dependent marks # (here normally distributed) mu = c(-5, 0, 5) sigma = c(2, 1, 2) color = c("orange", "deepskyblue", "seagreen2") curve(dnorm(x, 0, 1), xlim = c(-10,10), bty = "n", lwd = 2, col = color[2], n = 200, ylab = "density", xlab = "mark") curve(dnorm(x, -5, 2), add = TRUE, lwd = 2, col = color[1], n = 200) curve(dnorm(x, 5, 2), add = TRUE, lwd = 2, col = color[3], n = 200) ## ----simulation2-------------------------------------------------------------- set.seed(123) k = 200 # number of state switches trans_times = s = rep(NA, k) # time points where the chain transitions s[1] = sample(1:3, 1) # initial distribuion uniformly # exponentially distributed waiting times trans_times[1] = rexp(1, -Q[s[1],s[1]]) # in a fixed interval, the number of arrivals is Pois(lambda * interval_length) n_arrivals = rpois(1, lambda[s[1]]*trans_times[1]) # arrival times within fixed interval are uniformly distributed arrival_times = runif(n_arrivals, 0, trans_times[1]) # marks are iid in interval, given underlying state marks = rnorm(n_arrivals, mu[s[1]], sigma[s[1]]) for(t in 2:k){ # off-diagonal elements of the s[t-1] row of Q divided by the diagonal element # give the probabilites of the next state s[t] = sample(c(1:3)[-s[t-1]], 1, prob = Q[s[t-1],-s[t-1]]/-Q[s[t-1],s[t-1]]) # exponentially distributed waiting times trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t],s[t]]) # in a fixed interval, the number of arrivals is Pois(lambda * interval_length) n_arrivals = rpois(1, lambda[s[t]]*(trans_times[t]-trans_times[t-1])) # arrival times within fixed interval are uniformly distributed arrival_times = c(arrival_times, runif(n_arrivals, trans_times[t-1], trans_times[t])) # marks are iid in interval, given underlying state marks = c(marks, rnorm(n_arrivals, mu[s[t]], sigma[s[t]])) } arrival_times = sort(arrival_times) ## ----vis_MMMPP---------------------------------------------------------------- n = length(arrival_times) plot(arrival_times[1:100], marks[1:100], pch = 16, bty = "n", ylim = c(-9,9), xlab = "arrival times", ylab = "marks") segments(x0 = c(0,trans_times[1:98]), x1 = trans_times[1:99], y0 = rep(-9,100), y1 = rep(-9,100), col = color[s[1:99]], lwd = 4) legend("topright", lwd = 2, col = color, legend = c("state 1", "state 2", "state 3"), box.lwd = 0) ## ----mllk2-------------------------------------------------------------------- nllMark = function(par, y, timediff, N){ lambda = exp(par[1:N]) # state specific rates mu = par[N+1:N] sigma = exp(par[2*N+1:N]) Q = generator(par[3*N+1:(N*(N-1))]) Pi = stationary_cont(Q) Qube = tpm_cont(Q-diag(lambda), timediff) # exp((Q-Lambda)*deltat) allprobs = matrix(1, length(y), N) for(j in 1:N) allprobs[,j] = dnorm(y, mu[j], sigma[j]) allprobs[-1,] = allprobs[-1,] * matrix(lambda, length(y) - 1, N, byrow = T) -forward_g(Pi, Qube, allprobs) } ## ----model2, warning=FALSE---------------------------------------------------- par = c(loglambda = log(c(1, 5, 20)), # lambda mu = c(-5, 0, 5), # mu logsigma = log(c(2, 1, 2)), # sigma qs = log(c(0.7, 1, 0.3, 1, 0.2, 0.3))) # Q timediff = diff(arrival_times) system.time( mod2 <- nlm(nllMark, par, y = marks, timediff = timediff, N = 3, stepmax = 5) ) ## ----results2----------------------------------------------------------------- N = 3 (lambda = exp(mod2$estimate[1:N])) (mu = mod2$estimate[N+1:N]) (sigma = exp(mod2$estimate[2*N+1:N])) (Q = generator(mod2$estimate[3*N+1:(N*(N-1))])) (Pi = stationary_cont(Q))