collin {FME} | R Documentation |
Based on the sensitivity functions of model variables to a selection of parameters, calculates the "identifiability" of sets of parameter.
The sensitivity functions are a matrix whose(i,j)-th element contains
dy_i/dpar_j*parscale_j/varscale_i
and where y_i is an output variable, at a certain (time) instance, i, varscale_i is the scaling of variable y_i, parscale_j is the scaling of parameter par_j.
Function collin
estimates the collinearity, or identifiability of all
parameter sets or of one parameter set.
As a rule of thumb, a collinearity value less than about 20 is "identifiable"
collin(sensfun, parset = NULL, N = NULL, which = NULL) ## S3 method for class 'collin': print(x, ...) ## S3 method for class 'collin': plot(x, ...)
sensfun |
model sensitivity functions as estimated by SensFun .
|
parset |
one selected parameter combination, a vector with their names or with the indices to the parameters. |
N |
the number of parameters in the set; if NULL then all
combinations will be tried. Ignored if parset is not NULL .
|
which |
the name or the index to the observed variables that should be used. Default = all observed variables. |
x |
an object of class collin .
|
... |
additional arguments passed to the methods. |
The collinearity is a measure of approximate linear dependence between sets of parameters. The higher its value, the more the parameters are related. With "related" is meant that several paraemter combinations may produce similar values of the output variables.
a data.frame of class collin
with one row for each parameter combination
(parameters as in sensfun
)
Each row contains:
... |
for each parameter whether it is present (1) or absent (0) in the set, |
N |
the number of parameters in the set, |
collinearity |
the collinearity value. |
The data.frame returned by collin
has methods for the generic
functions print
and plot
.
It is possible to use collin
for selecting
parameter sets that can be fine-tuned based on a data set.
Thus it is a powerful technique to make model calibration routines more robust,
because calibration routines often fail when parameters are strongly related.
In general, when the collinearity index exceeds 20, the linear dependence is assumed to be critical (i.e. it will not be possible or easy to estimate all the parameters in the combination together).
The procedure is explained in Omlin et al. (2001).
1. First the function collin
is used to test how far a dataset
can be used for estimating certain (combinations of) parameters.
After selection of an 'identifiable parameter set' (which has a low
"collinearity") they are fine-tuned by calibration.
2. As the sensitivity analysis is a local analysis (i.e. its outcome depends on the current values of the model parameters) and the fitting routine is used to estimate the best values of the parameters, this is an iterative procedure. This means that identifiable parameters are determined, fitted to the data, then a newly identifiable parameter set is determined, fitted, etcetera until convergenc is reached.
See the paper by Omlin et al. (2001) for more information.
Karline Soetaert <k.soetaert@nioo.knaw.nl>
Brun, R., Reichert, P., Kunsch, H.R., 2001. Practical identifiability analysis of large environmental simulation models. Water Resour. Res. 37(4): 1015–1030
Omlin, M., Brun, R. and Reichert, P., 2001. Biogeochemical model of Lake Zurich: sensitivity, identifiability and uncertainty analysis. Ecol. Modell. 141: 105–123
## ======================================================================= ## Test collinearity values ## ======================================================================= ## linearly related set... => Infinity collin (cbind(1:5,2*(1:5))) ## unrelated set => 1 MM<- matrix(nr=4,nc=2,byrow=TRUE,data=c( -0.400, -0.374, 0.255, 0.797, 0.690, -0.472, -0.546, 0.049)) collin(MM) ## ======================================================================= ## Bacterial model as in Soetaert and Herman, 2009 ## ======================================================================= pars <- list(gmax =0.5,eff = 0.5, ks =0.5, rB =0.01, dB =0.01) solveBact <- function(pars) { derivs <- function(t, state, pars) { # returns rate of change with (as.list(c(state,pars)), { dBact = gmax*eff*Sub/(Sub+ks)*Bact - dB*Bact - rB*Bact dSub =-gmax *Sub/(Sub+ks)*Bact + dB*Bact return(list(c(dBact,dSub))) }) } state <- c(Bact=0.1,Sub = 100) tout <- seq(0,50,by=0.5) ## ode solves the model by integration... return(as.data.frame(ode(y=state,times=tout,func=derivs,parms=pars))) } out <- solveBact(pars) ## We wish to estimate parameters gmax and eff by fitting the model to ## these data: Data <- matrix (nc=2,byrow=TRUE,data= c( 2, 0.14, 4, 0.2, 6, 0.38, 8, 0.42, 10, 0.6, 12, 0.107, 14, 1.3, 16, 2.0, 18, 3.0, 20, 4.5, 22, 6.15, 24, 11, 26, 13.8, 28, 20.0, 30, 31 , 35, 65, 40, 61) ) colnames(Data) <- c("time","Bact") head(Data) Data2 <- matrix(c(2, 100, 20, 93, 30, 55, 50, 0), ncol = 2, byrow = TRUE) colnames(Data2) <- c("time", "Sub") ## Objective function to minimise Objective <- function (x) { # Model cost pars[] <- x out <- solveBact(x) Cost <- modCost(obs=Data2,model=out) # observed data in 2 data.frames return(modCost(obs=Data,model=out,cost=Cost)) } ## 1. Estimate sensitivity functions - all parameters sF <- sensFun(func=Objective,parms=pars,varscale=1) ## 2. Estimate the collinearity Coll <- collin(sF) ## The larger the collinearity, the less identifiable the data set Coll plot(Coll, log = "y") ## 20 = magical number above which there are identifiability problems abline(h = 20, col = "red") ## select "identifiable" sets with 4 parameters Coll [Coll[,"collinearity"] < 20 & Coll[,"N"]==4,] ## collinearity of one selected parameter set collin(sF, c(1, 3, 5)) collin(sF, 1:5) collin(sF, c("gmax", "eff")) ## collinearity of all combinations of 3 parameters collin(sF, N = 3) ## The collinearity depends on the value of the parameters: P <- pars P[1:2] <- 1 # was: 0.5 collin(sensFun(Objective, P, varscale = 1))