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Abstract

The package fitdistrplus provides functions for fitting univariate distributions to different types of data (continuous
censored or non-censored data and discrete data) and allowing different estimation methods (maximum likelihood,
moment matching, quantile matching and maximum goodness-of-fit estimation). Outputs of fitdist and fitdist-

cens functions are S3 objects, for which kind generic methods are provided, including summary, plot and quantile.
This package also provides various functions to compare the fit of several distributions to a same data set and can
handle bootstrap of parameter estimates. Detailed examples are given in food risk assessment, ecotoxicology and
insurance contexts.

Keywords: probability distribution fitting, bootstrap, censored data, maximum likelihood, moment matching,
quantile matching, maximum goodness-of-fit, distributions, R

1 Introduction

Fitting distributions to data is a very common task in statistics and consists in choosing a probability distribution
modelling the random variable, as well as finding parameter estimates for that distribution. This requires judgment
and expertise and generally needs an iterative process of distribution choice, parameter estimation, and quality of
fit assessment. In the R (R Development Core Team, 2013) package MASS (Venables and Ripley, 2010), maximum
likelihood estimation is available via the fitdistr function; other steps of the fitting process can be done using
other R functions (Ricci, 2005). In this paper, we present the R package fitdistrplus (Delignette-Muller et al., 2014)
implementing several methods for fitting univariate parametric distribution. A first objective in developing this package
was to provide R users a set of functions dedicated to help this overall process.

The fitdistr function estimates distribution parameters by maximizing the likelihood function using the optim

function. No distinction between parameters with different roles (e.g., main parameter and nuisance parameter) is
made, as this paper focuses on parameter estimation from a general point-of-view. In some cases, other estimation
methods could be prefered, such as maximum goodness-of-fit estimation (also called minimum distance estimation),
as proposed in the R package actuar with three different goodness-of-fit distances (Dutang et al., 2008). While
developping the fitdistrplus package, a second objective was to consider various estimation methods in addition to
maximum likelihood estimation (MLE). Functions were developped to enable moment matching estimation (MME),
quantile matching estimation (QME), and maximum goodness-of-fit estimation (MGE) using eight different distances.
Moreover, the fitdistrplus package offers the possibility to specify a user-supplied function for optimization, useful in
cases where classical optimization techniques, not included in optim, are more adequate.

In applied statistics, it is frequent to have to fit distributions to censored data (Klein and Moeschberger, 2003;
Helsel, 2005; Busschaert et al., 2010; Leha et al., 2011; Commeau et al., 2012). The MASS fitdistr function does
not enable maximum likelihood estimation with this type of data. Some packages can be used to work with censored
data, especially survival data (Therneau, 2011; Hirano et al., 1994; Jordan, 2005), but those packages generally focus
on specific models, enabling the fit of a restricted set of distributions. A third objective is thus to provide R users a
function to estimate univariate distribution parameters from right-, left- and interval-censored data.

Few packages on CRAN provide estimation procedures for any user-supplied parametric distribution and support
different types of data. The distrMod package (Kohl and Ruckdeschel, 2010) provides an object-oriented (S4) imple-
mentation of probability models and includes distribution fitting procedures for a given minimization criterion. This
criterion is a user-supplied function which is sufficiently flexible to handle censored data, yet not in a trivial way, see
Example M4 of the distrMod vignette. The fitting functions MLEstimator and MDEstimator return an S4 class for
which a coercion method to class mle is provided so that the respective functionalities (e.g., confint and logLik) from
package stats4 are available, too. In fitdistrplus, we chose to use the standard S3 class system for its understanding by
most R users. When designing the fitdistrplus package, we did not forget to implement generic functions also available
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for S3 classes. Finally, various other packages provide functions to estimate the mode, the moments or the L-moments
of a distribution, see the reference manuals of modeest, lmomco and Lmoments packages.

This manuscript reviews the various features of version 1.0-2 of fitdistrplus. The package is available from the
Comprehensive R Archive Network at http://cran.r-project.org/package=fitdistrplus. The development ver-
sion of the package is located at R-forge as one package of the project “Risk Assessment with R” (https://r-forge.
r-project.org/projects/riskassessment/). The paper is organized as follows: Section 2 presents tools for fitting
continuous distributions to classic non-censored data. Section 3 deals with other estimation methods and other types
of data, before Section 4 concludes.

2 Fitting distributions to continuous non-censored data

2.1 Choice of candidate distributions

For illustrating the use of various functions of the fitdistrplus package with continuous non-censored data, we will first
use a data set named groundbeef which is included in our package. This data set contains pointwise values of serving
sizes in grams, collected in a French survey, for ground beef patties consumed by children under 5 years old. It was
used in a quantitative risk assessment published by Delignette-Muller et al. (2008).

R> library("fitdistrplus")

R> data("groundbeef")

R> str(groundbeef)

'data.frame': 254 obs. of 1 variable:

$ serving: num 30 10 20 24 20 24 40 20 50 30 ...

Before fitting one or more distributions to a data set, it is generally necessary to choose good candidates among
a predefined set of distributions. This choice may be guided by the knowledge of stochastic processes governing the
modelled variable, or, in the absence of knowledge regarding the underlying process, by the observation of its empirical
distribution. To help the user in this choice, we developed functions to plot and characterize the empirical distribution.

First of all, it is common to start with plots of the empirical distribution function and the histogram (or density
plot), which can be obtained with the plotdist function of the fitdistrplus package. This function provides two plots
(see Figure 1): the left-hand plot is by default the histogram on a density scale (or density plot of both, according to
values of arguments histo and demp) and the right-hand plot the empirical cumulative distribution function (CDF).

R> plotdist(groundbeef$serving, histo = TRUE, demp = TRUE)
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Figure 1: Histogram and CDF plots of an empirical distribution for a continuous variable (serving size from the
groundbeef data set) as provided by the plotdist function.

In addition to empirical plots, descriptive statistics may help to choose candidates to describe a distribution among
a set of parametric distributions. Especially the skewness and kurtosis, linked to the third and fourth moments,
are useful for this purpose. A non-zero skewness reveals a lack of symmetry of the empirical distribution, while the
kurtosis value quantifies the weight of tails in comparison to the normal distribution for which the kurtosis equals
3. The skewness and kurtosis and their corresponding unbiased estimator (Casella and Berger, 2002) from a sample

(Xi)i
i.i.d.∼ X with observations (xi)i are given by

sk(X) =
E[(X − E(X))3]

V ar(X)
3
2

, ŝk =

√
n(n− 1)

n− 2
× m3

m
3
2
2

, (1)
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kr(X) =
E[(X − E(X))4]

V ar(X)2
, k̂r =

n− 1

(n− 2)(n− 3)
((n+ 1)× m4

m2
2

− 3(n− 1)) + 3, (2)

where m2, m3, m4 denote empirical moments defined by mk = 1
n

∑n
i=1(xi−x)k, with xi the n observations of variable

x and x their mean value.
The descdist function provides classical descriptive statistics (minimum, maximum, median, mean, standard devi-

ation), skewness and kurtosis. By default, unbiased estimations of the three last statistics are provided. Nevertheless,
the argument method can be changed from "unbiased" (default) to "sample" to obtain them without correction for
bias. A skewness-kurtosis plot such as the one proposed by Cullen and Frey (1999) is provided by the descdist

function for the empirical distribution (see Figure 2 for the groundbeef data set). On this plot, values for common
distributions are displayed in order to help the choice of distributions to fit to data. For some distributions (normal,
uniform, logistic, exponential), there is only one possible value for the skewness and the kurtosis. Thus, the distri-
bution is represented by a single point on the plot. For other distributions, areas of possible values are represented,
consisting in lines (as for gamma and lognormal distributions), or larger areas (as for beta distribution).

Skewness and kurtosis are known not to be robust. In order to take into account the uncertainty of the estimated
values of kurtosis and skewness from data, a nonparametric bootstrap procedure (Efron and Tibshirani, 1994) can
be performed by using the argument boot. Values of skewness and kurtosis are computed on bootstrap samples
(constructed by random sampling with replacement from the original data set) and reported on the skewness-kurtosis
plot. Nevertheless, the user needs to know that skewness and kurtosis, like all higher moments, have a very high
variance. This is a problem which cannot be completely solved by the use of bootstrap. The skewness-kurtosis plot
should then be regarded as indicative only. The properties of the random variable should be considered, notably its
expected value and its range, as a complement to the use of the plotdist and descdist functions. Below is a call to
the descdist function to describe the distribution of the serving size from the groundbeef data set and to draw the
corresponding skewness-kurtosis plot (see Figure 2). Looking at the results on this example with a positive skewness
and a kurtosis not far from 3, the fit of three common right-skewed distributions could be considered, Weibull, gamma
and lognormal distributions.

R> descdist(groundbeef$serving, boot = 1000)

summary statistics

------

min: 10 max: 200

median: 79

mean: 73.65

estimated sd: 35.88

estimated skewness: 0.7353

estimated kurtosis: 3.551
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Figure 2: Skewness-kurtosis plot for a continuous variable (serving size from the groundbeef data set) as provided by
the descdist function.
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2.2 Fit of distributions by maximum likelihood estimation

Once selected, one or more parametric distributions f(.|θ) (with parameter θ ∈ Rd) may be fitted to the data set, one
at a time, using the fitdist function. Under the i.i.d. sample assumption, distribution parameters θ are by default
estimated by maximizing the likelihood function defined as:

L(θ) =

n∏
i=1

f(xi|θ) (3)

with xi the n observations of variable X and f(.|θ) the density function of the parametric distribution. The other
proposed estimation methods are described in Section 3.1.

The fitdist function returns an S3 object of class "fitdist" for which print, summary and plot functions
are provided. The fit of a distribution using fitdist assumes that the corresponding d, p, q functions (stand-
ing respectively for the density, the distribution and the quantile functions) are defined. Classical distributions are
already defined in that way in the stats package, e.g., dnorm, pnorm and qnorm for the normal distribution (see
?Distributions). Others may be found in various packages (see the CRAN task view: Probability Distributions at
https://CRAN.R-project.org/view=Distributions). Distributions not found in any package must be implemented
by the user as d, p, q functions. In the call to fitdist, a distribution has to be specified via the argument dist either
by the character string corresponding to its common root name used in the names of d, p, q functions (e.g., "norm"
for the normal distribution) or by the density function itself, from which the root name is extracted (e.g., dnorm for
the normal distribution). Numerical results returned by the fitdist function are (1) the parameter estimates, (2) the
estimated standard errors (computed from the estimate of the Hessian matrix at the maximum likelihood solution), (3)
the loglikelihood, (4) Akaike and Bayesian information criteria (the so-called AIC and BIC), and (5) the correlation
matrix between parameter estimates. Below is a call to the fitdist function to fit a Weibull distribution to the
serving size from the groundbeef data set.

R> fw <- fitdist(groundbeef$serving, "weibull")

R> summary(fw)

Fitting of the distribution ' weibull ' by maximum likelihood

Parameters :

estimate Std. Error

shape 2.186 0.1046

scale 83.348 2.5269

Loglikelihood: -1255 AIC: 2514 BIC: 2522

Correlation matrix:

shape scale

shape 1.0000 0.3218

scale 0.3218 1.0000

The plot of an object of class "fitdist" provides four classical goodness-of-fit plots (Cullen and Frey, 1999)
presented on Figure 3:

� a density plot representing the density function of the fitted distribution along with the histogram of the empirical
distribution,

� a CDF plot of both the empirical distribution and the fitted distribution,

� a Q-Q plot representing the empirical quantiles (y-axis) against the theoretical quantiles (x-axis)

� a P-P plot representing the empirical distribution function evaluated at each data point (y-axis) against the
fitted distribution function (x-axis).

For CDF, Q-Q and P-P plots, the probability plotting position is defined by default using Hazen’s rule, with
probability points of the empirical distribution calculated as (1:n - 0.5)/n, as recommended by Blom (1959). This
plotting position can be easily changed (see the reference manual for details (Delignette-Muller et al., 2014)).

Unlike the generic plot function, the denscomp, cdfcomp, qqcomp and ppcomp functions enable to draw separately
each of these four plots, in order to compare the empirical distribution and multiple parametric distributions fitted
on a same data set. These functions must be called with a first argument corresponding to a list of objects of class
fitdist, and optionally further arguments to customize the plot (see the reference manual for lists of arguments
that may be specific to each plot (Delignette-Muller et al., 2014)). In the following example, we compare the fit of a
Weibull, a lognormal and a gamma distributions to the groundbeef data set (Figure 3).

R> fg <- fitdist(groundbeef$serving, "gamma")

R> fln <- fitdist(groundbeef$serving, "lnorm")

R> par(mfrow = c(2, 2))

R> plot.legend <- c("Weibull", "lognormal", "gamma")
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R> denscomp(list(fw, fln, fg), legendtext = plot.legend)

R> qqcomp(list(fw, fln, fg), legendtext = plot.legend)

R> cdfcomp(list(fw, fln, fg), legendtext = plot.legend)

R> ppcomp(list(fw, fln, fg), legendtext = plot.legend)
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Figure 3: Four Goodness-of-fit plots for various distributions fitted to continuous data (Weibull, gamma and lognormal
distributions fitted to serving sizes from the groundbeef data set) as provided by functions denscomp, qqcomp, cdfcomp
and ppcomp.

The density plot and the CDF plot may be considered as the basic classical goodness-of-fit plots. The two other
plots are complementary and can be very informative in some cases. The Q-Q plot emphasizes the lack-of-fit at the
distribution tails while the P-P plot emphasizes the lack-of-fit at the distribution center. In the present example (in
Figure 3), none of the three fitted distributions correctly describes the center of the distribution, but the Weibull
and gamma distributions could be prefered for their better description of the right tail of the empirical distribution,
especially if this tail is important in the use of the fitted distribution, as it is in the context of food risk assessment.

The data set named endosulfan will now be used to illustrate other features of the fitdistrplus package. This
data set contains acute toxicity values for the organochlorine pesticide endosulfan (geometric mean of LC50 ou EC50
values in µg.L−1), tested on Australian and non-Australian laboratory-species (Hose and Van den Brink, 2004). In
ecotoxicology, a lognormal or a loglogistic distribution is often fitted to such a data set in order to characterize the
species sensitivity distribution (SSD) for a pollutant. A low percentile of the fitted distribution, generally the 5%
percentile, is then calculated and named the hazardous concentration 5% (HC5). It is interpreted as the value of
the pollutant concentration protecting 95% of the species (Posthuma et al., 2010). But the fit of a lognormal or
a loglogistic distribution to the whole endosulfan data set is rather bad (Figure 4), especially due to a minority
of very high values. The two-parameter Pareto distribution and the three-parameter Burr distribution (which is an
extension of both the loglogistic and the Pareto distributions) have been fitted. Pareto and Burr distributions are
provided in the package actuar. Until here, we did not have to define starting values (in the optimization process)
as reasonable starting values are implicity defined within the fitdist function for most of the distributions defined
in R (see ?fitdist for details). For other distributions like the Pareto and the Burr distribution, initial values for
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the distribution parameters have to be supplied in the argument start, as a named list with initial values for each
parameter (as they appear in the d, p, q functions). Having defined reasonable starting values1, various distributions
can be fitted and graphically compared. On this example, the function cdfcomp can be used to report CDF values in
a logscale so as to emphasize discrepancies on the tail of interest while defining an HC5 value (Figure 4).

R> data("endosulfan")

R> ATV <-endosulfan$ATV

R> fendo.ln <- fitdist(ATV, "lnorm")

R> library("actuar")

R> fendo.ll <- fitdist(ATV, "llogis", start = list(shape = 1, scale = 500))

R> fendo.P <- fitdist(ATV, "pareto", start = list(shape = 1, scale = 500))

R> fendo.B <- fitdist(ATV, "burr", start = list(shape1 = 0.3, shape2 = 1,

+ rate = 1))

R> cdfcomp(list(fendo.ln, fendo.ll, fendo.P, fendo.B),

+ xlogscale = TRUE, ylogscale = TRUE,

+ legendtext = c("lognormal", "loglogistic", "Pareto", "Burr"))
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Figure 4: CDF plot to compare the fit of four distributions to acute toxicity values of various organisms for the
organochlorine pesticide endosulfan (endosulfan data set) as provided by the cdfcomp function, with CDF values in
a logscale to emphasize discrepancies on the left tail.

None of the fitted distribution correctly describes the right tail observed in the data set, but as shown in Figure 4,
the left-tail seems to be better described by the Burr distribution. Its use could then be considered to estimate the
HC5 value as the 5% quantile of the distribution. This can be easily done using the quantile generic function defined
for an object of class "fitdist". Below is this calculation together with the calculation of the empirical quantile for
comparison.

R> quantile(fendo.B, probs = 0.05)

Estimated quantiles for each specified probability (non-censored data)

p=0.05

estimate 0.2939

R> quantile(ATV, probs = 0.05)

5%

0.2

1The plotdist function can plot any parametric distribution with specified parameter values in argument para. It can thus help to
find correct initial values for the distribution parameters in non trivial cases, by iterative calls if necessary (see the reference manual for
examples (Delignette-Muller et al., 2014)).
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In addition to the ecotoxicology context, the quantile generic function is also attractive in the actuarial–financial
context. In fact, the value-at-risk V ARα is defined as the 1−α-quantile of the loss distribution and can be computed
with quantile on a "fitdist" object.

The computation of different goodness-of-fit statistics is proposed in the fitdistrplus package in order to further
compare fitted distributions. The purpose of goodness-of-fit statistics aims to measure the distance between the
fitted parametric distribution and the empirical distribution: e.g., the distance between the fitted cumulative distri-
bution function F and the empirical distribution function Fn. When fitting continuous distributions, three goodness-
of-fit statistics are classicaly considered: Cramer-von Mises, Kolmogorov-Smirnov and Anderson-Darling statistics
(D’Agostino and Stephens, 1986). Naming xi the n observations of a continuous variable X arranged in an ascending
order, Table 1 gives the definition and the empirical estimate of the three considered goodness-of-fit statistics. They
can be computed using the function gofstat as defined by Stephens (D’Agostino and Stephens, 1986).

R> gofstat(list(fendo.ln, fendo.ll, fendo.P, fendo.B),

+ fitnames = c("lnorm", "llogis", "Pareto", "Burr"))

Goodness-of-fit statistics

lnorm llogis Pareto Burr

Kolmogorov-Smirnov statistic 0.1672 0.1196 0.08488 0.06155

Cramer-von Mises statistic 0.6374 0.3827 0.13926 0.06803

Anderson-Darling statistic 3.4721 2.8316 0.89206 0.52393

Goodness-of-fit criteria

lnorm llogis Pareto Burr

Akaike's Information Criterion 1069 1069 1048 1046

Bayesian Information Criterion 1074 1075 1053 1054

Statistic General formula Computational formula
Kolmogorov-Smirnov sup |Fn(x)− F (x)| max(D+, D−) with
(KS) D+ = max

i=1,...,n

(
i
n − Fi

)
D− = max

i=1,...,n

(
Fi − i−1

n

)
Cramer-von Mises n

∫∞
−∞(Fn(x)− F (x))2dx 1

12n +
n∑
i=1

(
Fi − 2i−1

2n

)2
(CvM)

Anderson-Darling n
∫∞
−∞

(Fn(x)−F (x))2

F (x)(1−F (x)) dx −n− 1
n

n∑
i=1

(2i− 1) log(Fi(1− Fn+1−i))

(AD)

where Fi
4
= F (xi)

Table 1: Goodness-of-fit statistics as defined by Stephens (D’Agostino and Stephens, 1986).

As giving more weight to distribution tails, the Anderson-Darling statistic is of special interest when it matters to
equally emphasize the tails as well as the main body of a distribution. This is often the case in risk assessment (Cullen
and Frey, 1999; Vose, 2010). For this reason, this statistics is often used to select the best distribution among those
fitted. Nevertheless, this statistics should be used cautiously when comparing fits of various distributions. Keeping in
mind that the weighting of each CDF quadratic difference depends on the parametric distribution in its definition (see
Table 1), Anderson-Darling statistics computed for several distributions fitted on a same data set are theoretically
difficult to compare. Moreover, such a statistic, as Cramer-von Mises and Kolmogorov-Smirnov ones, does not take
into account the complexity of the model (i.e., parameter number). It is not a problem when compared distributions
are characterized by the same number of parameters, but it could systematically promote the selection of the more
complex distributions in the other case. Looking at classical penalized criteria based on the loglikehood (AIC, BIC)
seems thus also interesting, especially to discourage overfitting.

In the previous example, all the goodness-of-fit statistics based on the CDF distance are in favor of the Burr
distribution, the only one characterized by three parameters, while AIC and BIC values respectively give the preference
to the Burr distribution or the Pareto distribution. The choice between these two distributions seems thus less obvious
and could be discussed. Even if specifically recommended for discrete distributions, the Chi-squared statistic may also
be used for continuous distributions (see Section 3.3 and the reference manual for examples (Delignette-Muller et al.,
2014)).

2.3 Uncertainty in parameter estimates

The uncertainty in the parameters of the fitted distribution can be estimated by parametric or nonparametric boot-
straps using the boodist function for non-censored data (Efron and Tibshirani, 1994). This function returns the
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bootstrapped values of parameters in an S3 class object which can be plotted to visualize the bootstrap region. The
medians and the 95 percent confidence intervals of parameters (2.5 and 97.5 percentiles) are printed in the summary.
When inferior to the whole number of iterations (due to lack of convergence of the optimization algorithm for some
bootstrapped data sets), the number of iterations for which the estimation converges is also printed in the summary.

The plot of an object of class "bootdist" consists in a scatterplot or a matrix of scatterplots of the bootstrapped
values of parameters providing a representation of the joint uncertainty distribution of the fitted parameters. Below
is an example of the use of the bootdist function with the previous fit of the Burr distribution to the endosulfan

data set (Figure 5).

R> bendo.B <- bootdist(fendo.B, niter = 1001)

R> summary(bendo.B)

Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%

shape1 0.2008 0.08733 0.367

shape2 1.5811 1.03857 3.116

rate 1.5081 0.65833 2.807

R> plot(bendo.B)
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Figure 5: Bootstrappped values of parameters for a fit of the Burr distribution characterized by three parameters
(example on the endosulfan data set) as provided by the plot of an object of class "bootdist".

Bootstrap samples of parameter estimates are useful especially to calculate confidence intervals on each parameter
of the fitted distribution from the marginal distribution of the bootstraped values. It is also interesting to look at the
joint distribution of the bootstraped values in a scatterplot (or a matrix of scatterplots if the number of parameters
exceeds two) in order to understand the potential structural correlation between parameters (see Figure 5).

The use of the whole bootstrap sample is also of interest in the risk assessment field. Its use enables the characteri-
zation of uncertainty in distribution parameters. It can be directly used within a second-order Monte Carlo simulation
framework, especially within the package mc2d (Pouillot et al., 2011). One could refer to Pouillot and Delignette-
Muller (2010) for an introduction to the use of mc2d and fitdistrplus packages in the context of quantitative risk
assessment.

The bootstrap method can also be used to calculate confidence intervals on quantiles of the fitted distribution.
For this purpose, a generic quantile function is provided for class bootdist. By default, 95% percentiles bootstrap
confidence intervals of quantiles are provided. Going back to the previous example from ecotoxicolgy, this function
can be used to estimate the uncertainty associated to the HC5 estimation, for example from the previously fitted Burr
distribution to the endosulfan data set.

R> quantile(bendo.B, probs = 0.05)

(original) estimated quantiles for each specified probability (non-censored data)

p=0.05
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estimate 0.2939

Median of bootstrap estimates

p=0.05

estimate 0.3055

two-sided 95 % CI of each quantile

p=0.05

2.5 % 0.1748

97.5 % 0.5040

3 Advanced topics

3.1 Alternative methods for parameter estimation

This subsection focuses on alternative estimation methods. One of the alternative for continuous distributions is
the maximum goodness-of-fit estimation method also called minimum distance estimation method (D’Agostino and
Stephens, 1986; Dutang et al., 2008). In this package this method is proposed with eight different distances: the three
classical distances defined in Table 1, or one of the variants of the Anderson-Darling distance proposed by Luceno
(2006) and defined in Table 2. The right-tail AD gives more weight to the right-tail, the left-tail AD gives more
weight only to the left tail. Either of the tails, or both of them, can receive even larger weights by using second order
Anderson-Darling Statistics.

Statistic General formula Computational formula

Right-tail AD
∫∞
−∞

(Fn(x)−F (x))2

1−F (x) dx n
2 − 2

n∑
i=1

Fi − 1
n

n∑
i=1

(2i− 1)ln(Fn+1−i)

(ADR)

Left-tail AD
∫∞
−∞

(Fn(x)−F (x))2

(F (x)) dx − 3n
2 + 2

n∑
i=1

Fi − 1
n

n∑
i=1

(2i− 1)ln(Fi)

(ADL)

Right-tail AD ad2r =
∫∞
−∞

(Fn(x)−F (x))2

(1−F (x))2 dx ad2r = 2
n∑
i=1

ln(F i) + 1
n

n∑
i=1

2i−1
Fn+1−i

2nd order (AD2R)

Left-tail AD ad2l =
∫∞
−∞

(Fn(x)−F (x))2

(F (x))2 dx ad2l = 2
n∑
i=1

ln(Fi) + 1
n

n∑
i=1

2i−1
Fi

2nd order (AD2L)
AD 2nd order ad2r + ad2l ad2r + ad2l
(AD2)

where Fi
4
= F (xi); F i

4
= 1− F (xi)

Table 2: Modified Anderson-Darling statistics as defined by Luceno (2006).

To fit a distribution by maximum goodness-of-fit estimation, one needs to fix the argument method to "mge" in
the call to fitdist and to specify the argument gof coding for the chosen goodness-of-fit distance. This function is
intended to be used only with continuous non-censored data.

Maximum goodness-of-fit estimation may be useful to give more weight to data at one tail of the distribution. In
the previous example from ecotoxicology, we used a non classical distribution (the Burr distribution) to correctly fit
the empirical distribution especially on its left tail. In order to correctly estimate the 5% percentile, we could also
consider the fit of the classical lognormal distribution, but minimizing a goodness-of-fit distance giving more weight
to the left tail of the empirical distribution. In what follows, the left tail Anderson-Darling distances of first or second
order are used to fit a lognormal to endosulfan data set (see Figure 6).

R> fendo.ln.ADL <- fitdist(ATV, "lnorm", method = "mge", gof = "ADL")

R> fendo.ln.AD2L <- fitdist(ATV, "lnorm", method = "mge", gof = "AD2L")

R> cdfcomp(list(fendo.ln, fendo.ln.ADL, fendo.ln.AD2L),

+ xlogscale = TRUE, ylogscale = TRUE,

+ main = "Fitting a lognormal distribution",

+ xlegend = "bottomright",

+ legendtext = c("MLE","Left-tail AD", "Left-tail AD 2nd order"))

Comparing the 5% percentiles (HC5) calculated using these three fits to the one calculated from the MLE fit of
the Burr distribution, we can observe, on this example, that fitting the lognormal distribution by maximizing left
tail Anderson-Darling distances of first or second order enables to approach the value obtained by fitting the Burr
distribution by MLE.
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Figure 6: Comparison of a lognormal distribution fitted by MLE and by MGE using two different goodness-of-fit
distances : left-tail Anderson-Darling and left-tail Anderson Darling of second order (example with the endosulfan

data set) as provided by the cdfcomp function, with CDF values in a logscale to emphasize discrepancies on the left
tail.

R> (HC5.estimates <- c(

+ empirical = as.numeric(quantile(ATV, probs = 0.05)),

+ Burr = as.numeric(quantile(fendo.B, probs = 0.05)$quantiles),

+ lognormal_MLE = as.numeric(quantile(fendo.ln, probs = 0.05)$quantiles),

+ lognormal_AD2 = as.numeric(quantile(fendo.ln.ADL,

+ probs = 0.05)$quantiles),

+ lognormal_AD2L = as.numeric(quantile(fendo.ln.AD2L,

+ probs = 0.05)$quantiles)))

empirical Burr lognormal_MLE lognormal_AD2 lognormal_AD2L

0.20000 0.29393 0.07259 0.19591 0.25877

The moment matching estimation (MME) is another method commonly used to fit parametric distributions (Vose,
2010). MME consists in finding the value of the parameter θ that equalizes the first theoretical raw moments of the
parametric distribution to the corresponding empirical raw moments as in Equation (4):

E(Xk|θ) =
1

n

n∑
i=1

xki , (4)

for k = 1, . . . , d, with d the number of parameters to estimate and xi the n observations of variable X. For moments
of order greater than or equal to 2, it may also be relevant to match centered moments. Therefore, we match the
moments given in Equation (5):

E(X|θ) = x , E
(
(X − E(X))k|θ

)
= mk, for k = 2, . . . , d, (5)

where mk denotes the empirical centered moments. This method can be performed by setting the argument method to
"mme" in the call to fitdist. The estimate is computed by a closed-form formula for the following distributions: nor-
mal, lognormal, exponential, Poisson, gamma, logistic, negative binomial, geometric, beta and uniform distributions.
In this case, for distributions characterized by one parameter (geometric, Poisson and exponential), this parameter
is simply estimated by matching theoretical and observed means, and for distributions characterized by two param-
eters, these parameters are estimated by matching theoretical and observed means and variances (Vose, 2010). For
other distributions, the equation of moments is solved numerically using the optim function by minimizing the sum
of squared differences between observed and theoretical moments (see the fitdistrplus reference manual for technical
details (Delignette-Muller et al., 2014)).

A classical data set from the Danish insurance industry published in McNeil (1997) will be used to illustrate
this method. In fitdistrplus, the data set is stored in danishuni for the univariate version and contains the loss
amounts collected at Copenhagen Reinsurance between 1980 and 1990. In actuarial science, it is standard to consider
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positive heavy-tailed distributions and have a special focus on the right-tail of the distributions. In this numerical
experiment, we choose classic actuarial distributions for loss modelling: the lognormal distribution and the Pareto
type II distribution (Klugman et al., 2009).

The lognormal distribution is fitted to danishuni data set by matching moments implemented as a closed-form
formula. On the left-hand graph of Figure 7, the fitted distribution functions obtained using the moment matching
estimation (MME) and maximum likelihood estimation (MLE) methods are compared. The MME method provides a
more cautious estimation of the insurance risk as the MME-fitted distribution function (resp. MLE-fitted) underesti-
mates (overestimates) the empirical distribution function for large values of claim amounts.

R> data("danishuni")

R> str(danishuni)

'data.frame': 2167 obs. of 2 variables:

$ Date: Date, format: "1980-01-03" "1980-01-04" ...

$ Loss: num 1.68 2.09 1.73 1.78 4.61 ...

R> fdanish.ln.MLE <- fitdist(danishuni$Loss, "lnorm")

R> fdanish.ln.MME <- fitdist(danishuni$Loss, "lnorm", method = "mme",

+ order = 1:2)

R> cdfcomp(list(fdanish.ln.MLE, fdanish.ln.MME),

+ legend = c("lognormal MLE", "lognormal MME"),

+ main = "Fitting a lognormal distribution",

+ xlogscale = TRUE, datapch = 20)
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Figure 7: Comparison between MME and MLE when fitting a lognormal or a Pareto distribution to loss data from
the danishuni data set.

In a second time, a Pareto distribution, which gives more weight to the right-tail of the distribution, is fitted. As
the lognormal distribution, the Pareto has two parameters, which allows a fair comparison.

We use the implementation of the actuar package providing raw and centered moments for that distribution (in
addition to d, p, q and r functions (Goulet, 2012). Fitting a heavy-tailed distribution for which the first and the
second moments do not exist for certain values of the shape parameter requires some cautiousness. This is carried
out by providing, for the optimization process, a lower and an upper bound for each parameter. The code below calls
the L-BFGS-B optimization method in optim, since this quasi-Newton allows box constraints2. We choose match
moments defined in Equation (4), and so a function for computing the empirical raw moment (called memp in our
example) is passed to fitdist. For two-parameter distributions (i.e., d = 2), Equations (4) and (5) are equivalent.

R> library("actuar")

R> fdanish.P.MLE <- fitdist(danishuni$Loss, "pareto",

+ start = list(shape = 10, scale = 10), lower = 2+1e-6, upper = Inf)

R> memp <- function(x, order) sum(x^order)/length(x)

R> fdanish.P.MME <- fitdist(danishuni$Loss, "pareto", method = "mme",

+ order = 1:2, memp = "memp", start = list(shape = 10, scale = 10),

2That is what the B stands for.
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+ lower = c(2+1e-6, 2+1e-6), upper = c(Inf, Inf))

R> cdfcomp(list(fdanish.P.MLE, fdanish.P.MME),

+ legend = c("Pareto MLE", "Pareto MME"),

+ main = "Fitting a Pareto distribution",

+ xlogscale = TRUE, datapch = ".")

R> gofstat(list(fdanish.ln.MLE, fdanish.P.MLE,

+ fdanish.ln.MME, fdanish.P.MME),

+ fitnames = c("lnorm.mle", "Pareto.mle", "lnorm.mme", "Pareto.mme"))

Goodness-of-fit statistics

lnorm.mle Pareto.mle lnorm.mme Pareto.mme

Kolmogorov-Smirnov statistic 0.1375 0.3124 0.4368 0.37

Cramer-von Mises statistic 14.7911 37.7227 88.9503 55.43

Anderson-Darling statistic 87.1933 208.3388 416.2567 281.58

Goodness-of-fit criteria

lnorm.mle Pareto.mle lnorm.mme Pareto.mme

Akaike's Information Criterion 8120 9250 9792 9409

Bayesian Information Criterion 8131 9261 9803 9420

As shown on Figure 7, MME and MLE fits are far less distant (when looking at the right-tail) for the Pareto
distribution than for the lognormal distribution on this data set. Furthermore, for these two distributions, the MME
method better fits the right-tail of the distribution from a visual point of view. This seems logical since empirical
moments are influenced by large observed values. In the previous traces, we gave the values of goodness-of-fit statistics.
Whatever the statistic considered, the MLE-fitted lognormal always provides the best fit to the observed data.

Maximum likelihood and moment matching estimations are certainly the most commonly used method for fitting
distributions (Cullen and Frey, 1999). Keeping in mind that these two methods may produce very different results,
the user should be aware of its great sensitivity to outliers when choosing the moment matching estimation. This may
be seen as an advantage in our example if the objective is to better describe the right tail of the distribution, but it
may be seen as a drawback if the objective is different.

Fitting of a parametric distribution may also be done by matching theoretical quantiles of the parametric dis-
tributions (for specified probabilities) against the empirical quantiles (Tse (2009)). The equality of theoretical and
empirical qunatiles is expressed by Equation (6) below, which is very similar to Equations (4) and (5):

F−1(pk|θ) = Qn,pk (6)

for k = 1, . . . , d, with d the number of parameters to estimate (dimension of θ if there is no fixed parameters) and
Qn,pk the empirical quantiles calculated from data for specified probabilities pk.

Quantile matching estimation (QME) is performed by setting the argument method to "qme" in the call to fitdist

and adding an argument probs defining the probabilities for which the quantile matching is performed. The length
of this vector must be equal to the number of parameters to estimate (as the vector of moment orders for MME).
Empirical quantiles are computed using the quantile function of the stats package using type=7 by default (see
?quantile and Hyndman and Fan (1996)). But the type of quantile can be easily changed by using the qty argument
in the call to the qme function. The quantile matching is carried out numerically, by minimizing the sum of squared
differences between observed and theoretical quantiles.

R> fdanish.ln.QME1 <- fitdist(danishuni$Loss, "lnorm", method = "qme",

+ probs = c(1/3, 2/3))

R> fdanish.ln.QME2 <- fitdist(danishuni$Loss, "lnorm", method = "qme",

+ probs = c(8/10, 9/10))

R> cdfcomp(list(fdanish.ln.MLE, fdanish.ln.QME1, fdanish.ln.QME2),

+ legend = c("MLE", "QME(1/3, 2/3)", "QME(8/10, 9/10)"),

+ main = "Fitting a lognormal distribution",

+ xlogscale = TRUE, datapch = 20)

Above is an example of fitting of a lognormal distribution to danishuni data set by matching probabilities (p1 =
1/3, p2 = 2/3) and (p1 = 8/10, p2 = 9/10). As expected, the second QME fit gives more weight to the right-tail of
the distribution. Compared to the maximum likelihood estimation, the second QME fit best suits the right-tail of the
distribution, whereas the first QME fit best models the body of the distribution. The quantile matching estimation is
of particular interest when we need to focus around particular quantiles, e.g., p = 99.5% in the Solvency II insurance
context or p = 5% for the HC5 estimation in the ecotoxicology context.

3.2 Customization of the optimization algorithm

Each time a numerical minimization is carried out in the fitdistrplus package, the optim function of the stats package
is used by default with the "Nelder-Mead" method for distributions characterized by more than one parameter and
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Figure 8: Comparison between QME and MLE when fitting a lognormal distribution to loss data from the danishuni

data set.

the "BFGS" method for distributions characterized by only one parameter. Sometimes the default algorithm fails to
converge. It is then interesting to change some options of the optim function or to use another optimization function
than optim to minimize the objective function. The argument optim.method can be used in the call to fitdist or
fitdistcens. It will internally be passed to mledist, mmedist, mgedist or qmedist, and to optim (see ?optim for
details about the different algorithms available).

Even if no error is raised when computing the optimization, changing the algorithm is of particular interest to
enforce bounds on some parameters. For instance, a volatility parameter σ is strictly positive σ > 0 and a probability
parameter p lies in p ∈ [0, 1]. This is possible by using arguments lower and/or upper, for which their use automatically
forces optim.method="L-BFGS-B".

Below are examples of fits of a gamma distribution G(α, λ) to the groundbeef data set with various algorithms.
Note that the conjugate gradient algorithm ("CG") needs far more iterations to converge (around 2500 iterations)
compared to other algorithms (converging in less than 100 iterations).

R> data("groundbeef")

R> fNM <- fitdist(groundbeef$serving, "gamma", optim.method = "Nelder-Mead")

R> fBFGS <- fitdist(groundbeef$serving, "gamma", optim.method = "BFGS")

R> fSANN <- fitdist(groundbeef$serving, "gamma", optim.method = "SANN")

R> fCG <- try(fitdist(groundbeef$serving, "gamma", optim.method = "CG",

+ control = list(maxit = 10000)))

R> if(class(fCG) == "try-error")

+ fCG <- list(estimate = NA)

It is also possible to use another function than optim to minimize the objective function by specifying by the
argument custom.optim in the call to fitdist. It may be necessary to customize this optimization function to meet
the following requirements. (1) custom.optim function must have the following arguments: fn for the function to be
optimized and par for the initialized parameters. (2) custom.optim should carry out a MINIMIZATION and must
return the following components: par for the estimate, convergence for the convergence code, value=fn(par) and
hessian. Below is an example of code written to wrap the genoud function from the rgenoud package in order to
respect our optimization “template”. The rgenoud package implements the genetic (stochastic) algorithm.

R> mygenoud <- function(fn, par, ...)

+ {

+ require(rgenoud)

+ res <- genoud(fn, starting.values = par, ...)

+ standardres <- c(res, convergence = 0)

+ return(standardres)

+ }

The customized optimization function can then be passed as the argument custom.optim in the call to fitdist

or fitdistcens. The following code can for example be used to fit a gamma distribution to the groundbeef data
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set. Note that in this example various arguments are also passed from fitdist to genoud : nvars, Domains, bound-
ary.enforcement, print.level and hessian. The code below compares all the parameter estimates (α̂, λ̂) by the
different algorithms: shape α and rate λ parameters are relatively similar on this example, roughly 4.00 and 0.05,
respectively.

R> fgenoud <- mledist(groundbeef$serving, "gamma", custom.optim = mygenoud,

+ nvars = 2, max.generations = 10, Domains = cbind(c(0,0), c(10,10)),

+ boundary.enforcement = 1, hessian = TRUE, print.level = 0, P9 = 10)

R> cbind(NM = fNM$estimate,

+ BFGS = fBFGS$estimate,

+ SANN = fSANN$estimate,

+ CG = fCG$estimate,

+ fgenoud = fgenoud$estimate)

NM BFGS SANN CG fgenoud

shape 4.00825 4.22848 4.03063 4.12770 4.00834

rate 0.05442 0.05742 0.05466 0.05605 0.05443

3.3 Fitting distributions to other types of data

This section was modified since the publication of this vignette in the Journal of Statistical Software in order to include
new goodness-of-fit plots for censored and discrete data.

Analytical methods often lead to semi-quantitative results which are referred to as censored data. Observations
only known to be under a limit of detection are left-censored data. Observations only known to be above a limit of
quantification are right-censored data. Results known to lie between two bounds are interval-censored data. These
two bounds may correspond to a limit of detection and a limit of quantification, or more generally to uncertainty
bounds around the observation. Right-censored data are also commonly encountered with survival data (Klein and
Moeschberger, 2003). A data set may thus contain right-, left-, or interval-censored data, or may be a mixture of these
categories, possibly with different upper and lower bounds. Censored data are sometimes excluded from the data
analysis or replaced by a fixed value, which in both cases may lead to biased results. A more recommended approach
to correctly model such data is based upon maximum likelihood (Klein and Moeschberger, 2003; Helsel, 2005).

Censored data may thus contain left-censored, right-censored and interval-censored values, with several lower and
upper bounds. Before their use in package fitdistrplus, such data must be coded into a dataframe with two columns,
respectively named left and right, describing each observed value as an interval. The left column contains either
NA for left censored observations, the left bound of the interval for interval censored observations, or the observed value
for non-censored observations. The right column contains either NA for right censored observations, the right bound
of the interval for interval censored observations, or the observed value for non-censored observations. To illustrate
the use of package fitdistrplus to fit distributions to censored continous data, we will use another data set from
ecotoxicology, included in our package and named salinity. This data set contains acute salinity tolerance (LC50
values in electrical conductivity, mS.cm−1) of riverine macro-invertebrates taxa from the southern Murray-Darling
Basin in Central Victoria, Australia (Kefford et al., 2007).

R> data("salinity")

R> str(salinity)

'data.frame': 108 obs. of 2 variables:

$ left : num 20 20 20 20 20 21.5 15 20 23.7 25 ...

$ right: num NA NA NA NA NA 21.5 30 25 23.7 NA ...

Using censored data such as those coded in the salinity data set, the empirical distribution can be plotted
using the plotdistcens function. In older versions of the package, by default this function used the Expectation-
Maximization approach of Turnbull (1974) to compute the overall empirical cdf curve with optional confidence intervals,
by calls to survfit and plot.survfit functions from the survival package. Even if this representation is always
available (by fixing the argument NPMLE.method to "Turnbull.middlepoints"), now the default plot of the empirical
cumulative distribution function (ECDF) explicitely represents the regions of non uniqueness of the NPMLE ECDF.
The default computation of those regions of non uniqueness and their associated masses uses the non parametric
maximum likelihood estimation (NPMLE) approach developped by Wang (Wang, 2007, 2008; Wang and Taylor, 2013;
Wang and Fani, 2018). Figure 10 shows on the top left the new plot of data together with two fitted distributions.
Grey filled rectangles in such a plot represent the regions of non uniqueness of the NPMLE ECDF.

A less rigorous but sometimes more illustrative plot can be obtained by fixing the argument NPMLE to FALSE in the
call to plotdistcens (see Figure 9 for an example and the help page of Function plotdistcens for details). This
plot enables to see the real nature of censored data, as points and intervals, but the difficulty in building such a plot
is to define a relevant ordering of observations.

R> plotdistcens(salinity, NPMLE = FALSE)
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Figure 9: Simple plot of censored raw data (72-hour acute salinity tolerance of riverine macro-invertebrates from the
salinity data set) as ordered points and intervals.

As for non censored data, one or more parametric distributions can be fitted to the censored data set, one at a
time, but using in this case the fitdistcens function. This function estimates the vector of distribution parameters
θ by maximizing the likelihood for censored data defined as:

L(θ) =
∏NnonC

i=1 f(xi|θ)×
∏NleftC

j=1 F (xupperj |θ)
×
∏NrightC

k=1 (1− F (xlowerk |θ))×
∏NintC

m=1 (F (xupperm |θ)− F (xlowerj |θ))
(7)

with xi the NnonC non-censored observations, xupperj upper values defining the NleftC left-censored observations,

xlowerk lower values defining the NrightC right-censored observations, [xlowerm ;xupperm ] the intervals defining the NintC
interval-censored observations, and F the cumulative distribution function of the parametric distribution (Klein and
Moeschberger, 2003; Helsel, 2005).

As fitdist, fitdistcens returns the results of the fit of any parametric distribution to a data set as an S3 class
object that can be easily printed, summarized or plotted. For the salinity data set, a lognormal distribution or a
loglogistic can be fitted as commonly done in ecotoxicology for such data. As with fitdist, for some distributions (see
Delignette-Muller et al. (2014) for details), it is necessary to specify initial values for the distribution parameters in
the argument start. The plotdistcens function can help to find correct initial values for the distribution parameters
in non trivial cases, by a manual iterative use if necessary.

R> fsal.ln <- fitdistcens(salinity, "lnorm")

R> fsal.ll <- fitdistcens(salinity, "llogis",

+ start = list(shape = 5, scale = 40))

R> summary(fsal.ln)

Fitting of the distribution ' lnorm ' By maximum likelihood on censored data

Parameters

estimate Std. Error

meanlog 3.3854 0.06487

sdlog 0.4961 0.05455

Loglikelihood: -139.1 AIC: 282.1 BIC: 287.5

Correlation matrix:

meanlog sdlog

meanlog 1.0000 0.2938

sdlog 0.2938 1.0000

R> summary(fsal.ll)

Fitting of the distribution ' llogis ' By maximum likelihood on censored data

Parameters

estimate Std. Error
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shape 3.421 0.4158

scale 29.930 1.9447

Loglikelihood: -140.1 AIC: 284.1 BIC: 289.5

Correlation matrix:

shape scale

shape 1.0000 -0.2022

scale -0.2022 1.0000

Computations of goodness-of-fit statistics have not yet been developed for fits using censored data but the quality of
fit can be judged using Akaike and Schwarz’s Bayesian information criteria (AIC and BIC) and the goodness-of-fit CDF
plot, respectively provided when summarizing or plotting an object of class "fitdistcens". Functions cdfcompcens,
qqcompcens and ppcompcens can also be used to compare the fit of various distributions to the same censored data
set. Their calls are similar to the ones of cdfcomp, qqcomp and ppcomp. Below are examples of use of those functions
with the two fitted distributions to the salinity data set (see Figure 10). When qqcompcens and ppcompcens are
used with more than one fitted distribution, the non uniqueness rectangles are not filled and a small noise is added on
the y-axis in order to help the visualization of various fits. But we rather recommend the use of the plotstyle ggplot

of qqcompcens and ppcompcens to compare the fits of various distributions as it provides a clearer plot splitted in
facets (see ?graphcompcens).

R> par(mfrow=c(2, 2))

R> cdfcompcens(list(fsal.ln, fsal.ll),

+ legendtext = c("lognormal", "loglogistic "))

R> qqcompcens(fsal.ln, legendtext = "lognormal")

R> ppcompcens(fsal.ln, legendtext = "lognormal")

R> qqcompcens(list(fsal.ln, fsal.ll), legendtext = c("lognormal", "loglogistic "),

+ main = "Q-Q plot with 2 dist.")

Function bootdistcens is the equivalent of bootdist for censored data, except that it only proposes nonparametric
bootstrap. Indeed, it is not obvious to simulate censoring within a parametric bootstrap resampling procedure.
The generic function quantile can also be applied to an object of class "fitdistcens" or "bootdistcens", as for
continuous non-censored data.

In addition to the fit of distributions to censored or non censored continuous data, our package can also accomodate
discrete variables, such as count numbers, using the functions developped for continuous non-censored data. These
functions will provide somewhat different graphs and statistics, taking into account the discrete nature of the modeled
variable. The discrete nature of the variable is automatically recognized when a classical distribution is fitted to data
(binomial, negative binomial, geometric, hypergeometric and Poisson distributions) but must be indicated by fixing
argument discrete to TRUE in the call to functions in other cases. The toxocara data set included in the package
corresponds to the observation of such a discrete variable. Numbers of Toxocara cati parasites present in digestive
tract are reported from a random sampling of feral cats living on Kerguelen island (Fromont et al., 2001). We will use
it to illustrate the case of discrete data.

R> data("toxocara")

R> str(toxocara)

'data.frame': 53 obs. of 1 variable:

$ number: int 0 0 0 0 0 0 0 0 0 0 ...

The fit of a discrete distribution to discrete data by maximum likelihood estimation requires the same procedure
as for continuous non-censored data. As an example, using the toxocara data set, Poisson and negative binomial
distributions can be easily fitted.

R> (ftoxo.P <- fitdist(toxocara$number, "pois"))

Fitting of the distribution ' pois ' by maximum likelihood

Parameters:

estimate Std. Error

lambda 8.679 0.4047

R> (ftoxo.nb <- fitdist(toxocara$number, "nbinom"))

Fitting of the distribution ' nbinom ' by maximum likelihood

Parameters:

estimate Std. Error

size 0.3971 0.08289

mu 8.6803 1.93501
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Figure 10: Some goodness-of-fit plots for fits of a lognormal and a loglogistic distribution to censored data: LC50
values from the salinity data set.

For discrete distributions, the plot of an object of class "fitdist" simply provides two goodness-of-fit plots
comparing empirical and theoretical distributions in density and in CDF. Functions cdfcomp and denscomp can also
be used to compare several plots to the same data set, as follows for the previous fits (Figure 11).

R> par(mfrow = c(1,2))

R> denscomp(list(ftoxo.P, ftoxo.nb),

+ legendtext = c("Poisson", "negative binomial"), fitlty = 1)

R> cdfcomp(list(ftoxo.P, ftoxo.nb),

+ legendtext = c("Poisson", "negative binomial"), fitlty = 1)

When fitting discrete distributions, the Chi-squared statistic is computed by the gofstat function using cells
defined by the argument chisqbreaks or cells automatically defined from the data in order to reach roughly the
same number of observations per cell. This number is roughly equal to the argument meancount, or sligthly greater
if there are some ties. The choice to define cells from the empirical distribution (data), and not from the theoretical
distribution, was done to enable the comparison of Chi-squared values obtained with different distributions fitted on
a same data set. If arguments chisqbreaks and meancount are both omitted, meancount is fixed in order to obtain
roughly (4n)2/5 cells, with n the length of the data set (Vose, 2010). Using this default option the two previous fits
are compared as follows, giving the preference to the negative binomial distribution, from both Chi-squared statistics
and information criteria:

R> gofstat(list(ftoxo.P, ftoxo.nb),

+ fitnames = c("Poisson", "negative binomial"))

Chi-squared statistic: 31257 7.486

Degree of freedom of the Chi-squared distribution: 5 4

Chi-squared p-value: 0 0.1123
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Figure 11: Comparison of the fits of a negative binomial and a Poisson distribution to numbers of Toxocara cati
parasites from the toxocara data set.

the p-value may be wrong with some theoretical counts < 5

Chi-squared table:

obscounts theo Poisson theo negative binomial

<= 0 14 0.009014 15.295

<= 1 8 0.078237 5.809

<= 3 6 1.321767 6.845

<= 4 6 2.131298 2.408

<= 9 6 29.827829 7.835

<= 21 6 19.626224 8.271

> 21 7 0.005631 6.537

Goodness-of-fit criteria

Poisson negative binomial

Akaike's Information Criterion 1017 322.7

Bayesian Information Criterion 1019 326.6

4 Conclusion

The R package fitdistrplus allows to easily fit distributions. Our main objective while developing this package was
to provide tools for helping R users to fit distributions to data. We have been encouraged to pursue our work by
feedbacks from users of our package in various areas as food or environmental risk assessment, epidemiology, ecology,
molecular biology, genomics, bioinformatics, hydraulics, mechanics, financial and actuarial mathematics or operations
research. Indeed, this package is already used by a lot of practionners and academics for simple MLE fits (Jaloustre
et al., 2011; Sak and Haksoz, 2011; Koch et al., 2012; Marquetoux et al., 2012; Scholl et al., 2012; Suuronen et al., 2012;
González-Varo et al., 2012; Mandl et al., 2013; Malá, 2013; Nadarajah and Bakar, 2013; Simó et al., 2013; Westphal-
Fitch and Fitch, 2013; Wayland, 2013; Viana et al., 2013; Wu, 2013a; Stagge and Moglen, 2013; Fiorelli et al., 2013;
Tikole et al., 2013; Voigt et al., 2014), for MLE fits and goodness-of-fit statistics (Tarnczi et al., 2011; Bagaria et al.,
2012; Benavides-Piccione et al., 2012; Breitbach et al., 2012; Pouillot and Delignette-Muller, 2010; Vaninsky, 2013), for
MLE fits and bootstrap (Croucher et al., 2012; Méheust et al., 2012; Orellano et al., 2012; Tello et al., 2012; Hoelzer
et al., 2012; Prosser et al., 2013; Zhang et al., 2013; Rigaux et al., 2014), for MLE fits, bootstrap and goodness-of-fit
statistics (Larras et al., 2013), for MME fit (Luangkesorn et al., 2012; Callau Poduje et al., 2013; Sato et al., 2013),
for censored MLE and bootstrap (Leha et al., 2011; Pouillot et al., 2012; Jongenburger et al., 2012; Commeau et al.,
2012; Contreras et al., 2013), for graphic analysing in (Anand et al., 2012), for grouped-data fitting methods (Fu et al.,
2012) or more generally (Busschaert et al., 2010; Eling, 2012; Samuel-Rosa et al., 2013; Srinivasan et al., 2013; Meyer
et al., 2013; Guillier et al., 2013; Daelman et al., 2013; Eik et al., 2013; Wu, 2013b; Drake et al., 2014).

The fitdistrplus package is complementary with the distrMod package (Kohl and Ruckdeschel, 2010). distrMod
provides an even more flexible way to estimate distribution parameters but its use requires a greater initial investment
to learn how to manipulate the S4 classes and methods developed in the distr-family packages. Many extensions of
the fitdistrplus package are planned in the future: we target to extend to censored data some methods for the moment
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only available for non-censored data, especially concerning goodness-of-fit evaluation and fitting methods. We will also
enlarge the choice of fitting methods for non-censored data, by proposing new goodness-of-fit distances (e.g., distances
based on quantiles) for maximum goodness-of-fit estimation and new types of moments (e.g., limited expected values)
for moment matching estimation. At last, we will consider the case of multivariate distribution fitting.
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