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Chapter 1

Generalities

FreeFEM3D (aka ff3d) stands for “FREE Finite Element Method in 3 Dimensions”.
This software will assist you in solving problems which are modeled by partial differential

equations. As the name indicates it is free, (subject to the GPL guidelines), it uses FEM (the
finite element method) and it is for three dimensional problems.

Some mathematical knowledge is needed to use FreeFEM3D, since you are required to input
the partial differential equations which describe your problem.

Based on our experience with FreeFEM 3.4, FreeFEM+, FreeFEM++ we believe that the best
way to describe a problem is through a language adapted to partial differential equations (PDE).
Thus for each problem one needs to write a program and submit it to FreeFEM3D which will
compile it and run it, and/or report bugs. Therefore it is impossible to use FreeFEM3D without
reading some part of this manual or going through some of the examples.

There are 3 steps to solve a PDE

1. Input the geometry and the coefficients

2. build and solve the linear or non-linear discrete systems

3. display graphically the output.

The input of the geometry for a tri-dimensional problem is a formidable task; the entire CAD
industry is busy with it. Realizing this, FreeFEM3D relies on another program to define the
geometry: POV-Ray.

POV-Ray is an image synthesis software which is also free and also runs on a number of
operating systems. You will need to learn to use POV-Ray to use FreeFEM3D.

Finally 3D graphics to display the solution of PDEs is also a formidable problem and so
FreeFEM3D produces output files which can be visualized with Medit (a simple package written
by Pascal Frey), ParaView (from KitWare), MayaVi or OpenDx (data explorer), IBM’s display
software. While Medit or ParaView run in MS-Windows, MacOS and Unix (so long as OpenGL
is installed), OpenDx is really a unix package and so to run it in windows one needs to install an
X11 package (such as Xfree86) and cygwin.

1.1 Configurations

This software requires at least 64 Megabytes of RAM and runs on the following machines:

• Macintosh with MacOS X 10.1 or later;

3



4 CHAPTER 1. GENERALITIES

• PC compatible with MS-Windows (any version using cygwin);

• and GNU/Linux (and others Unix systems)

Note that compilation of FreeFEM3D may require nearly 500 Megabytes of memory when
using the full optimization mode (see below). The standard optimized mode (-O2) needs nearly
150 Mb.

1.2 Contacts

Their are several ways for contacting FreeFEM3D’s team. The first is to join directly one of its
member, but it should be preferred to use the appropriated mailing lists and report bugs using
the BTS — all of those features being hosted by the Savannah project.

1.2.1 FreeFEM3D’s team

FreeFEM3D’s team is composed of the following members:

• Project Director:
Olivier Pironneau mailto:Olivier.Pironneau@math.jussieu.fr,

• Main author:
Stéphane Del Pino mailto:Stephane.DelPino@math.jussieu.fr,

• Mesh improvements:
Cécile Dobrzynski mailto:dobrzynski@ann.jussieu.fr,

• Contributor:
Pascal Havé mailto:Pascal.Have@math.jussieu.fr,

• Contributor and Debian Packager:
Christophe Prud’homme mailto:prudhomm@debian.org.

1.2.2 Project pages

Being a member of the FreeFEM softwares family, FreeFEM3D was developed at the Laboratoire
Jacques-Louis Lions of the University of Paris VI. FreeFEM3D is hosted at the FreeFEM head
quarter: http://www.freefem.org. The link that can be used to access directly to the project
page is http://www.freefem.org/ff3d.

Since FreeFEM3D is a free software, it is developed transparently: every one can access its
source code using cvs. We have chosen to use Savannah as a project development tool. Savannah
provides to hosted free softwares:

• code source archiving using cvs,

• mailing lists management,

• Bug Tracking System (BTS),

• and a lot more. . .

FreeFEM3D’s Savannah page is http://savannah.nongnu.org/projects/ff3d, any relevant in-
formation to use Savannah and FreeFEM3D conjointly will be found there.

mailto:Olivier.Pironneau@math.jussieu.fr
mailto:Stephane.DelPino@math.jussieu.fr
mailto:dobrzynski@ann.jussieu.fr
mailto:Pascal.Have@math.jussieu.fr
mailto:prudhomm@debian.org
http://www.freefem.org
http://www.freefem.org/ff3d
http://savannah.nongnu.org/projects/ff3d
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Mailing-lists

Four mailing-lists are hosted by Savannah:

• ff3d-users: for FreeFEM3D’s usage related questions or suggestions;

• ff3d-dev: for developers discussions. BTS messages are copied there;

• ff3d-cvs: a read-only list that logs cvs messages to inform developers of what changes
in the sources, and

• ff3d-announce: a read-only low traffic list, used to announce FreeFEM3D’s related events...

It is recommended to subscribe at least to ff3d-users and ff3d-announce.

The Bug Tracking System

The BTS is the best place to report bugs or wishes. Using it, developers will keep a trace and
poster will be automatically informed of any change related to his request, or see what priority
has been assigned to it. . .

1.3 Requirements and Installation

1.3.1 Requirements

If you want to use a pre-compiled version of FreeFEM3D, you will only have to install, the
pre-processing and and post-processing tools:

• the POV-Ray package (http://www.povray.org) which will help you in preparing the
geometry.

• A visualization software like medit. It is free to download and use. Written by P. Frey
and can be download from:

http://www.ann.jussieu.fr/ frey/logiciels/medit.html.

• One can also use ParaView which require more investment and can be freely download
from

http://www.paraview.org.

• Another interesting tool based on VTK is MayaVi

http://mayavi.sourceforge.net.

• OpenDx, another free visualization software, very powerful and open source but some-
what complex; it uses the same pipeline approach as AVS (check full information at
http://www.opendx.org).

http://www.povray.org
http://www.ann.jussieu.fr/~frey/logiciels/medit.html
http://www.paraview.org
http://mayavi.sourceforge.net
http://www.opendx.org
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1.3.2 Getting pre-complied binaries

Binary files for common architectures and systems can be downloaded at

http://www.freefem.org/ff3d/binaries.html.

If you are the happy owner of a Debian GNU/Linux1 system, you can install it by the simple
command:

apt-get install freefem3d

For more details with the Windows OS see Appendix 6.

1.3.3 Getting the sources (optional)

Since FreeFEM3D is developed under the terms of the General Public Licence, it is possible to
download, modify and even redistribute its sources2.

There are two ways of downloading the sources.

Archive files

The first way consists in getting an archive file from the web site at

http://www.freefem.org/ff3d/sources/.

After you unpacked the downloaded archive, a new directory called FreeFEM3D, containing
the sources will be created.

Using the cvs repository

This second way is probably the best if you want to recompile your own version. Cvs allows you
to keep your source code version up to date, it means that after any bug-fix version you man
just download automatically the modifications. It also provides the possibility to retrieve old
versions of the code just specifying a date. Moreover it is possible to download the development
version of the code.

In what follows, we will only describe the Unix-like procedure, users of WinCVS should adapt
easily it.

Before giving minimalist hints that will help you to download the cvs source tree, we have
to point out on some special Savannah’s configuration. To improve security, Savannah’s hackers
have chosen to allow only SSHv2 access to their servers. You have to ensure that your CVS RSH
variable is set to ssh. With a Bourn-like shell (sh, ksh, bash, zsh. . . ) use the instruction:

export CVS_RSH=ssh

If you run a C-like shell:

setenv CVS_RSH ssh

1At the time of writing these lines the freefem3d package is only available in the Sarge release.
2Note that binary-only distributions are forbidden!

http://www.freefem.org/ff3d/binaries.html
http://www.freefem.org/ff3d/sources/
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Since you will need this to be set before executing each cvs command, it is recommended that
you set it once for all in the appropriate shell start-up file. Reading cvs documentation may be
a useful help: check its web site at http://www.cvshome.org to get more information.

Let us now recall the basic cvs commands that will allow you to maintain your own cvs-tree
synchronized.

Checking-out the code is required only once. You will have to do it to get your first copy of
the sources. Executing the instruction line:

cvs -d :ext:anoncvs@savannah.gnu.org:/cvsroot/ff3d co ff3d

will create a ff3d directory containing the current development version of the package.
Keeping FreeFEM3D up to date will only require the command:

cvs -z3 update

See http://savannah.nongnu.org/cvs/?group=ff3d for more details.

1.3.4 Building the code

FreeFEM3D needs several tools to be built. Some of them are optional, others are just essential.
Note that the code compilation requires lots of memory when building an optimized version.

All of the following softwares are common Unix packages. They should also be found on
MacOS X and are provided by cygwin when building for MS-Windows.

Optional packages

So far three packages are optional: a POSIX thread library, Qt and VTK.

POSIX thread library Use of pthread allows a better usage of SMP3 machines, and allows
to run simultaneous tasks on multi-task systems. So far, only a few procedures really take
advantage of multi-thread programming. Priority is given to linear algebra which is the bottle
neck in this kind of number crunching application.

Qt This package is a C++ class library optimized for graphical user interface development. It
is developped by Trolltech. This is used to built the experimental GUI of ff3d. To get more
information about it, check http://www.trolltech.com.

VTK VTK stands for “the Visualization Toolkit”, it is an opensource C++ library developed
by KitWare that provides high level facilities to perform scientific graphics in 2D or 3D. Its
presence in FreeFEM3D is still experimental and undocumented. To get this library, connect
to http://www.vtk.org.

Required packages

Only one package is really required to compile FreeFEM3D:

3Symmetric Multi-Processor

http://www.cvshome.org
http://savannah.nongnu.org/cvs/?group=ff3d
http://www.trolltech.com
http://www.vtk.org
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Bison This is the GNU implementation of yacc (which stands for yet another compiler com-
piler). This software is a great help for the construction of languages parsers. Since FreeFEM3D
uses two languages (one for the problem description, the other for the geometry) it uses such a
tool to generate their compilers. Being a part of the GNU project, bison can be downloaded
from http://www.gnu.org.

Automake/Autoconf These packages are used to generate the Makefiles. They are in
charge of the package configuration and build dependencies. Each of the packages of this family
have to be installed and particularly libtool.

C++ An ANSI C++ compiler is also required. FreeFEM3D use some bleeding edge C++ con-
structions that need good compiler. Recent GNU GCC compilers offer very good ANSI C++
implementation. FreeFEM3D has been developed using those tools. We recommend the use of
the most recent g++ version to build the binary. Any feedback concerning the use of any other
compiler is appreciated.

Make A version of make is obviously needed to build FreeFEM3D. The GNU version, sometimes
called gmake is recommended as well.

Building instructions

FreeFEM3D uses a configure script to detect your configuration and generate Makefiles. First
download an archive, then this script should be found in the ff3d directory. If it is not there
or if you used cvs to get the code, you have to generate it. This is very simple. Enter the ff3d
directory — all the following commands will be performed from this particular place. Now, type
the command

autoreconf -i

This can produce warnings saying that some files are replaced, this is not an error. You can now
call the configure script.

Configuring Being built with automake and autoconf, the configure script uses all standard
options. To get the complete list of them, type

./configure --help

at the shell prompt. We will now discuss the FreeFEM3D special options. Note that most of
“--enable-” option have an opposite “--disable-” option.

--enable-real t is used to change the type of variable to store reals. Default value is double,
this can be changed to float using --enable-real t=float. Others types should be
added in the future.

--enable-exec permits the use of the exec instruction in FreeFEM3D files. It is enabled by
default. Since it allows execution of external programs within FreeFEM3D, it is a potentially
dangerous for security. This is why it can be deactivated.

--enable-debug is used to build a debugging version. An optimized (-O2) version is generated
if this option is omitted.

http://www.gnu.org
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--enable-optimize generates an even more optimized version (using none standard g++ op-
tions). This option conflicts with the --enable-debug option.

--enable-gui allows the generation of the code with GUI support. This option is automatically
enabled if VTK and Qt are detected — but can still be deactivated using the --disable-gui
option

--enable-pthread compiles FreeFEM3D using POSIX Thread this allows to proceed some tasks
in parallel. It is enabled by default if the pthread library is found.

The execution of the configure script, creates the Makefiles. Typing

make

will generate the executable called ff3d or ff3d.exe, for the MS-Windows version, after a few4

compilation time.

1.4 Legal conditions

1.4.1 Warning

FreeFEM3D is a scientific product to help you solve Partial Differential Equations in 3 dimensions;
it assumes a basic knowledge and understanding of the Finite Element Method and of the
Operating System used. It is also necessary to read carefully this documentation to understand
the possibilities and limitations of this product. The authors are not responsible for any errors
or damages due to wrong results.

1.4.2 GNU Genaral Public Licence

It is in its name: FreeFEM3D is a free software. It is distributed under the GNU GPL guidelines
as said here:

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA.

See the COPYING file in ff3d’s root directory, the exact terms of this licence can also be consult
online at GNU project official web site: http://www.gnu.org/copyleft/gpl.html.

4or a bit more ;-)

http://www.gnu.org/copyleft/gpl.html
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Chapter 2

An overview of FreeFEM3D

In this chapter we will focus on a fairly complex example so that the user will learn the exis-
tence of the main possibilities of FreeFEM3D. In the next chapters we will use simpler examples
while focusing on different features. Finally in the last chapter more complex examples will be
proposed.

2.1 The problem

Consider the following coupled problem: find (u, v) such that∣∣∣∣∣∣∣∣∣∣∣∣

−∆u+ v = f in O,
u = x(x− 1) + y(y − 1) + z(z − 1) on ∂O,

v −∆v + u = g in O,
v = sin(πx) sin(πy) sin(πz) on ∂O.

(2.1)

where f = −6 + sin(πx) sin(πy) sin(πz),
and g = (3π2 + 1)(sin(πx) sin(πy) sin(πz)) + x(x− 1) + y(y − 1) + z(z − 1).

which has an analytical solution:

(u, v) = (x(x− 1) + y(y − 1) + z(z − 1), sin(πx) sin(πy) sin(πz))

whatever the domain O and its boundary ∂O are.

2.2 The program using PDEs

To solve (2.1) in the domain O that is the sphere centered in 0 and whose radius is 0.8 we can
write the following program (example1.ff).

example1.ff
1 vector n = (20, 20, 20);
2 vertex a = (-1,-1,-1);
3 vertex b = ( 1, 1, 1);
4 double pi = 4*atan(1);
5

6 scene S = pov("example1.pov"); // loading POV-Ray geometry file

11
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7

8 mesh M = structured(n,a,b);
9

10 domain O = domain(S,inside(<1,0,0>));
11

12 function uexact = (x*(x-1) + y*(y-1) + z*(z-1));
13 function vexact = sin(pi*x)*sin(pi*y)*sin(pi*z);
14

15 solve(u,v) in O by M method(type=penalty)
16 {
17 pde(u)
18 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
19 = -6 + vexact;
20 u = uexact on <1,0,0>;
21

22 pde(v)
23 v - div(grad(v)) + u
24 = (3*pi^2 + 1)*vexact + uexact;
25 v = vexact on <1,0,0>;
26 }
27

28 function KiO = one(<1,0,0>);
29

30 double I=int[M](KiO*(uexact-u)^2);
31 double J=int[M](KiO*uexact^2);
32 cout << sqrt(I/J) << "\n";
33 I = int[M](KiO*(vexact-v)^2);
34 J = int[M](KiO*vexact^2);
35 cout << sqrt(I/J) << "\n";
36

37 mesh T = tetrahedrize(O,M);
38

39 save(medit, "u", u, T);
40 save(medit, "u", T);
41 save(medit, "v", v, T);
42 save(medit, "v", T);
43

44 save(raw, "u.dat", u, M);
45 save(raw, "v.dat", v, M);

The geometry is given in a POV-Ray file (example1.pov)
example1.pov

1 sphere {
2 <0,0,0>, 0.8
3 pigment { color rgb <1,0,0> }
4 }
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2.3 Describing the program step by step

From this example we see that there are different types such as

vector, vertex, scene, mesh, domain, double, function

and that each instruction is ended using a semicolon. The syntax is borrowed from the C/C++
language, whenever possible.

Let us go through the example:
example1.ff

1 vector n = (20, 20, 20);
2 vertex a = (-1,-1,-1);
3 vertex b = ( 1, 1, 1);
4 double pi = 4*atan(1);

Those four lines define n, a and b as R3 elements and the double precision number pi as π.
These will be used later to define a box from the two points a and b meshed by an (nx, ny, nz)
uniform Cartesian grid.

example1.ff
5

6 scene S = pov("example1.pov"); // loading POV-Ray geometry file

The scene S is defined using the POV-Ray description contained in the file example1.pov. Since
no path was given here, the file must be in the current directory, the same that contains
example1.ff. Note also that C++-like commentaries can be used.

example1.ff
7

8 mesh M = structured(n,a,b);

Here we construct the background cartesian mesh M of the fictitious embedded domain using
20× 20× 20 vertices in each direction (this is given by the value of n). Vectors a and b are two
vertices of the diagonal defining a box. The frame (x, y, z) is direct so if (Ox) is horizontal from
left to right and (Oy) is vertical bottom to top on the screen then (Oz) points towards you.
This is the right hand rule.

example1.ff
9

10 domain O = domain(S,inside(<1,0,0>));

The computational domain O is declared. Its definition uses the object of label <1,0,0> of the
scene S. Here the computational domain is the interior of the object.

example1.ff
12 function uexact = (x*(x-1) + y*(y-1) + z*(z-1));
13 function vexact = sin(pi*x)*sin(pi*y)*sin(pi*z);

uexact and vexact are two analytical functions defined as:∣∣∣∣∣ uexact = x(x− 1) + y(y − 1) + z(z − 1)
vexact = sin(πx) sin(πy) sin(πz)

One can see that FreeFEM3D supports the algebra of functions. x, y and z have to be seen as
functions by abuse of notation.
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example1.ff
15 solve(u,v) in O by M method(type=penalty)
16 {
17 pde(u)
18 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
19 = -6 + vexact;
20 u = uexact on <1,0,0>;
21

22 pde(v)
23 v - div(grad(v)) + u
24 = (3*pi^2 + 1)*vexact + uexact;
25 v = vexact on <1,0,0>;
26 }

This instruction bloc defines both the PDE problem and how to solve it! Let us now focus to
the details.

example1.ff
15 solve(u,v) in O by M method(type=penalty)
16 {

means that we are going to solve a coupled PDE problem whose unknowns are the functions u
and v, defined on M, and that to solve the problem we will use the mesh M.

method(type=penlaty) is optional, it is here to say to the solver to use penalty method for
boundary conditions. Many options can be passed to the solver.

The next block defines the two coupled PDEs. The first
example1.ff

17 pde(u)
18 - dx(dx(u)) - dy(dy(u)) - dz(dz(u)) + v
19 = -6 + vexact;

defines the PDE on u:

−∂x∂xu− ∂y∂yu− ∂z∂zu+ v = −6 + vexact in O.

Using this formulation we illustrate the fact that general second order operator can be approx-
imated. We will see that non constant coefficient can be used. The computational domain is
provided on line 17.

Then,
example1.ff

20 u = uexact on <1,0,0>;
21

defines the Dirichlet boundary conditions associated to the unknown u : u = uexact on ∂O,
where ∂O is the boundary of objects which rgb color is <1,0,0> (red).

Now, the second equation is given, using a more compact form
example1.ff

22 pde(v)
23 v - div(grad(v)) + u
24 = (3*pi^2 + 1)*vexact + uexact;
25 v = vexact on <1,0,0>;
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Which is ∣∣∣∣∣ v −∇ · ∇v + u = (3π2 + 1)vexact + uexact in O.
with v = vexact on ∂O.

Remark 1 One should note that boundary condition on each variable are given while describ-
ing the associated PDE. The boundary condition process has to be understood precisely (see
section 4.5.3). Moreover, in the case of PDE systems users may find variational formulae
better suited and less prone to errors.

example1.ff
27

28 function KiO = one(<1,0,0>);

defines the function KiO as the indicator function of objects whose color is <1,0,0> in the
POV-Ray file:

KiO(x, y, z) =

∣∣∣∣∣ 1 if (x, y, z) is inside at least one object of color <1,0,0>.
0 elsewhere.

Remark that function allows the declaration of analytical functions. There is no approximation
at this point! KiO is the exact function.

Finally to check the results against the analytical solution we print the relative L2 errors1∣∣∣∣∣ (
∫
M 1O(u− uexact)2/

∫
M 1Ov2

exact)
1
2 and,

(
∫
M 1O(v − vexact)2/

∫
M 1Ov2

exact)
1
2

computed the following way:
example1.ff

30 double I=int[M](KiO*(uexact-u)^2);
31 double J=int[M](KiO*uexact^2);
32 cout << sqrt(I/J) << "\n";
33 I = int[M](KiO*(vexact-v)^2);
34 J = int[M](KiO*vexact^2);
35 cout << sqrt(I/J) << "\n";

The last lines are the saving instructions of the solution for the post-processing step. Visu-
alization is a complex task in 3D, but the use of embedded fictitious domain method makes it
much more difficult. Here is an example of strategy that can be used

example1.ff
37 mesh T = tetrahedrize(O,M);
38

A visualization mesh T is built. This mesh is defined as the “intersection” of the domain O and
a tetrahedrization of the mesh M2. The mesh T only contains tetrahedra that do intersect the
domain O. Doing so, there is no parasite values. Note also that the mesh T

• does not fit exactly the geometry of O, and
1
R
O will be implemented later

2each hexahedron is divided into five tetrahedra.
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• does not contain boundary informations.

It cannot be used for the computation. Such approach may be possible in the future.

example1.ff
39 save(medit, "u", u, T);
40 save(medit, "u", T);
41 save(medit, "v", v, T);
42 save(medit, "v", T);

are the saving instructions in the medit format for the post-processing. For each variable, the
values and the mesh have to be saved separatly.

example1.ff
44 save(raw, "u.dat", u, M);
45 save(raw, "v.dat", v, M);

These final lines give an other example of saving the data. This time the raw format is used:
the only stored information is the values of the functions. The saving mesh is M. These files can
be post-processed using OpenDx, for instance, using the cartesian grid structure of M.

2.4 Running the program

When configured properly running this example will be

ff3d.exe example1.ff

(under MS-Windows), and

./ff3d example1.ff

under any Unix (if ff3d and example1.ff are in the same directory). Since FreeFEM3D is quite
verbose, the output is not reproduced here.

The PDE system is discretized by the embedded fictitious domain method (EFDM) combined
with the Q1-Finite Element Method on the uniform grid of the fictious domain. Unless otherwise
specified the linear system is solved by a Conjugate Gradient Method not preconditioned.

2.5 Post-processing

This is the weakest point of FreeFEM3D!
Up to now, there is no graphical user interface in FreeFEM3D. Thus one needs to learn to use
a visualization package also. In this part, we give a few hints for a typical visualization of the
results. The visualization softwares we typically use are Medit and OpenDx. We recommend to
the user to read the manuals of these packages. Furthermore to obtained good looking picture
one may have to add instructions specifically for graphics such as surface meshes.
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2.5.1 Using Medit

Medit is a free of charge software. Binaries of this package can be downloaded at

http://www-rocq1.inria.fr/gamma/medit/medit.html.

The online documentation is in french, but the software is very simple to use. Running Free-
FEM3D on example1.ff produces 4 files for visualization, 2 meshes files (u.mesh and v.mesh)
and 2 data files (u.bb and v.bb). To post-process u, use the command

medit u

in the directory that contains the u.* files. The figures 2.1(a) and 2.1(b) are obtained the
following way: once Medit is launched

• press F1 to cut the mesh,

• press m to color the mesh with the data.

(a) u on a cutting plane (b) v on a cutting plane

Figure 2.1: Medit post-processing using the visualization mesh T

One can access the online help of Medit pressing the h key in the graphic window. As it was
previously mentioned the visualization mesh T does not fit the exact geometry. It contains all
the tetrahedra that intersect the computational domain.

2.5.2 Using ParaView

ParaView is an open-source software developed by Kitware that relies on VTK. Binaries and
sources of this package can be downloaded at

http://www-rocq1.inria.fr/gamma/medit/medit.html
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http://www.paraview.org.

The use of this software is quite intuitive for people used to dataflow visualization packages.
Information concerning the documentation of this software can be found on ParaView’s web
page.

2.5.3 Using OpenDx

Being a professional tool, OpenDx is very powerful but its use complex, reading the manual is
necessary to get advantage of it and to produce good graphics. Lots of material about OpenDx
can be found at http://www.opendx.org.

We will just give here the basic tips to start with OpenDx. First, remember that no specific
format is implemented by now. We just use the raw output, so, only computations on cartesian
structured grids can be post-process. The process is the following:

• launch OpenDx,

• click on Import Data...,

• choose Grid or Scattered file, and then

• on Describe Data...

Another window appears. You will define here the geometry of the computation. Set

• the data file (for instance u.dat or v.dat) and

• the Grid size (just fill the 3 first fields).

You can optionally set the cell sizes (Grid positions). When it is done you need to save this
(File and then Save as...). You can now close this window.

In the previous window the Visualize Data... button should be accessible. Clicking on it
will launch a default visualization program.

For u and v, following the previous commands leads to the figures 2.2(a) and 2.2(b). The
difficulties of the post-processing of embedded fictitious domain simulations is enlighten by this
example. One sees on figure 2.2 that the it is not easy to identify the computed values from the
parasite values (outside the computational domain).

http://www.paraview.org
http://www.opendx.org
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(a) u on a cutting plane, and the iso-surface 0.75 (b) v on a cutting plane, and the iso-surface 0.75

Figure 2.2: OpenDx post-processing using the background mesh M



20 CHAPTER 2. AN OVERVIEW OF FREEFEM3D



Chapter 3

FEM and EFDM

Unless you are familiar with the Finite Element Method (FEM) implemented in an Embedded
Fictitious domain (EFDM) it is wise to read the present chapter to understand some of the
peculiarities of FreeFEM3D.

Let us look at a simple problem: ∣∣∣∣∣ ∇ · ν∇u = f in Ω
u|Γ = uΓ,

(3.1)

where Γ = ∂Ω is the boundary of Ω and ν is positive everywhere.
The implementations below are made with Ω a sphere centered at the origin of radius 0.5

embedded (for numerical purpose only) in the cube (−1, 1)3, f = 1 and uΓ = 0.

3.1 Finite Element Method

The Finite Element Method (FEM) is a Galerkin method applied to the variational formulation
of the problem. In the case of (3.1) the variational formulation consists in finding u ∈ H1(Ω)
satisfying the boundary condition (u|Γ = uΓ) and∫

Ω
(ν∇u · ∇w − fw) = 0 ∀w ∈ H1

0 (Ω), (3.2)

where H1
0 is the subspace of H1 of functions which vanishes on the boundaries and H1 is the

space of square integrable functions with square integrable derivatives.

The Galerkin method consists in approximating the problem by replacing H1(Ω) by a finite
subspace and a special case is the FEM of order 1 on a tetrahedral mesh of Ω:

Hh = {wh ∈ C0(Ω) and piecewise linear on each tetrahedron of the mesh of Ω}. (3.3)

Alternatively continuous piecewise linear functions in each variable xi can be used in conjunction
with a covering of Ω by box like quadrangular elements.

Then, the discretized problem can be: find uh ∈ Hh such that uh = uΓ at the vertices of Γ
and such that: ∫

Ω
(∇uh · ∇wh − fwh) = 0 ∀wh ∈ Hh ∩H1

0 (Ω). (3.4)

21
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Dirichlet boundary conditions can be implemented by elimination or by penalty ; in this later
case, the discrete problem is: find uh ∈ Hh such that∫

Ω
(∇uh · ∇wh − fwh) +

1
ε

∑
{i:qi vertex of Γ}

(uh(qi)− uΓ(qi))wh(qi) = 0 ∀wh ∈ Hh, (3.5)

where ε is a small parameter and Γ denotes the boundary of Ω.

3.2 Embedding of a Fictitious Domain Method

3.2.1 Dirichlet Conditions

So let C such that Ω ⊂ C and ∂Ω ∩ ∂C = ∅. Let ũ ∈ H1
0 (C) such that ũ = u in H1(Ω), and let

ν̃ ∈ L∞(C) such that ν̃ = ν in L∞(Ω), and ν̃ is strictly positive in C \ Ω.
To simplify notations let us now call ũ: u and ν̃: ν.
The Embedding of a Fictitious Domain Method (EFDM) tries to avoid the difficulty of

dividing Ω into non-overlapping tetraedra and so extends all functions in a simpler domain C
containing Ω.

Let us denote by

Vh = {wh continuous, piecewise linear on the tetrahedral mesh of C} (3.6)

and solve for uh, vh ∈ Vh:∫
C

1Ω (ν∇uh · ∇wh − fwh) +
1
ε

∫
Γ
(uh − uΓh)wh = 0 ∀wh ∈ Vh. (3.7)

This is essentially the same as (3.5) except that the triangulation is not conform with Γ and
so the sum on vertices has been replaced by an integral. But one should note that (3.7) does
not have a unique solution in Vh because the bilinear form is not strongly elliptic on C. Hence
one cannot use direct method to solve the associated linear system but since we use a Conjugate
Gradient-like method the solution of the discrete problem will converge to the solution of the
continuous problem in Ω.

The program given in 2.2 uses this approach.

Boundary Penalty

One notes that penalty amounts to trade the Dirichlet boundary condition for the Fourier
condition:

u− uΓ

ε
+
[
ν
∂u

∂n

]
= 0 (3.8)

where [·] stands for the jump across Γ.
Indeed a Robin jump condition such as in∣∣∣∣∣∣

∇ · (ν∇u) = f in C \ Γ

βu+
[
ν
∂u

∂n

]
= g on Γ,

(3.9)
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has the variational formulation: find u ∈ H1
0 (C)∫

C
(ν∇u · ∇û− fû) +

∫
Γ
(βu− g)û = 0 ∀û ∈ H1

0 (C). (3.10)

Domain Penalty

A much simpler method is to extend uΓ into ũΓ in C − Ω and to solve∫
C

(ν∇u · ∇û− fû) +
1
ε

∫
C−Ω

(u− ũΓ)û = 0 ∀û ∈ H1
0 (C). (3.11)

However in theory the precision is less than with the first method.

3.2.2 Implementation by hand

In FreeFEM3D you may either do the EFDM by yourself or let it be done automatically by
specifying the domain (see section ??). There are others approaches to EFDM [?][?][?].

Should you decide to do it yourself then to solve (3.7) you would use a program like
penal1.ff

1 solve(u) in O by M
2 {
3 test(w)
4 int(grad(u)*grad(w))+int[<1,0,0>](10000*u*w)=int(w);
5 u=0 on M;
6 }
7 save(medit,"penal",M);
8 save(medit,"penal",u,M);
9 save(raw,"u.dat",u,M);

It uses a weak formulation of the PDE 1.

To solve (3.11) one would write
penal2.ff

1 vector n = (20,20,20);
2 vector a = (-1,-1,-1);
3 vector b = (1,1,1);
4

5 scene S = pov("sphere.pov");
6 mesh M = structured(n,a,b);
7 domain O = domain(S,inside(<0,1,0>)&& inside(<1,0,0>));
8

9 function Id = 100*(1-one(<1,0,0>));
10

11 solve(u) in O by M{
12 test(w)

1By taking ν small but positive in C−Ω, the jump of ν ∂u
∂n

is approximately the part inside Ω so on could have
implemented the same using the PDE in strong form with the approximate condition u

ε
+ ν ∂u

∂n
= 0
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13 int(grad(u)*grad(w)+Id*u*w)=int(w);
14 }
15 save(medit,"penal",M);
16 save(medit,"penal",u,M);
17 save(raw,"u.dat",u,M);

(a) u on a 3 cutting plane com-
puted by penal1.ff

(b) u on a 3 cutting plane com-
puted by penal2.ff

(c) u on a 3 cutting plane com-
puted by penal3.ff

Figure 3.1: Solution of (3.1) with Dirichlet conditions by boundary penalty (left) and domain
penalty (center) and FreeFEM3Dbuilt-in penalty (right). The color scales are different for each
picture.

Remark 2 The file penal.pov contains

sphere{
<0,0,0>,0.5
pigment {color rgb <1,0,0>}

} sphere{
<0,0,0>,0.9
pigment {color rgb <0,1,0>}

}

The second sphere is here only to comply with FreeFEM3Dsyntax for fictitious domains.

What FreeFEM3Ddoes

Notice that the implementations above require the weak forms of the PDEs and a good knowledge
of the fictitious domain methods. FreeFEM3Dsimplifies the formulation by using strong forms
and it implements the first method (boundary penalty) when the following is invoked to solve
(3.1):
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penal3.ff
1 vector n = (20,20,20);
2 vector a = (-1,-1,-1);
3 vector b = (1,1,1);
4

5 scene S = pov("sphere.pov");
6 mesh M = structured(n,a,b);
7 domain O = domain(S,inside(<1,0,0>));
8

9 function nu=1;
10

11 solve(u) in O by M
12 method(type=penalty)
13 {
14 pde(u)
15 -div(nu*grad(u))=1;
16 u = 0 on <1,0,0>;
17 }
18 save(medit,"penal",M);
19 save(medit,"penal",u,M);
20 save(raw,"u.dat",u,M);

3.3 Neumann Boundary Conditions

For Neumann problem the fictitious domain method is much more natural. Consider∣∣∣∣∣ u−∇ · ν∇u = f in Ω

ν ∂u∂n |Γ = g.
(3.12)

The variational formulation is: find u ∈ H1(Ω) such that∫
Ω

(uw + ν∇u · ∇w) =
∫

Ω
fw +

∫
Γ
gw ∀w ∈ H1(Ω). (3.13)

Any w ∈ H1(Ω) can be extended into w̃ ∈ H1(C), so (3.13) can be written: find ũ ∈ H1(C)∫
C

(IΩ(ũw + ν∇ũ · ∇w − fw) =
∫

Γ
gw ∀w ∈ H1(C). (3.14)

The numerical approximation is by the finite element method on a triangulation of C with, say
the space Vh of continuous piecewise linear functions: find uh ∈ Vh solution of∫

C
(αuhwh + µ∇uh · ∇wh − fwh) =

∫
Γ
gwh ∀wh ∈ Vh. (3.15)

where α = 1, µ = ν in Ω and very small outside and f is extended by zero outside Ω.
It is implemented automatically in FreeFEM3Dby writing (see penal4.ff)
dnu(u) = g on(<1,0,0>)
but is can also be done manually as in
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penal5.ff
1 vector n = (20,20,20);
2 vector a = (-1,-1,-1);
3 vector b = (1,1,1);
4

5 scene S = pov("sphere.pov");
6 mesh M = structured(n,a,b);
7 domain O = domain(S,inside(<0,1,0>)&& inside(<1,0,0>));
8

9 function Id = one(<1,0,0>);
10 function nu=Id+0.01;
11

12 solve(u) in O by M
13 {
14 test(w)
15 int(Id*u*w+nu*grad(u)*grad(w))=int[<1,0,0>](w);
16 }
17 save(medit,"penal",M);
18 save(medit,"penal",u,M);

(a) u on a 3 cutting plane computed by penal1.ff (b) u on a 3 cutting plane computed by penal2.ff

Figure 3.2: Solution of (??) with Neumann boundary conditions by the fictitious domain method
(left) automatically implemented by FreeFEM3Dand by the same but implemented by hand
(right). The color scales are different in each picture.
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Solving problems with FreeFEM3D

4.1 Geometry definition

A PDE problem is defined by a set of functional equalities betwen functions and their derivatives
in a computational domain and its boundary. As described in section 3, FEM uses a tetrahedri-
sation of the domain. To cover the domain by tetrahedra (or boxe like quadrangular elements)
is a complex task that we avoid by using the Embedded Fictitious Domain Method (EFDM).

In some PDE problems the domain is infinite, so embedding such domain is not the same
as enclosing a compact set into a bigger cube. Thus for a given set D one has to distinguish
between external problems where the PDEs are solved in R3 − D and and internal problems
which are set in D itself. In both cases D is plunged inside a cube (or a box) C but in the first
case the points of interests are those of C −D which in the second case it is those in D. Two
keywords will deal with this fundamental difference:

domain O = outside(D) or = inside(D)
EFDM will require to define functions which take different values inside and outside objects

and also to compute boundary integrals on the objects.
In FreeFEM3D, the geometry of the domain is given using Virtual Reality (VR) data. It

means that the domain is defined as set operations1 on simple primitive shapes2. For various
reasons3, the language chosen to describe VR is POV-Ray’s.

Image synthesis softwares such as POV-Ray define scenes as a collection of simple objects
with set operations on them. But they also worry about realistic rendering and so a number
of features are irrelevant for us, such as the camera, the type of light, the textures4. What we
need is simply to define a scene as a collection of objects, know what are the set operations that
have been applied to them and name each object. Therefore, for a scene made of a sphere and
a brick, the following is sufficient:

sphere {
<0,0,0>, 1.5
pigment { color rgb <0,1,0> }

}

1set operations are union, extrusion and intersection.
2box, sphere, cylinder, cone,. . .
3Mostly because it is a freeware
4One should note that those keywords are or will be ignored by FreeFEM3D compiler, so you don’t have to

modify the scene you rendered with POV-Ray. However during the development phase we suggest that POV lines
not used by FreeFEM3D be started by a /**/ which will tell FreeFEM3D to ignore the whole line

27
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box {
<0,0,0>,
<2,2,2>
pigment { color rgb <0,0,1> }

}

In addition it may be helpful to visualize the fictitious computational domain. So the scene
may also contain (but only for the visualization) the computational box, for example

box {
<-2,-2,-2>,
< 3, 3, 3>
pigment { color rgbf <1,1,1,0.5> }

}

The color which is assigned to each object will be used by FreeFEM3D to identify the object and its
boundary condition, so it is important to distinguish colors if boundary conditions are different.

Colors like rgbf <a,b,c,d> define objects which will not be identified by FreeFEM3D, and
so are used only for graphics.

Figure 4.1: A green sphere and a blue cube. The transparent box is for graphic use only (to see
the computational domain used) but FreeFEM3D will check that all objects are contained in it.

The user is sent to the POV-Ray language manual for a complete reference, but here are some
conventions used in FreeFEM3D and some basis to the POV-Ray language.

4.1.1 POV-Ray Language Conventions for FreeFEM3D

References: For PDE-solvers it is common practice to define physical constants and boundary
conditions using references (indices that characterize degrees of freedom).

Since the geometry description is not contained in the mesh, but comes from a POV-Ray file,
FreeFEM3D uses objects colors as references. So the reference is not given by an integer but by
an R3 vector such as:

<a,b,c>
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where a, b and c are three double. The colors in POV-Ray being given by values of red, green
and blue. So to visualize the scene before computation one should choose pleasing values a, b
and c in [0, 1] but as far as FreeFEM3D goes these values are unimportant since they are used
only in comparison tests.

4.1.2 POV-Ray language basics

The following subset of the POV-Raylanguage is imlemented:

sphere:

sphere {
<0,0,0>, 1
pigment { color rgb <1,0,0> }

}

defines a unit sphere centered at (0, 0, 0). The pigment is defined so that the sphere will be
referenced as <1,0,0>.

box:

box {
<0,0,0>, <1,1,1>
translate <1,-1,1>
pigment { color rgb <1,0,1> }

}

describes a box built on vertices (0, 0, 0) and (1, 1, 1) and then translate by a vector (1,−1, 1).
It is referenced has <1,0,1>.

cylinder:

cylinder {
<0,0,0>, <1,1,1>, 0.2
pigment { color rgb <1,0,1> }

}

is a cylinder built on the axis defined by (0, 0, 0) and (1, 1, 1) whose radius is 0.2. Its reference
is <1,0,1>.

4.2 Boolean operations

The main interest of CSG is the ability of combining all primitives and built objects. POV-Ray’s
way of doing it is given bellow.



30 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D

object:

object {
box {
<0,0,0>, <1,1,1>

}
pigment { color rgb <0,0,1> }

}

Defines a box and then using the object statement the reference (0, 0, 1) is assigned to it.

union:

union {
box {
<0,0,0>, <1,1,1>

}
box {
<0,0,0>, <1,1,1>
translate <1,-1,1>

}
pigment { color rgb <1,0,1> }

}

defines the union of two boxes. The second is translated by a vector (1,−1, 1). The obtained
object has the reference (1, 0, 1). The union can be operated on n objects.

Remark 3 One can substitute the keyword merge to union. There is strictly no difference in
FreeFEM3D as opposed to POV-Ray.

intersection:

intersection {
cylinder {
<0,0,0>, <1,1,1>, 1

}
box {
<0,0,0>, <1,1,1>

}
pigment { color rgb <1,0,1> }

}

builds the intersection of a cylinder and a box. The obtain object has the reference (1, 0, 1).
The intersection can be operated on n objects.

difference:
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difference {
sphere {
<0,0,0>, 1

}
box {
<0,0,0>, <1,1,1>

}
pigment { color rgb <1,0,1> }

}

removes a box from a sphere. The obtain object has the reference (1, 0, 1). The difference
can be operated on n objects, then, the n− 1 objects are extruded from the first one.

4.3 Language Basics

FreeFEM3D derives its syntax from C++ in a reasonable way! So, people familiar to C or C++
should learn the language easily (the biggest difficulty being that one does not know which
subset of C++is implemented). At the same time, someone unfamiliar with those languages
should not be afraid since it is a hi-level5 language.

Knowing that we will explain step-by-step this language, let us first recall some important
rules:

• Every variable must be declared before being used.

• One cannot declare a variable twice.

• Each variable is global, so when declared, it lives until the end of the program execution,
even if declared in a block. This behaviour should change in the future.

4.3.1 Simple types

In the following we describe the two basic types of variables that can be declared in FreeFEM3D:
double and vector/vertex(∈ R3). The language supports other types such as boolean or string
but they are only used internally (up to now).

Variable declaration follows the general syntax

<typeid> <variableid>;

which declares a non initialized variable, or

<typeid> <variableid> = <typevalue>;

which constructs a variable initialized to the given value.

5high-level in the sense that it manipulates “real-life” objects.
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double: doubles are used to represent R elements. To declare a double, use the following
syntax:

double a = 3.14159;

The algebra on R has been implemented, and classical function are built in the language, so one
can write

1 double pi = 4*atan(1); double b; b = sqrt(1+pi^2*(2+sqrt(2)));

In this case, b will contain, as expected, the value 1 + π2(2 +
√

2) at line 3, before (line 2) its
content is not determined.

FreeFEM3D syntax mathematical meaning
abs(a) |a|
exp(a) ea

log(a) log(a)
sin(a) sin(a)
cos(a) cos(a)
tan(a) tan(a)
asin(a) arcsin(a)
acos(a) arccos(a)
atan(a) arctan(a)
a^b ab

Table 4.1: Built-in functions on doubles. a and b are double.

The table 4.1 shows FreeFEM3D functions that can be used on double.

vector/vertex: To declare a vector one can use one of the two following syntax:

vector v1 = (1,0,0); vertex a = (0,1,0);

By now, there is no difference between vertex and vector but the vertex object could be
enriched for future use.

Also, in a sense of POV-Ray compatibility, one can use indifferently the notations (a,b,c) or
<a,b,c>. We suggest the use of <a,b,c> only when the vector refers to the color of a POV-Ray
object.

Since R3 algebra is implemented, one can write the following expression:

vector w = 2*(1,1,1)+(-2*2.5,1,2);

then w will contain (−3, 3, 4).

4.3.2 Complex types.

By complex types we do not mean imaginary types nor “composed” types such as structures or
classes but types whose behavior needs some enlightenment.
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function: Scalar functions algebra is implemented in FreeFEM3D. It means that the user can
manipulate scalar functions in an analytic way, i.e. manipulating the functions and not their
approximations.

There are 3 special functions/keywords: x, y, z which are R3 → R functions which refer to
the coordinate system:

(x, y, z) 7−→ x, (x, y, z) 7−→ y, (x, y, z) 7−→ z. (4.1)

One can now easily define polynomial functions:

function p = 2*x + y + x*z + z^3;

with the obvious meaning p(x, y, z) = 2x+ y + xy + z3.
The built-in functions in FreeFEM3D are listed in table 4.2. For example, one could redefine

the (x, y, z) 7−→ tan(x) function using the name tag tan x by:

function tan_x = sin(x)/cos(x);

It is possible define functions with constant values by assigning a double to the function,
such as in

function cos1 = cos(1);

However computing speed could be slower compared to a

double cos1 = cos(1);

FreeFEM3D syntax mathematical meaning
abs(f) |f |
exp(f) ef

log(f) log(f)
sin(f) sin(f)
cos(f) cos(f)
tan(f) tan(f)
asin(f) arcsin(f)
acos(f) arccos(f)
atan(f) arctan(f)
f^g fg

Table 4.2: Built-in functions on functions. f and g are functions.

femfunction: This is a special type related to finite element functions. Up to now, only Q1

functions are allowed: piecewise tri-linear6 and continuous functions defined on an hexahedral
mesh. Since finite element functions spaces needs a mesh to be defined, one has to write

6tri-affine for purists!
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femfunction f(M) = sin(x);

where M is a previously defined mesh (see 4.3). After the instruction, f contains a finite element
approximation of (x1, x2, x3) 7−→ sin(x1). f is in fact defined by the interpolation at mesh
vertices: f(X) = sin(X1) if X is a vertex of M.

Even though a femfunction is a special kind of function, it can be used in the function
algebra:

femfunction f(M) = exp(x+y*z); function g = x - f;

Again, this is a definition; g is not evaluated a this point. The evaluation will be performed
when needed as in

double t = g(1,1,1);

which not only defines t but also triggers an evaluation of g at (1,1,1), and therefore the
computation of the linear interpolation to calculate f(1, 1, 1).

4.4 Instructions for the Geometry

4.4.1 scene:

VR data comes from a POV-Ray file. The geometry informations contained in this file are stored
in a scene variable.

The syntax is very simple:

scene S = pov("scene.pov");

Then S contains the POV-Ray scene described in the file scene.pov.
One can define many scenes in one FreeFEM3D file. In that latter case, to avoid ambiguities,

the last used scene is the current one. Lets look at the following example:

1 scene S1 = pov("scene1.pov"); scene S2 = pov("scene2.pov"); function
2 f = one(<1,0,0>); using S1; f = one(<1,0,0>);

After line 2, two scenes S1 and S2 are defined and current scene is S2. So at line 3, the function
f, is the indicator function of the object <1,0,0> of scene S2.

Line 4, the current scene is set to S1! Line 5 makes the function f be the indicator function
of the object <1,0,0> of scene S1.

4.4.2 domain:

How to define a computational domain?
The use of the domain keyword is always associated to Fictitious Domain-like resolutions!

Defining the computational domain is one of the most critical part of a
FreeFEM3D simulation. A clever definition of the domain may simplify the
syntax and make FreeFEM3D run faster.
This part is very important and needs a very good understanding in order
to create your own simulations.
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Several domains can be defined in a single FreeFEM3D file. Domains can be used to different
purpose:

• they simplify the writing of the PDE. Only one domain Ω can be associated to a solve
statement. For instance solving

−∆u = f in Ω with u = 0 on ∂Ω

with a background mesh M will involve

solve(u) in Omega by M

Alternatively the problem could also be set as∫
M

1Ω∇u · ∇v +
1
ε

∫
M

(1− 1Ω)uv =
∫
M

1Ωfv ∀v ∈ H1(M).

• The domain is also necessary to define POV-Ray boundary conditions: the only POV-Ray
borders that can be used are those explicitly used in the keyword domain.

• Finally a domain can be used to define characteristic functions

1Ω(x) =

∣∣∣∣∣ 1 if x ∈ Ω,
0 in the other case,

using the simple syntax one(Omega). This can be useful for instance to define different
materials using a POV-Ray geometry description.

Here comes now the probably most important rule to learn: use the background mesh as
much as possible to describe your geometry.

1. This means for instance that to solve external problems you do not need to specify an
outer box in the POV-Ray file.

2. This has also the advantage of improving the approximation at those borders since the
standard finite element method is used there.

The computational domain is defined using a scene,

domain <domain> [ = domain(<scene> , <booleanexp>) ];

where the booleanexp is defined by the following:

<booleanexp>: {not <inoutexp> | <inoutexp>}

and finally

<inoutexp>: { ( <inoutexp> )
| <inoutexp> and <inoutexp>
| <inoutexp> or <inoutexp>
| outside(<ref>)
| inside(<ref>)}

Remark 4 The keywords not, and and or can respectively be replaced by !, && and ||, as it is
the case for every boolean operation.
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4.4.3 Meshes

The embedding Fictitious Domain is a box defined by two points (i.e. vectors) which are at both
end of the main diagonal of the box, and a vector with integer coordinates to tell how many
intervals there will be on each edge. For example

vector n = (20,30,40);
vector a = (0,0,0);
vector b = (1,2,3);
mesh M = structured(n,a,b);

puts 20 intervals on the x-edge of the box (0, 1)× (0, 2)× (0, 3) and 30 intervals on the y-edge
and 40 on the z-edge.

There are two kinds of meshes in FreeFEM3D: volume and surface. The volume meshes are
only cartesian structured meshes, i.e. a squared box regularly meshed by squared hexahedra.
Surface meshes are composed of triangles or quadrangles living in R3, they are only used to
compute integrals in the fictitious domain method.

To construct a surface mesh, one needs a structured mesh and can write

mesh m = surface(<1,0,0>, S, M);

where <1,0,0> is the reference of a POV-Ray object, given by the scene S and M a structured
mesh; all of them having previously been declared.

Remark 5 The surface mesh is built using a marching cubes-like method, this is why a struc-
tured mesh is needed. In future, reading meshes in files should be allowed, also.

4.5 Problem definition

4.5.1 The Solver Bloc

solve: The solve block is of course special to FreeFEM3D and should be studied with attention:

solve (<unknown list>) in <domain> by <mesh> [<solver options>] {
{ pde (<unknown1>)

<pde>
<boundary condition list>

[ pde(< unknown2>)
<pde>
<boundary condition list>
[...]

]
| test(<test function list>)
<variational formula>
<dirichlet boundary condition list> }

}

Remark 6 Note that the solve bloc can be used with two different kinds of body. The first one
is systems of PDEs, the second is variational formulae.



4.5. PROBLEM DEFINITION 37

Lets focus on the common part and then on the <unknown list>, it is a set of unknown of
the form:

u,v,w

Those unknowns can already have been defined as functions! If it is the case, this function
will be the first guess for iterative methods, otherwise it will be 0. An instruction like

in <domain> by <mesh>

gives informations to the solver has to know which <domain> and which <mesh> use.

Remark 7 If the unknown list contains n elements, n pde statements have to be defined (one
per unknown)

Remark 8 The unknowns computed by the solver can be used later as if they were decalred as
femfunctions of the solving mesh (whatever they were before).

Remark 9 If an unknown was previously defined as a function its interpolate will be taken as
the initial guess for iterative methods.

Solver options The <solver options> is used to pass arguments to the solver such as
the type of algorithm to solve the linear system (conjugate gradient, bi-conjugate gradient)
and associated parameters (type of preconditioner, maximum number of iterations, value of ε7),
discretization method,. . .

Below is a list of solver options8

The syntax of options is

[ <option name> ( <suboption> = <value> [,
<suboption> = <value> ]...) [,

...]]

Here comes the complete list of options.

bicg to change bi-conjugate gradient options

• integer parameters

� maxiter the maximum number of iterations. Default value is 500

• double parameters

� epsilon the factor of reduction of the residu. Default value is 1E-5

bicgstab to change bi-conjugate gradient stabilized options

• integer parameters

7A condition is often used by iterative methods to stop the process. Solving linear system this condition is
often of the form |Aun − b| < ε|Au0 − b|.

8the list is extracted from the code automatically to make it up-to-date. The draw back of this is that reading
it may be boring, it is to be considered as a reference.
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� maxiter the maximum number of iterations. Default value is 500

• double parameters

� epsilon the factor of reduction of the residu. Default value is 1E-5

cg specifies conjugate gradient options

• integer parameters

� maxiter sets maximum number of iteration. Default value is 500

• double parameters

� epsilon sets the required reduction factor of the residu. Default value is 1E-5

multigrid to change multigrid options (Not working anymore!)

• integer parameters

� maxiter maximum number of iterations. Default value is 1
� level grid level. Default value is 3
� nu1 ν1. Default value is 2
� nu2 ν2. Default value is 2
� mu1 µ1. Default value is 1
� mu2 µ2. Default value is 1

• double parameters

� epsilon the factor of reduction of the residu. Default value is 1E-4
� omega ω, the relaxation parameter for Jacobi solver. Default value is 2./3.

eliminate Options for elimination method (by now none)

fatBoundary options for fat boundary method. Not implemented yet!

krylov used to modify krylov solver

• selectable parameters

� type is used to select the type of solver. Default value is cg. Available values
are
◦ cg: selects the conjugate gradient
◦ bicg: selects the bi-conjugate gradient (for non symetric problems)
◦ bicgstab: selects the bi-conjugate gradient stabilized (for non symetric

problems)
◦ ilufact: selects the iterative LU factorization

� precond is used to select the preconditioner. Default value is diagonal. Avail-
able values are
◦ diagonal: preconditions with the diagonal of the operator
◦ ichol: incomplete choleski factorization
◦ multigrid: multigrid finite difference solver. By now, the grid must be

(2nx + 1)× (2ny + 1)× (2nz + 1).
◦ none: no preconditioning
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memory sets memory management options

• selectable parameters

� matrix sets matrix type. Default value is sparse. Available values are
◦ sparse: used for sparse matrices, cost is approximatly 27×nv×nu2, where
nv is the number of vertices and nu the number of unknown (for a Q1

discretization)
◦ none: do not store the matrix. Cost no memory, but is slower

penalty sets penalty parameters

• double parameters

� epsilon ε’s value. (ε coming from 1
ε

∫
Γ (u− g)v). Default value is 1E-3

method use to tune the discretization method

• selectable parameters

� type selects the discretization method. Default value is penalty. Available
values are
◦ penalty: sets Dirichlet boundary conditions to be computed by penalty
◦ eliminate: sets Dirichlet boundary conditions using elimination
◦ fatBoundary: sets boundary conditions using FBM (not implemented)

FreeFEM3D treats the options the following way: the parser reads the option set and builds
a tree associated to it. Then when solve starts, each parametrizable object reads its options
when it is built. It looks first in the tree and if an option is not specified here, it uses the default
value.

Knowing the rules, lets look at some examples.

solve(u) in Omega by M
krylov(precond=diagonal)

{

Parsing this leads to the modification of a Krylov solver option: it changes the preconditioner
from the default none to diagonal. This behaves as expected. Lets now look to a more confusing
case:

solve(u) in Omega by M
bicg(epsilon=1E-10, maxiter=1000)

{

Parsing will modify bi-conjugate gradient ’s options, epsilon will be 10−10 and the maximum
number of iterations (maxiter) 1000.

There is no mistake here, but this option will have no effect during execution! The reason
is simple. The Krylov solver ’s options are not modified and that default linear system solver is
conjugate gradient (cg). So, bi-conjugate gradient will never start and will have no opportunity
to read its options.

To have those options used, one has to specify the use of bicg:
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solve(u) in Omega by M
bicg(epsilon=1E-10, maxiter=1000),
krylov(type=bicg)

{

To conclude with options, consider the code

1 solve(u) in Omega by M
2 cg(epsilon=1E-10),
3 cg(epsilon=1E-3,maxiter=15),
4 cg(maxiter=200),
5 {

First the epsilon parameter of cg is set to 10−10, at line 2. Then it is change to 10−3

and maxiter becomes 15. Finally, at line 4, maxiter is modified to become 200. So conjugate
gradient will run with ε = 10−3 and maxiter=200.

Between the two brackets ({ and }) comes the problem description. We will first focus one
PDE system-like descriptions and then on Variational formula-like descriptions.

PDE and System of PDEs. The general principle is that equations and boundary con-
ditions are defined variable per variable, even in the case of a coupled system. Each new PDE
is announced using the pde(<unknownid>) structure.

Remark 10 It helps to rememeber that FreeFEM3D uses this information to construct a vari-
ational formulation 9. If the informations are not given at the right place, the reconstructed
variational formulation may not be the right one, and yet no error message will appear. More-
over, one may need to repeat informations when defining PDE systems, this will be clear in the
second example below.

Here is a simple example for illustration

solve (u) in O by M {
pde (u)
-div(grad(u)) = 1;
u = 1 on M;

}

it stands for solving: ∣∣∣∣∣∣∣
−∆u = 1 in Ω,
u = 1 on ∂Ω ∩ ∂M,
∂u
∂n = 0 on ∂Ω \ ∂M.

FreeFEM3D and the mathematical syntax are quite close, but that the condition ∂u
∂n =

0 on ∂Ω\∂M is implicit in FreeFEM3D because the user has forgotten to specify what boundary

9This variational formulation is needed by the finite element discretization process.
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condition to apply on that boundary. For more details on boundary conditions see section 4.5.2,
and 4.5.3. Uniqueness of the solution assumes that the measure of ∂Ω ∩ ∂M is positive.

Now look a second example which focuses on the a system description and the underlying
variational problem as suggested in remark 10.

Lets solve the following problem

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−∆u− 1
2∆v = f1 in Ω,

−1
2∆u−∆v = f2 in Ω,

u = u0 on Γ1,
∂u
∂n = u1 on Γ2,

v = v0 on Γ1,
∂v
∂n = v1 on Γ2,

(4.2)

where Ω is the cube ]0, 1[3 (for seek of simplicity), Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, Γ2 being the
face x = 0, and f1, f2, u0, v0, u1, v1 given functions such that the problem (4.2) is well posed.

Here comes the associated code in FreeFEM3D:

example3.ff
23 solve(u,v) in Omega by M
24 {
25 pde(u)
26 -div(grad(u))-div(0.5*grad(v))=f1;
27 dnu(u) = u1 on M xmin;
28 dnu(v) = 0.5*v1 on M xmin;
29 u=u0 on M xmax;
30 u=u0 on M ymin;
31 u=u0 on M ymax;
32 u=u0 on M zmin;
33 u=u0 on M zmax;
34

35 pde(v)
36 -div(0.5*grad(u))-div(grad(v))=f2;
37 dnu(u) = 0.5*u1 on M xmin;
38 dnu(v) = v1 on M xmin;
39 v=v0 on M xmax;
40 v=v0 on M ymin;
41 v=v0 on M ymax;
42 v=v0 on M zmin;
43 v=v0 on M zmax;
44 }

The lines 28 and 37 are very important! Even if they are redundant they must be provided by
the user since the Green formula is not computed by FreeFEM3D, but only a correspondence is
made between PDE operators and variational operators.
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This comes from the fact that the variational formula associated to (4.2) is

∫
Ω
∇u · ∇w1 −

∫
Γ2

∇u · n w1 +
1
2

∫
Ω
∇v · ∇w1 −

1
2

∫
Γ2

∇v · n w1

+
1
2

∫
Ω
∇u · ∇w2 −

1
2

∫
Γ2

∇u · n w2 +
∫

Ω
∇v · ∇w2 −

∫
Γ2

∇v · n w2

=
∫

Ω
f1w1 +

∫
Ω
f2w2. (4.3)

For given w1 and w2.
The boxed terms are the one which should not be forgotten! Using the information coming

from (4.2) boundary conditions, one writes:∣∣∣∣∣ 1
2

∫
Γ2
∇u · n w2 = 1

2

∫
Γ2
u1w2, and

1
2

∫
Γ2
∇v · n w1 = 1

2

∫
Γ2
v1w1.

This leads to the final variational formula:∫
Ω
∇u · ∇w1 +

1
2

∫
Ω
∇v · ∇w1 +

1
2

∫
Ω
∇u · ∇w2 +

∫
Ω
∇v · ∇w2

=
∫

Ω
f1w1 +

∫
Ω
f2w2 +

∫
Γ2

u1w1 +
1
2

∫
Γ2

v1w1 +
1
2

∫
Γ2

u1w2 +
∫

Γ2

v1w2. (4.4)

It would not be an easy task to make FreeFEM3D automatically compute (4.4), which means
not forgetting the boxed terms. So those terms have to be provided explicitly by the user
following the example. Some of the translations are given bellow.

FreeFEM3D leading to comment
-div(grad(u))

∫
Ω∇u · ∇w1 it is w1 since we are describing the pde(u)

dnu(u)=u1
∫

Ω u1w1 goes to right hand side
dnu(v)=0.5*v1 1

2

∫
Ω v1w1 it will not be deduced from the pde(v) bloc!

One then understands the logic behind it and can look at the table 4.3 for the complete list of
domain operators interpretation.

Variational problem description. Entering a problem with a variational formula is quite
different from giving its PDE system. First, there is only one variational formula (even in the
case of systems) and second, only the Dirichlet conditions are given outside that formula, since
the Neuman and Robin conditions are included in the variational formula.

For example to solve the problem: find u in H1(Ω) such that∣∣∣∣∣∣∣∣
−∇ · µ∇u = 0 in Ω,

u+
∂u

∂n
= g on Γ1,

u = u0 on Γ2 = ∂Ω \ Γ1.
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one sets the variational problem∫
Ω
µ∇u · ∇w −

∫
∂Ω
µ∇u · n w = 0 ∀w.

Using the fact that ∫
∂Ω
µ∇u · n w =

∫
∂Ω
µ(g − αu)w

the variational problem is written, find u ∈ H1(Ω) such that u = u0 on Γ2 and∫
Ω
µ∇u · ∇w +

∫
∂Ω
µ uw =

∫
∂Ω
µ gw ∀w, (4.5)

It is this formula (4.5) that must be entered in the FreeFEM3D code
example4.ff

13 solve(u) in Omega by M
14 {
15 test(w)
16 int(mu*grad(u)*grad(w)) + int[M xmin](mu*u*w) = int[M xmin](mu*g*w);
17 u=uexact on M xmax;
18 u=uexact on M ymin;
19 u=uexact on M ymax;
20 u=uexact on M zmin;
21 u=uexact on M zmax;
22 }

Note the presence of the test(w) statement. It is here to define a (list of) test functions used
in the bilinear forms. The test function variables only live within the solve bloc10.

Then comes the variational formula. As one can see, it is really close to the mathematics,
but still needs some explanation:

int(mu*grad(u)*grad(w)) defines
∫

Ω µ∇u · ∇w. The integration domain is implicit;

int[M xmin](mu*u*w) corresponds to
∫

Γ1
µuw with Γ1 being the face x = 0 of the domain;

and

int[M xmin](mu*g*w) which is
∫

Γ1
µ gw.

The last lines define the Dirichlet boundary conditions. Note that as in section 4.5.3, only
Dirichlet conditions are allowed at this level of the problem description.

This example shows what is a “FreeFEM3D variational formula”. Basically, it is an equation
made of linear and bilinear terms. A linear form is

w 7−→ l(w)

where w must be a test function. A bilinear form is

(u,w) 7−→ a(u,w)

10This is an exception but test function names are not really variables, but tags...
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where w must be a test function too and u must be an unknown. All others combination are
forbidden!

So the general form of a “FreeFEM3D variational formula” is∑
j

∑
i

aij(ui, wj) =
∑
j

lj(wj).

Where (aij) is a family of bilinear forms, (lj) is a family of linear forms, (ui) is a family of
unknowns and (wj) is a family of test functions.

Bilinear and linear forms will be described more precisely in the sections 4.5.4 and 4.5.5.

Lets now reconsider the problem (4.2) and solve it using a variational formula.
The associated variational formula is still given by (4.4). So, the FreeFEM3D code is written

immediately by
example5.ff

23 solve(u,v) in Omega by M
24 memory(matrix=none)
25 {
26 test(w1,w2)
27 int(grad(u)*grad(w1)) + int(0.5*grad(v)*grad(w1))
28 + int(0.5*grad(u)*grad(w2)) + int(grad(v)*grad(w2))
29 = int(f1*w1) + int(f2*w2)
30 + int[M xmin](v1*w2 + u1*w1)
31 + int[M xmin](0.5*v1*w1 + 0.5*u1*w2);
32 u=u0 on M xmax;
33 u=u0 on M ymin;
34 u=u0 on M ymax;
35 u=u0 on M zmin;
36 u=u0 on M zmax;
37 v=v0 on M xmax;
38 v=v0 on M ymin;
39 v=v0 on M ymax;
40 v=v0 on M zmin;
41 v=v0 on M zmax;
42 }

This really looks like (4.4)!

4.5.2 PDE system syntax.

The PDE structure uses the syntax

[-] <pdeoperator> [ {+|-} <pdeoperator> ] ... = <function>;

Supported PDE operators are shown on the table 4.3.
Some examples:

u - div(grad(u)) = f;
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FreeFEM3D operator mathematical bilinear form (∀v)
mu*u µu

∫
µuv

dx(u) ∂xu
∫
∂xuv

dy(u) ∂yu
∫
∂yuv

mu*dz(u) µ∂zu
∫
µ∂zuv

div(grad(u)) ∇ · ∇u = ∆u −
∫
∇u∇v

dx(dx(u))+dy(dy(u))+dz(dz(u)) ∇ · ∇u = ∆u −
∫
∂xu∂xv + ∂yu∂yv + ∂zu∂zv

dx(mu*dy(u)) ∂xµ∂yu −
∫
µ∂yu∂xv

Table 4.3: partial differential operators. u is an unknown and mu a function representing µ. The
third column shows the bilinear operator that will be used to discretize the partial differential
operator, note that in the case of second order operators a Green formula is used. This means
that boundary integral terms are to be supplied by users when needed, through
boundary conditions.

stands for u−∇ · ∇u = f .

-dx(dy(u)) - dy(dx(u)) + dz(u) = f;

stands for −∂x∂yu− ∂y∂xu+ ∂zu = f .

4.5.3 Boundary Conditions

To define boundary conditions, one has to use

<condition> on <border>;

The <condition> is defined using the followings:

Dirichlet: u = g is written u=g,

Neumann: ν∂nu = g is written dnu(u)=g,

Robin (Fourrier): αu+ ν∂nu = g is written alpha*u+dnu(u)=g.

Remark 11 dnu(u) denotes the co-normal derivative, the term which arises in the variational
form when applying the Green formula to the second order operator. In the case of −∇ · µ∇u
the term is µ∇u, coming from

−
∫

Ω
∇ · µ∇uv =

∫
Ω
µ∇u · ∇v +

∫
∂Ω
µ∇u · n v ∀v.

To refer to borders one uses the following syntax:

• on <a,b,c> when the condition is applied on the border of the object having a POV-Ray
reference <a,b,c>.

• on M (where M is a structured mesh) when the condition is to be applied on the border of
M.
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• on M <modifier> where <modifier> is one of xmin, xmax, ymin, ymax, zmin or zmax,
means that it will be applied to the corresponding face on the structured mesh M.

• on S (where S is a surface mesh) is used to impose a condition on an already built surface
mesh (read in a file or previously built).

For example:

u = 0 on M;

u = 0 on ∂M.

dnu(u) = g on <1,0,0>;

imposes a Neumann condition on the border of objects <1,0,0>, the co-normal derivative of u
will be equal to g in a weak sense. Similarly

u + dnu(u) = g on S;

a Robin condition on the surface meshed by S.

4.5.4 Bilinear forms.

Bilinear forms implemented in FreeFEM3D are of the type

a(u,w) =
∫
O
A(u,w),

where O is an R3 domain or an R3 surface, and A is such that

A(u,w) =
∑
i

giDiu(u)Diw(w),

with Diu and Diw being two partial differential operators of order 0 or 1; and u, w two functions.
To be a “FreeFEM3D bilinear form”, it is required for u to be an unknown and for w to be a test
function.

The possible choices for operators Du and Dw are given at table 4.4.

FreeFEM3D operator mathematical meaning
v v (order 0 operator)

dx(v) ∂xv
dy(v) ∂yv
dz(v) ∂zv

grad(v) ∇v

Table 4.4: partial differential operators. v is an unknown or a test function.

Note that using variational formula, one can discretize
∫
∂xiuv or

∫
u∂xiv while only

∫
∂xiuv

is used in PDEs (see table 4.3).
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4.5.5 Linear forms.

In the same way, linear forms implemented in FreeFEM3D are defined as

l(w) =
∫
O

∑
i

Li(w).

Where O is an R3 domain or an R3 surface. L can be of the following forms:∣∣∣∣∣ L(w) = gw, or
L(w) = g∇f · ∇w.

Let us write some examples combining linear and bilinear forms.

int[<1,0,0>](2*u*alpha*v)+int(grad(v)*grad(u))-int(v)=0;

is associated to
∫

Ω∇u∇v +
∫

Γi
2αuv =

∫
Ω v, where Γi is the border referenced by <1,0,0>. By

the way, solving

int(u*v)=int(f*v*g);

for all v, makes u the L2 projection of fg on the finite element space.

4.5.6 Convection Operator

The convection operator
∂tϕ+ ui · ∂xiϕ, (4.6)

can be implemented by using a discrete method of characteristics[?]. To call this operator one
uses

convect([ux,uy,uz],dt,phi);

phi is the transported function at the speed (ux, uy, uz) during the timestep dt.
One has to note that this function is evaluated when needed. This means that if one writes

1 function f = convect([ux,uy,uz],dt,phi);

f is “convect([ux,uy,uz],dt,phi)”.
the convect operator adapts to the context:

1 function f = convect([ux,uy,uz],dt,phi);
2 femfunction g(M) = f;
3 solve (h) in Omega by M
4 {
5 test(v)
6 int(h*v)=int(f*v);
7 }

The g function will be a Q1 function with values at vertices of the mesh M which are the same
as those of f, but to compute h, the values of f will be evaluated at the quadrature vertices.



48 CHAPTER 4. SOLVING PROBLEMS WITH FREEFEM3D

4.6 Other Instructions

4.6.1 Input and output

Built-in. A built-in input and output instruction set can be used to read/write files using
complex formats. User cannot really change them but can provide options.

Those functions are typically variants of save and read.

The save instruction. The syntax of the save instruction is

save(<format>, <filename>, <function-or-field-list>, <mesh>[, <filetype>]);

With the following options:

• <format> is the data storage format, one can refer to the table 4.5 for the list of supported
formats,

Format Identifier
Raw raw
MEdit (mesh) medit
ParaView / MayaVi vtk

Table 4.5: Supported file formats

• <filename> is a string containing the name of the file stored on the disk,

• <function-or-field-list> is used to refer to a function (usually a function variable) or
a field of functions, or a list of both of them.

• <mesh> is the mesh that will be used to proceed saving (automatic interpolation is possible).

• The last parameter <filetype> is the second optional parameter, it is used to define the
file type. Possible file types are given on table 4.6.1. Note that up to now, binary is
ignored.

Format Identifier
Unix unix
MS-DOS/Windows dos
Mac OS mac
Binary binary

Table 4.6: File types

Remark 12 (raw format) The raw format does not store any information concerning the
mesh. The generated file only contain the function values. It is mainly used to post-process
data using OpenDx on cartesian meshes.

Remark 13 (vtk format) File extensions are generated automatically according to the type of
the mesh, for instance .vti (cartesian mesh of hexahedra) or .vtu (unstructured grid). The
mesh is saved with the function in one file. Up to now, the vtk format is the only one
that supports lists of functions and fields. The instruction
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save(vtk,"foo",{[u,v,w],p,rho},M);

saves the field (u, v, w) and the scalar functions p and ρ into one file: foo.vtu (if M is unstruc-
tured) or foo.vti (if M is a cartesian mesh).

Remark 14 (medit format) Again, the extension (.bb) is added automatically. However, the
mesh requires to be stored in another file with the same affix. This is let to the user that use the
same syntax omitting the function or field. For instance, to save the field of functions u, v and
w one might write

save(medit,"foo",[u,v,w],M); // save the field

save(medit,"foo",M); // save the mesh

This code creates the two files foo.bb and foo.mesh.

The read instruction. In fact, there is two kind of read instruction:

• to read a mesh (an tetrahedral unstructured grid for instance)

• to read a function defined on a given mesh

The syntax to read a mesh is

read(<format>, <filename> [, <filetype>]);

• The <format> is one of

– gmsh format from http://www.geuz.org/gmsh/,

– medit INRIA mesh format,

– vtk the VTK XML format.

An example of use is

mesh M = read(gmsh,"mesh.msh");

The syntax of the read function instruction is

read(<format>, <filename>[:<function-or-field-name>][:<number>],
<mesh> [, <filetype>]);

• The <format> is given in table 4.5,

• <mesh> is the mesh where the function is defined,

• <filename> is the file name containing the function values,

• if the format support multiple data (vtk for instance) one must precise which field or
function is to be read.
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• The read instruction only returns scalar functions, so a field is to be read component by
component, <number> is the component number.

Let M be an arbitrary mesh.

function f = read(medit,"data.bb",M);

reads a function from the file data.bb.

function u = read(medit,"velocity.bb":0,M);
function v = read(medit,"velocity.bb":1,M);
function w = read(medit,"velocity.bb":2,M);

places the three components of a field stored in the file velocity.bb into three functions u, v
and w.

function u = read(medit,"ns.vti":"[u,v,w]":0,M);
function v = read(medit,"ns.vti":"[u,v,w]":1,M);
function w = read(medit,"ns.vti":"[u,v,w]":2,M);
function p = read(medit,"ns.vti":"p",M);

reads the field labeled [u,v,w] and the function p from the same file.

User “defined” This provides more basic stuffs to allow the user to read/write to console or
files. The way to use them is similar to C++ streams so one manipulates low level objects and
builds his own format.

The syntax is the following

<ostream> [ << <expression> ] ... ;

By now, only output streams are implemented, input streams will be introduced in the future.
Let us now introduce the cout stream. It is a predefined output stream that behaves like in

C++. For instance, the following code

double i = 10;
cout << "i=";
cout << i << "\n";
cout << "----\n";

produces the output:

i=10
----

It is also possible to manipulate output stream to file (ofstream) variables.

ofstream <ofstream> [ = ofstream(<filename>) ];

Thus, the code
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ofstream fout;
double i = 0;
do {
fout = ofstream("file".i);
fout << i << "\n";
i++;

} while(i<10);

will create a set of 10 files named file0, file1,... to file9 that contain their number.

Remark 15 (ofstream synchronization) FreeFEM3D’s ofstream is not buffered: this means
that it should be used

4.6.2 Statements

Syntax for statements in FreeFEM3D follows the rules of C or C++.

4.6.3 Conditional statements.

In FreeFEM3D, only the if statement is implemented. Its syntax is

if (<boolexp>) { <instruction>; | <bloc> }
[ else { <instruction>; | <bloc> } ]

4.6.4 Loops.

Standard do-while, while and for structures are implemented:

do { <instruction> | <bloc> } while (<boolexp>);

while (<boolexp>) { <instruction>; | <bloc> }

for (<instruction>;<boolexp>;<instruction>) { <instruction>; | <bloc> }

The following contains a set of examples:
statements.ff

1 for (double i=0; i<5; i=i+1)
2 if (i<3)
3 cout << i << " ";
4 else {
5 double j=0;
6 while (j<i) {
7 cout << j-i << " ";
8 do {
9 j=j+1;

10 } while (0>1);
11 }
12 }
13 cout << "\n";
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It produces the following output

0 1 2 -3 -2 -1 -4 -3 -2 -1
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Examples

5.1 A simple example: the Poisson problem in a cube

Find u such that ∣∣∣∣∣ −∆u = f in Ω,
u|Γ = 0,

(5.1)

where f ∈ L2(Ω), and Γ = ∂Ω. Lets assume that Ω = (−1, 1)3, and choose f = 1.
Here the domain is a cube so there will be no informations coming from the POV-Rayfile.

The mesh is built by

mesh M = structured((10,10,10),(-1,1,-1),(1,-1,1));

We recall that the mesh M is built in a box specified by its two opposite corners (−1, 1,−1) and
(1,−1, 1) and (10, 10, 10) specifies the number of discretization points on each edge.

For more clarity one may prefer the following notations:
example2.ff

1 vector n = (10, 10, 10);
2 vertex a = (-1, 1,-1);
3 vertex b = ( 1,-1, 1);
4 mesh M = structured(n,a,b);

Since the geometry is very simple here one has to create an empty scene. This POV-Ray scene
will be describe by an empty file: "empty.pov". The domain O will be declared by

example2.ff
6 scene S = pov("void.pov"); // the pov-ray file for the geometry
7 domain O = domain(S);

The PDE is specified by
example2.ff

9 solve(u) in O by M
10 {
11 pde(u)
12 - div(grad(u)) = 1;
13 u = 0 on M;
14 };
15 save(opendx,"u.dat",u,M);

The last line is used to save the data in the file "u.dat".
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Chapter 6

Appendix A

6.1 Using ff3d within Windows and Cygwin

Step 1 Download and install the unix-in-windows software cygwin. (Note that this step is not
essential and that if you do not want to do it, you can download cygwin1.dll which is the
dynamic lib for cygwin compatibility and place it next to ff3d.exe.)

Step 2 Download and install a graphic package compatible with ff3d such as medit, openDX,
T3D.

Step 3 Download ff3d and the examples.

Step 4 Optional: download and install POV-Ray

Figure 6.1: Subfolders displayed in Windows

6.1.1 Run an Example

1. Create a folder and for this illustration call it test3d

2. Put in folder test3d the files ff3d.exe, example1.pov, example1.txt and (optional)
medit.exe.
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3. Copy the full name (path and folder name) from the title of the folder window as shown
in black on figure 1.

Figure 6.2: FreeFEM3Din the windows-cygwin environment

4. Start cygwin (or open a dos command window) and do a change directory command
cd "paste name here"

5. type the command
./ff3d example1.txt
The following should appear

6. Do a graphic command on the new files generated by ff3d in this case u.dat,v.dat

6.1.2 Graphics

Creating good graphics with the results of ff3d is difficult; it is one of the weak point of the
fictitious domain method. There is provision in ff3d for creating surface meshes that can be
read by medit. For example if the following is added at the end of the file example1.txt:
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(a) output generated by T3D (b) Output generated by medit

Figure 6.3: Two ways to display results in Windows (the two figures do not display the same
case).

save(medit,"uu",gsphere,dos); // to save the mesh
save(medit,"uu",u,gsphere,dos); // to save the values

where gsphere is defined in the .pov file which then becomes

sphere {<0,0,0>, 0.5 pigment { color rgb <1,0,0> }}
cylinder { <0, 0,0>,<0.3, 0.3, 0.3>, 0.2 pigment{ color rgb <2,0,0> }}

and the file example1.txt contains the lines:

mesh sphere = surface(<1,0,0>,O,M);
mesh gsphere = surface(<2,0,0>,gO,M);

(a) output generated by medit (b) Geometry displayed with POV-Ray

Figure 6.4: POV-Ray is also quite powerful. For instance on the right above is a visualization of
the computational domain using a transparent texture for the computational box. The cylinder
on which the solution is displayed could have been included as well.
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