
Using FAUST with ROS
(version 0.0.01)

GRAME
Centre National de Création Musicale

October 2014

2

Contents

1 Introduction 5

1.1 Faust . 5

1.1.1 Design Principles . 5

1.1.2 Signal Processor Semantic . 6

1.2 ROS . 6

1.2.1 What is it ? . 6

1.2.2 Concepts . 7

2 Compiling FAUST programm for ROS use 11

2.1 Compiling in a FAUST archive . 11

2.2 Compiling in a workspace . 11

2.3 Renaming DSP file . 12

2.4 Examples . 12

3

4 CONTENTS

Chapter 1

Introduction

FAUST (Functional Audio Stream) is a functional programming language specifically
designed for real-time signal processing and synthesis. FAUST targets high-performance
signal processing applications and audio plug-ins for a variety of platforms and stan-
dards.
ROS (Robot Operating System) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of cre-
ating complex and robust robot behavior across a wide variety of robotic platforms.

1.1 Faust

1.1.1 Design Principles

Various principles have guided the design of FAUST:

• FAUST is a specification language. It aims at providing an adequate notation to
describe signal processors from a mathematical point of view. FAUST is, as much
as possible, free from implementation details.

• FAUST programs are fully compiled, not interpreted. The compiler translates
FAUST programs into equivalent C++ programs taking care of generating the
most efficient code. The result can generally compete with, and sometimes even
outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to imple-
ment low-level DSP functions like recursive filters. Moreover the code can be
easily embedded. It is self-contained and doesn’t depend of any DSP library or
runtime system. It has a very deterministic behavior and a constant memory
footprint.

• The semantic of FAUST is simple and well defined. This is not just of academic
interest. It allows the FAUST compiler to be semantically driven. Instead of
compiling a program literally, it compiles the mathematical function it denotes.
This feature is useful for example to promote components reuse while preserv-
ing optimal performance.

5

6 CHAPTER 1. INTRODUCTION

• FAUST is a textual language but nevertheless block-diagram oriented. It ac-
tually combines two approaches: functional programming and algebraic block-
diagrams. The key idea is to view block-diagram construction as function com-
position. For that purpose, FAUST relies on a block-diagram algebra of five com-
position operations (: , ~ <: :>).

• Thanks to the notion of architecture, FAUST programs can be easily deployed
on a large variety of audio platforms and plugin formats without any change to
the FAUST code.

1.1.2 Signal Processor Semantic

A FAUST program describes a signal processor. The role of a signal processor is to trans-
forms a group of (possibly empty) input signals in order to produce a group of (possi-
bly empty) output signals. Most audio equipments can be modeled as signal processors.
They have audio inputs, audio outputs as well as control signals interfaced with slid-
ers, knobs, vu-meters, etc.

More precisely :

• A signal s is a discrete function of time s :N→R . The value of signal s at time
FAUST considers two type

of signals: integer signals
(s :N→Z) and floating

point signals (s :N→Q).
Exchanges with the

outside world are, by
convention, made using

floating point signals. The
full range is represented

by sample values between
-1.0 and +1.0.

t is written s(t). The set S=N→R is the set of all possible signals.

• A group of n signals (a n-tuple of signals) is written (s1, . . . , sn) ∈ Sn . The empty
tuple, single element of S0 is notated ().

• A signal processors p, is a function from n-tuples of signals to m-tuples of sig-
nals p : Sn → Sm . The set P =

⋃

n,m S
n → Sm is the set of all possible signal

processors.

As an example, let’s express the semantic of the FAUST primitive +. Like any FAUST
expression, it is a signal processor. Its signature is S2→ S. It takes two input signals
X0 and X1 and produce an output signal Y such that Y (t) =X0(t)+X1(t).

Numbers are signal processors too. For example the number 3 has signature S0→ S.
It takes no input signals and produce an output signal Y such that Y (t) = 3.

1.2 ROS

1.2.1 What is it ?

Creating truly robust, general-purpose robot software is hard. From the robot’s per-
The following content is

taken from ROS
documentation. It can be

found on ROS official
website and ROS wiki.

spective, problems that seem trivial to humans often vary wildly between instances
of tasks and environments. Dealing with these variations is so hard that no single
individual, laboratory, or institution can hope to do it on their own.

ROS is an open-source, meta-operating system for your robot. It provides the ser-
vices you would expect from an operating system, including hardware abstraction,

http://www.ros.org
http://www.ros.org
http://www.wiki.ros.org

1.2. ROS 7

low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and li-
braries for obtaining, building, writing, and running code across multiple computers.

As a result, ROS was built from the ground up to encourage collaborative robotics
software development. For example, one laboratory might have experts in mapping
indoor environments, and could contribute a world-class system for producing maps.
Another group might have experts at using maps to navigate, and yet another group
might have discovered a computer vision approach that works well for recognizing
small objects in clutter. ROS was designed specifically for groups like these to collab-
orate and build upon each other’s work, as is described throughout this site.

1.2.2 Concepts

Filesystem level

The filesystem level concepts mainly cover ROS resources that you encounter on disk,
such as:

• Packages are the main unit for organizing software in ROS. A package may con-
tain ROS runtime processes (nodes), a ROS-dependent library, datasets, config-
uration files, or anything else that is usefully organized together. Packages are
the most atomic build item and release item in ROS. Meaning that the most
granular thing you can build and release is a package.

• Metapackages are specialized Packages which only serve to represent a group
of related other packages.

• Services : Service descriptions, stored in my_package/srv/MyServiceType.srv,
define the request and response data structures for services in ROS.

• Messages : Message descriptions, stored in my_package/msg/MyMessageType.msg,
define the data structures for messages sent in ROS.

Computation Graph level

The Computation Graph is the peer-to-peer network of ROS processes that are pro-
cessing data together. The basic Computation Graph concepts of ROS are nodes,
Master, Parameter Server, messages, services, topics, and bags, all of which provide
data to the Graph in different ways.

• Master : The ROS Master provides name registration and lookup to the rest
of the Computation Graph. Without the Master, nodes would not be able to
find each other, exchange messages, or invoke services.

• Nodes : Nodes are processes that perform computation. ROS is designed to be
modular at a fine-grained scale; a robot control system usually comprises many
nodes. For example, one node controls a laser range-finder, one node controls
the wheel motors, one node performs localization, one node performs path
planning, one Node provides a graphical view of the system, and so on. A ROS
node is written with the use of a ROS client library, such as roscpp or rospy.

http://wiki.ros.org/Services
http://wiki.ros.org/Messages
http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy

8 CHAPTER 1. INTRODUCTION

• Topics : Messages are routed via a transport system with publish / subscribe
semantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node that
is interested in a certain kind of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. In general,
publishers and subscribers are not aware of each others’ existence. The idea is
to decouple the production of information from its consumption. Logically,
one can think of a topic as a strongly typed message bus. Each bus has a name,
and anyone can connect to the bus to send or receive messages as long as they
are the right type.

• The Parameter Server : The Parameter Server allows data to be stored by key
in a central location. It is currently part of the Master.

• Messages : Nodes communicate with each other by passing messages. A mes-
sage is simply a data structure, comprising typed fields. Standard primitive
types (integer, floating point, boolean, etc.) are supported, as are arrays of prim-
itive types. Messages can include arbitrarily nested structures and arrays (much
like C structures).

Figure 1.1: ROS Concepts in a diagram

Names

Names are really important in ROS. Valid names have these characteristics :

http://wiki.ros.org/Topics
http://wiki.ros.org/Messages

1.2. ROS 9

• first chararacter is an alpha character : [a-z][A-Z]

• subsequent characters can be alphanumeric : [a-z][A-Z][0-9], underscores : _
or forward slash : /

• there is at most one forward slash : /

For more informations on ROS and tutorials, please have a look to the website :
www.wiki.ros.org.

www.wiki.ros.org

10 CHAPTER 1. INTRODUCTION

Chapter 2

Compiling FAUST
programm for ROS use

To compile a FAUST programm for a ROS use, you can use either the faust2ros
command, or the faust2rosgtk one, which adds a gtk graphic user interface to the
simple faust2ros command.

2.1 Compiling in a FAUST archive

In order to compile a DSP file into a FAUST archive, just type the command followed
by your file :

faust2ros my_dsp_file.dsp

It should output faust.zip/my_dsp_file; and the resulting faust.zip folder should
contain the following elements:

faust_msgs messages package to handle faust messages
my_dsp_file package containing a .cpp file corresponding to the DSP file

If the DSP file is not in the current directory, make sure to type the right path. For
instance :

faust2ros ~/faust/examples/myfile.dsp

2.2 Compiling in a workspace

Thanks to the option -install, you have the possibility to create a package from
your DSP file directly in the a workspace you chose. Just type :

faust2ros -install faust_ws file.dsp

It should output :

11

12 CHAPTER 2. COMPILING FAUST PROGRAMM FOR ROS USE

file.cpp;

and you should have a faust_ws repository looking like this :

faust_ws
build
devel
src

faust_msgs : Messages Package
Files to handle Faust messages.

include
msg

ParamFaust.msg
src
CMakeLists.txt
package.xml

file : File Package .
include
src

file.cpp : File generated with Faust compiler .
CMakeLists.txt
package.xml

2.3 Renaming DSP file

If the dsp file does not fit you, you can rename it using the -o command. For instance,
if you want the package generated from DSP file to have a different name that your
DSP file name, you can type :

faust2ros -o foobar file.dsp

The output is going to be :

faust.zip
faust_msgs
foobar

2.4 Examples

Here are some examples of files compilation.

Input :

faust2rosgtk -install foo_ws -o foo1 file1.dsp
-install foo_ws -o foo2 file2.dsp
-install bar_ws -o bar file3.dsp

Output :

2.4. EXAMPLES 13

˜
foo_ws

faust_msgs
foo1
foo2

bar_ws
bar

	Introduction
	Faust
	Design Principles
	Signal Processor Semantic

	ROS
	What is it ?
	Concepts

	Compiling Faust programm for ROS use
	Compiling in a Faust archive
	Compiling in a workspace
	Renaming DSP file
	Examples

