AdaSockets reference manual

for AdaSockets version 1.8.10
18 March 2010

Samuel Tardieu

Copyright (©) 2002-2010 Samuel Tardieu

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

1 What is AdaSockets?............. 1
2 Installing AdaSockets 3
3 Using AdaSockets............. 5
3.1 Compiling an Ada application..................... 5
3.2 Setting up unicast sockets............o 5
3.3 Setting up multicast sockets.......... o 5
3.4 Sending and receiving data..............o 6
3.4.1 Raw data manipulation............. i 6

3.4.2 String-oriented exchanges................. oL 6

4 Socketspackage............................L. 7
Accept_Socket (procedure)o.iiiiiiiiiiii 7

Bind (procedure).......... ..o 8
Connect (Procedure)iuiuiuii i 8

Get (function). 9
Get_Char (function).......... ..o 9
Get_Line (function) 10
Get_Line (procedure)ooiiiiiiiiiiiiiiii 10
Getsockopt (procedure) ... 11
Listen (Procedure)ou ittt 12
New_Line (procedure)............oiiiiuiiiiiiiiniinan .. 12

Put (procedure)....... ... 12
Put_Line (procedure)c.oouiuiuiniiiiiiinan.. 13
Receive (function). ... 13
Receive (procedure)ouiuiiiiiiiiiiiiiiiiiiii 14
Receive_Some (procedure)...............coooiiiiiiiiiiiiiiiin... 14

Send (Procedure).ot 15
Set_Buffer (procedure) 15
Setsockopt (procedure)...........o.iuiiiiiiiiiii 16
Shutdown (procedure).............ooiiiiiiiiiiiiiiiii ... 16
Socket (procedure) 16
Unset_Buffer (procedure)..................... 17

5 Sockets.Multicast package 19
Create_Multicast_Socket (function)......................cooia.. 19

Create_Multicast_Socket (function)..................... 20

ii AdaSockets reference manual

6 Sockets.Naming package...................... 21
Address_Of (function)......... ..., 21
Any_Address (function)o 22
Get_Peer_Addr (function).......... ... i 22
Get_Peer_Port (function)............ ... 22
Get_Sock_Addr (function)...........oooiiiiiiiiiiiiiiia 22
Get_Sock_Port (function)o i 23
Host_Name (function)............. ... i, 23
Image (function)o 23
Info_Of_Name_Or_IP (function).............. ..., 24
Is_.IP_Address (function)coooiiiiiiiiiiiiiiiiianan... 24
Name_Of (function)...... ...t 24
Value (function)......... ... 25

Appendix A Contributors...................... 27

Appendix B Resources on the Internet 29

Chapter 1: What is AdaSockets? 1

1 What is AdaSockets?

AdaSockets is a set of free software Ada packages allowing Ada programmers to use the
so-called BSD sockets from their favourite programming language. AdaSockets has been
designed and tested with the GNAT free software Ada compiler, but should be portable to
other compilers quite easily.

Starting from release 3.14, the GNAT compiler started to integrate a GNAT.Sockets
package. However, this package is GNAT specific and contains at this time less features
than AdaSockets. At some point, AdaSockets may use GNAT.Sockets as its underlying
sockets structure.

AdaSockets philosophy is to help the Ada programmer by providing easy-to-use objects.
Special care has been taken to ensure that performances do however remain good.

Chapter 2: Installing AdaSockets 3

2 Installing AdaSockets

Installing AdaSockets on a Unix or OpenVMS machine is as simple as typing a few com-
mands. Once you got the latest version of AdaSockets (see Appendix B [Resources on
the Internet], page 29), uncompress and untar it and go to the top-level directory of the
distribution.

You must configure the AdaSockets distribution by using the configure command, such
as in:
./configure --prefix=/users/sam/adasockets

If you want to install AdaSockets under the ‘/usr/local’ hierarchy, you do not need
to specify the ‘--prefix’ option. Make sure you have write permission on the target
directories.

Once AdaSockets is configured, you can compile and install it by using the make com-
mand:

make install

The GNU make program is recommended but not mandatory. On your system, it may
be installed under the gmake name.

Chapter 3: Using AdaSockets 5

3 Using AdaSockets

3.1 Compiling an Ada application

AdaSockets comes with an adasockets-config application that can be used to retrieve
installation parameters while using gnatmake to compile your Ada application. The -
-cflags parameters tells adasockets-config to output the path to the Ada packages
sources, while —-1ibs asks for the path to the Ada library.

gnatmake ‘adasockets-config --cflags‘ mainprog
-largs ‘adasockets-config --libs‘

3.2 Setting up unicast sockets

Unicast sockets are used everywhere on the Internet, for surfing the web, sending electronic
mails or accessing remote files. They come in two flavours:

TCP TCP is a connected mode, in which packets are sent in a reliable and ordered
way. Everything sent at one end will eventually arrive in the same order at the
other end, the underlying operating system takes care of retransmitting missing
packets and reordering out-of-order ones.

UDP UDP is a non-connected mode. A packet sent on a UDP socket may or may not
arrive at the other end. This is a much lighter protocol when reliability is not
needed as the operating system does not have to use large buffers to reorder
packets. Also, this generates less traffic as no acknowledgments need to be sent
by the kernels.

The package Sockets defines a Socket_FD tagged type. An instance of this type (or of
any of its descendants) represents an incoming or outgoing socket. Two different kinds of
sockets can be created: unicast (one-to-one) and multicast (many-to-many).

3.3 Setting up multicast sockets

Multicast sockets are used for group communication over the Internet. To use multicast
sockets, you must be connected to a multicast network and use a multicast-enabled operating
system (such as most Unices, Linux or even recent Windows versions). Unless you are
connected to the mbone (multicast backbone) or have setup a private multicast network,
you will only be able to use multicast on your local network.

A multicast socket is somewhat similar to a UDP socket; in particular, packets may be
lost or misordered.

You can create a multicast socket using the function Create_Multicast_Socket in the
package Sockets.Multicast. This function returns a Multicast_Socket_FD object, which
derives from Socket_FD.

Create_Multicast_Socket takes care of the whole setup of your multicast socket. You
do not need to call any additionnal subprogram before using it. In particular, Create_
Multicast_Socket will take care of registering the multicast socket to the operating system,
so that the latter can tell the connected routers to propagate the subscription to the mbone
as needed.

6 AdaSockets reference manual

3.4 Sending and receiving data

In AdaSockets, data can be sent and received in three different ways: raw, string-oriented
and stream-oriented.

3.4.1 Raw data manipulation

Raw data is manipulated using the predefined Ada.Streams.Stream_Element_Array Ada
type. This corresponds to an array of bytes, or an unsigned char * in the C programming
language.

3.4.2 String-oriented exchanges

String-oriented exchanges provides the programmer with Ada.Text_IO0 like subprograms.
Most Internet protocols are line-oriented and those subprograms are perfectly suited to
implement those.

When sending data, the classical CR + LF sequence will be sent at the end of each line.
When receiving data, CR characters are discarded and LF is used as the end-of-line marker.

The Get function is tied to the size of the operating system buffer. It is better to use
Get_Line to get a full line. The line can be as long as the length of the Ada buffer. The
Ada buffer can be adjusted by using the Set_Buffer and Unset_Buffer procedures.

When using string-oriented exchanges with datagram protocols such as UDP, setting a
buffer using Set_Buffer for the receiving socket is mandatory. If you don’t, the receiving
socket will loose data and will be unable to reconstitute the string.

Chapter 4: Sockets package 7

4 Sockets package

The Sockets package contains all the definitions and subprograms needed to build a simple
unicast client or server.

type Socket_FD is tagged private; [Sockets.Socket _FD]
The Socket_FD tagged type is the root type of all sockets. It gets initialized by
calling [Socket (procedure)|, page 16. An uninitialized Socket_FD can be succesfully
compared to Null_Socket_FD.

Accept_Socket (procedure)

PURPOSE Accept an incoming connection

PROTOTYPE
procedure Accept_Socket [Sockets. Accept_Socket]
(Socket : Socket_FD; New_Socket : out Socket_FD);
PARAMETERS
Socket in Initialized
New_Socket out Incoming socket object
DESCRIPTION

This procedure creates a new socket corresponding to an incoming connection
on TCP socket Socket. All the communications with the peer will take place
on New_Socket, while the program can accept another connection on Socket.

New_Socket must not be initialized before calling this procedure, or must have
been cleaned up by calling Shutdown, in order to avoid a file descriptors leak.

Accept_Socket will block until an incoming connection is ready to be accepted.

EXAMPLE
declare
Sock : Socket_FD;
Incoming : Socket_FD;
begin

-- Create a TCP socket listening on local port 4161

Socket (Sock, PF_INET, SOCK_STREAM);

Bind (Sock, 4161);

Listen (Sock, 3);

-- One-connection-at-a-time server (3 may be pending)

loop
-— Wait for a new connection and accept it
Accept_Socket (Sock, Incoming);
-- Do some dialog with the remote host
Do_Some_Dialog (Incoming);
—-- Close incoming socket and wait for next connection
Shutdown (Incoming);

end loop;

end;

8 AdaSockets reference manual

SEE ALSO [Bind (procedure)], page 8,
[Listen (procedure)], page 12,
[Shutdown (procedure)], page 16,
[

Socket (procedure)|, page 16.

Bind (procedure)

PURPOSE Associate a local port to a socket

PROTOTYPE
procedure Bind (Socket : Socket_FD; Port : Natural; [Sockets.Bind]
Host : String :="");
PARAMETERS
Socket in Initialized socket object
Port in Local port to bind to
Host in Local interface to bind to
DESCRIPTION

This procedure requests a local port from the operating system. If 0 is given
in Port, the system will assign a free port whose number can later be retrieved
using [Get_Sock_Port (function)], page 23. Also, most operating systems require
special privileges if you want to bind to ports below 1024.

If Host is not the empty string, it must contain the IP address of a local interface
to bind to, or a name which resolves into such an address. If an empty string
is given (the default), the socket will be bound to all the available interfaces.

EXCEPTIONS
Socket_Error Requested port or interface not available

SEE ALSO [Listen (procedure)], page 12,
[Socket (procedure)], page 16.

Connect (procedure)

PUrPOSE Connect a socket on a given host/port

PROTOTYPE
procedure Connect (Socket : Socket_FD; [Sockets.Connect]
Host : String; Port : Positive);
PARAMETERS
Socket in Initialized socket object
Host in Host to connect to
Port in Port to connect to
DESCRIPTION

This procedure connects an initialized socket to a given host on a given port. In
the case of a TCP socket, a real connection is attempted. In the case of a UDP
socket, no connection takes place but the endpoint coordinates are recorded.

EXCEPTIONS
Connection_Refused The connection has been refused by the server
Socket_Error Another error occurred during the connection

Chapter 4: Sockets package 9

EXAMPLE

declare
Sock : Socket_FD;

begin
—-- Create a TCP socket
Socket (Sock, PF_INET, SOCK_STREAM);
—— Connect it to rfcl1149.net’s mail server
Connect (Sock, "mail.rfc1149.net", 25);
—-- Do a mail transaction then close the socket

[...]

end;

SEE ALSO [Socket (procedure)], page 16.

Get (function)

PURPOSE Get a string from a remote host

PROTOTYPE
function Get (Socket : Socket FD’Class) [Sockets.Get]
return String;
PARAMETERS
Socket in Initialized and connected socket object

RETURN VALUE
Some characters that have been received

DESCRIPTION
This function receives some characters from a remote host. As soon that at
least one character is available, the current reception buffer is returned.

There is usually little gain in using this function whose behaviour is comparable
to the one of [Receive (function)|, page 13. Other functions such as [Get_Char
(function)], page 9, or [Get_Line (function)], page 10, allow more structured
programming.

However, this function may be used to avoid loosing characters when calling
[Unset_Buffer (procedure)], page 17, if, for some reason, the remote host may
have sent some.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending any data

Get_Char (function)

PURPOSE Get a character from a remote host

PROTOTYPE
function Get_Char (Socket : Socket_FD’Class) [Sockets.Get_Char]
return Character;
PARAMETERS

Socket in Initialized and connected socket object

10 AdaSockets reference manual

RETURN VALUE
One character sent by the remote host

DESCRIPTION
This function receives exactly one character from the remote host.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending the character

SEE ALSO [Get (function)], page 9,
[Get_Line (function)], page 10,
[Get_Line (procedure)], page 10,
[Receive (procedure)], page 14,
[

Set_Buffer (procedure)], page 15.

Get_Line (function)

PURPOSE Get a whole line from a remote host

PROTOTYPE
function Get_Line (Socket : Socket_FD’Class; [Sockets.Get_Line]
Max_Length : Positive := 2048)
return String;
PARAMETERS
Socket in Initialized and connected socket object
Max_Length in Maximum returned line length

RETURN VALUE
A line without the CR and LF separators

DESCRIPTION
This function receives one line from the remote host. A line consists into zero
or more characters followed by an optional CR and by a LF. Those terminators
are stripped before the line is returned.

This function blocks until one full line has been received. The line length is
limited with the value of the Max_Length argument, to avoid exhaustion of the
secondary stack.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending a whole line

SEE ALSO [Get (function)], page 9,
[Get_Char (function)], page 9,
[Get_Line (procedure)], page 10,
[Receive (procedure)], page 14,

[

Set_Buffer (procedure)], page 15.

Get_Line (procedure)

PURPOSE Get a whole line from a remote host

Chapter 4: Sockets package 11

PROTOTYPE
procedure Get_Line (Socket : Socket_FD’Class; [Sockets.Get_Line]
Str : in out String; Last : out Natural);
PARAMETERS
Socket in Initialized and connected socket object
Str in out String to fill
Last out Last index used in the string
DESCRIPTION

This procedure receives one line from the remote host. A line consists into zero
or more characters followed by an optional CR and by a LF. Those terminators
are stripped before the line is returned.

This procedure blocks until one full line has been received.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending a whole line

SEE ALSO [Get (function)], page 9,

[Get_Char (function)], page 9,
[Get_Line (function)], page 10,
[Receive (procedure)], page 14,
[

Set_Buffer (procedure)], page 15.

Getsockopt (procedure)

PURPOSE Retrieve a socket option

PROTOTYPE
procedure Getsockopt (Socket : Socket_FD; [Sockets.Getsockopt]
Level : Socket_Level := SOL_SOCKET;
Optname : Socket_Option; Optval : out Integer);
PARAMETERS
Socket in Initialized and bound socket object
Level in Protocol level
Optname in Option name
Optval out Option value
DESCRIPTION

This procedure retrieves options applicable to a socket. Please see your oper-
ating system manual for usable levels and options.

Two levels are defined: SOL_SOCKET (the default) and IPPROTO_IP. The options
are SO_REUSEADDR, SO_REUSEPORT, IP_MULTICAST_TTL, IP_ADD_MEMBERSHIP,
IP_DROP_MEMBERSHIP, IP_MULTICAST_LOOP, SO_SNDBUF and IP_RCVBUF.

Note that unlike their C language counterpart, Getsockopt and Setsockopt
do not require an extra parameter representing the length in bytes of the option
value. AdaSockets nows the right size for every option.

SEE ALSO [Setsockopt (procedure)], page 16.

12 AdaSockets reference manual

Listen (procedure)

PurpPOSE Establish a listen queue

PROTOTYPE
procedure Listen (Socket : Socket_FD; [Sockets.Listen]
Queue_Size : Positive := 5);
PARAMETERS
Socket in Initialized and bound socket object
Queue_Size in Requested slots in the listen queue
DESCRIPTION

This procedure establishes a listen queue after a TCP socket as been initialized
and bound. Each slot in the queue can hold one incoming connection that has
not been accepted yet. Note that most operating systems ignore queue sizes
larger than five.

SEE ALSO [Accept_Socket (procedure)], page 7,
[Bind (procedure)], page 8,
[Socket (procedure)], page 16.

New_Line (procedure)

PURPOSE Send a CR/LF to a remote host

PROTOTYPE

procedure New_Line (Socket : Socket_FD’Class; [Sockets.New_Line]

Count : Natural := 1);

PARAMETERS

Socket in Initialized and connected socket object

Count in Number of CR/LF sequences to send
DESCRIPTION

This procedure sends one or more CR/LF combinations to the peer.
EXCEPTIONS

Connection_Closed Peer has prematurely closed the connection

SEE ALSO [Put (procedure)], page 12,
[Put_Line (procedure)], page 13.

Put (procedure)

PURPOSE Send a string to a remote host
PROTOTYPE

procedure Put (Socket : Socket_FD’Class; Str : String); [Sockets.Put]
PARAMETERS

Socket in Initialized and connected socket object
Str in String to send
DESCRIPTION

This procedure sends the content of Str over an outgoing or incoming socket.

Chapter 4: Sockets package 13

EXCEPTIONS
Connection_Closed Peer has prematurely closed the connection

SEE ALSO [New_Line (procedure)|, page 12,
[Put_Line (procedure)], page 13,
[Send (procedure)], page 15.

Put_Line (procedure)

PURPOSE Send a CR/LF terminated string to a remote host

PROTOTYPE
procedure Put_Line (Socket : Socket_FD’Class; [Sockets.Put_Line]
Str : String);
PARAMETERS
Socket in Initialized and connected socket object
Str in String to send
DESCRIPTION

This procedure sends the content of Str plus a CR/LF combination over an
outgoing or incoming socket.

EXCEPTIONS
Connection_Closed Peer has prematurely closed the connection

SEE ALSO [New_Line (procedure)|, page 12,
[Put (procedure)], page 12,
[Send (procedure)], page 15.

Receive (function)

PURPOSE Receive raw data over a socket

PROTOTYPE
function Receive (Socket : Socket_FD; [Sockets.Receive]
Max : Ada.Streams.Stream_Element_Count := 4096)
return Ada.Streams.Stream_FElement_Array;
PARAMETERS
Socket in Initialized and bound or connected socket object
Max in Maximum data length

RETURN VALUE
Received raw data

DESCRIPTION
This procedure receives data from a bound UDP socket or a connected TCP
socket. Only one system call will be performed; this function will return what-
ever data has arrived. Note that in GNAT the secondary stack may be used to
store the data and may result in stack storage exhaustion.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending any data

14 AdaSockets reference manual

SEE ALSO [Receive (procedure)], page 14,
[Receive_Some (procedure)], page 14,
[Get_Line (function)], page 10,

[

Get_Line (procedure)], page 10.

Receive (procedure)

PURPOSE Receive raw data over a socket

PROTOTYPE
procedure Receive (Socket : Socket_F'D’Class; [Sockets.Receive]
Data : out Ada.Streams.Stream_Element_Array);
PARAMETERS
Socket in Initialized and bound or connected socket object
Data out Incoming data buffer
DESCRIPTION

This procedure receives data from a bound UDP socket or a connected TCP
socket. It will block until the Data reception buffer has been totally filled.

EXCEPTIONS
Connection_Closed Peer has closed the connection before Data’Length bytes
were received

SEE ALSO [Get_Line (function)], page 10,

[Get_Line (procedure)], page 10,
[Receive (function)], page 13,
[

Receive_Some (procedure)], page 14.

Receive_Some (procedure)

PURPOSE Receive raw data over a socket

PROTOTYPE
procedure Receive_Some [Sockets.Receive_Some]
(Socket : Socket_FD’Class;
Data : out Ada.Streams.Stream_Element_Array;
Last : out Ada.Streams.Stream_Element_Offset);
PARAMETERS
Socket in Initialized and bound or connected socket object
Data out Incoming data buffer
Last out Index of last element placed into Data
DESCRIPTION

This procedure receives data from a bound UDP socket or a connected TCP
socket. As soon as at least one byte has been read, it returns with Last set to
the index of the latest written element of Data.

EXCEPTIONS
Connection_Closed Peer has closed the connection before sending any data

Chapter 4: Sockets package 15

SEE ALSO [Get_Line (function)], page 10,
[Get_Line (procedure)], page 10,
[Receive (function)], page 13,

[

Receive (procedure)], page 14.

Send (procedure)

PURPOSE Send raw data over a socket

PROTOTYPE
procedure Send (Socket : Socket_FD; [Sockets.Send]
Data : out Ada.Streams.Stream_Element_Array);
PARAMETERS
Socket in Initialized and connected socket object
Data out Data to be sent
DESCRIPTION
This procedure sends data over a connected outgoing socket or over an incoming
socket.
EXCEPTIONS
Connection_Closed Peer has prematurely closed the connection

SEE ALSO [Put (procedure)], page 12,
[Put_Line (procedure)], page 13.

Set_Buffer (procedure)

PURPOSE Install a line-oriented buffer of the socket object

PROTOTYPE
procedure Set_Buffer [Sockets.Set_Buffer]
(Socket : Socket_FD’Class; Length : Positive := 1500);
PARAMETERS
Socket in Initialized and connected socket object
Length in Size in bytes of the newly installed buffer
DESCRIPTION

This procedure puts the socket object in buffered mode. If the socket was
already buffered, the content of the previous buffer will be lost. The buffered
mode only affects character- and line-oriented read operation such as [Get (func-
tion)], page 9, [Get_Char (function)], page 9, and [Get_Line (function)], page 10.
Other reception subprograms will not function properly if buffered mode is used
at the same time.

The size of the buffer has to be greater than the biggest possible packet sent
by the remote host, otherwise data loss may occur.

SEE ALSO [Unset_Buffer (procedure)], page 17.

16 AdaSockets reference manual

Setsockopt (procedure)

PURPOSE Set a socket option

PROTOTYPE
procedure Setsockopt (Socket : Socket_FD; [Sockets.Setsockopt]
Level : Socket_Level := SOL_SOCKET;
Optname : Socket_Option; Optval : Integer);
PARAMETERS
Socket in Initialized and bound socket object
Level in Protocol level
Optname in Option name
Optval in Option value
DESCRIPTION

This procedure sets options applicable to a socket. Please see your operating
system manual for usable levels and options.

Two levels are defined: SOL_SOCKET (the default) and IPPROTO_IP. The options
are SO_REUSEADDR, SO_REUSEPORT, IP_MULTICAST_TTL, IP_ADD_MEMBERSHIP,
IP_DROP_MEMBERSHIP, ITP_MULTICAST_LOOP, SO_SNDBUF and IP_RCVBUF.

Note that unlike their C language counterpart, Getsockopt and Setsockopt
do not require an extra parameter representing the length in bytes of the option
value. AdaSockets nows the right size for every option.

SEE ALSO [Getsockopt (procedure)], page 11.

Shutdown (procedure)

PURPOSE Shutdown a socket

PROTOTYPE
procedure Shutdown (Socket : in out Socket_FD; [Sockets.Shutdown)]
How : Shutdown_Type := Both);
PARAMETERS
Socket in out Socket object to shutdown
How in Direction to shutdown
DESCRIPTION

This procedure shutdowns either direction of the socket. How can take the
value ‘Send’, ‘Receive’ or ‘Both’.

SEE ALSO [Socket (procedure)|, page 16.

Socket (procedure)

PUrPOSE Create a socket of the given mode

Chapter 4: Sockets package 17

PROTOTYPE
procedure Socket (Socket : out Socket_FD; [Sockets.Socket]
Domain : Socket_Domain := PF_INET;
Typ : Socket_Type := SOCK_STREAM);
PARAMETERS
Socket out Socket object to initialize
Domain in Protocol family
Typ in Kind of sockets
DESCRIPTION

This procedure initializes a new socket object by reserving a file descriptor to
the operating system. For backward compatibility with older versions of this
library, AF_INET is still accepted as a value but should be replaced as soon as
possible with the proper PF_INET. Using SOCK_STREAM for the Typ argument
will create a TCP socket while a SOCK_DGRAM will create a UDP one.

EXAMPLE

declare
Sock : Socket_FD;

begin
—-- Create a TCP socket
Socket (Sock, PF_INET, SOCK_STREAM);
-- Perform some operations on socket
[...]

—— Shutdown the socket in both directions
Shutdown (Sock, Both);
end;

SEE ALSO [Shutdown (procedure)], page 16.

Unset_Buffer (procedure)

PUrRPOSE Deinstall the line-oriented buffer of the socket object

PROTOTYPE
procedure Unset_Buffer [Sockets.Unset_Buffer]
(Socket : Socket_FD’Class);
PARAMETERS
Socket in Initialized and connected socket object
DESCRIPTION

This procedure deinstalls the buffer previously installed by [Set_Buffer (proce-
dure)], page 15. If any data is still present in the buffer, it will be lost. To avoid
this situation, the buffer can be flushed by calling [Get (function)], page 9.

Chapter 5: Sockets.Multicast package 19

5 Sockets.Multicast package

The Sockets.Multicast allows the creation of IP multicast sockets.

type Multicast_Socket_FD is new [Sockets.Multicast.Multicast_Socket_FD]
Socket_FD with private;

The Multicast_Socket_FD tagged type derives from the Socket_FD type. It gets

initialized by calling [Create_Multicast_Socket (function)], page 20. An uninitialized

Multicast_Socket_FD can be succesfully compared to Null_Multicast_Socket_FD.

Create_Multicast_Socket (function)

PURPOSE Create an IP multicast socket

PROTOTYPE
function [Sockets.Multicast.Create_Multicast_Socket]
Create_Multicast_Socket (Group : String; Port : Positive;
TTL : Positive := 16; Self_Loop : Boolean := True;
Local_If : String := 0.0.0.0)
return Multicast_Socket_FD;
PARAMETERS
Group in IP address of the multicast group to join
Port in Port of the multicast group to join
TTL in Time-to-live of sent packets
Self_Loop in Should the socket receive the packets sent from the local host?
Local_If in Address of the local interface to use

RETURN VALUE
The new initialized multicast socket

DESCRIPTION
This function creates an IP multicast socket attached to a given group, identified
by its class E IP address and port.

Be careful when choosing the TTL parameter of your IP multicast socket. Most
IP multicast routers do implement threshold-based filtering and will not let IP
multicast packets leave your organization if the TTL on the last router is smaller
than 16.

EXAMPLE

declare
Sock : Multicast_Socket_FD;
begin
-- Create a multicast socket on group 224.1.2.3 port 8763
Sock := Create_Multicast_Socket ("224.1.2.3", 8763);
-— Perform some operations on socket
[...]
—-— Shutdown the socket in both directions
Shutdown (Sock, Both);
end;

20 AdaSockets reference manual

SEE ALSO [Send (procedure)], page 15,
[Shutdown (procedure)], page 16.

Create_Multicast_Socket (function)

PURPOSE Create an IP multicast socket

PROTOTYPE
function [Sockets.Multicast.Create_Multicast_Socket]
Create_Multicast_Socket (Group : String; Port : Positive;
Local_Port : Natural; TTL : Positive := 16;
Local_If : String := 0.0.0.0)
return Multicast_Socket_FD;
PARAMETERS
Group in IP address of the multicast group to join
Port in Port of the multicast group to join
Local_Port in Local port number to use
TTL in Time-to-live of sent packets
Local_If in Address of the local interface to use

RETURN VALUE
The new initialized multicast socket

DESCRIPTION
This function creates an IP multicast socket attached to a given group, iden-
tified by its class E IP address and port. If Local_Port is 0, a free port will
automatically be chosen by your operating system.

This function should be used when you want to send packets to a multicast
group without receiving any packet yourself.

EXAMPLE

declare
Sock : Multicast_Socket_FD;
begin
-- Create a multicast socket on group 224.1.2.3 port 8763
Sock := Create_Multicast_Socket ("224.1.2.3", 8763);
-— Perform some operations on socket
[...]
—- Shutdown the socket in both directions
Shutdown (Sock, Both);
end;

SEE ALSO [Send (procedure)|, page 15,
[Shutdown (procedure)], page 16.

Chapter 6: Sockets.Naming package 21

6 Sockets.Naming package

The Sockets.Naming package contains types and helper functions needed to manipulate
Internet host names and addresses.

type Address is record [Sockets.Naming. Address]
H1, H2, H3, H4 : Address_Component;
end record;
This type represents an IPv4 address with H1 being the first octet and H4 the last
one. For example, 137.194.161.2 is represented by H1=137, H2=194, H3=161, H4=2.

type Address_Array is array (Positive range <>) [Sockets.Naming.Address_Array]
of Address;
Helper type

type Address_Component is Natural range 0 [Sockets.Naming.Address_Component|
. 255;
Helper type

type Host_Entry (N_Aliases, N_Addresses : Natural) [Sockets.Naming.Host_Entry]
is new Ada.Finalization.Controlled with record
Name : String_Access;
Aliases : String_Array (1 .. N_Aliases);
Addresses : Address_Array (1 .. N_Addresses);
end record;
The Host_Entry type holds a set of names and IP addresses associated with a host.
Each host can have several IP address as well as several aliases.

type String_Access is access String; [Sockets.Naming.String_Access|
Helper type

type String_Array is array (Positive range <>) of [Sockets.Naming.String_Array]
String_Access;
Helper type

Address_Of (function)
PURPOSE Get the IP address of a host

PROTOTYPE
function Address_Of [Sockets.Naming. Address_Of]
(Something : String)
return Address;
PARAMETERS
Something in Host name or IP address

RETURN VALUE
IPv4 address

EXCEPTIONS
Naming_Error No information available for this name or address

SEE ALSO [Name_Of (function)], page 24.

22 AdaSockets reference manual

Any_Address (function)
PURPOSE Special address representing any address on the local host
PROTOTYPE

function Any_Address [Sockets.Naming.Any_Address]
RETURN VALUE
Equivalent to INADDR_ANY in the C programming language

Get_Peer_Addr (function)

PURPOSE Retrieve IP address of remote host

PROTOTYPE
function Get_Peer_Addr [Sockets.Naming.Get_Peer_Addr]
(Socket : Socket_FD)
return Address;
PARAMETERS
Socket in Connected socket object

RETURN VALUE
Peer address

SEE ALSO [Get_Peer_Port (function)], page 22,
[Get_Sock_Addr (function)], page 22.

Get_Peer_Port (function)

PURrRPOSE Retrieve port used by remote host

PROTOTYPE
function Get_Peer_Port [Sockets.Naming.Get_Peer_Port]
(Socket : Socket_FD)
return Positive;
PARAMETERS
Socket in Connected socket object

RETURN VALUE
Port used on the remote host

SEE ALSO [Get_Sock_Port (function)], page 23,
[Get_Peer_Addr (function)], page 22.

Get_Sock_Addr (function)

PURPOSE Retrieve IP address of local host

PROTOTYPE
function Get_Sock_Addr [Sockets.Naming.Get_Sock_Addr]
(Socket : Socket_FD)
return Address;
PARAMETERS

Socket in Connected socket object

Chapter 6: Sockets.Naming package 23

RETURN VALUE
Address of local interface used

SEE ALSO [Get_Sock_Port (function)], page 23,
[Get_Peer_Addr (function)], page 22.

Get_Sock_Port (function)

PURPOSE Retrieve port used by local host

PROTOTYPE
function Get_Sock_Port [Sockets.Naming.Get_Sock_Port]
(Socket : Socket_FD)
return Positive;
PARAMETERS
Socket in Connected socket object

RETURN VALUE
Port used on the local host

SEE ALSO [Get_Peer_Port (function)], page 22,
[Get_Sock_Addr (function)], page 22.

Host_Name (function)
PURPOSE Get the name of the current host
PROTOTYPE

function Host_Name [Sockets.Naming.Host_Name]
RETURN VALUE
Name of the current host

DESCRIPTION
This function returns the name of the current host. Depending on the local
configuration, it may or may not be a fully qualified domain name (FQDN).

Image (function)

PuUrPOSE Make a string from an address

PROTOTYPE
function Image (Add : Address) [Sockets.Naming.Image]
return String;
PARAMETERS
Add in IP address

RETURN VALUE
String representation of the IP address

SEE ALSO [Value (function)], page 25.

24 AdaSockets reference manual

Info_Of_Name_Or_IP (function)

PURPOSE Get addresses and names of a host
PROTOTYPE

function Info_0f_Name_Or_IP [Sockets.Naming.Info_Of Name_Or_IP]
(Something : String)
return Host_Entry;
PARAMETERS
Something in Host name or IP address

RETURN VALUE
Corresponding host entry

DESCRIPTION
This function extracts all the names and addresses from the naming service.

EXCEPTIONS
Naming_ Error No information available for this name or address

Is_IP_Address (function)

PurpOSE Check if given string is a valid IP address
PROTOTYPE

function Is_IP_Address [Sockets.Naming.Is_TP_Address]
(Something : String)
return Boolean;
PARAMETERS
Something in String to check

RETURN VALUE
‘True’ if Something is an IP address

Name_Of (function)

PurrPoOSE Official name of the host

PROTOTYPE
function Name_0f (Something : String) [Sockets.Naming.Name_Of]
return String;
PARAMETERS
Something in Host name or IP address

RETURN VALUE
Name of the host

EXCEPTIONS
Naming Error No information available for this name or address

SEE ALSO [Address_Of (function)], page 21.

Chapter 6: Sockets.Naming package 25

Value (function)

PurPOSE Transform a string into an address

PROTOTYPE
function Value (Add : String) [Sockets.Naming. Value]
return Address;
PARAMETERS
Add in Textual representation of an IP address

RETURN VALUE
Corresponding Address

SEE ALSO [Image (function)], page 23.

Appendix A: Contributors 27

A

ppendix A Contributors

AdaSockets has been originally developped by Samuel Tardieu who still maintains it. How-
ever, the following people have made crucial contributions to AdaSockets, be they new code,
bug fixes or porting to new operating systems:

Dmitriy Anisimkov (anisimkov@yahoo.com)

Alan Barnes (barnesa®@aston.ac.uk)

Juanma Barranquero (lektu@terra.es)

Bobby D. Bryant (bdbryant@mail.utexas.edu)
Sander Cox (sander.cox@philips.com)

Sune Falk (sune.falck@telia.com)

Guillaume Foliard (guifo@wanadoo.fr)

Laurent Guerby (guerby@club-internet.fr)
David J. Kristola (David95037@aol. com)

Dominik Madon (dominik@acm.org)

Pascal Obry (p.obry@wanadoo.fr)

Nicolas Ollinger (Nicolas.0llinger®@ens-lyon.fr)
Stphane Patureau (spaturea@meletu.univ-valenciennes.fr)
Thomas Quinot (thomas@cuivre.fr.eu.org)
Preben Randhol (randhol@pvv.org)

Maxim Reznik (max1@mbank.com.ua)

Joel Sherrill (joel.sherrill@oarcorp.com)
Samuel Tardieu (sam@rfc1149.net)

If you feel that you have been forgotten, please send me a mail so that I can fix it in the

next version.

See Appendix B [Resources on the Internet], page 29, for how to contribute.

mailto:anisimkov@yahoo.com
mailto:barnesa@aston.ac.uk
mailto:lektu@terra.es
mailto:bdbryant@mail.utexas.edu
mailto:sander.cox@philips.com
mailto:sune.falck@telia.com
mailto:guifo@wanadoo.fr
mailto:guerby@club-internet.fr
mailto:David95037@aol.com
mailto:dominik@acm.org
mailto:p.obry@wanadoo.fr
mailto:Nicolas.Ollinger@ens-lyon.fr
mailto:spaturea@meletu.univ-valenciennes.fr
mailto:thomas@cuivre.fr.eu.org
mailto:randhol@pvv.org
mailto:max1@mbank.com.ua
mailto:joel.sherrill@oarcorp.com
mailto:sam@rfc1149.net

Appendix B: Resources on the Internet 29

Appendix B Resources on the Internet

The latest version of AdaSockets can always be found at:
http://wuw.rfc1149.net/devel/adasockets

There is a mailing-list that you can use to discuss problem or suggestions at:
http://www.rfc1149.net/lists/info/adasockets

Please use the mailing-list for questions and discussions. However, you can send me
patches by private mail (sam@rfc1149.net).

http://www.rfc1149.net/devel/adasockets
http://www.rfc1149.net/lists/info/adasockets
mailto:sam@rfc1149.net

Index

Index

A

Accept_Socket ...l 7
Accepting a new connection..................... 7
Ada.Streams.Stream_Element_Array.... 6, 13, 14,
15
Ada.Streams.Stream_Element_Count....... 13, 14
AdaSockets presentation........................ 1
Address ...l 21
Address_ATrayc..iiiiiiiii 21
Address_Component............................ 21
Address_Of 21
AF _INET ..o e e 17
Any_Address ... 22
Assigning a local port............... 8

Bind. i 8
Binding a socket.......... ... 8
Both oo 16
C

Closing a socket 16
Comparaison with GNAT.Sockets................ 1
Conmectooviiiiii 8
Connecting a socket ..., 8
Connection_Closed....... 9, 10, 11, 12, 13, 14, 15
Connection_Refused 8
Contributing. ...t 27, 29
CR et 10, 11, 12
Create_Multicast_Socket 5, 19, 20
Creating a multicast socket 5, 19, 20
Creating a Serveroooiuiiiinininennn 8
Creating a socket 5, 16, 19, 20
Creating a TCP socketccovviinn. 5
Creating a UDP socket 5
Creating a unicast socket 5

E

Establishing a listen queue..................... 12

F

Finding AdaSockets on the Internet............ 29

7= P 9
Get_Char ...t 9
Get_Lineoouuuniiiiiin i 10, 11
Get_Peer_Addr 22
Get_Peer_Port ..ot 22

31
Get_Sock_Addr 22
Get_Sock_Port............i i 23
Getsockopt. ... 11
Group communicationoi... 5
Handling a new connection 7
Host_Entry......... i, 21
Host_Name.........cooiiiiiiiinnniiiinnaean. 23
TMAEE - e 23
Info_Of _Name Or_IPciiinininnnnn. 24
Installing AdaSockets..............ocovii... 3
IP_ADD_MEMBERSHIP.............ccooiinn... 11, 16
IP_DROP_MEMBERSHIP....................... 11, 16
IP_MULTICAST_LOOP........c.coiiriunenaan.. 11, 16
IP_MULTICAST_TTL........cciiiininnennnn. 11, 16
IPPROTO_IP ...t 11, 16
IS_IP_AdAresSSoviiiiiini i, 24
L o 10, 11, 12
3 = « 12
Listen queue. ... 12
Manipulating socket options................ 11, 16
Mbone 5
Multicast sockets, 5
Multicast_Socket_FD....................... 5, 19
Name_Of ... 24
Naming Error................ccoiiiiiinnnn. 21, 24
New_Lineot e 12
PE _INET ..ottt e e e 17
PUL . 12
Put_Line.....oouutniiiti i 13
Raw data manipulation......................... 6
Receive......oooiiiiiiiiiiiiiiiia... 13, 14, 16
Receive_Someccoiiiiiiininiinnnnnn. 14

Receiving data............. 6, 9, 10, 13, 14, 15, 17

32

Reportingabug...........l 29
Representing IP addresses.................. 23, 25
Retrieving socket options...................... 11

Send 15, 16
Sending data 6, 12, 13, 15
Sending patches oL 29
Set_Buffer.......... .. i 15
Setsockopt. ... 16
Setting socket options 16
Shutdown...........oiiiiiii i 16
SO_RCVBUF ...t 11, 16
SO_REUSEADDR. iiti i 11, 16
SO_REUSEPORTcvtiii i 11, 16
SO_SNDBUF . ..ottt e 11, 16
SOCK_DGRAM. ..ottt 17
SOCK_STREAM . ..ottt 17
Socket ... 5, 17
Socket shutdown............................... 16
Socket_Error ..ot 8
Socket_FD ... 57
Sockets.Accept_Socket 7
Sockets.Bindcoi it 8
Sockets.Connectcoviiiiiiniiineii . 8
Sockets.Get....ooiii i e 9
Sockets.Get_Char.............coiiiiiiinnanan.. 9
Sockets.Get_Line......................... 10, 11
Sockets.Getsockopt il 11
Sockets.IP_ADD_MEMBERSHIP............... 11, 16
Sockets.IP_DROP_MEMBERSHIP.............. 11, 16
Sockets.IP_MULTICAST_LOOP............... 11, 16
Sockets.IP_MULTICAST_TTL................ 11, 16
Sockets.IPPROTO_IP............ccoivnvnn.. 11, 16
Sockets.Listen.............cooiiiiiiininnn... 12
Sockets.Multicast.Create_Multicast_Socket
.................................... 5, 19, 20
Sockets.Naming.Address_0f 21
Sockets.Naming.Any_Address................. 22
Sockets.Naming.Get_Peer_Addr............... 22
Sockets.Naming.Get_Peer_Port............... 22

Sockets.Naming.Get_Sock_Addr............... 22

AdaSockets reference manual

Sockets.Naming.Get_Sock_Port............... 23
Sockets.Naming.Host_Name 23
Sockets.Naming.Imageccouvuuunnn. 23
Sockets.Naming.Info_0f_Name Or_IP......... 24
Sockets.Naming.Is_IP_Address............... 24
Sockets.Naming.Name _0f...................... 24
Sockets.Naming.Value........................ 25
Sockets.New_Line.............cooiiiiiinnnnan. 12
Sockets.Putol 12
Sockets.Put_Line................ 13
Sockets.Receive 13, 14
Sockets.Receive_Some........................ 14
Sockets.Sendl 15
Sockets.Set_Buffer 15
Sockets.Setsockopt ... 16
Sockets.Shutdown.............ccovviuieennnnnn. 16
Sockets.SO_RCVBUF........................ 11, 16
Sockets.SO_REUSEADDR 11, 16
Sockets.SO_REUSEPORT 11, 16
Sockets.SO_SNDBUFcovvivninennn. 11, 16
Sockets.Socket ool 5, 17
Sockets.SOL_SOCKET....................... 11, 16
Sockets.Unset_Buffer........................ 17
SOL_SOCKET . ..ottt it 11, 16
Stream_Element_Array.............. 6, 13, 14, 15
Stream_Element_Count 13, 14
String ACCeSS ... 21
String Array ...l 21
Suggesting a feature.............l 29
T

TCP socket.....ovuiii e 5

U

UDP socket ... 5
Unicast sockets i, 5
Unset_Buffer...............ccoiiiiiiiiiin... 17
Value ..ot e 25

	What is AdaSockets?
	Installing AdaSockets
	Using AdaSockets
	Compiling an Ada application
	Setting up unicast sockets
	Setting up multicast sockets
	Sending and receiving data
	Raw data manipulation
	String-oriented exchanges

	Sockets package
	Accept_Socket (procedure)
	Bind (procedure)
	Connect (procedure)
	Get (function)
	Get_Char (function)
	Get_Line (function)
	Get_Line (procedure)
	Getsockopt (procedure)
	Listen (procedure)
	New_Line (procedure)
	Put (procedure)
	Put_Line (procedure)
	Receive (function)
	Receive (procedure)
	Receive_Some (procedure)
	Send (procedure)
	Set_Buffer (procedure)
	Setsockopt (procedure)
	Shutdown (procedure)
	Socket (procedure)
	Unset_Buffer (procedure)
	Sockets.Multicast package
	Create_Multicast_Socket (function)
	Create_Multicast_Socket (function)
	Sockets.Naming package
	Address_Of (function)
	Any_Address (function)
	Get_Peer_Addr (function)
	Get_Peer_Port (function)
	Get_Sock_Addr (function)
	Get_Sock_Port (function)
	Host_Name (function)
	Image (function)
	Info_Of_Name_Or_IP (function)
	Is_IP_Address (function)
	Name_Of (function)
	Value (function)
	Contributors
	Resources on the Internet
	Index

