
ACES III Documentation: SIAL Programmer Guide

SIAL Programmer Guide
Overview
This guide explains how to write programs for the Super Instruction Processor. The full
specification of the Super Instruction Assembly Language or SIAL, pronounced “sail”, is
given in Appendix 1. Example programs are given in Appendix 3.

The language was created to easily write complex algorithms for the super instruction
processor or SIP. Rather than an interpreter that executes every command when entered,
this processor is more like a hardware processor, such as a modern micro chip. The
instructions are called super instructions because they operate not on individual numbers,
but on data blocks, typically 10,000 numbers.

The language is more like an assembly language and is called the super instruction
assembly language (SIAL). The SIP calls the compiler to read the SIAL program in its
entirety and then the processor executes the binary code produced. A standalone compiler
is also available and it writes a .sio file that can be read and executed by the SIP.

The super instruction architecture (SIA) provides an interface for execution optimization
of very specialized code that requires a lot of processing and a lot of data communication.
All operations are performed in relatively large blocks, compared to the basic unit of a 64
bit computer word, and the operations are performed asynchronously allowing for
multiple instructions being executed in parallel in each of the tasks in the SIP.

The goal of the SIA is to allow efficient parallel processing where latency plays less of a
role and enough work is being given to all components so that there is sufficient time to
hide the latency of any operation. However, it is still necessary to ensure that the
bandwidth of all operations matches so that a steady state exists. This is where some,
automated, tuning of problem to hardware comes in. The problem will be divided up into
such pieces that the given hardware can sustain a steady state where all latency is hidden.

Programming guidelines
Programs must be viewed as having only one global scope. There are procedures, but
these should be viewed as tools to organize code and logic, there are no local variables.
All variables must be declared at the beginning of the program, even index loops. This is
in agreement with the idea that every data element is a heavy object: It is a block of
floating point numbers of considerable size, and any operation on it is expensive and
must be considered with care. Therefore, creating temporary copies for passing them as
arguments is too expensive.

Sep 1, 2007
1

ACES III Documentation: SIAL Programmer Guide

Temporary variables, blocks, do exist and should be used as much as possible. They are
allocated when first needed and the SIP will regularly check whether they are still needed
and if not, mark the blocks as available for use.

Memory management
SIAL is a language used to perform mathematical operations in parallel on arrays. In
order to accomplish this, each index of an array is subdivided into segments, which in
turn imposes a breakdown of the data into blocks. These blocks vary in size due to the
types of indices comprising the array and the different segment sizes of those indices.

All memory used by the SIP is pre-allocated onto one of several different block stacks.
Each block stack contains blocks of the same size. When a SIAL program is configured
for execution, a pre-pass phase is executed, in which an estimate is made of the number
of blocks needed on each stack as any instruction in the program is executed. Any
remaining memory is allocated equally among the various stacks. As blocks are needed
by the SIP instructions, they are allocated from the stack whose block size best fits the
required block size. If all blocks on the desired stack are in use, the SIP tries to allocate a
block from the stack with the next largest block size, and so forth.

Large data structures should be declared as DISTRIBUTED arrays, so that the blocks are
spread over the memory of all tasks. All required communication to write and read blocks
of distributed arrays is implicitly executed by the SIP. However, if a data structure does
not have to be known to all tasks, then it is better to store just a part of the entire structure
in an array declared as LOCAL. This way no communication is implied.

The SIP does all input/output. For compatibility with the rest of ACES II, the JOBARC
files is read in the beginning and updated at the end of any SIAL execution; similarly the
LISTS file(s) are read and updated to allow serial modules to intermix with parallel
modules controlled by SIAL. In the SIAL language, there are no explicit read or write
operations defined. The SERVED arrays are to be used for very large arrays and they can
be assumed to be written in an efficient way in parallel by the SIP.

Execution Management
The PARDO construct should be used to execute a chunk of code on the local parts of a
distributed array. All indices to be looped over in this way must be listed on the PARDO
statement, because PARDO constructs cannot be nested. Each task knows which blocks,
i.e. which block index values, are local and will only loop over those local values.

The ALSO PARDO allows the programmer to construct multiple blocks of code that
each by themselves allow distributed processing and also are independent so that they
code blocks can be executed on different sets of processors. If the number of processors
is too small, the ALSO PARDO code blocks will be executed in serial, one after the

Sep 1, 2007
2

ACES III Documentation: SIAL Programmer Guide

other. But the construct allows the SIP to schedule work more efficiently if resources are
available.

The regular DO construct should be used to execute a chunk of code for the complete
range of the index specified in the DO statement. The DO construct can be arbitrarily
nested.

A few special instructions have been defined. They are a simple mechanism in the SIAL
language to process a small number of types of operations for which it is not worthwhile
to develop a fully defined syntax.

Sep 1, 2007
3

ACES III Documentation: SIAL Programmer Guide

Appendix 1: Super Instruction Assembly Language
Definition

General requirements:

1. Input is free form. The lines must be less than 256 characters. There are no
continuation lines

2. Keywords and variable names are case insensitive.
3. All text after the pound sign (#) is considered a comment and is ignored. Blank

lines and lines with only comments are ignored.
4. The language may in the future include data layout directives.
5. Every line is meaningful by itself.
6. Every name can be up to 128 characters long and consists of alphanumeric

characters and underscores, the first character must be alphabetic.
7. Reserved words cannot be used as names.

Predefined constants:

Some names are defined from other input sources, such as the JOBARC file. All these
constants count in segments, not in individual orbitals.

• Universal constants
1. norb: total number of atomic orbital segments equal to the total number of

molecular orbital segments and therefore norb can also be used in
declarations of "no spin", "alpha", "beta" MO indices.

2. scfenerg: SCF energy read in from JOBARC.
3. totenerg: Total energy read in from JOBARC.
4. damp: value of DAMPSCF from ZMAT.
5. scf_iter: value of SCF_MAXCYC from ZMAT.
6. scf_hist: value of SCF_EXPORDE from ZMAT.
7. scf_beg: value of SCF_EXPSTAR from ZMAT.
8. scf_conv: value of SCF_CONV from ZMAT.
9. cc_iter: value of CC_MAXCYC from ZMAT.
10. cc_hist: value of CC_MAXORDER from ZMAT.
11. cc_beg: Constant equal to 2, there is no ZMAT parameter corresponding

to this constant.
12. cc_conv: value of CC_CONV from ZMAT.
13. natoms: the number of atoms from ZMAT.

• MO constants The constants of type "no spin molecular orbital", "alpha
molecular orbital", "beta molecular orbital" cannot be compared, they are of
different types that correspond to the declarations (defined below) MOINDEX,
MOAINDEX, MOBINDEX, respectively.

1. nocc,naocc,nbocc: number of occupied molecular orbital segments (no
spin, alpha, beta)

Sep 1, 2007
4

ACES III Documentation: SIAL Programmer Guide

2. nvirt,navirt,nbvirt: number of unoccupied or virtual orbital segments (no
spin, alpha, beta)

3. bocc,baocc,bbocc: begin of occupied orbital segment range (no spin,
alpha, beta)

4. eocc,eaocc,ebocc: end occupied orbital segment range (no spin, alpha,
beta)

5. bvirt,bavirt,bbvirt: begin of virtual orbital segment range (no spin, alpha,
beta)

6. evirt,eavirt,ebvirt: end of virtual orbital segment range (no spin, alpha,
beta)

7. static c(mu,p): Restricted spin orbital transformation matrix from the
SCF, read in from JOBARC. p is moindex 1:norb and mu is aoindex
1:norb.

8. static ca(mu,pa): Alpha spin orbital transformation matrix from the SCF,
read in from JOBARC. pa is moaindex 1:norb and mu is aoindex 1:norb.

9. static cb(mu,pb): Restricted spin orbital transformation matrix from the
SCF, read in from JOBARC. pb is mobindex 1:norb and mu is aoindex
1:norb.

10. static e(p): Restricted spin orbital energies from the SCF, read in from
JOBARC. p is moindex 1:norb.

11. static ea(pa): Alpha spin orbital energies matrix from the SCF, read in
from JOBARC. pa is moaindex 1:norb.

12. static eb(pb): Restricted spin orbital energies matrix from the SCF, read
in from JOBARC. pb is mobindex 1:norb.

• Ordering table of predefined constants: The following tests return true:
1. i <= norb

where i is any predefined constant

2. i >= 1

where i is bocc, baocc, bbocc, eocc, eaocc, ebocc, bvirt, bavirt, bbvirt,
evirt, eavirt, ebvirt

3. i >= 0

where i is nocc, naocc, nbocc, nvirt, navirt, nbvirt

4. The 6=4x3/2 relations between the 4 "no spin MO" constants are
 eocc >= bocc
 bvirt > eocc
 bvirt > bocc
 evirt >= bvirt
 evirt > eocc
 evirt > bocc

5. The 6=4x3/2 relations between the 4 "alpha MO" constants are
 eaocc >= baocc

Sep 1, 2007
5

ACES III Documentation: SIAL Programmer Guide

 bavirt > eaocc
 bavirt > baocc
 eavirt >= bavirt
 eavirt > eaocc
 eavirt > baocc

6. The 6 relations between the 4 "beta MO" constants are
 ebocc >= bbocc
 bbvirt > ebocc
 ebvirt >= bbvirt
 ebvirt > ebocc
 ebvirt > bbocc

All tests that cannot be obtained from these by the logical operation of reversing
the elements and the operator, are not defined.

Sep 1, 2007
6

ACES III Documentation: SIAL Programmer Guide

Predefined special instructions:

Special instructions are defined in the SIP execution environment so that the language
does not have to change to add new instructions, which are calls to special subroutines.
Available instructions are listed in Appendix 2. Some are listed here with some example
use.

1. energy_denominator v(a,i,b,j)
In coupled-cluster calculations it is necessary to divide
a quantity, say Told(a,i,b,j) by [e(i)+e(j)-e(a)-e(b)] where
e(k) are the orbital eigenvalues. The instruction
energy_denominator array(a,i,b,j)
divides each element of array(a,i,b,j) within the block by [e(i)+e(j)-e(a)-e(b)]
and locally replaces that block array(a,i,b,j) by its 'scaled' value.

Example:
The distributed array Told(a,i,b,j) is divided by [e(i)+e(j)-e(a)-e(b)] and the
result put into the distributed array T2new(a,i,b,j).
PARDO a, b, i, j
 GET Told(a,i,b,j)
 execute energy_denominator Told(a,i,b,j)
 PUT T2new(a,i,b,j) = Told(a,i,b,j)
ENDPARDO a, b, i, j

2. blocks_to_list X

Write the blocks of array X to a list file. This makes the data available in
succeeding SIAL programs. Note: The current implementation of this does not
write an actual ACES II list file. It writes a simple FORTRAN sequential
unformatted binary file containing all data blocks, called BLOCKDATA, as well
as an index file called BLOCK_INDEX, used to determine the data format for
reading the data blocks in the second SIAL program.There must be a sip_barrier
after each blocks_to_list execution.

3. list_to_blocks X
 Read the blocks of array X from a list file. The data must have been written by a

“blocks_to_list” execution in a preceding SIAL program. Note: The current
implementation of this does not read an actual ACES II list file. It reads the
BLOCKDATA and BLOCK_INDEX files described in the section on
blocks_to_list. The order of each list_to_blocks execution must be the same as
that of the blocks_to_list statements from the first job. Also, there should be a
sip_barrier executed after each list_to_blocks.

4. fmult v(a,i,b,j)

The instruction fmult is very much like the instruction energy_denominator in that
the elements within an array block are effectively scaled. In the case of fmult the
instruction

Sep 1, 2007
7

ACES III Documentation: SIAL Programmer Guide

 execute fmult v(a,i,b,j)
multiplies each element of the array block v(a,i,b,j) by the quantity [e(i)+e(j)-e(a)-
e(b)] where in coupled-cluster applications the quantities e(i) are the orbital
eigenvalues coming from a Hartree-Fock calculation.

Example:
In the following example the distributed array v1(a,i,b,j) is copied into the
temporary array temp(a,i,b,j). Each element of the array temp(a,i,b,j) is scaled by
[e(i)+e(j)-e(a)-e(b)] and the result put in the distributed array v2(a,i,b,j). The array
V1(a,i,b,j) has not been altered (even locally).
PARDO a, i, b, j
 GET V1(a,i,b,j)
 temp(a,i,b,j) = V1(a,i,b,j)
 execute fmult temp(a,i,b,j)
 PUT v2(a,i,b,j) = temp(a,i,b,j)
ENDPARDO a, i, b, j

Sep 1, 2007
8

ACES III Documentation: SIAL Programmer Guide

Declarations:

1. aoindex mu=1,norb

Define the AO block index mu with range 1 through norb. Note that these indices
count blocks, not individual orbitals. Ranges must be defined using predefined
constants and the number 1, all other values generate an assembly error.

2. moindex p=1,nocc

defines the MO block index p with range 1 through nocc. Note that these indices
count blocks, not individual orbitals. Ranges must be defined using predefined
constants and the number 1, all other values generate an assembly error.

3. moaindex pa=1,naocc

defines the MO alpha block index pa with range 1 through naocc. Note that these
indices count blocks, not individual orbitals. Ranges must be defined using
predefined constants and the number 1, all other values generate an assembly
error.

4. mobindex pb=bavirt,ebvirt

defines the MO beta block index pb with range bbvirt through ebvirt. Note that
these indices count blocks, not individual orbitals. Ranges must be defined using
predefined constants and the number 1, all other values generate an assembly
error.

5. index i=1,10

defines a simple index i with range 1 through 10 to be used in DO loops e.g. for
an iteration.

6. laindex l=1,23

defines an index l with range 1 through 23 that has no association with atomic or
molecular orbitals, but can be used to declare a dimension of an array. With this
type of index, arrays can be created that have a mixture of dimension indices:
some dimensions can be specified with the range of AOINDEX or MOINDEX
and other dimensions with LAINDEX. The convention is that the dimensions with
type LAINDEX must come after all dimensions with type AOINDEX or
MOINDEX.

7. scalar fac

Sep 1, 2007
9

ACES III Documentation: SIAL Programmer Guide

defines the scalar variable fac of type real (integers are treated as real). This value
is local to each task.

8. static c(mu,p)

defines an array stored locally in the task allocated with a separate malloc. All
predefined arrays are of this kind.

9. temp v1(p,mu,lambda,sigma)

defines an array block with one MO and three AO indices that only exists locally
in the form of a single block allocated on the block stack.

10. local c(mu,p)

defines an array stored locally in the task and allocated on the block stack.

11. distributed v4(p,q,r,s)

defines an array distributed over many tasks and allocated on the block stack. The
way it is distributed is determined outside the SIAL.

12. served v(mu,nu,lambda,sigma)

defines the array v with four AO indices, which must have been defined before
and specifies that the array is distributed and values will be delivered by a server
on request. The task number of the server is not specified in the language, but by
the environment and is subject to optimization. The SI processor has the option,
not controlled by the SIAL program but by the parallel environment directives, to
deliver the integrals in one of the following ways:
• compute the block in the calling task,
• request the block from an integral worker task that will then compute and

deliver it,
• request the block from an IO manager, that will deliver it from distributed

RAM,
• request the block from an IO manager, that will deliver it after reading

distributed files on local disks,
• request the block from an IO manager, that will deliver it after reading a

parallel file on a global parallel file system
• request the block from an IO manager, that will deliver after obtaining it with

GETREC, PUTREC from a serial ACES II style file stored on some local disk
or some global disk.

The declaration associates the stated names of the array and the indices with the
2-electron integral matrices that are currently supported. The SI processor decides
from the combination of type of indices supplied (aoindex or moindex) and their

Sep 1, 2007
10

ACES III Documentation: SIAL Programmer Guide

ranges which set of 2-electron indices are meant: AO integrals or partially of
completely transformed MO integrals. Currently these are the only arrays that can
be declared served. 1-electron integrals for hamlitonian and for properties may be
added to this list at a later time. Because served arrays can overflow to disk, they
can be larger than distributed arrays.

13. temp v2(p<q,mu,nu)

specifies that the indices p and q are symmetric and that packed storage is
allowed; this syntax is allowed on all declarations.

Sep 1, 2007
11

ACES III Documentation: SIAL Programmer Guide

Control statements:

1. Program
o sial myprog

start of an SIAL program called myprog. With this control line
theprogram can be embedded in any file and all text preceeding this line is
ignored by the assembler. The line must start with white space or the
reserved word sial.

o endsial myprog

marks the end of a SIAL program. Everything in the file after that is
ignored by the assembler.

2. Procedures
o proc mywork

start of a procedure called mywork. Procedures are only a tool to organize
executable code, they are not to be compared to functions in C or
subroutines in Fortran, if anthing they are like internal procedures in
Fortran 90. They operate in the one global scope of the SIAL program.

 The proc end proc code block is inside the body of the sial end
sial program definition.

 Declarations are not allowed inside the proc body. The procedure
can use temp arrays, but they must be declared in the scope of the
main program.

 All indices and arrays defined in the program are visible inside all
procedures.

 Procedures are like declarations and must be located after other
declarations and before any executable statements.

o endproc mywork

end of the procedure called mywork. No other procedure can be defined
inside it. All other control structures must be closed before this line,
except end sial and that one may not be closed, i.e. the procedure must be
inside the program definition.

o return

exits the running procedure and returns execution to the statement after the
call to the procedure.

o call mywork

Sep 1, 2007
12

ACES III Documentation: SIAL Programmer Guide

calls the previously defined procedure mywork; at the end of the
procedure or at execution of a return statement control returns to the line
after the call to the procedure.

3. Distribution
o pardo mu,nu,lambda,sigma

starts a distributed loop over the indices mu,nu,lambda,sigma. The work
inside the loop is performed by every task only for those values of the
listed block indices that have been assigned by the master to that task as
controlled by the parallel environment directives.

o endpardo mu,nu,lambda,sigma

ends the distributed loop with variables mu,nu,lambda,sigma; the
variables must be specified. pardo structures cannot be nested, improperly
nested loops generate an assembly error. Two consecutive distributed
loops are allowed and can use the same index variables or different
variables without error. Use of different names will not change the ranges
assigned to each task.

4. Iteration
o do mu

starts a loop over the index mu. The do statement is operationally
equivalent to incrementing the loop index.

o enddo mu

ends the loop with variable mu; the variable must be specified; improperly
nested loops generate an assembly error. Two consecutive loops can use
the same index variable without error.

o cycle mu

makes control in the loop jump to the next iteration of the loop on the
variable named on the cycle statement; a cycle statement without a
variable name generates an assembly error.

o exit mu

makes control in the loop jump to the statement after the end do with the
matching variable named on the exit statement; a exit statement without a
variable name generates an assembly error.

5. Conditions
o if a<3

Sep 1, 2007
13

ACES III Documentation: SIAL Programmer Guide

starts an if-block with test on the scalar or index variables or expression on
scalar or index variables. If the expression contains at least one scalar
variable all computations in the expression are evaluated as C double or
Fortran double precision, if the expression contains only index variables
and integers, the expression is evaluated as C int or Fortran integer.
Constants such as 3 or 3. are treated as integers and floats, respectively.
The code inside the block is executed if the expression value is non-zero
(true).

o endif

ends the if-block; improperly nested if-blocks generate an assembly error.

o else

starts the alternative code block in the if-block; improperly nested if-
blocks generate an assembly error.

Sep 1, 2007
14

ACES III Documentation: SIAL Programmer Guide

Operation statements:

1. operations: +, -, *, ^, ==, <, >, <=, >=, && (and), || (or), !
(not)

2. operation-assignments: +=, -=, *=
3. allocate v3(mu,*,lambda,*)

allocates all blocks for arrays declared as local; the blocks with the matching
indices are allocated and are then available for processing; the allocate statement
allows the user to specify partial allocation by listing the index explicitly,
implying that only blocks with the (segment) value of the index at the time the
allocate statement is executed will be allocated; specifying an index as the
widlcard "*" allocates blocks for all values of the matcing index as defined in the
declaration of the local array; an allocate on any other array is an error.

4. deallocate v3

deallocates all blocks for arrays declared as local; if no allocate has been
executed for the local array when deallocate is executed, the deallocate is an
error.

5. create v3

allocates all blocks for arrays declared as distributed; in each task the blocks
with the correct indices, e.g. as assigned by the master task to each task, are
allocated and are then available for local processing; a create on any other array
is an error.

6. delete v3

deallocates all blocks for arrays declared as distributed; if no create has been
executed for the distributed array when delete is executed, the delete is an error.

7. array reference indexing any operation statement can include one or more valid
array references, this means that

1. the array has been declared
2. each index has been declared
3. the type of each index used is the same as the type of the matching index

in the declaration of the array
4. the range of each index used is a subrange of the range of the matching

index in the declaration of the array

Any array reference that violates these conditions generates an assembly error.
The assembler uses the predefined relationships between predefined constants to
determine whether the range of an index is a subrange of the range of another
index.

Sep 1, 2007
15

ACES III Documentation: SIAL Programmer Guide

8. v3(p,q,r,s) = v2(p,q,r,mu) * c(mu,s)

is an assignment and a contraction. If the shape of the arrays does not match the
contraction an assembly error will result.

9. v3(p,q,r,s) = x(p,q) ^ y(r,s)

is an assignment and a tensor product. If the shape of the arrays does not match
the contraction an assembly error will result.

10. v3(p,q,r,s) += a * v1(p,q,r,s)

multiply v1 by a scalar a and add the result to v3.

11. v3(p,q,r,s) = a * v1(p,q,r,s)

multiply v1 by a scalar a. v1 and v3 can be the same array.

12. v3(p,q,r,s) *= a

multiply v3 by a scalar a.

13. put v3(p,q,r,s) = v2(p,q,r,s)

sends the local block of v2 to the owner task of the indicated block of the
distributed array v3 to replace the existing block of v3. The shape and sizes of
the blocks must match.

14. put v3(p,q,r,s) += v2(p,q,r,s)

sends the local block of v2 to the owner task of the indicated block of the
distributed array v3 to be accumulated there to the existing block of v3. The
shape and sizes of the blocks must match.

15. get v3(p,q,r,s)

gets the indicated block of a distributed array v3 from the owner task. The shape
and sizes of the blocks must match.

16. prepare v4(p,q,r,s) = v2(p,p,r,s)

deliver a block of v2 to the server to replace the block of the served array v4 for
future requests.

17. prepare v4(p,q,r,s) += v2(p,p,r,s)

deliver a block of v2 to the server to be added to the block of served array v4 for
future requests.

Sep 1, 2007
16

ACES III Documentation: SIAL Programmer Guide

18. request v(mu,nu,lambda,sigma) sigma

for served array request the block with indicated indices and indicate that the next
request will be for the listed index incremented by one, i.e. sigma+1

19. prequest t(mu,nu,I,j) = v(mu,nu,a,b)

Partial request. The array v must have been previously prepared. Then the
prequest instruction will retrieve a partial block of data (mu,nu,i,j) from the full
block of (mu,nu,a,b). Indices i and j must be declared as "index". Indices a and b
can be any index type. Care must be taken to insure that i and j will take on
values that are a sub range of indices a and b.

20. collective a += b

collective operation to add the local variable b from every task into the local
variable a.

21. execute specinstr arg1 arg2 arg3

executes the predefined special instruction specinstr with arguments arg1 arg2
arg3. See Appendix 2 for a complete list.

22. execute trace_on|off

turn on or off tracing features listed by their keyword.

Sep 1, 2007
17

ACES III Documentation: SIAL Programmer Guide

Appendix 2: List of special instructions
Several special instructions have already been developed and tested. They can be used in
any SIAL program.

1. return_h1

syntax: execute return_h1 h1
function: Computes the one-electron integrals of type kinetic and nuclear attraction, sums
them and returns them as h1.
restrictions: h1 must be a two-dimensional array.

2. copy_ff
syntax: execute copy_ff array1 array2
function: Copies the array2 into the array1 without regard to index type
restrictions: array1 and array2 must be two-dimensional ststic arrays.

3. copy_ab
syntax: execute copy_ab array1 array2
function: The array1 is assumed to be of type alpha-alpha (VaD) or (SD). The elements
of the array1 are put into array2 with the FIRST index offset by the number of singly
occupied orbitals. Array2 is of type beta-beta (VbD)
restrictions: array1 and array2 must be two-dimensional static arrays. It is assumed that
n_alpha > n_beta as is the case in the ACES II program.

4. copy_ba

syntax: execute copy_ba array1 array2
function: The array1, whichmust be of type (beta,beta) spin, is copied into array2, which
must be of type alpha, with an offset of nalpha_occupied - nbeta_occupied
restrictions: array1 and array2 must be two-dimensional static arrays. It is assumed that
n_alpha > n_beta as is the case in the ACES II program.

5. fmult

syntax: execute fmult array1
function: Each element of the two-dimesional array1(i,j) is scaled by the fock matrix(i,i).
array1(i,j) = array1(i,j)*fock(i,i).
restrictions: array1 must be a two-dimensional array.

6. set_index
syntax: execute set_index array1
function: Sets the indices of a 4-d array in common block values. These indices are stored
in the SINDEX common block.
restrictions: array1 must be a 4-dimension array with simple indeces.

Sep 1, 2007
18

ACES III Documentation: SIAL Programmer Guide

7. read_grad
syntax: execute read_grad array1
function: The array1(i,j) is read in and summed into the gradient which is in a common
block.
restrictions: array must be declared with simple indices. i and j should range from 1-
natoms and 1-3, but simple indices have segement sizes of 1.

8. energy_denominator
syntax: execute energy_denominator array1
function: divides each element of array1(a,i,b,j,...) by the denominator
fock(i,i)+fock(j,j)+..-fock(a,a)-fock(b,b)-....
restrictions: array1 must be two, four, or six dimensional.
The indeces of array1 should have the correct spin type. i.e. (a,i) -> (alpha,alpha), (b,j) ->
(beta,beta), etc.. Although the instruction would execute properly even if this were not
the case but care should be taken using this instruction in the manner.

9. energy_adenominator
syntax: execute energy_adenominator array1
function: divides each element of array1(a,i) by the denominator fock_alpha(i,i) -
fock_alpha(a,a).
restrictions: array1 must be two dimensional.

10. energy_bdenominator
syntax: execute energy_bdenominator array1
function: divides each element of array1(a,i) by the denominator fock_beta(i,i) -
fock_beta(a,a).
restrictions: array1 must be two dimensional.

11. energy_abdenominator
syntax: execute energy_abdenominator array1
function: divides each element of array1(a,i) by the denominator fock_alpha(i,i) +
fock_beta(i,i) - fock_alpha(a,a) - fock_beta(a,a).
restrictions: array1 must be two dimensional.

12. eigen_nonsymm_calc
syntax: execute eigen_nonsymm_calc array1 array2
function: Calculates the eigenvalues and eigenvectors of a 2-d square matrix. The matrix
does NOT have to be symmetric. The matrix is also diagonalized on output. Array1 is the
diagonalized matrix and array2 is the matrix whose columns are the eigenvectors of
Array1.
restrictions: array1 and array2 must be two-dimensional static arrays.

13. check_dconf
syntax: check_dconf array1 scalar1
function: The largest(absolute value) element of array1 is found and output as scalar1

Sep 1, 2007
19

ACES III Documentation: SIAL Programmer Guide

restrictions: array1 must be two-dimensional and scalar1 must be declared as a scalar in
the sial program.

14. return_diagonal4
syntax: execute return_diagonal4 array1 array2
function: The diagonal elements of the array array1 are removed and the resulting
diagonal array is output as array2. array1 is not modified by the instruction.
restrictions: Both array1 and array2 must be four-dimensional.

15. return_diagonal
syntax: execute return_diagonal array1 array2
function: The diagonal elements of the array array1 are removed and the resulting
diagonal array is output as array2. array1 is not modified by the instruction.
restrictions: Both array1 and array2 must be declared as static arrays in the sial program,
and be two-dimensional.

16. return_sval
syntax: execute array1 scalar1
function: The scalar scalar1 is set equal to the value of the array array1. The overall
purpose is to pull out the (p,q) element of the array1 and set scalar1 equal to its value.
restrictions: array1 must be two dimensional and scalar1 must be declared scalar in the
sial program.

17. place_sval
syntax: execute place_sval array1 scalar1
function: The (p,q) element of array1 is set equal to scalar1.
restrictions: array1 must be two-dimensional. scalar1 must be defined as scalar in the sial
program.

18. square_root
syntax: execute square_root scalar1 scalar2
function: scalar1 is raised to the power scalar2. scalar1 = scalar1**scalar2
restrictions: scalar1 and scalar2 must be declared as scalars in the sial program.

19. apply_den2
syntax: execute apply_den2 source target
function: each element of the array source(p,q) is divided by the corresponding element
of the array target(i,j). The array source contains the output.
restrictions: the arrays source and target must be two dimensional arrays.

20. apply_den4
syntax: execute apply_den4 source target
function: each element of the array source(p,q,r,s) is divided by the corresponding
element of the array target(i,j,k,l). The array source contains the output.
restrictions: the arrays source and target must be four dimensional arrays.

Sep 1, 2007
20

ACES III Documentation: SIAL Programmer Guide

21. read_hess

syntax: execute read_hess array1
function: The elements of the four dimensional array array1 are summed into the Hessian
which is in a common block. Note that the summation is only performed on processor 0.
restrictions: array1 must be a four dimensional array with simple index types. It must be
dimensioned as (natoms,3,natoms,3).

22. remove_diagonal
syntax: execute remove_diagonal array1 array2
function: The diagonal elements of the array1 are removed and the resulting array is
array2.
restrictions: array1 and array2 must be two-dimensional static arrays.

23. fock_denominator
syntax: execute fock_denominator array1
function: The elements of the array1(a,i,b,j) are divided by fock(i,i) + fock(j,j) - fock(a,a)
- fock(b,b). Note that if the denominator is zero that element of the array is set to zero.
restrictions: array1 must be 2 or 4 dimensional.

24. set_flags
syntax: execute set_flags array1
function: Sets the indices of a 3-d array in common block values. Example: The first
index is assumed to be the atom, the second is the component index (i. e. x,y, or z), and
the 3rd is the center.
restrictions: array1 must be three-dimensional with simple indeces.

25. set_flags2
syntax: execute set_flags2 array1
function: Sets the indices of a 2-d array in common block values. Example: The first
index is assumed to be the atom, the second is the component index (i. e. x,y, or z).
restrictions: array1 must be two-dimensional with simple indeces.

26. der2_comp
syntax: execute der2_comp array1(m,n,r,s)
function: The derivative integrals for the block (m,n,r,s) are computed and returned in
arrays1. Note that set_flags2 must have been used to define which degree of freedom to
take the derivative with respect to. i.e. atom and component.
restrictions: array1 must be a 4-dimesional array with AO indices and the perturbation
must have been set, by set_flags2 probably.

27. fock_der
syntax: execute fock_der array1(mu,nu)
function: Computes the derivative of the fock matrix from only one-particle contributions
T+NAI and returns it as array1. The degree of freedom to take the derivative with respect
to, i.e. atom and component, must have been previously set, probably by set_flags2.

Sep 1, 2007
21

ACES III Documentation: SIAL Programmer Guide

restrictions: Array1 must be two-dimensional array with AO indices. The perturbation
must have been set before fock_der is called.

28. overlap_der
syntax: execute fock_der array1(mu,nu)
function: Computes the derivative of the overlap matrix. The degree of freedom to take
the derivative with respect to, i.e. atom and component, must have been previously set,
probably by set_flags2.
restrictions: Array1 must betwo-dimensional array with AO indices. The perturbation
must have been set before fock_der is called.

29. scontxy
syntax: execute scontxy array1
function: The second derivative 1-electron overlap integrals are computed and contracted
with the array1. Note that array1 is perturbation independent and that all perturbations are
considered inside the instruction. The hessian is updated internally as well.
restrictions: array1 must be a two-dimensional array with AO indices.

30. hcontxy
syntax: execute hcontxy array1
function: The second derivative 1-electron kinetic and nuclear attraction integrals(i.e.
fock matrix contributions) are computed and contracted with the array1. Note that array1
is perturbation independent and that all perturbations are considered inside the
instruction. The hessian is updated internally as well.
restrictions: array1 must be a two-dimensional array with AO indices.

31. compute_sderivative_integrals
syntax: execute compute_sderivative_integrals array1(m,n,r,s)
function: The second derivative of the two-electron integrals is computed and contracted
with array1. The perturbations (atom,component,jatom,jcomponent) defining the
derivative are looped over internally and the hessian is updated internally.
restrictions: array1 must be a 4-dimensional array with AO indeces.

32. removevv_dd
syntax: execute removevv_dd array1 array2
function: removes all doubly occupied indeces from the array1 with array2 being the
result of the array with the all doubly occupied indeces removed. Applicable if array1 =
array1(b,b1), b = virtual beta index.
restrictions: array1 and array2 must be two-dimensional arrays and they must have
beta_virtual indices. nalpha_occ > nbeta_occ is required. Only used for ROHF codes.

33. removeoo_dd
syntax: execute removeoo_dd array1 array2
function: removes all doubly occupied indeces from the array1 with array2 being the
result of the array with the all doubly occupied indeces removed. Applicable if array1 =
array1(i,i1), i = occupied alpha index.

Sep 1, 2007
22

ACES III Documentation: SIAL Programmer Guide

restrictions: array1 and array2 must be two-dimensional arrays and they must have
alpha_occupied indices. nalpha_occ > nbeta_occ is required. Only used for ROHF codes.

34. remove_xs
syntax: execute remove_xs array1 array2
function: Removes the singly occupied components of the array1 which must be of type
array1(a,i) which --> array1(a,i_nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have (a,i)
indeces. a/i -> alpha_virtual/alpha_occupied. Only used for ROHF codes

35. remove_xd
syntax: execute remove_xd array1 array2
function: Removes the doubly occupied components of the array1 which must be of type
array1(a,i) which --> array1(a,i_nodoubles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have (a,i)
indices. a/i -> alpha_virtual/alpha_occupied. Only used for ROHF codes

36. remove_ds
syntax: execute remove_ds array1 array2
function: Truncates the array1(i,i) to array1(i_nodoubles,i_nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have (i,i)
indices. i -> alpha_occupied. Only used for ROHF codes

37. remove_ss
syntax: execute remove_ss array1 array2
function: Truncates the array1(b,b) to array1(b_nosingles,i_nosingles)
restrictions: array1 and array2 must be two-dimensional arrays and they must have (b,b)
indeces. b -> beta_virtual OR (i,i), i -> alpha_occupied. Only used for ROHF codes

38. comp_ovl3c
syntax: execute comp_ovl3c array1
function: Computes the three center overlap integrals and returns them in array1.
restrictions: array must be a three-dimensional array with AO indices.

39. udenominator
syntax: execute udenominator array1
function: The array1 is divided by an energy denominator just as in energy_denominator.
udenominator does not require that the denominator not go to zero as small elements or
zero denominators are eliminated.
restrictions: array1 can only be a 2 or a 4 dimensional array.

40. copy_fock
syntax: execute copy_fock array1 fock
function: Copies array1 into the fock array and copies the diagonal elements into the
corresponding eigenvalue array which is predetermined.

Sep 1, 2007
23

ACES III Documentation: SIAL Programmer Guide

restrictions: The fock array is predetermined so the name must be correct, fock_a or
fock_b. array1 must be a 2-dimension array with the same indeces as the fock array.

41. sip_barrier
syntax: execute sip_barrier
function: causes the worker processors to synchronize. Must be used after distributed
arrays are create, before distributed arrays are deleted, and in general whenever
distributed arrays are used a barrier must be placed before the distributed array can be
used.
restrictions: none

42. print_scalar
syntax: execute print_scalar scalar1
function: prints the value of the scalar1 to standard output.
restrictions: scalar1 must be declared as a sclara in the sial program.

43. dump_block
syntax: execute dump_block array1(p,q,r,s)
function: Writes out information about the block af array1(p,q,r,s). The
first,last,maximim,and minimum values of the block are written out and the sum of
squares of all elements in the block.
restrictions: array1 must be of dimension 6 or less.

44. array_copy
syntax: execute array_copy array1 array2
function: To copy the array1 into array2 COMPLETELY.
restrictions: array1 and array2 must have the same dimesionality and index types.

45. server_barrier
syntax: execute server_barrier
function: causes the server processors to synchronize. Used in a manner similar to the
way the sip_barrier is used when using distributed arrays except is relevant when served
arrays are being used.
restrictions: none

46. blocks_to_list/write_blocks_to_list
syntax: execute blocks_to_list array(p,q,r,s)
syntax: execute write_blocks_to_list
function: To write all blocks in an array to a file. To use this instruction properly you
must do the following.

• execute sip/server_barrier
• execute blocks_to_list array_k for all arrays being written out
• execute write_blocks_to_list
• execute sip/server_barrier

restrictions: none

Sep 1, 2007
24

ACES III Documentation: SIAL Programmer Guide

47. list_to_blocks/read_list_to_blocks
syntax: execute list_to_blocks array(p,q,r,s)
syntax: execute read_list_to_blocks
function: To read all files(lists) and put them into arrays(blocked) . To use this instruction
properly you must do the following.

• execute sip/server_barrier
• execute list_to_blocks array_k for all arrays being read in.
• execute execute read_list_to_blocks
• execute sip/server_barrier

restrictions: The data being read in must match up perfectly with the data in the
blocks_to_list/write_blocks_to_list from the previous sial program.

Sep 1, 2007
25

ACES III Documentation: SIAL Programmer Guide

Appendix 3: Example Programs
Example 1: Using a procedure, a served array and a distributed array.

sial example1
aoindex lambda=1,norb
aoindex sigma=1,norb
aoindex mu=1,norb
aoindex nu=1,norb
moindex p=bocc,eocc
moindex q=bocc,eocc
moindex r=bvirt,evirt
moindex s=bvirt,evirt
served v(mu,nu,lambda,sigma) # the SIP knows how to distribute
 # the integral requests, it is not
 # specified in the language since it
 # can change every run
temp v1(p,nu,lambda,sigma)
temp v2(p,q,lambda,sigma)
temp v3(p,q,r,sigma)
distributed v4(p,q,r,s)
local c(mu,p)

proc update
 # start new accumulate and checks on all outstanding ones
 # to make the SIP work efficiently several v4 = v3 * c must
beallowed
 # to start so that of all accumulates in progress at least one
 # is ready everytime accumulate is executed by the SIP
 put v4(p,q,r,s) += v4(p,q,r,s)
 return
end proc update

create v4
pardo mu, nu
do lambda
do sigma
 request v(mu,nu,lambda,sigma) sigma
 # ask for an integral block
 # the first call initiates a request
 # subsequent calls check that at
 # least one of the outstanding
 # requests completed and
 # makes a new request

 # because this fetch happens outside a 4-fold loop most likely
 # one outstanding request is sufficient
 do p
 v1(p,nu,lambda,sigma) = v(mu,nu,lambda,sigma) * c(mu,p)
 do q
 v2(p,q,lambda,sigma) = v1(p,nu,lambda,sigma) * c(nu,q)
 do r
 v3(p,q,r,sigma) = v2(p,q,lambda,sigma) * c(lambda,r)
 do s

Sep 1, 2007
26

ACES III Documentation: SIAL Programmer Guide

 v4(p,q,r,s) = v3(p,q,r,sigma) * c(sigma,s)
 call update
 enddo s
 enddo r
 enddo q
 enddo p
enddo sigma
enddo lambda
endpardo mu, nu
delete v4
endsial example1

Sep 1, 2007
27

ACES III Documentation: SIAL Programmer Guide

Example 2: Preparing a served array.

sial example2
aoindex lambda=1,norb
aoindex sigma=1,norb
aoindex mu=1,norb
aoindex nu=1,norb
moindex p=bocc,eocc
moindex q=bocc,eocc
moindex r=bvirt,evirt
moindex s=bvirt,evirt
served v(mu,nu,lambda,sigma)
temp v1(p,nu,lambda,sigma)
temp v2(p,q,lambda,sigma)
temp v3(p,q,r,sigma)
temp v4tmp(p,q,r,s)
served v4(p,q,r,s)
local c(mu,p)

pardo mu, nu
do lambda
do sigma
 request v(mu,nu,lambda,sigma) sigma
 do p
 v1(p,nu,lambda,sigma) = v(mu,nu,lambda,sigma) * c(mu,p)
 do q
 v2(p,q,lambda,sigma) = v1(p,nu,lambda,sigma) * c(nu,q)
 do r
 v3(p,q,r,sigma) = v2(p,q,lambda,sigma) * c(lambda,r)
 do s
 v4tmp(p,q,r,s) = v3(p,q,r,sigma) * c(sigma,s)
 prepare v4(p,q,r,s) += v4tmp(p,q,r,s)
 enddo s
 enddo r
 enddo q
 enddo p
enddo sigma
enddo lambda
endpardo mu, nu

Now the program can use v4 with request v4.

endsial example2

Sep 1, 2007
28

ACES III Documentation: SIAL Programmer Guide

Example 3: Using served arrays efficiently.

Consider a parallelization scheme for integral transformation that Victor Lotrich has
implemented in the UHF transformation code. This scheme basically narrows the range
of the PARDO while at the same time contracting out an entire index on one processor,
thereby making it possible to replace prepare +='s with simple prepares.

Old style:

 PARDO mu, nu, a, i

 REQUEST Vxxai(mu,nu,a,i) i

 DO a1

 Txaai(mu,a1,a,i) = Vxxai(mu,nu,a,i)*ca(nu,a1)
 PREPARE Vxaai(mu,a1,a,i) += Txaai(mu,a1,a,i)

 ENDDO a1

 ENDPARDO mu, nu, a, i

This loop distributes the parallelization over mu,nu,a,i in an effort to avoid re-reading the
data in the REQUEST. However, this code is forced to use PREPARE +=, which is
deadly on performance.

New style:

 PARDO mu, a, i

 ALLOCATE Lxaai(mu,*,a,i)

 DO nu
 REQUEST Vxxai(mu,nu,a,i) i

 DO a1

 T1xaai(mu,a1,a,i) = Vxxai(mu,nu,a,i)*ca(nu,a1)
 Lxaai(mu,a1,a,i) += T1xaai(mu,a1,a,i)

 ENDDO a1
 ENDDO nu

 DO a1
 PREPARE Vxaai(mu,a1,a,i) = Lxaai(mu,a1,a,i)
 ENDDO a1

 DEALLOCATE Lxaai(mu,*,a,i)
 ENDPARDO mu, a, i

This loop reduced the PARDO range to mu,a,i, but a complete contraction of the nu index
is performed for each (mu,a,i) combination. Thus we can do a PREPARE instead of
PREPARE +=. Note that we still are reading the entire set of input only once. There is

Sep 1, 2007
29

ACES III Documentation: SIAL Programmer Guide

some wait time associated with the DEALLOCATE instruction until the PREPAREs are
complete, but this is much smaller than going the PREPARE += route. There are 3 loops
in this code that can be restructured with this same approach.

Sep 1, 2007
30

	SIAL Programmer Guide
	Overview
	 Appendix 1: Super Instruction Assembly Language Definition

