

[AMD Public Use]

AMD Optimizing CPU Libraries User Guide

Version 2.2

AOCL User Guide 2.2

2

[AMD Public Use]

Table of Contents
1. Introduction .. 5

2. Supported Operating Systems and Compliers .. 6

3. AOCL Installation ... 7

4. BLIS library for AMD .. 9

4.1. Installation .. 9

4.1.1. Build BLIS from source .. 9

4.1.1.1. Single-thread BLIS ... 9

4.1.1.2. Multi-threaded BLIS .. 10

4.1.2. Using pre-built binaries ... 10

4.2. Usage ... 11

4.2.1. BLIS - Running in-built test suite ... 11

4.2.2. Testing/benchmarking of GEMM with custom input ... 12

4.2.3. BLIS Usage in FORTRAN ... 13

4.2.4. BLIS Usage in C through BLAS and CBLAS APIs ... 15

4.3. Function call tracing in BLIS .. 17

4.3.1. Comprehensive call tracing ... 17

4.3.2. Selective call tracing .. 19

5. libFLAME library for AMD ... 22

5.1. Installation .. 22

5.1.1. Build libFLAME from source .. 22

5.1.2. Using pre-built binaries ... 23

5.2. Usage ... 23

6. FFTW library for AMD ... 24

6.1. Installation .. 24

6.1.1. Build FFTW from source .. 24

6.1.2. Using pre-built binaries ... 25

6.2. Usage ... 25

7. AMD LibM ... 26

7.1. Installation .. 28

7.2. Usage ... 29

8. AMD Optimized memcpy .. 30

8.1. Building AMD optimized memcpy .. 30

AOCL User Guide 2.2

3

[AMD Public Use]

8.2. Building an application: ... 30

8.3. Running the application: ... 30

9. ScaLAPACK library for AMD... 31

9.1. Installation .. 31

9.1.1. Build ScaLAPACK from source ... 31

9.1.2. Using pre-built binaries ... 33

9.2. Usage ... 33

10. AMD Random Number Generator .. 34

10.1. Installation .. 34

10.2. Usage ... 34

11. AMD Secure RNG .. 35

11.1. Installation .. 35

11.2. Usage ... 35

12. AOCL-Sparse .. 37

12.1. Storage Formats .. 37

12.1.1. CSR storage format ... 37

12.1.2. ELLPACK storage format.. 38

12.2. Types ... 38

12.3. Sparse functions .. 40

12.3.1. Sparse Level 2 Functions ... 40

12.3.2. Auxiliary Functions .. 40

12.4. Installation .. 41

12.4.1. Build aocl-sparse from source ... 41

12.4.2. Simple Test .. 42

12.4.3. Using prebuilt libraries .. 43

12.5. Usage ... 43

13. AOCL Spack Recipes .. 45

13.1. AOCL Spack Environment Setup ... 45

13.2. Install AOCL packages ... 45

13.2.1. Install amdblis Spack package ... 45

13.2.2. Install amdlibflame Spack package ... 45

13.2.3. Install amdfftw Spack package .. 45

13.3. Spack useful commands .. 46

AOCL User Guide 2.2

4

[AMD Public Use]

13.4. Uninstall AOCL Packages ... 46

14. Applications integrated to AOCL ... 47

14.1. High-Performance LINPACK Benchmark (HPL) ... 47

15. AOCL Tuning Guidelines .. 48

15.1. BLIS DGEMM multi-thread tuning... 48

15.2. BLIS DGEMM block size tuning for single and multi-instance mode .. 49

15.3. Performance suggestions for skinny Matrices .. 50

15.4. AMD Optimized FFTW Tuning Guidelines ... 51

16. Appendix ... 52

16.1. Check AMD Server Processor Architecture ... 52

17. Technical Support and Forums ... 53

18. References .. 54

AOCL User Guide 2.2

5

[AMD Public Use]

1. Introduction

AMD Optimizing CPU Libraries (AOCL) are a set of numerical libraries optimized for AMD EPYCTM processor

family. This document provides instructions on installing and using all the AMD optimized libraries.

AOCL comprise of eight packages, primarily,

1. BLIS (BLAS Library) – BLIS is a portable open-source software framework for instantiating high-
performance Basic Linear Algebra Subprograms (BLAS) functionality.

2. libFLAME (LAPACK) - libFLAME is a portable library for dense matrix computations, providing much of
the functionality present in Linear Algebra Package (LAPACK).

3. FFTW – FFTW (Fast Fourier Transform in the West) is a comprehensive collection of fast C routines for
computing the Discrete Fourier Transform (DFT) and various special cases thereof.

4. LibM (AMD Core Math Library) - AMD LibM is a software library containing a collection of basic math
functions optimized for x86-64 processor-based machines.

5. ScaLAPACK - ScaLAPACK is a library of high-performance linear algebra routines for parallel
distributed memory machines. It depends on external libraries including BLAS and LAPACK for Linear
Algebra computations.

6. AMD Random Number Generator Library - AMD Random Number Generator Library is a
pseudorandom number generator library

7. AMD Secure RNG - The AMD Secure Random Number Generator (RNG) is a library that provides APIs
to access the cryptographically secure random numbers generated by AMD’s hardware random
number generator implementation.

8. AOCL-Sparse(New) - Library that contains basic linear algebra subroutines for sparse matrices and
vectors optimized for AMD EPYC family of processors

In addition, we provide
- Spack(https://spack.io/) based recipes for installing BLIS, libFLAME and FFTW libraries.
- AMD optimized memcpy library (New)

Latest information on the AOCL release and installers are available in the following AMD developer site.

https://developer.amd.com/amd-aocl/.

For any issues or queries regarding the libraries, please contact toolchainsupport@amd.com.

AOCL 2.2 includes several performance improvements for AMD Rome based microprocessor

architecture in addition to Naples architecture. Please check Appendix Check AMD Server Processor

Architecture to determine underlying the architecture of your AMD system.

https://spack.io/
https://developer.amd.com/amd-aocl/
mailto:toolchainsupport@amd.com

AOCL User Guide 2.2

6

[AMD Public Use]

2. Supported Operating Systems and Compliers

This release of AOCL has been validated on the following Operating systems and Compilers

Operating Systems

• Ubuntu 18.04 LTS

• CentOS 7.6

• RHEL 8.1

• SLES 15 SP3

Compilers

• GCC 7.3 and above

• AOCC 2.2 (https://developer.amd.com/amd-aocc/)

https://developer.amd.com/amd-aocc/

AOCL User Guide 2.2

7

[AMD Public Use]

3. AOCL Installation

AOCL can be installed by one of the following mechanisms

1. Build from Source

The open source libraries of AOCL suite including BLIS, libFLAME, FFTW, ScaLAPACK and aocl-sparse

can be downloaded from GitHub and built from source

BLIS: https://github.com/amd/blis

libFLAME: https://github.com/amd/libflame

FFTW: https://github.com/amd/amd-fftw

ScaLAPACK: https://github.com/amd/scalapack

aocl-sparse: https://github.com/amd/aocl-sparse

Details on installing from source for each library are explained in later sections.

2. Master installer and Tar packages of AOCL binaries

AOCL master installer is available in the ‘Download’ section of the following link. The master installer

can used to install entire AOCL library suite

https://developer.amd.com/amd-aocl/.

Individual library binaries can be downloaded as well from the respective libraries page.

For example BLIS and libFLAME tar packages are available in following link

https://developer.amd.com/amd-aocl/blas-library/

3. Debian and RPM Packages

Debian and RPM packages of AOCL are available in the ‘Download’ section of the following link

https://developer.amd.com/amd-aocl/

The package name used in following installation steps is based on ‘gcc’ build. The same applies for

AOCC build by replacing ‘gcc’ with ‘aocc’.

Steps to install AOCL Debian package

1. Download AOCL 2.2 RPM package to target machine

2. Check install path before installing

$ dpkg -c aocl-linux-gcc-2.2.0_1_amd64.deb

3. Install the package. Prerequisites: User requires sudo previlage

$ sudo dpkg -i aocl-linux-gcc-2.2.0_1_amd64.deb

Or

$ sudo apt install ./aocl-linux-gcc-2.2.0_1_amd64.deb

4. Display installed package information along with package version and short description

$ dpkg -s aocl-linux-gcc-2.2.0

5. List contents of package

$dpkg -L aocl-linux-gcc-2.2.0

https://github.com/amd/blis
https://github.com/amd/libflame
https://github.com/amd/amd-fftw
https://github.com/amd/scalapack
https://github.com/amd/aocl-sparse
https://developer.amd.com/amd-aocl/
https://developer.amd.com/amd-aocl/blas-library/
https://developer.amd.com/amd-aocl/

AOCL User Guide 2.2

8

[AMD Public Use]

To uninstall the Debian package

$ sudo dpkg -r aocl-linux-gcc-2.2.0

(or)

$ sudo apt remove aocl-linux-gcc-2.2.0

Steps to install AOCL RPM package

1. Download the AOCL 2.2 RPM package to target machine
2. Install the package. Prerequisites: User requires sudo previlage

$ sudo rpm -ivh aocl-linux-gcc-2.2.0-1.x86_64.rpm

3. Display installed package information along with package version and short description
$ rpm -qi aocl-linux-gcc-2.2.0-1.x86_64

4. List contents of package
rpm -ql aocl-linux-gcc-2.2.0-1

Uninstall AOCL RPM package
$ rpm -e aocl-linux-gcc-2.2.0-1

AOCL User Guide 2.2

9

[AMD Public Use]

4. BLIS library for AMD

BLIS is a portable open-source software framework for instantiating high-performance Basic Linear

Algebra Subprograms (BLAS) - like dense linear algebra libraries. The framework was designed to isolate

essential kernels of computation that, when optimized, immediately enable optimized implementations

of most of its commonly used and computationally intensive operations. Select kernels have been

optimized for the AMD EPYCTM processor family by AMD and others.

AMD’s optimized version of BLIS supports C, FORTRAN and C++ Template interfaces for BLAS

functionalities.

4.1. Installation
BLIS can be installed either from source or pre-built binaries

4.1.1. Build BLIS from source
Github link: https://github.com/amd/blis

4.1.1.1. Single-thread BLIS
Here are the build instructions for single threaded AMD BLIS.

1. git clone https://github.com/amd/blis.git

2. Depending on the target system, and build environment, one would have to enable/disable
suitable configure options. The following steps provides instructions for compiling on AMD CPU

core based platforms. For a complete list of options and their description, type ./configure –help.

3. Staring from BLIS 2.1 release, the “auto” configuration option, enables selecting the appropriate
build configuration based on the target CPU architecture. For example, on Naples, “zen” config

will be chosen and on Rome, “zen2” config will be chosen.

With GCC (default):
$./configure --enable-cblas --prefix=<your-install-dir> auto

With AOCC:
$./configure --enable-cblas --prefix=<your-install-dir> CC=clang

CXX=clang++ auto

4. $ make

5. $ make install

The BLIS binary (libblis) included in AOCL master installer package has been built with “zen2” config.

https://github.com/amd/blis
https://github.com/amd/blis.git

AOCL User Guide 2.2

10

[AMD Public Use]

4.1.1.2. Multi-threaded BLIS
Here are the build instructions for multi-threaded AMD BLIS.

1. git clone https://github.com/amd/blis.git

2. Depending on the target system, and build environment, one would have to enable/disable
suitable configure options. The following steps provides instructions for compiling on AMD CPU

core based platforms. For a complete list of options and their description, type ./configure –help.

3. Staring from BLIS 2.1 release, the “auto” configuration option, enables selecting the appropriate
build configuration based on the target CPU architecture. For example, on Naples, “zen” config

will be chosen and on Rome, “zen2” config will be chosen.

With GCC
$./configure --enable-cblas --enable-threading=[Mode] --

prefix=<your-install-dir> auto

With AOCC
$./configure --enable-cblas --enable-threading=[Mode] --

prefix=<your-install-dir> CC=clang CXX=clang++ auto

 [Mode] values can be openmp, pthread, no. "no" will disable multi-threading.

2. $ make

3. $ make install

Note: For HPC Applications – disable Small Unpacked Kernel(sup) feature as shown

below:

$./configure --enable-cblas --disable-sup-handling --enable-threading=[Mode] --

prefix=<your-install-dir> auto

$ make

$ make install

The multi-thread BLIS binary (libblis-mt) included in AOCL master installer package has been built with
OpenMP threading mode and “zen2” config. For more information on multi-threaded implementation

in BLIS refer here.

4.1.2. Using pre-built binaries
AMD optimized BLIS library binaries for Linux can be found in the following links.
https://github.com/amd/blis/releases
https://developer.amd.com/amd-aocl/blas-library/

https://github.com/amd/blis.git
https://github.com/flame/blis/blob/master/docs/Multithreading.md
https://github.com/amd/blis/releases
https://developer.amd.com/amd-aocl/blas-library/

AOCL User Guide 2.2

11

[AMD Public Use]

Also, BLIS binary can be installed from the AOCL master installer tar file available in the following link.
https://developer.amd.com/amd-aocl/

The master installer includes both single threaded and multi-threaded BLIS binaries. Both BLIS binaries
have been built with “zen2” config. The multi-thread BLIS binary (libblis-mt) included in AOCL master

installer package has been built with OpenMP threading mode.

The tar file includes pre-built binaries of other AMD Libraries libFLAME, LibM, FFTW, aocl-sparse,
ScaLAPACK, Random Number Generator and AMD Secure RNG.

4.2. Usage
BLIS source directory contains test cases which demonstrate usage of BLIS APIs.

To execute the tests, navigate to the BLIS source directory,
$ make check

Execute BLIS C++ Template API tests as below
$ make checkcpp

Use by Applications

To use BLIS in your application, you just need to link the library while building the application

Example:
With Static Library:

gcc test_blis.c -I<path-to-BLIS-header> <path-toBLIS-library>/libblis.a -o test_blis.x

With Dynamic Library:

gcc test_blis.c -I<path-to-BLIS-header> -L<path-toBLIS-library>/libblis.so -o test_blis.x

BLIS also includes a BLAS compatibility layer which gives application developers access to BLIS

implementations via traditional FORTRAN BLAS API calls, that can be used in FORTRAN as well as C code.

BLIS also provides a CBLAS API, which is a C-style interface for BLAS, that can be called from C code.

4.2.1. BLIS - Running in-built test suite
BLIS source directory contains test suite to verify the functionality of BLIS and BLAS APIs. The test suite

invokes APIs with different inputs and verify that the results are withing expected tolerance limits.

Running Test Suite:

BLIS source directory contains test suite to verify the functionality of BLIS and BLAS APIs. The test suite

invokes APIs with different inputs and verify that the results are withing expected tolerance limits.

For detailed information refer to: https://github.com/flame/blis/blob/master/docs/Testsuite.md

Test suite is invoked by running following command
$ make test

https://developer.amd.com/amd-aocl/
https://github.com/flame/blis/blob/master/docs/Testsuite.md

AOCL User Guide 2.2

12

[AMD Public Use]

Example run of the testsuite is as shown below.
$:~/blis$ make test
Compiling obj/zen2/testsuite/test_addm.o
Compiling obj/zen2/testsuite/test_addv.o
.
<<< More compilation output >>>
.
Compiling obj/zen2/testsuite/test_xpbym.o
Compiling obj/zen2/testsuite/test_xpbyv.o
Linking test_libblis-mt.x against 'lib/zen2/libblis-mt.a -lm -lpthread -fopenmp -
lrt'
Running test_libblis-mt.x with output redirected to 'output.testsuite'
check-blistest.sh: All BLIS tests passed!
Compiling obj/zen2/blastest/cblat1.o
Compiling obj/zen2/blastest/abs.o
.
<<< More compilation output >>>
.
Compiling obj/zen2/blastest/wsfe.o
Compiling obj/zen2/blastest/wsle.o
Archiving obj/zen2/blastest/libf2c.a
Linking cblat1.x against 'libf2c.a lib/zen2/libblis-mt.a -lm -lpthread -fopenmp -
lrt'
Running cblat1.x > 'out.cblat1'
.
<<< More compilation output >>>
.
Linking zblat3.x against 'libf2c.a lib/zen2/libblis-mt.a -lm -lpthread -fopenmp -
lrt'
Running zblat3.x < './blastest/input/zblat3.in' (output to 'out.zblat3')
check-blastest.sh: All BLAS tests passed!

4.2.2. Testing/benchmarking of GEMM with custom input
BLIS source also has API specific test drivers, this section explains how to use this driver for specific set

of matrix sizes.

The source file for this driver is test/test_gemm.c and the executable will be test/test_gemm_blis.x.

Follow these steps to execute the GEMM tests on specific inputs.

Enabling File Inputs:

By default, file input/output are disabled (instead it use start, end and step sizes). To enable file inputs

1. Open test/test_gemm.c

2. Uncomment following two macros at the start of the file

a. #define FILE_IN_OUT

b. #define MATRIX_INITIALISATION

AOCL User Guide 2.2

13

[AMD Public Use]

Build test driver:

$ cd tests

$ make blis

Create Input file:

The input file expects matrix sizes and strides in following format. Each dimension is separated by space

and each entry is separated by new line. (Please see example below for details)

M K N CS_A CS_B CS_C

Note: This test application (test_gemm.c) assumes column-major storage of matrices.
Valid values of ldA, ldB and ldC are
ldA >= M
ldB >= K
ldC >= M

Running the tests:

$ cd tests

$./test_gemm_blis.x <input file name> <output file name>

Example run with test driver for GEMM.

$ cat inputs.txt
200 100 100 200 200 200
10 4 1 100 100 100
4000 4000 400 4000 4000 4000
$./test_gemm_blis.x inputs.txt outputs.txt
~~~~~~~~~~_BLAS  m       k       n       cs_a    cs_b    cs_c    gflops  GEMM_Algo 
data_gemm_blis   200      100     100     200     200     200    27.211          S 
data_gemm_blis    10        4       1     100     100     100     0.027          S 
data_gemm_blis  4000     4000     400    4000    4000    4000    45.279          N 
$ cat outputs.txt 
m        k       n       cs_a    cs_b    cs_c    gflops  GEMM_Algo 
   200    100     100     200     200     200    27.211          S 
    10      4       1     100     100     100     0.027          S 
  4000   4000     400    4000    4000    4000    45.279          N 

 

4.2.3. BLIS Usage in FORTRAN  
BLIS can be used with FORTRAN applications through the standard BLAS API. 

For example, see below, FORTRAN code that does double precision general matrix-matrix multiplication. 

It calls the 'DGEMM' BLAS API function to accomplish this. An example command to compile it and link 

with the BLIS library is also shown below the code. 

 



AOCL User Guide 2.2 
 

14 
 

[AMD Public Use] 

! File: BLAS_DGEMM_usage.f 
! Example code to demonstrate BLAS DGEMM usage 
 
program dgemm_usage 
 
implicit none 
 

EXTERNAL DGEMM 
 
DOUBLE PRECISION, ALLOCATABLE :: a(:,:) 
DOUBLE PRECISION, ALLOCATABLE :: b(:,:) 
DOUBLE PRECISION, ALLOCATABLE :: c(:,:) 
INTEGER I, J, M, N, K, lda, ldb, ldc 
DOUBLE PRECISION alpha, beta 
 
M=2 
N=M 
K=M 
lda=M 
ldb=K 
ldc=M 
alpha=1.0 
beta=0.0 
 
ALLOCATE(a(lda,K), b(ldb,N), c(ldc,N)) 
 
a=RESHAPE((/ 1.0, 3.0, & 
             2.0, 4.0  /), & 
             (/lda,K/)) 
b=RESHAPE((/ 5.0, 7.0, & 
             6.0, 8.0  /), & 
             (/ldb,N/)) 
 
WRITE(*,*) ("a =") 
DO I = LBOUND(a,1), UBOUND(a,1) 
    WRITE(*,*) (a(I,J), J=LBOUND(a,2), UBOUND(a,2)) 
END DO 
WRITE(*,*) ("b =") 
DO I = LBOUND(b,1), UBOUND(b,1) 
    WRITE(*,*) (b(I,J), J=LBOUND(b,2), UBOUND(b,2)) 
END DO 
 
CALL DGEMM('N','N',M,N,K,alpha,a,lda,b,ldb,beta,c,ldc) 
 
WRITE(*,*) ("c =") 
DO I = LBOUND(c,1), UBOUND(c,1) 
    WRITE(*,*) (c(I,J), J=LBOUND(c,2), UBOUND(c,2)) 
END DO 
 
end program dgemm_usage 

Example compilation command, for the above code, with gfortran compiler: 

gfortran -ffree-form BLAS_DGEMM_usage.f path/to/libblis.a 
 



AOCL User Guide 2.2 
 

15 
 

[AMD Public Use] 

4.2.4. BLIS Usage in C through BLAS and CBLAS APIs 
There are multiple ways to use BLIS with an application written in C. While one can always use the native 

BLIS API for the same, BLIS also includes BLAS and CBLAS interfaces. 

Using BLIS with BLAS API in C code 

Shown below is the C version of the code listed above in FORTRAN. It uses the standard BLAS API. Note 
that (a) the matrices are transposed to account for the row-major storage of C and the column-major 
convention of BLAS (inherited from FORTRAN), (b) the function arguments are passed by address, again 
to be in line with FORTRAN conventions, (c) there is a trailing underscore in the function name ('dgemm_'), 
as BLIS' BLAS APIs expect that (FORTRAN compilers add a trailing underscore), and (d) "blis.h" is included 
as a header. An example command to compile it and link with the BLIS library is also shown below the 
code. 

// File: BLAS_DGEMM_usage.c 
// Example code to demonstrate BLAS DGEMM usage 
 
#include<stdio.h> 
#include "blis.h" 
 
#define DIM 2 
 
int main() { 
 
 double a[DIM * DIM] = { 1.0, 3.0, 2.0, 4.0 }; 
 double b[DIM * DIM] = { 5.0, 7.0, 6.0, 8.0 }; 
 double c[DIM * DIM]; 
 int I, J, M, N, K, lda, ldb, ldc; 
 double alpha, beta; 
 
 M = DIM; 
 N = M; 
 K = M; 
 lda = M; 
 ldb = K; 
 ldc = M; 
 alpha = 1.0; 
 beta = 0.0; 
 
 printf("a = \n"); 
 for ( I = 0; I < M; I ++ ) { 
  for ( J = 0; J < K; J ++ ) { 
   printf("%f\t", a[J * K + I]); 
  } 
  printf("\n"); 
 } 
 printf("b = \n"); 
 for ( I = 0; I < K; I ++ ) { 
  for ( J = 0; J < N; J ++ ) { 
   printf("%f\t", b[J * N + I]); 
  } 
  printf("\n"); 
 } 

http://www.netlib.org/blas/#_blas_routines


AOCL User Guide 2.2 
 

16 
 

[AMD Public Use] 

 
 dgemm_("N","N",&M,&N,&K,&alpha,a,&lda,b,&ldb,&beta,c,&ldc); 
 
 printf("c = \n"); 
 for ( I = 0; I < M; I ++ ) { 
  for ( J = 0; J < N; J ++ ) { 
   printf("%f\t", c[J * N + I]); 
  } 
  printf("\n"); 
 } 
 
 return 0; 
} 

Example compilation command, for the above code, with gcc compiler: 

gcc BLAS_DGEMM_usage.c -Ipath/to/include/blis/ path/to/libblis.a 

 

Using BLIS with CBLAS API 

The C code below shows using CBLAS APIs for the same functionality listed above. Note that (a) CBLAS 
Layout option allows us to choose between row-major and column-major layouts (row-major layout is 
used in the example, which is in line with C-style), (b) the function arguments can be passed by value also, 
and (c) "cblas.h" is included as a header. An example command to compile it and link with the BLIS library 
is also shown below the code. Also, note that, in order to get CBLAS API with BLIS, one has to supply the 
flag '--enable-cblas' to the 'configure' command while building the BLIS library.  

// File: CBLAS_DGEMM_usage.c 

// Example code to demonstrate CBLAS DGEMM usage 

#include<stdio.h> 
#include "cblas.h" 
 
#define DIM 2 
 
int main() { 
 double a[DIM * DIM] = { 1.0, 2.0, 3.0, 4.0 }; 
 double b[DIM * DIM] = { 5.0, 6.0, 7.0, 8.0 }; 
 double c[DIM * DIM]; 
 int I, J, M, N, K, lda, ldb, ldc; 
 double alpha, beta; 
 
 M = DIM; 
 N = M; 
 K = M; 
 lda = M; 
 ldb = K; 
 ldc = M; 
 alpha = 1.0; 
 beta = 0.0; 
 
 printf("a = \n"); 
 for ( I = 0; I < M; I ++ ) { 
  for ( J = 0; J < K; J ++ ) { 



AOCL User Guide 2.2 
 

17 
 

[AMD Public Use] 

   printf("%f\t", a[I * K + J]); 
  } 
  printf("\n"); 
 } 
 printf("b = \n"); 
 for ( I = 0; I < K; I ++ ) { 
  for ( J = 0; J < N; J ++ ) { 
   printf("%f\t", b[I * N + J]); 
  } 
  printf("\n"); 
 } 
 
 cblas_dgemm(CblasRowMajor,  CblasNoTrans, CblasNoTrans, M, N, K, alpha, a, 
lda, b, ldb, beta, c, ldc); 
 
 printf("c = \n"); 
 for ( I = 0; I < M; I ++ ) { 
  for ( J = 0; J < N; J ++ ) { 
   printf("%f\t", c[I * N + J]); 
  } 
  printf("\n"); 
 } 
 
 return 0; 
} 

Example compilation command, for the above code, with gcc compiler: 

gcc CBLAS_DGEMM_usage.c -Ipath/to/include/blis/ path/to/libblis.a 

 

4.3. Function call tracing in BLIS 
AMD BLIS library provides 2 different way to perform function call tracing, both methods are explained 

in sections below. Both methods need recompilation of the library on the target system. 

Key Features: 

1. Can be enabled/disabled at compile time. 

2. When these features are disabled at compile time, they do not need any runtime resources and 

does not affect performance. 

3. All traces are thread safe. 

4.3.1. Comprehensive call tracing 
Comprehensive call tracing is implemented using compiler assisted instrumentation, hence this is 

enabled /disabled for the complete library and application. It also uses record/replay method. 

When application with the instrumented library is ran, it will create a trace file for each thread created 

by this process. The thread specific files will have call trace associated for all functions called by that 

thread. 



AOCL User Guide 2.2 
 

18 
 

[AMD Public Use] 

To use this feature please go the following 3 steps in that order. 

1. Building the BLIS Library for call tracing. 

• Building BLIS with comprehensive call trace support (This section explains steps using gcc, please 

refer to section 4.1.1 Build BLIS from source for how it can be built with other compilers). 

$ ./configure --enable-cblas --prefix=<your-install-dir> auto 

$ make -j ETRACE_ENABLE=1 

 

• Link the library to application along with additional library “-ldl” 

• For inbuild test suite please build them as give below 

$ make -j ETRACE_ENABLE=1 checkblis 

or 

$ cd test; make -j ETRACE_ENABLE=1 

 

2. Recoding traces: 

• Once the application is built, just run the application as usual  

• Figure 1: Example of recoding trace data, shows example run using inbuilt test_gemm 

application. 

• As shown the trace data for each thread is saved in the file with following naming conventions 
P<process id>_T<thread id>_aocldtl_auto_trace.rawfile 

• Process id helps to differentiate between traces from multiple runs in the same folder. 

• These traces are not in human readable format, they need to be decoded/replayed as explained 

in step 3 

 

Figure 1: Example of recoding trace data 

 

3. Replay trace data: 

• The python script required to replay the traces is available in <blis root folder>/aocl_dtl 

• Replay operation can be performed using following command line. 



AOCL User Guide 2.2 
 

19 
 

[AMD Public Use] 

~/blis/aocl_dtl/etrace_decoder.py  

--rawfile ~/blis/test/P11430_T11430_aocldtl_auto_trace.rawfile  

--binary ~/blis/test/test_gemm_blis.x 

• The decode script will warn the user if there is timestamp mismatch and if it is not able to find 

the function name for all symbols. 

• Figure 2: Example of replaying trace data, show the example run for test_gemm application 

trace replay 

• The dots (.) before the function names represent call stack level. For each function time elapsed 

from the previous entry and from the beginning are shown. 

 

 

Figure 2: Example of replaying trace data 

Usages & Limitations: 

1. Since this method captures trace information for all the function, it can be used to identify the 

performance hotspot associated with give application. 

2. When tracing is enabled, performance will see significant drop. 

3. This method is quite resource heavy, it can generate huge amount of data. Based on hardware 

configuration i.e. diskspace, number of cores & threads needed for execution it may result in 

sluggish or non-responsive system. 

4. It is recommended to narrow down application requirements to the area of interest so that 

number of inputs and threads are minimized. 

 

4.3.2. Selective call tracing 
Selective call tracing is implemented using hard instrumentation of the BLIS code. Here functions are 

grouped as per there position in the call stack. User can configure the level till which traces will be 

generated. 



AOCL User Guide 2.2 
 

20 
 

[AMD Public Use] 

Selective call tracing also needs recompilation and some source code modification to get it working, 

following section explains the steps needed to enable and view the traces. Unlike comprehensive 

tracing, selective trace generated human readable output, so no additional steps are needed to 

replay/decode the call trace. 

 

1. Enable trace support  

 

• For this step user needs to modify the source code to enable selective tracing 

Open file <blis folder>/aocl_dtl/aocldtlcf.h 

 

• Change following macro from 0 to 1 

#define AOCL_DTL_TRACE_ENABLE       0 

  

2. Configure the trace depth level. 

• For this step user needs to modify the source code to enable selective tracing 

Open file <blis folder>/aocl_dtl/aocldtlcf.h 

 

• Change following macro as needed, to begin with Level 5 should be good compromise in 

terms of details and resource requirement, Higher level we go dipper in the call stack 

and lower level reduce the depth of the call stack used for trace generation. 

#define AOCL_DTL_TRACE_LEVEL  AOCL_DTL_LEVEL_TRACE_5 

 

3. Build the library 

• Library is built normally as explain in section 4.1.1 Build BLIS from source 

4. Generate trace data 

• Run the application normally, trace output files for each thread will be generated in the 

current folder.  

• Figure 3: Example run of selective call tracing, show the example of running selective 

call tracing using test_gemm application 

• As shown the trace data for each thread is saved in the file with following naming 

conventions. The txt extension is used to signify the human readable file. 

P<process id>_T<thread id>_aocldtl_trace.txt 

Usages & Limitations: 

1. This method needs comparatively less resources than comprehensive call tracing. It also 

provides direct human readable output. 

2. Biggest drawback of this method is that user can only see traces for which developers have 

already done instrumentation. Covering any other function in the selective trace has to be done 

my modifying the code.  

3. This method is more suitable if area of problem is already know. 

4. When tracing is enabled, performance will see significant drop. 



AOCL User Guide 2.2 
 

21 
 

[AMD Public Use] 

5. EIt is recommended to narrow down application requirements to the area of interest so that 

number of inputs and threads are minimized. 

 

Figure 3: Example run of selective call tracing 

5. View trace data 

• Output of selective trace is already in human readable format, just open the file in any of 

the text editor. 

• Figure 4: Example output of selective call trace, show the example out for one of the threads 

of test_gemm application. 

• First column show the level in call stack for the given function. 

• Trace is also independent according to the position of the function in the call stack. 

 

Figure 4: Example output of selective call trace 



AOCL User Guide 2.2 
 

22 
 

[AMD Public Use] 

5. libFLAME library for AMD 
 

libFLAME is a portable library for dense matrix computations, providing much of the functionality present 

in Linear Algebra Package (LAPACK). It includes a compatibility layer, FLAPACK, which includes complete 

LAPACK implementation. The library provides scientific and numerical computing communities with a 

modern, high-performance dense linear algebra library that is extensible, easy to use, and available under 

an open source license. libFLAME is a C-only implementation and does not depend on any external 

FORTRAN libraries including LAPACK. There is an optional backward compatibility layer, lapack2flame that 

maps LAPACK routine invocations to their corresponding native C implementations in libFLAME. This 

allows legacy applications to start taking advantage of libFLAME with virtually no changes to their source 

code. 

Starting from AOCL 2.2 release, AMD optimized version of libFLAME is compatible with LAPACK 3.9.0 

specification. In combination with BLIS library which includes optimizations for the AMD EPYCTM processor 

family, libFLAME enables running high performing LAPACK functionalities on AMD platform. AMD’s 

version of libFLAME supports C, FORTRAN and C++ Template interfaces for LAPACK functionalities. 

5.1. Installation 
libFLAME can be installed either from source or pre-built binaries 

5.1.1. Build libFLAME from source 
 

Github link: https://github.com/amd/libflame 

Note: Building libFLAME library does not require linking to BLIS or any other BLAS library. Applications 

which use libFLAME will have to link with BLIS (or other BLAS libraries) for BLAS functionalities. 

1. git clone https://github.com/amd/libflame.git  

2. Run configure script. Example below shows few sample options. Enable/disable other flags as 
needed 

With GCC (default) 
$ ./configure --enable-lapack2flame --enable-external-lapack-

interfaces --enable-dynamic-build --enable-max-arg-list-hack --
prefix=<your-install-dir> 

 

With AOCC 
$ ./configure --enable-lapack2flame --enable-external-lapack-

interfaces --enable-dynamic-build --enable-max-arg-list-hack --
prefix=<your-install-dir> CC=clang CXX=clang++ F77=flang 

 

3. Make and install. By default, without ‘prefix’ configure option, the library will be installed to 
$HOME/flame 
 

https://github.com/amd/libflame
https://github.com/amd/libflame.git


AOCL User Guide 2.2 
 

23 
 

[AMD Public Use] 

• $ make 

• $ make install 

5.1.2. Using pre-built binaries 
AMD optimized libFLAME library binaries for Linux can be found in the following links. 

https://github.com/amd/libflame/releases  
https://developer.amd.com/amd-aocl/blas-library/#libflame   
 
Also, libFLAME binary can be installed from the AOCL master installer tar file available in the following 
link. The tar file includes pre-built binaries of other AMD Libraries BLIS, LibM, FFTW, ScaLAPACK, Random 
Number Generator and AMD Secure RNG 
 
https://developer.amd.com/amd-aocl/ 

5.2. Usage 
libFLAME source directory contains test cases which demonstrate usage of libFLAME APIs.  

 

To execute the tests, navigate to the libFLAME source directory, 
$ cd test 

$ make LIBBLAS=<Full path-to-BLIS-library including the library> 

Example 

$ make LIBBLAS=/home/user/aocl/amd/2.x/libs/libblis.a 

$ ./test_libflame.x 

 

Run libFLAME C++ Template API tests as below 

 

From the libFLAME source directory, 

Using GCC 
$ make checkcpp LIBBLAS_PATH=<Full path-to-BLIS-library> 

 

Example: 

$ make checkcpp LIBBLAS_PATH=/home/user/aocl/amd/2.x/libs/libblis.a 

 

Using AOCC 
$ make checkcpp LIBBLAS_PATH=<Full path-to-BLIS-library> LDFLAGS="-no-

pie -lpthread" 

 
Example: 
$ make checkcpp LIBBLAS_PATH=/home/user/aocl/amd/2.x/libs/libblis.a 

LDFLAGS="-no-pie -lpthread"  

https://github.com/amd/libflame/releases
https://developer.amd.com/amd-aocl/blas-library/#libflame
https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

24 
 

[AMD Public Use] 

6. FFTW library for AMD 
 

AMD’s optimized version of FFTW, is a comprehensive collection of fast C routines for computing the 

Discrete Fourier Transform (DFT) and various special cases thereof that are optimized for AMD EPYCTM 

processor. It is an open-source implementation of the Fast Fourier transform algorithm. It can compute 

transforms of real and complex-values arrays of arbitrary size and dimension. 

6.1. Installation 
AMD Optimized FFTW can be installed either from source or pre-built binaries. 

6.1.1. Build FFTW from source  
Here are the steps to build AMD Optimized FFTW for AMD EPYC processor based on Naples, Rome and 

future generation architectures. 

8.1.1.1. Download the latest stable release of AMD Optimized FFTW from the link  

https://github.com/amd/amd-fftw 

 

8.1.1.2. Depending on the target system, and build environment, one would have to enable/disable 

suitable configure options. Please set PATH and LD_LIBRARY_PATH appropriately to the MPI 

installation. 

The following steps provide instructions for compiling it for AMD EPYC processors. For a complete 

list of options and their description, type ./configure –help 

 

With GCC (default): 

Double Precision FFTW libraries 

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-mpi 
--enable-openmp --enable-shared --enable-amd-opt --enable-amd-

mpifft --prefix=<your-install-dir> 

 

Single Precision FFTW libraries 

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-mpi 
--enable-openmp --enable-shared --enable-single --enable-amd-opt -

-enable-amd-mpifft --prefix=<your-install-dir> 

Long double FFTW libraries 
$ ./configure --enable-shared --enable-openmp --enable-mpi --

enable-long-double --enable-amd-opt --enable-amd-mpifft --

prefix=<your-install-dir> 

 
Quad Precision FFTW libraries 
$ ./configure --enable-shared --enable-openmp --enable-quad-

precision --enable-amd-opt --prefix==<your-install-dir> 

 
 

 

https://github.com/amd/amd-fftw


AOCL User Guide 2.2 
 

25 
 

[AMD Public Use] 

With AOCC: 

Double Precision FFTW libraries 

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-

mpi --enable-openmp --enable-shared --enable-amd-opt --enable-amd-

mpifft --prefix=<your-install-dir> CC=clang F77=flang LDFLAGS=”-

no-pie” 

 

Single Precision FFTW libraries 

$ ./configure --enable-sse2 --enable-avx --enable-avx2 --enable-

mpi --enable-openmp --enable-shared --enable-single --enable-amd-

opt --enable-amd-mpifft --prefix=<your-install-dir> CC=clang 

F77=flang LDFLAGS=”-no-pie” 

 

Long double FFTW libraries 
$ ./configure --enable-shared --enable-openmp --enable-mpi --

enable-long-double --enable-amd-opt --enable-amd-mpifft --

prefix=<your-install-dir> CC=clang F77=flang LDFLAGS=”-no-pie” 

 
Note: Quad Precision not supported in AOCC as of version 2.2 
 

8.1.1.3. $ make 

8.1.1.4. $ make install 

 

6.1.2. Using pre-built binaries 
AMD optimized FFTW library binaries for Linux can be found in the following links. 

https://developer.amd.com/amd-aocl/fftw/ 

AMD Optimized FFTW binary can also be installed from the AOCL master installer tar file available in the 

following link. The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, ScaLAPACK, 

LibM, aocl-sparse, Random Number Generator and AMD Secure RNG 

https://developer.amd.com/amd-aocl/ 

6.2. Usage 
Sample programs demonstrating usage of FFTW APIs and performance benchmarking can be found under 

the tests/ and mpi/ directories directory of FFTW source. 

$ cd fftw-3.3.8/tests  //Sample programs for single-threaded and multi-threaded FFTW 

$ cd fftw-3.3.8/mpi //Sample program for MPI FFTW  

https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

26 
 

[AMD Public Use] 

7. AMD LibM 
 

AMD LibM is a software library containing a collection of basic math functions optimized for x86-64 

processor-based machines. It provides many routines from the list of standard C99 math functions. It 
includes scalar as well as vector variants of the core math functions. AMD LibM is a C library, which 

users can link into their applications to replace compiler-provided math functions. Applications can link 
into AMD LibM library and invoke math functions instead of compiler’s math functions for better 
accuracy and performance. 
 
Latest AMD LibM includes the ‘alpha version’ of vector variants for the core math functions; 
power, exponential, logarithmic and trigonometric. Few caveats of the vector variants are listed 
below. 

• Vector variants are relaxed versions of the respective math functions w.r.t accuracy.  
• The routines take advantage of the AMD64 architecture for performance. Some of the 

performance is gained by sacrificing error handling or the acceptance of certain 
arguments. 

• Denormal inputs may produce unpredictable results. It is therefore the responsibility 
of the caller of these routines to ensure that their arguments are suitable.  

• Also, some of the vector variants may not set appropriate IEEE error codes in FPU. 
• The vector routines will have to be invoked using C intrinsics or from x86 assembly.  

 
Vector variants can be enabled by using AOCC compiler with ‘-ffast-math’ flag and it is 
highly discouraged to call these functions manually. As these functions expect arguments in 
__m128, __m128d, __m256, __m256d types and user has to manually pack-unpack to/from 
such format. 
However, the symbols are enabled in library and the signatures follow the naming convention. 
 
amd_vr<type><vec_size>_<func> 

 
v – vector 

r – real 
a - Array 
<type> - ‘s’ for single precision, ‘d’ for double precision 

<vec_size> - 2 or 4 for 2 element or 4 element vector respectively. 

<func> - function name such as ‘exp’, ‘expf’ etc. 
 
For example, single precision 4 element version of exp has signature  
__m128 vrs4_expf(__m128 x) 
 
The list of available vector functions is given below. All functions have an 'amd_' prefix and is 

omitted from the list to shorten the length. 
 
 



AOCL User Guide 2.2 
 

27 
 

[AMD Public Use] 

Exponential 
    * vrs4_expf, vrs4_exp2f, vrs4_exp10f, vrs4_expm1f 
    * vrsa_expf, vrsa_exp2f, vrsa_exp10f, vrsa_expm1f 
    * vrd2_exp, vrd2_exp2, vrd2_exp10, vrd2_expm1, vrd4_exp, 

vrd4_exp2 
    * vrda_exp, vrda_exp2, vrda_exp10, vrda_expm1 
 
Logarithmic 
    * vrs4_logf, vrs4_log2f, vrs4_log10f, vrs4_log1pf 
    * vrsa_logf, vrsa_log2f, vrsa_log10f, vrsa_log1pf 
    * vrd2_log, vrd2_log2, vrd2_log10, vrd2_log1p, vrd4_log 
    * vrda_log, vrda_log2, vrda_log10, vrda_log1p 

 
Trigonometric 
    * vrs4_cosf, vrs4_sinf 
    * vrsa_cosf, vrsa_sinf 
    * vrd2_cos, vrd2_sin, vrd2_cosh, vrd2_sincos 
    * vrda_cos, vrda_sin 
 
 Power 
     * vrs4_cbrtf, vrd2_cbrt, vrs4_powf, vrd2_pow, vrd4_pow 
    * vrsa_cbrtf, vrda_cbrt, vrsa_powf 

 
The scalar functions listed below are present in the library. They can be called by standard C99 
function call and naming convention, just needed to be linked with amdlibm before standard 
‘libm. 
 
Example: 
  
 
$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/amdlibm 
$ clang -Wall -std=c99 myprogram.c -o myprogram -lamdlibm -lm 
 

OR 
 

$ gcc -Wall -std=c99 myprogram.c -o myprogram -lamdlibm -lm 

 

Following functions have vector variants in AMD LibM 
 
Trigonometric 
    * cosf, cos, sinf, sin, tanf, tan, sincosf, sincos 
    * acosf, acos, asinf, asin, atanf, atan, atan2f, atan2 
 
 



AOCL User Guide 2.2 
 

28 
 

[AMD Public Use] 

Hyperbolic 
    * coshf, cosh, sinhf, sinh, tanhf, tanh  
    * acoshf, acosh, asinhf, asinh, atanhf, atanh  

 
Exponential & Logarithmic 
    * expf, exp, exp2f, exp2, exp10f, exp10, expm1f, expm1 
    * logf, log, log10f, log10, log2f, log2, log1pf, log1p 
    * logbf, logb, ilogbf, ilogb 
    * modff, modf, frexpf, frexp, ldexpf, ldexp 

    * scalbnf, scalbn, scalblnf, scalbln 
 
Power & Absolute value 
    * powf, pow, fastpow, cbrtf, cbrt, sqrtf, sqrt, hypotf, hypot 
    * fabsf, fabs 

 
Nearest integer 
    * ceilf, ceil, floorf, floor, truncf, trunc 
    * rintf, rint, roundf, round, nearbyintf, nearbyint 
    * lrintf, lrint, llrintf, llrint 
    * lroundf, lround, llroundf, llround 

 
Remainder 
    * fmodf, fmod, remainderf, remainder 
 
Manipulation 
    * copysignf, copysign, nanf, nan, finitef, finite 
    * nextafterf, nextafter, nexttowardf, nexttoward 

 
Maximum, Minimum & Difference 
    * fdimf, fdim, fmaxf, fmax, fminf, fmin 
 

7.1. Installation 
AMD LibM binary for Linux can be found in the following link.  

https://developer.amd.com/amd-aocl/amd-math-library-libm/ 

Also, LibM binary can be installed from the GCC compiled AOCL master installer tar file available in the 

following link. The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, FFTW, Random 

Number Generator and AMD Secure RNG 

https://developer.amd.com/amd-aocl/ 

Note: In this release, AMD LibM binary compiled with GCC is available in the above links. AOCC compiled 

LibM will be available in a future release. 

https://developer.amd.com/amd-aocl/amd-math-library-libm/
https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

29 
 

[AMD Public Use] 

7.2. Usage 
In order to use AMD LibM in your application, follow the below steps.  
 

- Include ‘math.h’ like standard way to use the C Standard library math functions 
- Link in the appropriate version of the library in your program 

 
The Linux libraries might sometimes have a dependency on system math library. When linking AMD LibM, 
ensure it precedes system math library in the link order i.e., "-lamdlibm" should come before "-lm". 

Explicit linking of system math library is required when using GCC/AOCC compiler. With g++ compiler (for 
C++), this is not needed. 
 
$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/amdlibm 
$ clang -Wall -std=c99 myprogram.c -o myprogram -lamdlibm -lm 
$ gcc -Wall -std=c99 myprogram.c -o myprogram -lamdlibm -lm 

 
To call vector calls, one has to depend on compiler flag ‘-ffastmath. 

However, though not recommended, one can call the functions directly with manual packing and 
unpacking. In order to invoke the vector functions directly, one must include the header file 
‘amdlibm_vec.h’. The following program shows such an example with both returning as well as storing 
the values in an array. For simplicity the size and other checks are omitted from example.  
 
Example: myprogram.c 
 
 
##define AMD_LIBM_VEC_EXTERNAL_H 
#define AMD_LIBM_VEC_EXPERIMENTAL 
#include “amdlibm_vec.h” 
__m128 vrs4_expf (__m128 x); 
 
__m128 
test_expf_v4s(float *ip, float *out) 
{     
    __m128 ip4 = _mm_set_ps(ip1[3], ip1[2], ip1[1], ip1[0]); 
    __m128 op4 = vrs4_expf(ip4); 
    _mm_store_ps(&out[0], op4); 
 
    return op4; 
} 

 

 
 
$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/path/to/amdlibm 
$ clang -Wall -std=c99 -ffastmath myprogram.c -o myprogram -lamdlibm -lm 

  



AOCL User Guide 2.2 
 

30 
 

[AMD Public Use] 

8. AMD Optimized memcpy 
AMD optimized memcpy is derived out of glibc 2.31 memcpy. This variant of memcpy brings in 

performance gains for memory copies of data sizes 1MB and above on AMD Zen architecture CPUs. This 

source code of this variant of memcpy is being released and can be compiled and linked against the 

application which make use of memcpy of glibc. 

8.1. Building AMD optimized memcpy 
Download the source of optimized memcpy by installing AOCL master installer, aocl-linux-

<compiler>-<version>.tar.gz, from following link. 
 
https://developer.amd.com/amd-aocl/. 
 

1. After installing AOCL master installer, check for amd-memcpy in the root directory 

2. Source is available under amd-memcpy/src/memcpy.c  

3. Build the source as a shared library: 

GCC Compiler:  
$ gcc -c -Wall -Werror -fpic amd_memcpy.c  
$ gcc -shared -o libamd_memcpy.so amd_memcpy.o  
                           
       (or)  
 
AOCC Compiler:  
$ clang -c -Wall -Werror -fpic amd_memcpy.c  
$ clang -shared -o libamd_memcpy.so amd_memcpy.o  
  

8.2. Building an application: 
Any application making use of “memcpy” of glibc can link the libamd_memcpy.so library with the below 

steps. 

$ export LD_LIBRARY_PATH=<path to library>:$LD_LIBRARY_PATH 

 

GCC Compiler:  
$ gcc -L<path to library> -Wall -o <exe> <app source files> -lamd_memcpy  

(or)  
AOCC Compiler:  
$ clang -L<path to library> -Wall -o <exe> <app source files> -lamd_memcpy  

  

8.3. Running the application: 
Run the application by setting the pre-loader environment variable. 

$ LD_PRELOAD=.<path_to_library>/libamd_memcpy.so <exe> –args 

https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

31 
 

[AMD Public Use] 

9. ScaLAPACK library for AMD 
 

ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed memory 

machines. It depends on external libraries including BLAS and LAPACK for Linear Algebra computations. 

AMD’s optimized version of ScaLAPACK enables using BLIS and libFLAME library that have optimized dense 

matrix functions and solvers for AMD EPYCTM processor family CPUs. 

9.1. Installation 
ScaLAPACK can be installed either from source or pre-built binaries. 

9.1.1. Build ScaLAPACK from source 
Github link: https://github.com/amd/scalapack 

Prerequisites: Building AMD optimized ScaLAPCK library requires linking to following Libraries installed 
either using pre-built binaries or built from source: 

• BLIS  

• libFLAME  

• A MPI library. In our experiments, we have validated with OpenMPI library 
 

1. git clone https://github.com/amd/scalapack.git 

2. $ cd scalapack 

3. Static Library 

With GCC(default) 

a. Edit ‘SLMake.inc’ which contains the build configuration. Update paths of AMD optimized BLIS 

and libFLAME libraries.  

 

BLASLIB_PATH   := <Set the Directory Path where BLIS is installed> 

LAPACKLIB_PATH := <Set the Directory Path where libFLAME is installed> 

 

BLASLIB       = $(BLASLIB_PATH)/libblis.a 

LAPACKLIB     = $(LAPACKLIB_PATH)/libflame.a 

 

b. Ensure following flags are enabled for GCC in SLMake.inc  

FCFLAGS       = -cpp -DUSE_BLAS -DF2C -O3 

c. Set PATH and LD_LIBRARY_PATH appropriately to the MPI installation. 

d. $ make clean 

e. $ make 

   

With AOCC 

a. Edit ‘SLMake.inc’ which contains the build configuration. Update paths of AMD optimized BLIS 

and libFLAME libraries.  

 

https://github.com/amd/libflame
https://github.com/amd/scalapack.git


AOCL User Guide 2.2 
 

32 
 

[AMD Public Use] 

BLASLIB_PATH   := <Set the Directory Path where BLIS is installed> 

LAPACKLIB_PATH := <Set the Directory Path where libFLAME is installed> 

 

BLASLIB       = $(BLASLIB_PATH)/libblis.a 

LAPACKLIB     = $(LAPACKLIB_PATH)/libflame.a 

 

b. Edit SLMake.inc to enable following preprocessors for AOCC build of ScaLAPACK  

FCFLAGS       = -cpp -DF2C_COMPLEX -DF2C -O3 

c. Set PATH and LD_LIBRARY_PATH appropriately to the MPI installation. 

f. $ make clean 

g. $ make 

Note: Another option to set the FCFLAGS as mentioned in (b) is to use the same while running 

make 

$ make FCFLAGS="-cpp -DF2C_COMPLEX -DF2C -O3" 

 

4. Shared library using CMake 

a. Create a new directory, say build  

$ mkdir build 

b. $ cd build 

c. With GCC 

$ cmake .. \ 

-DBUILD_SHARED_LIBS=ON \ 

-DBLAS_LIBRARIES="<path to BLIS library>/libblis.a" \  

-DLAPACK_LIBRARIES="<path to libFLAME library>/libflame.a" \  

-DCMAKE_C_COMPILER=mpicc \ 

-DCMAKE_Fortran_COMPILER=mpif90 \ 

-DUSE_OPTIMIZED_LAPACK_BLAS=OFF \ 

-DUSE_F2C=ON 

With AOCC 

$ cmake .. \ 

-DBUILD_SHARED_LIBS=ON \ 

-DBLAS_LIBRARIES="<path to BLIS library>/libblis.a" \  

-DLAPACK_LIBRARIES="<path to libFLAME library>/libflame.a" \  

-DCMAKE_C_COMPILER=mpicc \ 

-DCMAKE_Fortran_COMPILER=mpif90 \ 

-DUSE_OPTIMIZED_LAPACK_BLAS=OFF \ 

-DUSE_F2C=ON \ 

-DUSE_DOTC_WRAPPER=ON 

d. $ make -j 

e. On successful build, Shared library libscalapack.so will be copied in lib\libscalapack.so 

 



AOCL User Guide 2.2 
 

33 
 

[AMD Public Use] 

9.1.2. Using pre-built binaries 
AMD optimized ScaLAPACK library binaries for Linux can be found in the following links.  

https://github.com/amd/scalapack/releases  

https://developer.amd.com/amd-aocl/scalapack/ 

Also, AMD optimized ScaLAPACK binary can be installed from the AOCL master installer tar file available 

in the following link. The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, FFTW, 

LibM, aocl-sparse, Random Number Generator and AMD Secure RNG 

https://developer.amd.com/amd-aocl/ 

 

9.2. Usage 
Applications demonstrating usage of ScaLAPACK APIs can be found under the TESTING directory of 

ScaLAPACK source package. 

$ cd scalapack/TESTING  

https://github.com/amd/scalapack/releases
https://developer.amd.com/amd-aocl/scalapack/
https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

34 
 

[AMD Public Use] 

10. AMD Random Number Generator 
 

AMD Random Number Generator Library is a pseudorandom number generator library. It provides a 

comprehensive set of statistical distribution functions and various uniform distribution generators (base 

generators) including Wichmann-Hill and Mersenne Twister. The library contains five base generators and 

twenty-three distribution generators. In addition, users can supply a custom-built generator as the base 

generator for all the distribution generators. 

10.1. Installation 
AMD Random Number Generator binary for Linux can be found in the following link. 

https://developer.amd.com/amd-aocl/rng-library/ 

Also, the Random Number Generator binary can be installed from the AOCL master installer tar file 

available in the following link. The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, 

LibM, ScaLAPACK, FFTW, aocl-sparse and AMD Secure RNG 

https://developer.amd.com/amd-aocl/ 

10.2. Usage 
To use AMD Random Number Generator library in your application, you just need to link the library while 

building the application 

Following is a sample Makefile for an application that uses AMD Random Number Generator library. 

RNGDIR := <path-to-Random-Number-Generator-library> 

CC := gcc 

CFLAGS := -I$(RNGDIR)/include  

CLINK := $(CC) 

CLINKLIBS := -lgfortran -lm -lrt -ldl 

LIBRNG := $(RNGDIR)/lib/librng_amd.so 

//Compile the program 

$(CC) -c $(CFLAGS) test_rng.c -o test_rng.o 

//Link the library 

$(CLINK) test_rng.o $(LIBRNG) $(CLINKLIBS) -o test_rng.exe 

Refer to the examples directory under the AMD Random Number Generator library install location for 

illustration.  

https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

35 
 

[AMD Public Use] 

11. AMD Secure RNG 
The AMD Secure Random Number Generator (RNG) is a library that provides APIs to access the 

cryptographically secure random numbers generated by AMD’s hardware-based random number 

generator implementation. These are highly quality robust random numbers designed to be suitable for 

cryptographic applications. The library makes use of RDRAND and RDSEED x86 instructions exposed by 

the AMD hardware. Applications can just link to the library and invoke either a single or a stream of 

random numbers. The random numbers can be of 16-bit, 32-bit, 64-bit or arbitrary size bytes. 

11.1. Installation 
AMD Secure RNG library can be downloaded from following link.  

https://developer.amd.com/amd-aocl/rng-library/  

Also, AMD Secure RNG can be installed from the AOCL master installer tar file available in the following 

link. The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, LibM, ScaLAPACK, FFTW, 

aocl-sparse and AMD Random Number Generator library. 

https://developer.amd.com/amd-aocl/  

11.2. Usage 
Following are the source files included in the AMD Secure RNG package 

1. include/secrng.h : Header file that has declaration of all the library APIs.  
2. src_lib/secrng.c : Has the implementation of the APIs 
3. src_test/secrng_test.c : Test application to test all the library APIs 
4. Makefile : To compile the library and test application 
 
Application developers can use the included makefile to compile the source files and generate dynamic 
and static libraries. They can then link it to their application and invoke the required APIs.  
 
Below code snippet shows sample usage of the library API. In this example, get_rdrand64u is invoked to 
return a single 64-bit random value and get_rdrand64u_arr is used to return an array of 1000 64-bit 
random values. 
  

https://developer.amd.com/amd-aocl/rng-library/
https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

36 
 

[AMD Public Use] 

//Check for RDRAND instruction support 
int ret = is_RDRAND_supported(); 
int N = 1000; 
 
//If RDRAND supported 
if (ret == SECRNG_SUPPORTED) 
{ 
   uint64_t rng64; 
 
   //Get 64-bit random number 
   ret = get_rdrand64u(&rng64, 0); 
 
   if (ret == SECRNG_SUCCESS) 
     printf("RDRAND rng 64-bit value %lu\n\n", rng64); 
   else 
     printf("Failure in retrieving random value using RDRAND!\n"); 
 
   //Get a range of 64-bit random values 
   uint64_t* rng64_arr = (uint64_t*) malloc(sizeof(uint64_t) * N); 
 
   ret = get_rdrand64u_arr(rng64_arr, N, 0); 
 
   if (ret == SECRNG_SUCCESS) 
   { 
     printf("RDRAND for %u 64-bit random values succeeded!\n", N); 
     printf("First 10 values in the range : \n"); 
     for (int i = 0; i < (N > 10? 10 : N); i++) 
            printf("%lu\n", rng64_arr[i]); 
   } 
   else 
     printf("Failure in retrieving array of random values using RDRAND!\n");  
} 
else 
{ 
     printf("No support for RDRAND!\n"); 
} 

  



AOCL User Guide 2.2 
 

37 
 

[AMD Public Use] 

12. AOCL-Sparse 
aocl-sparse is a library that contains basic linear algebra subroutines for sparse matrices and vectors 

optimized for AMD EPYC family of processors. It is designed to be used with C and C++. The current 

functionality of aocl-sparse is organized in the following categories: 

• Sparse Level 2 Functions describe operations between a matrix in sparse format and a vector in 

dense format.  

• Sparse Auxiliary Functions describe available helper functions that are required for subsequent 

library calls. 

12.1. Storage Formats 

aocl-sparse supports following storage formats for sparse matrices: 

12.1.1. CSR storage format 

The Compressed Sparse Row (CSR) storage format represents a m*n matrix by 

m number of rows (integer). 

n number of columns (integer). 

nnz number of non-zero elements (integer). 

csr_val array of nnz  elements containing the data (floating point). 

csr_row_ptr array of m+1  elements that point to the start of every row (integer). 

csr_col_ind array of nnz  elements containing the column indices (integer). 

The CSR matrix is expected to be sorted by column indices within each row. Furthermore, each pair of 

indices should appear only once. Consider the following 3×5 matrix and the corresponding CSR 

structures, with m=3, n=5 and nnz=8 using zero based indexing: 
 

 

csr_val[8] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0} 

csr_row_ptr[4] = {0, 3, 5, 8} 

csr_col_ind[8] = {0, 1, 3, 1, 2, 0, 3, 4} 

 



AOCL User Guide 2.2 
 

38 
 

[AMD Public Use] 

 

12.1.2. ELLPACK storage format 

The Ellpack-Itpack (ELL) storage format represents a m×n matrix by 

m number of rows (integer). 

n number of columns (integer). 

ell_width maximum number of non-zero elements per row (integer) 

ell_val array of m times ell_width elements containing the data (floating point). 

ell_col_ind array of m times ell_width elements containing the column indices (integer). 

The ELL matrix is assumed to be stored in row-major format. Rows with less than ell_width  non-zero 

elements are padded with zeros ( ell_val ) and −1 ( ell_col_ind ). Consider the following 3×5 matrix and 

the corresponding ELL structures, with m=3,n=5 and ell_width=3 using zero based indexing: 

 

 

ell_val[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 6.0, 7.0, 8.0} 

ell_col_ind[9] = {0, 1, 3, 1, 2, -1, 0, 3, 4} 

12.2. Types 

 

Type name Description 

aoclsparse_mat_descr 

Structure holding all properties of a matrix. It must be initialized 

using aoclsparse_create_mat_descr() and the returned descriptor must 

be passed to all subsequent library calls that involve the matrix. It should 

be destroyed at the end using aoclsparse_destroy_mat_descr() 

aoclsparse_index_base 
 

Specify the index base of the indices. For a given aoclsparse_mat_descr, 

the aoclsparse_index_base can be set using 

aoclsparse_set_mat_index_base(). The current aoclsparse_index_base of 

a matrix can be obtained by aoclsparse_get_mat_index_base(). 

Values: 



AOCL User Guide 2.2 
 

39 
 

[AMD Public Use] 

Enumerator aoclsparse_index_base_zero = 0 zero 

based indexing (default) 

Enumerator aoclsparse_index_base_one = 1 one based 

indexing. 

The current release supports only zero-based indexing 

aoclsparse_matrix_type 

Specify the type of a matrix. For a given aoclsparse_mat_descr, the 

aoclsparse_matrix_type can be set using aoclsparse_set_mat_type(). The 

current aoclsparse_matrix_type of a matrix can be obtained by 

aoclsparse_get_mat_type().  

Values: 

enumerator aoclsparse_matrix_type_general = 0 

(default) 

enumerator aoclsparse_matrix_type_symmetric = 1 

enumerator aoclsparse_matrix_type_hermitian = 2 

enumerator aoclsparse_matrix_type_triangular = 3 

The current release supports only general matrix types 

aoclsparse_operation 

Specify whether the matrix is to be transposed or not. 

Values: 

enumerator aoclsparse_operation_none = 111 -

>Operate with matrix (default) 

enumerator aoclsparse_operation_transpose = 112 -> 

Operate with transpose. 

enumerator 

aoclsparse_operation_conjugate_transpose = 113 -> 

Operate with conj. transpose. 

The current release supports only aoclsparse_operation_none 

aoclsparse_status 

List of aoclsparse status codes definition  

Values: 

enumerator aoclsparse_status_success = 0  

enumerator aoclsparse_status_not_implemented = 1 

enumerator aoclsparse_status_invalid_pointer = 2 



AOCL User Guide 2.2 
 

40 
 

[AMD Public Use] 

enumerator aoclsparse_status_invalid_size = 3 

enumerator aoclsparse_status_internal_error  = 4, 

enumerator aoclsparse_status_invalid_value = 5 

 

12.3. Sparse functions 

This release of aocl-sparse supports following Sparse functions 

12.3.1. Sparse Level 2 Functions 

Function name Description 

aoclsparse_Xcsrmv() 

Performs following operation:  

y :=α⋅op(A)⋅x+β⋅y   
where A is a a sparse m×n matrix, defined in CSR storage format, x dense 
vector, y result dense vector. α and β are scalars  
Datatypes supported: Single and double precision. 

aoclsparse_Xellmv() 

Performs following operation:  

y :=α⋅op(A)⋅x+β⋅y 
where A is a a sparse m×n matrix, defined in ELLPACK storage format, x 
dense vector, y result dense vector. α and β are scalars  
Datatypes supported: Single and double precision. 

 

Notes on current AOCL-Sparse release: 

1. This release supports only general matrices. Symmetric and triangular matrices should be 

converted into general matrices before invoking these API’s 

2. For CSRMV and ELLMV (y:=α⋅op(A)⋅x+β⋅y), op(A) = Transpose/Conjugate of (A) is not supported 

in the current release. 

3. This release supports only zero-based indexing of matrices in CSR and ELLPACK formats. 

12.3.2. Auxiliary Functions 

Function name Description 

aoclsparse_get_version() Gets the aoclSPARSE library version number. 

aoclsparse_create_mat_d

escr() 

Creates a matrix descriptor. It 
initializes aoclsparse_matrix_type to aoclsparse_matrix_type_general and 
aoclsparse_index_base to aoclsparse_index_base_zero. 

https://rocsparse.readthedocs.io/en/master/usermanual.html#group__types__module_1gaa7d5259898cb2181f3fb785246962d75


AOCL User Guide 2.2 
 

41 
 

[AMD Public Use] 

aoclsparse_destroy_mat_

descr() 
Destroys a matrix descriptor and releases all resources used by the 
descriptor. 

aoclsparse_set_mat_index

_base() 
Sets the index base of a matrix descriptor. Valid options 
are aoclsparse_index_base_zero or aoclsparse_index_base_one. 

aoclsparse_get_mat_inde

x_base() 

Returns the index base of a matrix descriptor. 

aoclsparse_set_mat_type(

) 

Sets the matrix type of a matrix descriptor. Valid matrix types 
are aoclsparse_matrix_type_general, aoclsparse_matrix_type_symmetric, 
aoclsparse_matrix_type_hermitian or aoclsparse_matrix_type_triangular. 

aoclsparse_get_mat_type(

) 

Returns the matrix type of a matrix descriptor. 

 

12.4. Installation 

12.4.1. Build aocl-sparse from source 

The following instructions can be used to build aocl-sparse from source. Furthermore, the following 
compile-time dependencies must be met 

• git 

• CMake 3.5 or later 

• libboost-program-options (optional, for running tests) 

 
Download aocl-sparse 

Download the latest release of aocl-sparse from the link  
https://github.com/amd/aocl-sparse  
 

$ git clone https://github.com/amd/aocl-sparse.git 
$ cd aocl-sparse 

 

Build aocl-sparse 

Below are steps to build different packages of the library, including dependencies and clients. aocl-

sparse can be built using the following commands: 

# Create and change to build directory 
$ mkdir -p build/release ; cd build/release 
 

https://git-scm.com/
https://cmake.org/
https://www.boost.org/
https://github.com/amd/aocl-sparse


AOCL User Guide 2.2 
 

42 
 

[AMD Public Use] 

# With GCC(Default) 
# Default install path is /opt/aoclsparse/, use -DCMAKE_INSTALL_PREFIX=<path> to choose custom path 
$ cmake ../.. 
 
# With AOCC 
# Default install path is /opt/aoclsparse/, use -DCMAKE_INSTALL_PREFIX=<path to install>  
$ cmake ../.. -DCMAKE_CXX_COMPILER=clang++ 
 
# Compile aocl-sparse library 
$ make -j$(nproc) 
 
# Install aocl-sparse to /opt/aoclsparse/ 
$ make install 

 

Boost is required in order to build aocl-sparse test application. aocl-sparse with dependencies and 
clients can be built using the following commands: 
 

# Install boost on e.g. Ubuntu 
$ apt install libboost-program-options-dev 
 
# Change to build directory 
$ cd build/release 
 
# With GCC(Default) 
# Default install path is /opt/aoclsparse, use -DCMAKE_INSTALL_PREFIX=<path> to choose custom path 
$ cmake ../.. -DBUILD_CLIENTS_BENCHMARKS=ON 
 
# With AOCC 
# Default install path is /opt/aoclsparse/, use -DCMAKE_INSTALL_PREFIX=<path> to adjust it 
$ cmake ../.. -DCMAKE_CXX_COMPILER=clang++ \ 
 -DBUILD_CLIENTS_BENCHMARKS=ON 
 
# Compile aocl-sparse library 
$ make -j$(nproc) 
 
# Install aocl-sparse to /opt/aoclsparse 
$ make install 

12.4.2. Simple Test 

You can test the installation by running one of the aocl-sparse examples, after successfully compiling the 
library with benchmarks. 

# Navigate to clients binary directory 
$ cd aocl-sparse/build/release/clients/staging 
 
# Execute aocl-sparse example by running CSR-SPMV on randomly generated matrix 
$ ./aoclsparse_bench -f csrmv --precision d -m 1000 -n 1000 -z 4000 -v 1 

 



AOCL User Guide 2.2 
 

43 
 

[AMD Public Use] 

12.4.3. Using prebuilt libraries 

AMD optimized aocl-sparse library binaries for Linux can be found in the following links.  

https://github.com/amd/aocl-sparse/releases  

https://developer.amd.com/amd-aocl/aocl-sparse/  

Also, aocl-sparse binary can be installed from the AOCL master installer tar file available in the following 
link.  
https://developer.amd.com/amd-aocl/  
 
The tar file includes pre-built binaries of other AMD Libraries BLIS, libFLAME, LibM, FFTW, ScaLAPACK, 
Random Number Generator and AMD Secure RNG. 

12.5. Usage 

Sample programs demonstrating usage of aocl-sparse APIs and performance benchmarking can be found 

under the tests directory of aocl-sparse source. 

$ cd aocl-sparse/test/ 

Use by Applications 

To use aocl-sparse in your application, you just need to link the library while building the application 

Example:  
With Static Library:  

g++ sample_csrmv.cpp -I<path-to-aocl-sparse-header>  <path-toaocl-sparse-library>/libaoclsparse.a -o 
test_aoclsparse.x 

With Dynamic Library: 

g++ sample_csrmv.cpp -I<path-to- aocl-sparse-header>  -L<path-to aocl-sparse-library>/libaoclsparse.so 
-o test_aoclsparse.x 

Below is a sample cpp file depicting usage of dcsrmv API of aocl-sparse 

//file :sample_csrmv.cpp 
#include "aoclsparse.h" 
#include <iostream> 
 
int main(int argc, char* argv[]) 
{ 
    aoclsparse_int         M         = 5; 
    aoclsparse_int         N         = 5; 
    aoclsparse_int         nnz       = 8; 
    aoclsparse_operation   trans     = aoclsparse_operation_none; 
 
    double alpha = 1.0; 
    double beta  = 0.0; 
 
    // Print aoclsparse version 
    aoclsparse_int ver; 

https://github.com/amd/aocl-sparse/releases
https://developer.amd.com/amd-aocl/aocl-sparse/
https://developer.amd.com/amd-aocl/


AOCL User Guide 2.2 
 

44 
 

[AMD Public Use] 

    aoclsparse_get_version(&ver); 
    std::cout << "aocl-sparse version: " << ver / 100000 << "." << ver / 100 % 1000 << "." 
              << ver % 100 << std::endl; 
 
    // Create matrix descriptor 
    aoclsparse_mat_descr descr; 
    // aoclsparse_create_mat_descr set aoclsparse_matrix_type to aoclsparse_matrix_type_general 
    // and aoclsparse_index_base to aoclsparse_index_base_zero. 
    aoclsparse_create_mat_descr(&descr); 
 
    // Initialise matrix 
    aoclsparse_int csr_row_ptr[M+1] = {0, 2, 3, 4, 7, 8}; 
    aoclsparse_int csr_col_ind[nnz]= {0, 3, 1, 2, 1, 3, 4, 4}; 
    double         csr_val[nnz] = {1 , 6 , 1.050e+01, 1.500e-02, 2.505e+02, -2.800e+02 , 3.332e+01 , 
1.200e+01}; 
    // Initialise vectors 
    double x[N] = { 1.0, 2.0, 3.0, 4.0, 5.0}; 
    double y[M]; 
 
    std::cout << "Invoking aoclsparse_dcsrmv.."; 
    //Invoke SPMV API for CSR storage format(double precision) 
    aoclsparse_dcsrmv(trans, 
                      &alpha, 
                      M, 
                      N, 
                      nnz, 
                      csr_val, 
                      csr_col_ind, 
                      csr_row_ptr, 
                      descr, 
                      x, 
                      &beta, 
                      y); 
    std::cout << "Done." << std::endl; 
    std::cout << "Output Vector:" << std::endl; 
    for(aoclsparse_int i=0;i < M; i++) 
        std::cout << y[i] << std::endl; 
 
    aoclsparse_destroy_mat_descr(descr); 
    return 0; 
} 

Example compilation command, for the above code, with gcc compiler: 

g++ sample_csrmv.cpp -I<path-to- aocl-sparse-header>  -L <path-to aocl-sparse-library> -laoclsparse -o 
test_aoclsparse.x 

 



AOCL User Guide 2.2 
 

45 
 

[AMD Public Use] 

13. AOCL Spack Recipes 
 

Spack is a package manager for supercomputers, Linux, and macOS. It makes installing scientific 

software easy. With Spack, one can build a package with multiple versions, configurations, platforms, 

and compilers, and all these builds can coexist on the same machine.  

Note 1: Starting AOCL 2.2 release, Spack recipes for AMD optimized libraries of BLIS, libFLAME and FFTW 
will be available in new GitHub repository https://github.com/amd/spack. The earlier AMD Spack Github 
repo https://github.com/amd/aocl-spack is deprecated.  
 
Note 2: AOCL 2.2 packages are tested using Spack release version - v0.14 
 

13.1. AOCL Spack Environment Setup 
 
Clone AMD Spack GitHub repository 
 
$ git clone https://github.com/amd/spack.git 

Set environment path for Spack shell. 
 
$ export SPACK_ROOT=/path/to/spack 

$ source $SPACK_ROOT/share/spack/setup-env.csh 

13.2. Install AOCL packages 
 
Spack recipes for AMD optimized libraries of BLIS, libFLAME and FFTW are available in GitHub repository 
https://github.com/amd/spack.  
 
Current release of AOCL supports install of AMD optimized libraries of BLIS, libFLAME and FFTW. 

13.2.1. Install amdblis Spack package 
$ spack install amdblis 

 

13.2.2. Install amdlibflame Spack package 
$ spack install amdlibflame 

 

13.2.3. Install amdfftw Spack package 
$ spack install amdfftw 

 

https://spack.io/
https://github.com/amd/spack
https://github.com/amd/aocl-spack
https://github.com/amd/spack


AOCL User Guide 2.2 
 

46 
 

[AMD Public Use] 

13.3. Spack useful commands  
Here are few useful Spack commands to get additional information on the spack packages. Basic Spack 

details on the link. 

Display BLIS package info and supported versions 
$ spack info amdblis 

 
Install BLIS  
$ spack install amdblis 

 
Verify installed contents 
$ spack spec amdblis 

  
Go to BLIS install-directory 
$ spack cd -i amdblis 

 
Under BLIS installation directory, user will get .spack directory which contains below files or directories: 
. spack-build-env.txt - captures build environment details 
. spack-build-out.txt - captures build output 
. spec.yaml - captures installed version, arch, compiler, namespace, configure parameters and 
package hash value 
. repos  - directory containing spack recipe and repo namespace files 
 
To install other versions of amdblis package, use @<version-number> 
$ spack install -v amdblis@2.1 

 

To check supported versions, run the command 
$ spack versions amdblis 

 

Build and install BLIS 2.2 with OpenMP multithreading: 
$ spack install amdblis@2.2 threads=openmp  

 

13.4. Uninstall AOCL Packages 
Uninstall BLIS default package 
$ spack uninstall amdblis 

 
Uninstall libFLAME default package 
$ spack uninstall amdlibflame 

 
Uninstall FFTW default package 
$ spack uninstall amdfftw 

 
Uninstall BLIS based out of different versions: 
$ spack uninstall amdblis@2.0 

 
Uninstall BLIS based out of hash values: 
$ spack uninstall amdblis/43reafx 

https://spack.readthedocs.io/en/latest/basic_usage.html
mailto:amdblis@2.1
mailto:amdblis@2.1


AOCL User Guide 2.2 
 

47 
 

[AMD Public Use] 

14. Applications integrated to AOCL 
This section provides examples on how AOCL can be linked with some of the important High Performance 

Computing (HPC) and cpu-intensive applications and libraries. 

14.1. High-Performance LINPACK Benchmark (HPL) 
HPL[3] is a software package that solves a (random) dense linear system in double precision (64 bits) 

arithmetic on distributed-memory computers. HPL is a LINPACK benchmark which measures the floating 

point rate of execution for solving a linear system of equations. 

An optimized HPL binary for AMD EPYC CPUs is available under the download section of 
https://developer.amd.com/amd-aocl/blas-library/.  
 
 

 

  

https://developer.amd.com/amd-aocl/blas-library/


AOCL User Guide 2.2 
 

48 
 

[AMD Public Use] 

15. AOCL Tuning Guidelines 
 

This section provides tuning recommendations for AOCL to derive best optimal performance on AMD 

EPYCTM and future generation architectures. 

15.1. BLIS DGEMM multi-thread tuning  
AMD Rome 

To achieve best DGEMM multi-thread performance on AMD Rome processors, follow the below steps. 

Thread Size upto 16 (< 16) :  

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT>./test_gemm_blis.x 

Thread Size above 16 (>= 16) 

OMP_PROC_BIND=spread OMP_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x 

AMD Naples 

To achieve best DGEMM multi-thread performance on AMD Naples processors, follow the below steps.  

The header file, bli_family_zen.h located under BLIS source directory \\blis\config\zen defines certain 

macros that help control block sizes used by BLIS. Enabling and disabling these macros causes choosing 

the appropriate block sizes that BLIS operates on.  

The required tuning settings vary depending on the number threads that the application linked to BLIS 

runs. 

Thread Size upto 16 (< 16) 

1. Enable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h 

2. Compile BLIS with multithread option as mention in section Multi-threaded BLIS 

3. Link generated BLIS library to your application and execute 

4. Run the application 

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> ./test_gemm_blis.x 

Thread Size above 16 (>= 16) 

1. Disable the macro BLIS_ENABLE_ZEN_BLOCK_SIZES in the file bli_family_zen.h 

2. Compile BLIS with multithread option as mentioned in section Multi-threaded BLIS 

3. Link generated BLIS library to your application  

4. Set the following OpenMP and memory interleaving environment settings 

OMP_PROC_BIND=spread 

BLIS_NUM_THREADS = x     // x> 16 

numactl --interleave=all 

5. Run the application 

Example:  

OMP_PROC_BIND=spread BLIS_NUM_THREADS=<NT> numactl --interleave=all ./test_gemm_blis.x 



AOCL User Guide 2.2 
 

49 
 

[AMD Public Use] 

15.2. BLIS DGEMM block size tuning for single and multi-instance mode 
BLIS DGEMM performance is largely impacted by the block sizes used by BLIS. A matrix multiplication of 

large m, n and k dimensions is partitioned into sub-problems of specified block sizes[4].  

Many high-performance computing (HPC) and scientific applications and benchmarks run on high end 

cluster of machines, each with multiple cores. They run programs with multiple instances which could be 

through Message Passing Interface (MPI) based APIs or separate instances of each program. Depending 

on whether the application using BLIS is running in multi-instance mode or single instance, the block sizes 

specified would have an impact on the overall performance. 

The default values for the block size under AMD BLIS github repo is set to extract best performance for 

such HPC applications/benchmarks which use single-threaded BLIS and run in multi-instance mode on 

AMD EPYC “Zen” core processors. However, if your application runs as a single instance, the block sizes 

for optimal performance will vary.  

Following settings will help you choose the optimal values for the block sizes based on the way application 

is run 

AMD Rome 

1. Open the file bli_family_zen2.h under BLIS source  

$ cd “config/zen2/ bli_family_zen2.h“ 

 

2. For applications/benchmarks running in multi-instance mode and using multi-threaded BLIS, ensure 

the macro, AOCL_BLIS_MULTIINSTANCE is set to 0. As of AMD BLIS 2.x release, this is the default 

setting. HPL benchmark is found to generate better performance numbers using this setting when 

using multi-threaded BLIS. 

#define AOCL_BLIS_MULTIINSTANCE         0 

 

3. For applications/benchmarks running in multi-instance mode and using single-threaded BLIS, set the 

macro, AOCL_BLIS_MULTIINSTANCE to 1. Recompile BLIS source and link it to application. HPL 

benchmark is found to generate better performance numbers using this setting when using single-

threaded BLIS. 

AMD Naples 

1. Open the file bli_cntx_init_zen.c under BLIS source  

$ cd “config/zen/bli_family_zen.h“ 

 

2. Ensure the macro, BLIS_ENABLE_ZEN_BLOCK_SIZES is defined 

#define BLIS_ENABLE_ZEN_BLOCK_SIZES 

 

3. Multi-instance mode: 

For applications/benchmarks running in multi-instance mode, ensure the macro 

BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 0. As of AMD BLIS 2.x release, this is the 

default setting 

https://github.com/amd/blis


AOCL User Guide 2.2 
 

50 
 

[AMD Public Use] 

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         0 

 

The optimal block sizes for this mode on AMD EPYC are defined in the file 

“config/zen/bli_cntx_init_zen.c” 

 bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  240,   144,    72 ); 

 bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  512,   256,   256 ); 

 bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  2040,  4080,  4080 ); 

 

4. Single instance mode: 

For applications running as a single instance, ensure the macro 

BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES is set to 1. 

#define BLIS_ENABLE_SINGLE_INSTANCE_BLOCK_SIZES         1 

 

The optimal block sizes for this mode on AMD EPYC are defined in the file 

“config/zen/bli_cntx_init_zen.c” 

       bli_blksz_init_easy( &blkszs[ BLIS_MC ],   144,  510,   144,    72 ); 

       bli_blksz_init_easy( &blkszs[ BLIS_KC ],   256,  1024,   256,   256 ); 

       bli_blksz_init_easy( &blkszs[ BLIS_NC ],  4080,  4080,  4080,  4080 ); 

15.3. Performance suggestions for skinny Matrices 
BLIS provides selective packing for GEMM, when one- or two-dimensions of matrix is exceedingly small. 

This feature is only available when “sup handling” is enabled (enabled by default). 

C = beta*C + alpha*A*B 

Dimension (Dim) of A – m x k          Dim(B) – k x n            Dim(c) – m x n 

Assume row-major. 

IF Dim(A) >> Dim(B) 

$BLIS_PACK_A=1 ./test_gemm_blis.x – will give better performance. 
IF Dim(A) << Dim(B) 

$BLIS_PACK_B=1 ./test_gemm_blis.x – will give better performance. 

 

  



AOCL User Guide 2.2 
 

51 
 

[AMD Public Use] 

15.4. AMD Optimized FFTW Tuning Guidelines 
Below are the tuning guidelines to get best performance out of AMD Optimized FFTW. 

1. Use the configure option “--enable-amd-opt” to build the library targeted. This option enables 

all the improvements and optimizations meant for AMD EPYC CPUs. 

2. When enabling AMD CPU specific improvements with configure option “--enable-amd-opt”, do 

not use the configure option “--enable-generic-simd128” or “--enable-generic-simd256”. 

3. An optional configure option “--enable-amd-trans” is provided that may benefit performance of 

transpose operations in case of very large FFT problem sizes. This feature is to be used only 

when running as single thread and single instance mode. 

4. Use the configure option "--enable-amd-mpifft" to enable MPI FFT related optimizations. This is 

provided as an optional parameter and would benefit most of the MPI problem types and sizes. 

5. For best performance, please use the “-opatient” planner flag of FFTW. 

Example of running FFTW bench test application with “-opatient” planner flag is as below:- 

$ ./bench -opatient -s icf65536   

where -s option is for speed/performance run and icf options stand for in-place, complex data-

type, forward transform. 

  



AOCL User Guide 2.2 
 

52 
 

[AMD Public Use] 

16. Appendix 
 

16.1. Check AMD Server Processor Architecture 
 

To check if your AMD CPU is of Naples or Rome based architecture, perform the following steps on Linux  

1. Run lscpu command 

$ lscpu 

 

2. Check the values “CPU family” and “Model” fields 

 

3. For Naples 

cpu family    : 23 

model           : Values in the range <1 – 47> 

 

4. For Rome 

cpu family    : 23 

model           : Values in the range < 48 – 63> 

 

 

 

  



AOCL User Guide 2.2 
 

53 
 

[AMD Public Use] 

17. Technical Support and Forums 
 

For questions and issues about AOCL, one can reach us on the following email-id 

toolchainsupport@amd.com  

 

 

  

mailto:toolchainsupport@amd.com


AOCL User Guide 2.2 
 

54 
 

[AMD Public Use] 

18. References 
1. https://developer.amd.com/amd-aocl/  

2. http://www.netlib.org/scalapack/ 

3.  http://www.netlib.org/benchmark/hpl/  

4. https://dl.acm.org/citation.cfm?id=2764454 

5. https://github.com/flame/blis 

6. http://fftw.org/ 

  

https://developer.amd.com/amd-aocl/
http://www.netlib.org/scalapack/
http://www.netlib.org/benchmark/hpl/
https://dl.acm.org/citation.cfm?id=2764454
https://github.com/flame/blis
http://fftw.org/


AOCL User Guide 2.2 
 

55 
 

[AMD Public Use] 

DISCLAIMER  
The information contained herein is for informational purposes only, and is subject to change without notice. While every 
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and 
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, 
Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, 
and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for 
particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No 
license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and 
limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in 
AMD's Standard Terms and Conditions of Sale.  
AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product 

names used in this publication are for identification purposes only and may be trademarks of their respective companies.  

© 2018-20 Advanced Micro Devices, Inc. All rights reserved. 

 


