
AOCL Crypto IPP Plugin Documentation
IPP Plugin Documentation

Abhiram S abhiram.s@amd.com

mailto:abhiram.s@amd.com

Contents

I Key Terminologies 3

II Introduction 5

1 About IPPCP 6

2 Usage of IPP-Plugin - Brief 7
2.1 Building examples . 7
2.2 Preloading IPP-Compat Lib . 7

III Preloading 8

3 Temporary Preloading 10

4 Permanent Preloading 11

5 Precedence of Loading 12

6 Editing linkage 13
6.1 Important Arguments of patchelf . 13

7 Preloading IPP-CP wrapper plugin. 14

IV Appendix 15

8 Compiling and installing IPPCP 16

1

List of Figures

2

Part I

Key Terminologies

3

1) IPP-CP - Intel Performance Primitives - CP
2) Asymmetric Cryptography - Cryptography which uses single key
3) Symmetric Cryptography - Cryptographywhich uses two keys, one private key and one public
key for encryption and decryption.

4) Hashing - Creating a value which represents a data which is a trap door(cant be de-
coded/converted back to the original file), which is mainly used for checking the integrity.

5) RNG - Random Number Generator
6) BRNG - Base Random Number Generator
7) PRNG - Pseudo Random Number Generator
8) AES - Advanced Encryption Standard

4

Part II

Introduction

5

Chapter 1

About IPPCP

IPP-CP is an opensource cryptographic primitives library. It is specifically optimized for Intel CPU.

It supports Symmetric Cryptography, Hashing Primitives, Authentication Primitives, Public Key
(Asymmetric) Cryptography.

Key algorithms supported by IPP-CP are as follows.

• Symmetric Cryptography Primitive Functions:
– AES (ECB, CBC, CTR, OFB, CFB, XTS, GCM, CCM, SIV)
– SM4 (ECB, CBC, CTR, OFB, CFB, CCM)
– TDES (ECB, CBC, CTR, OFB, CFB)
– RC4

• One-Way Hash Primitives:
– SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
– MD5
– SM3

• Data Authentication Primitive Functions:
– HMAC
– AES-CMAC

• Public Key Cryptography Functions:
– RSA, RSA-OAEP, RSA-PKCS_v15, RSA-PSS
– DLP, DLP-DSA, DLP-DH
– ECC (NIST curves), ECDSA, ECDH, EC-SM2

• Multi-buffer RSA, ECDSA, SM3, x25519
• Finite Field Arithmetic Functions
• Big Number Integer Arithmetic Functions
• PRNG/TRNG and Prime Numbers Generation

To read more about IPP-CP click here

Currently used version of IPP-CP is ipp-crypto_2021_6 when this document was written.

6

https://github.com/intel/ipp-crypto/blob/develop/README.md

Chapter 2

Usage of IPP-Plugin - Brief

2.1 Building examples
To build examples, simply invoke make -j from the root of the package directory. Set
LD_LIBRARY_PATH properly to lib directory in the package to avoid loader issues while executing.
Executables for examples should be found in bin directory after make is successful.

For more information please read BUILD_Examples.md

2.2 Preloading IPP-Compat Lib

export LD_LIBRARY_PATH=/path/where/libalcp/is:$LD_LIBRARY_PATH
LD_PRELOAD=/path/to/libipp-compat.so ./program_to_run

• Export Path should be a directory.
• Preload Path should be the .so file itself.
• Any command can follow LD_PRELOAD.

It is explained better in Preloading_IPP (Preloading IPP-CP wrapper plugin)

7

BUILD_Examples.md

Part III

Preloading

8

When you specify LD_PRELOAD=/path/to/somelib.so, loader will load this library first before load-
ing the actual program into memory. This dynamic linking in any program which is running with
preloaded library will try to find the symbol in preloaded library first before attempting to search
LD_LIBRARY_PATH for the library specified in the ELF executable. This means even though an-
other lib which may have same symbol is available, preloaded library overrides the linkage during
run time.

To read more about preloading, please check ld.so man page and ld man page.

9

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://linux.die.net/man/1/ld

Chapter 3

Temporary Preloading

To preload temporarily, one can modify the environment variable LD_PRELOAD. This can be setup
in bashrc or zshrc or any rc file of your shell leading to semi permanent preloading. Even if we can
setup the same concept in /etc/environment, for a more permanent setup, LD_PRELOAD is not
recommended.

LD_PRELOAD can be used for on demand preloading to test out if preloading works as indented.
Temporary preloading is also recommended because it does not modify the loader parameters for
programs that do not require the preload.

If you are looking for a more perminant setup which is not recommended, you can look below.

10

Chapter 4

Permanent Preloading

Warning: This type of preloading may break some other program which may load symbols with
same name and parameter list as the preloaded library. Only use this if you know what you are
doing and is really sure that there would be no such conflicts.

To preload permanently, you would need to either set LD_PRELOAD environment globally as dis-
cussed above but its not the way it is supposed to be done.

In order to preload globally there is a config file /etc/ld.so.preload this file by default do not
exist in any machine as its not a good idea to preload library globally. You can create/edit this file
and add path of each .so file you wish to preload line by line.

Example /etc/ld.so.preload

/path/to/somelib.so
/path/to/someotherlib.so

Lines are parsed in order that means somelib.so will override all the symbols exported by
someotherlib.so.

11

Chapter 5

Precedence of Loading

Precedence of loading is determined by is it preloaded, does the lib come first in the list.

Let’s say for example you are preloading lib1.so lib2.so while loading lib3.so lib4.so be-
cause inside elf its specified to load it.

LD_LIBRARY_PATH=/some/path/lib1.so:/some/path/lib2.so ./someexecutable

If someexecutable is linked to lib3.so and lib4.so in order. Then the symbol lookup order will be

1) lib1.so
2) lib2.so
3) lib3.so
4) lib4.so

You can say that lib1.so and lib2.so will override both lib3.so and lib4.so as they are
preloaded. lib1.so will override lib2.so as its the first in the list. lib3.so will override lib4.so
as lib3.so comes first.

12

Chapter 6

Editing linkage

In Linux you can edit the linkage of an executable, this can be used to remove the linkage to
existing library to replace with a better version of it or some other library which exports the same
symbols and does the same thing as the other library but better.

Editing linkage is not recommended if the programhasmultiple executables, as every executable’s
linkage needs to be edited.

In order to edit the linkage of a program or library, you need to install a package known as
patchelf.

6.1 Important Arguments of patchelf
1. --remove-needed - removed a lib as needed, thereby loader does not load it anymore.
2. --add-needed - add a lib as needed, loader loads if any symbols are there in this which can
be linked during run time then it will link it.

3. --replace-needed - replaces already needed lib with a new lib, this can be seen as a com-
bination of above two arguments.

To know more about the parameters do

patchelf --help

or click here

13

https://man.archlinux.org/man/community/patchelf/patchelf.1.en

Chapter 7

Preloading IPP-CP wrapper plugin.

Assuming that you are in the package root directory and you have IPPCP setup and in the environ-
ment.

LD_PRELOAD=$PWD/lib/libipp-compat.so executable_path

Example with Intel IPP AES CTR Encryption.

wget https://raw.githubusercontent.com/intel/ipp-crypto/ipp-crypto_2021_6/examples/aes/aes-256-ctr-encryption.cpp -O aes-256-ctr-encryption.cpp
g++ aes-256-ctr-encryption.cpp -o aes-ctr -lippcp
LD_PRELOAD=$PWD/lib/libipp-compat.so ./aes_ctr

14

Part IV

Appendix

15

Chapter 8

Compiling and installing IPPCP

For official guide on how to compile and install IPPCP click here

git clone https://github.com/intel/ipp-crypto -b ipp-crypto_2021_6
cd ipp-crypto
mkdir build
cd build
cmake ../ -DCMAKE_INSTALL_PEFIX=/usr/local -DARCH=intel64
make -j$(nproc --all) # Low memory, override the -j parameter.
sudo make install

For setting up environment.

This is normally not required, if you face errors please add these to your bashrc/zshrc/somerc

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH
export PATH=/usr/local/bin:$PATH
export C_INCLUDE_PATH=/usr/local/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/usr/local/include:$CPLUS_INCLUDE_PATH

16

https://github.com/intel/ipp-crypto/blob/develop/BUILD.md

	I Key Terminologies
	II Introduction
	About IPPCP
	Usage of IPP-Plugin - Brief
	Building examples
	Preloading IPP-Compat Lib

	III Preloading
	Temporary Preloading
	Permanent Preloading
	Precedence of Loading
	Editing linkage
	Important Arguments of patchelf

	Preloading IPP-CP wrapper plugin.

	IV Appendix
	Compiling and installing IPPCP

