mpatrol

A library for controlling and tracing dynamic memory allocations
Edition 1.4 for mpatrol version 1.1.0
30th January, 2000

Graeme S. Roy

Copyright (©) 1997-2000 Graeme S. Roy <graeme@epc.co.uk>

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

All product names mentioned in the documentation and source code for this library are the
trademarks of their respective owners.

Table of Contents

mpatrol. it e e 1
Foreword nnn.. 3
1 OVerviewoiiiiiiiiiieereeennnnn. 5
2 Features..........oiiiiiiiiiiiiiiiinnnn. 7
3 Imstallation.............................. 11
4 Memory allocations 13
4.1 Static memory allocations.............................. 13
4.2 Stack memory allocations 13
4.3 Dynamic memory allocations........................... 14
5 Operating system support 17
5.1 Virtual memory ... 17
5.2 Call stacks and symbol tables 19
6 Usingmpatrol........................... 21
6.1 Library behaviour 21
6.2 Logging and tracing, 22
6.3 General errors. ... 23
6.4 Overwrites and underwrites 23
6.5 Using with adebugger........... 25
6.6 Testingcoinii 28
6.7 Library functions......... i 29
6.8 Utilities. ... 32
7 Improving performance................... 35
8 Howitworks............................ 39
9 Examples...........ciiiiiiiiiiinnnn.. 41
9.1 Getting started............. 41
9.2 Detecting incorrect reuse of freed memory 48
9.3 Detecting use of free memory........................... 51
9.4 Using overflow buffers............... 53
9.5 Bad memory operations............... 54
9.6 Incompatible function calls............................. 56

9.7 Additional useful information........................... 57

ii

10 Tutorial 61
Appendix A Functions 69
Appendix B Environment 77
Appendix C Options................c0o.... 83
Appendix D Library performance........... 87
Appendix E Supported systems............. 89
E.1 Adding a new operating system 90
E.2 Adding a new processor architecture.................... 91
E.3 Adding a new object file format 91
Appendix F Notes......................... 93
F.1 Notes for all platforms................. 93
F.2 Notes for UNIX platforms 95
F.3 Notes for Amiga platforms............................. 96
F.4 Notes for Windows platforms........................... 96
F.5 Notes for Netware platforms 97
Appendix G Related software 99
Functionindex............................. 107

mpatrol

mpatrol 1

mpatrol

This document describes mpatrol, a library for controlling and tracing dynamic memory
allocations.

This is edition 1.4 of the mpatrol manual for version 1.1.0, 30th January, 2000.

mpatrol

Foreword 3

Foreword

I first started writing this library a few years ago when the company I work for sent
me out to a customer who had reported a memory leak, which he expected was coming
from the code generated by our C++ compiler. A few years on and the library has changed
dramatically from its first beginnings, but I thought I'd release it publicly in case anyone
else found it useful.

When writing the library, I placed more emphasis on the quantity and quality of in-
formation about allocated memory rather than the speed and efficiency of allocating the
actual memory. This means that the library will use dramatically more memory than nor-
mal dynamic memory allocation libraries and can slow down to a crawl depending on which
options you use. However, the end results are likely to be accurate and reliable, and in most
cases the library will run quite happily at a sane speed.

The mpatrol library is by no means the only library of its kind. Solaris 7 has no less
that 6 different malloc libraries, and there are plenty available as freeware or as commercial
products. Try to keep in mind that mpatrol comes with absolutely no warranty and so
if it doesn’t work for you and you need a fast solution, try some of the other libraries or
products available. T have listed some of the most popular at the end of this manual (see
Appendix G [Related software|, page 99).

This manual is arranged so that complete reference material on the mpatrol library can
be found in the appendices, while introductory and background material can be found in
the preceding chapters and sections. For readers who wish to delve right in and use the
library, the Installation (see Chapter 3 [Installation|, page 11) and Examples (see Chapter 9
Examples|, page 41) chapters should be enough to get started. Otherwise, this manual
should be read from beginning to end in order to get the most out of the software it
describes.

Due to their very nature, problems with dynamic memory allocations are notoriously
difficult to reproduce and debug, and this is likely to be the case if you find a bug in the
mpatrol library as it might be extremely hard to reproduce on another system. Details on
how to report bugs are given elsewhere in this document (see Appendix ' [Notes|, page 93),
but it would be very useful if you could try to provide as much information as possible when
reporting a problem, and that includes having a look in the library source code to see if it’s
obvious what is wrong. However, please try to read the FAQ first in case your question or
problem is covered there since it is usually updated every time I receive a question about
mpatrol.

The latest version of the mpatrol library and this manual can always be found at
http://www.cbmamiga.demon.co.uk/mpatrol/, and any correspondence relating to
mpatrol (bug reports, enhancement requests, compliments, etc.) should be sent to
mpatrol@cbmamiga.demon.co.uk. The mpatrol library is also registered at FreshMeat
(http://freshmeat.net/) so you can receive notification of updates there as well. I
normally only check my e-mail about once or twice a week, so don’t expect an immediate
response. | can also be reached at graeme@epc.co.uk but that is my work e-mail address.
There is now also a discussion group at http://www.egroups.com/group/mpatrol/ where
you can post mpatrol-related questions but you must first subscribe to the group before
you can send mail to it.

4 mpatrol

Note that this manual is not just intended to instruct readers on how to use the mpatrol
library — it is also written to give a detailed look at how malloc libraries work in gen-
eral and how to improve the efficiency of existing code which uses them. If this subject
interests you, you may find further useful material at The Memory Management Refer-
ence located at http://www.harlequin.com/mm/reference/. It has links to many docu-
ments and research papers in the field of memory management, and has a large glossary
which lists and explains related terms. You may also wish to look at A Memory Alloca-
tor by Doug Lea for information on general memory allocation principles. It is located at
http://gee.cs.oswego.edu/d1l/html/malloc.html.

Oh, and always remember to do final release builds without the mpatrol library as the
library is much slower than normal malloc implementations and uses much more memory.

Happy debugging!
Graeme Roy, 11th October, 1999.
Edinburgh, Scotland.

Chapter 1: Overview 5

1 Overview

The mpatrol library is yet another link library that attempts to diagnose run-time errors
that are caused by the wrong use of dynamically allocated memory. If you don’t know what
the malloc () function or operator new[] do then this library is probably not for you. You
have to have a certain amount of programming expertise and a knowledge of how to run a
command line compiler and linker before you should attempt to use this.

Along with providing a comprehensive and configurable log of all dynamic memory oper-
ations that occurred during the lifetime of a program, the mpatrol library performs extensive
checking to detect any misuse of dynamically allocated memory. All of this functionality
can be integrated into existing code through the inclusion of a single header file at compile-
time. On UNIX platforms this may not even be necessary as the mpatrol library can be
linked with existing object files at link-time or, on some platforms, even dynamically linked
with existing programs at run-time.

All logging and tracing output from the mpatrol library is sent to a separate log file in
order to keep its diagnostics separate from any that the program being tested might gener-
ate. A wide variety of library settings can also be changed at run-time via an environment
variable, thus removing the need to recompile or relink in order to change the library’s
behaviour.

mpatrol

Chapter 2: Features 7

2 Features

An overall list of features contained in the mpatrol library is given below. This is not
intended to be exhaustive since the best way to see what the library does is to read the
documentation and try it out.

e Written for UNIX, AmigaOS, Windows and Netware platforms.

e Can be built to allocate memory from a fixed-sized static array rather than using heap
memory from the system.

e Can be built as archive, shared and/or thread-safe libraries on systems that support
them, or even as one large object file.

e Details of memory allocations and free memory are stored internally as a tree structure
for speed and also to allow the best fit allocation algorithm to be used. This also
enables the library to perform intelligent resizing of memory allocations and can be
used to quickly determine if an address has been allocated on the heap.

e Contains 14 replacement C dynamic memory allocation functions:

malloc() ANSI Allocates memory.

calloc() ANSI Allocates zero-filled memory.

memalign() UNIX Allocates memory with a specified alignment.
valloc() UNIX Allocates page-aligned memory.

pvalloc() UNIX Allocates a number of pages.

strdup () UNIX Duplicates a string.

strndup () old Duplicates a string with a maximum length.
strsave () old Duplicates a string.

strnsave () old Duplicates a string with a maximum length.
realloc() ANSI Resizes memory.

recalloc() old Resizes memory allocated by calloc().
expand () old Resizes memory but does not relocate it.
free() ANSI Frees memory.

cfree() old Frees memory allocated by calloc().

e Contains 4 replacement C++ dynamic memory allocation functions:

operator new Allocates memory.

operator new|[] Allocates memory for an array.

operator delete Frees memory.

operator deletel[] Frees memory allocated by operator newl[].

e Contains 9 replacement C memory operation functions:

memset () ANSI Fills memory with a specific byte.
bzero () UNIX Fills memory with the zero byte.
memcpy () ANSI Copies non-overlapping memory.
memmove () ANSI Copies possibly-overlapping memory.
becopy () UNIX Copies possibly-overlapping memory.
memcmp () ANSI Compares two blocks of memory.
bemp) UNIX Compares two blocks of memory.
memchr () ANSI Searches memory for a specific byte.

memmem () UNIX Searches memory for specific bytes.

mpatrol

Contains support for a user-defined low-memory handler function, including a replace-
ment for the C++ function, set_new_handler().

Contains support for user-defined prologue and epilogue callback functions, which get
called before and after every memory allocation, reallocation or deallocation.

A function is provided to return as much information as possible about a given memory
allocation, and can be called at any time during program execution.

A function is provided to display library settings and heap usage statistics, including
peak memory usage. This information is also displayed at program termination.

The library reads any user-controllable options at run-time from an environment vari-
able, but this does not have to be set as defaults will then be used. This prevents
having to recompile anything in order to change any library settings. An option exists
to display a quick-reference summary of all of the recognised options to the standard
error file stream.

All diagnostics and logging are sent to a file in the current directory, but this can be
overridden, including forcing the log file to be the standard output or standard error
file streams.

Options exist to log details of every memory allocation, reallocation or deallocation
when they occur.

Options exist to halt the program at a specific memory allocation, reallocation or
deallocation when running the program within a debugger. These options have no
effect when running the program without a debugger.

On UNIX platforms, the mmap () function can optionally be used to allocate memory
instead of the sbrk() function, but only if the system supports it. This can be useful
if the mpatrol library clashes with another malloc library that uses sbrk() to allocate
heap memory.

All newly-allocated memory that is not allocated by the calloc() or recalloc()
functions will be pre-filled with a non-zero value in order to catch out programs that
wrongly assume that all newly-allocated memory is zeroed. This value can be modified
at run-time.

Can automatically check to see if there have been any illegal writes to bytes located
just before and after every memory allocation through the use of overflow buffers. The
size of such overflow buffers and the value to pre-fill them with can be modified at run-
time. The checks will be performed before every memory allocation call to ensure that
nothing has overwritten the overflow buffers, but a function is also provided to perform
additional checks under the programmer’s control and an option exists to specify a
range in which checks will be performed.

On systems that support them, watch point areas can be used instead of overflow
buffers so that every read and write to memory is checked to ensure that it is not
within an overflow buffer.

Can automatically check to see if there have been any illegal writes to free memory
blocks. The value to pre-fill free memory blocks with can be modified at run-time. The
check will be performed before every memory allocation call to ensure that nothing
has overwritten the free memory block, but a function is also provided to perform
additional checks under the programmer’s control and an option exists to specify a
range in which checks will be performed.

Chapter 2: Features 9

e On systems that support memory protection, every memory allocation can optionally
be allocated at least one page of memory. That way, any free memory blocks can be
made read and write protected so that nothing can access free memory on the heap.
An option is provided to specify whether all memory allocations should be allocated at
the start or at the end of such pages, and the bytes left over within the pages become
overflow buffers.

e All freed memory allocations can optionally be prevented from being returned to the
free memory pool. This is useful for detecting if use is being made of freed memory
just after a memory allocation has been freed. The contents of the memory allocation
can either be preserved or can be pre-filled with a value in order to detect illegal writes
to the freed memory allocation.

e Calls to memory operation functions (such as memset () or memcpy ()) have their argu-
ments checked to ensure that they do not pass null pointers or attempt to read or write
memory straddling the boundary of a previously allocated memory block. Tracing from
all such functions can also optionally be written to the log file.

e The internal data structures used by the library are kept separate from the rest of the
memory allocations. On systems that support memory protection, all of these internal
data structures will be write-protected in order to prevent corruption by the calling
program. This feature can be overridden at run-time as it can slow the program down.

e Certain signals can be saved and restored on entry to each library function and errno
is set to ENOMEM if memory cannot be allocated.

e On systems that support memory protection, the library attempts to detect any illegal
memory accesses and display as much information as it can obtain about the address
in question and where the illegal memory access occurred.

e A call stack traceback from any function performing a memory allocation is stored if
the library supports this feature on the system it is being run on. This information
can then be displayed when information about a specific memory allocation is required.
Two different call stack traceback implementations are provided.

e Symbol table details from executable files and shared libraries are automatically read
on systems that support this feature in order to make the call stack tracebacks more
meaningful. An option also exists to display a complete list of the symbols that were
read by the library at program termination.

e If the library is unable to automatically determine a program’s executable filename
to read symbols from then an option exists to specify the full path to the program’s
executable file.

e An option exists to change the default alignment used for general-purpose memory
allocations.

e Contains support for a user-defined limit to available memory which can be useful for
stress-testing a program in simulated low memory conditions.

e Contains a feature to randomly fail a specific frequency of memory allocations which
can be useful for stress-testing error recovery code in a program.

e An option exists to display a complete memory map of the heap at program termination.
A function to do this is also available to call at any point during program execution.

e Options exist to display all freed and unfreed memory allocations at program termina-
tion in order to detect memory leaks.

10

mpatrol

An option exists to abort the program with a failure condition if there are more than
a specified number of unfreed memory allocations at program termination. This could
be useful for batch testing in order to check that all tests free up most of their allocated
memory.

Functions always report if their arguments are illegal in order to pinpoint any errors,
and options exist to perform rigorous checking of arguments when allocating, reallo-
cating and freeing memory. In addition, checking is performed to ensure that memory
allocated by operator newl[] is not freed with free() for example.

The type of function performing a memory allocation is always stored along with the
allocation, as well as the file and line number it was called from. If compiled with gcc,
the function name will also be stored and the thread identifier will be stored if using
the thread-safe library.

The library uses a header file to redefine the memory allocation functions as macros
in order to obtain more information about where they were called from. This is not
strictly required on UNIX platforms, since the library automatically redefines the de-
fault system memory allocation functions.

A shell script is supplied for UNIX platforms to run a program that was linked with
the mpatrol library with any specified options on the command line. On some UNIX
platforms, an option also exists to override the default memory allocation routines
for any dynamically-linked program that was not previously linked with the mpatrol
library.

A small test suite is provided in order to test basic features.
User documentation is currently available in TEXinfo format as well as UNIX manual
pages.

Chapter 3: Installation 11

3

Installation

The mpatrol library was initially developed on an Amiga 4000/040 running AmigaOS

3.1. I then installed Redhat Linux 5.1 on my Amiga and added support for Linux/m68k.
I’ve tried my best to make it as easy as possible to build and install mpatrol on any system,
but it isn’t likely to run smoothly for everybody. However, there shouldn’t be any major
problems if you perform the following steps.

1.

Go into the ‘build’ directory and then into the appropriate subdirectory for your
system.

Edit the ‘Makefile’ in that directory and check that it is using the appropriate compiler
and build tools. The CC macro specifies the compiler, the AR macro specifies the tool
used to build the archive library and the LD macro specifies the tool to build the
shared library. The CFLAGS macro specifies compiler options that are always to be
used, the OFLAGS macro specifies optimisation options for the compiler, the SFLAGS
macro specifies options to be passed to the compiler when building a shared library
and the TFLAGS macro specifies options to be passed to the compiler when building a
thread-safe library. You may also need to change the library names and library build
commands on different systems.

Use the make command (or equivalent) to build the mpatrol library in archive form.
The ‘all’ target builds all possible combinations of the mpatrol library for your system.
The ‘clean’ target removes all relevant object files from the current directory, while
the ‘clobber’ target also removes all libraries that have been built from the current
directory.

Copy all of the libraries that have been built into your local library directory. If there
were symbolic links created in the ‘build’ directory then these should be recreated in
the local library directory rather than simply copying them.

Go up two directory levels into the ‘src’ directory and copy the ‘mpatrol.h’ header
file into your local include directory.

On UNIX platforms, go up one directory level into the ‘bin’ directory and copy the
‘mpatrol’ shell script into your local bin directory.

On UNIX platforms, go up one directory level into the ‘man’ directory and copy the
‘manl’ and ‘man3’ subdirectories to your local man directory. Unfortunately, the loca-
tion for manual pages varies from system to system so you may or may not also be able
to copy the ‘catl’ and ‘cat3’ subdirectories as well. The ‘man*’ subdirectories contain
the unformatted manual pages while the ‘cat*’ subdirectories contain the formatted
manual pages.

Go up one directory level into the ‘doc’ directory and examine the files located there.
The ‘mpatrol.texi’ file contains the TEXinfo source for this manual and can be trans-
lated into a wide variety of documentation formats. There may already be translated
files in the ‘doc’ directory, but if not you will either have to generate them yourself us-
ing an appropriate tool or you could download an archive containing the latest mpatrol
manual in a variety of documentation formats from the mpatrol home page. You can
then install or print these documents.

Alternatively, the ‘pkg’ directory contains files that can be used to automatically generate

a package in a specific format suitable for installation on a system. Two package formats are

12 mpatrol

currently supported; PKG and RPM. The first is generally used on UNIX SVR4 systems,
while the second was introduced by Red Hat for use in their Linux distributions. You should
really know what you are doing before you attempt to build a package, and you should also
be aware that some of the package files may need to be modified before you begin.

Chapter 4: Memory allocations 13

4 Memory allocations

In the C and C++ programming languages there are generally three different types of
memory allocation that can be used to hold the contents of variables. Other programming
languages such as Pascal, BASIC and FORTRAN also support some of these types of
allocation, although their implementations may be slightly different.

4.1 Static memory allocations

The first type of memory allocation is known as a static memory allocation, which
corresponds to file scope variables and local static variables. The addresses and sizes of
these allocations are fixed at the time of compilation! and so they can be placed in a fixed-
sized data area which then corresponds to a section within the final linked executable file.
Such memory allocations are called static because they do not vary in location or size during
the lifetime of the program.

There can be many types of data sections within an executable file; the three most
common are normal data, BSS data and read-only data. BSS data contains variables and
arrays which are to be initialised to zero at run-time and so is treated as a special case,
since the actual contents of the section need not be stored in the executable file. Read-only
data consists of constant variables and arrays whose contents are guaranteed not to change
when a program is being run. For example, on a typical SVR4 UNIX system the following
variable definitions would result in them being placed in the following sections:

int a; /* BSS data */
int b = 1; /* normal data */
const int c¢ = 2; /* read-only data */

In C the first example would be considered a tentative declaration, and if there was no
subsequent definition of that variable in the current translation unit then it would become
a common variable in the resulting object file. When the object file gets linked with other
object files, any common variables with the same name become one variable, or take their
definition from a non-tentative definition of that variable. In the former case, the variable
is placed in the BSS section. Note that C++ has no support for tentative declarations.

As all static memory allocations have sizes and address offsets that are known at compile-
time and are explicitly initialised, there is very little that can go wrong with them. Data
can be read or written past the end of such variables, but that is a common problem with all
memory allocations and is generally easy to locate in that case. On systems that separate
read-only data from normal data, writing to a read-only variable can be quickly diagnosed
at run-time.

4.2 Stack memory allocations

The second type of memory allocation is known as a stack memory allocation, which
corresponds to non-static local variables and call-by-value parameter variables. The sizes of
these allocations are fixed at the time of compilation but their addresses will vary depending
on when the function which defines them is called. Their contents are not immediately

L Or more accurately, at link time.

14 mpatrol

initialised, and must be explicitly initialised by the programmer upon entry to the function
or when they become visible in scope.

Such memory allocations are placed in a system memory area called the stack, which is
allocated per process® and generally grows down in memory. When a function is called, the
state of the calling function must be preserved so that when the called function returns, the
calling function can resume execution. That state is stored on the stack, including all local
variables and parameters. The compiler generates code to increase the size of the stack
upon entry to a function, and decrease the size of the stack upon exit from a function, as
well as saving and restoring the values of registers.

There are a few common problems using stack memory allocations, and most generally
involve uninitialised variables, which a good compiler can usually diagnose at compile-time.
Some compilers also have options to initialise all local variables with a bit pattern so that
uninitialised stack variables will cause program faults at run-time. As with static memory
allocations, there can be problems with reading or writing past the end of stack variables,
but as their sizes are fixed these can usually easily be located.

4.3 Dynamic memory allocations

The last type of memory allocation is known as a dynamic memory allocation, which
corresponds to memory allocated via malloc() or operator new[]. The sizes, addresses
and contents of such memory vary at run-time and so can cause a lot of problems when
trying to diagnose a fault in a program. These memory allocations are called dynamic
memory allocations because their location and size can vary throughout the lifetime of a
program.

Such memory allocations are placed in a system memory area called the heap, which is
allocated per process on some systems, but on others may be allocated directly from the
system in scattered blocks. Unlike memory allocated on the stack, memory allocated on
the heap is not freed when a function or scope is exited and so must be explicitly freed by
the programmer. The pattern of allocations and deallocations is not guaranteed to be (and
is not really expected to be) linear and so the functions that allocate memory from the
heap must be able to efficiently reuse freed memory and resize existing allocated memory
on request. In some programming languages there is support for a garbage collector, which
attempts to automatically free memory that has had all references to it removed, but this
has traditionally not been very popular for programming languages such as C and C++, and
has been more widely used in functional languages like ML3.

Because dynamic memory allocations are performed at run-time rather than compile-
time, they are outwith the domain of the compiler and must be implemented in a run-time
package, usually as a set of functions within a linker library. Such a package manages the
heap in such a way as to abstract its underlying structure from the programmer, providing
a common interface to heap management on different systems. However, this malloc library
must decide whether to implement a fast memory allocator, a space-conserving memory
allocator, or a bit of both. It must also try to keep its own internal tables to a minimum so

2 Or per thread on some systems.
3 There is currently at least one garbage collection package available for C and C++ (see Appendix G
[Related software], page 99).

Chapter 4: Memory allocations 15

as to conserve memory, but this means that it has very little capability to diagnose errors
if any occur.

In some compiler implementations there is a builtin function called alloca(). This is a
dynamic memory allocation function that allocates memory from the stack rather than the
heap, and so the memory is automatically freed when the function that called it returns.
This is a non-standard feature that is not guaranteed to be present in a compiler, and indeed
may not be possible to implement on some systems. However, some compilers now support
variable length arrays which provide roughly the same functionality.

As can be seen from the above paragraphs, dynamic memory allocations are the types
of memory allocations that can cause the most problems in a program since almost nothing
about them can be used by the compiler to give the programmer useful warnings about using
uninitialised variables, using freed memory, running off the end of a dynamically-allocated
array, etc. It is these types of memory allocation problems that the mpatrol library loves
to get its teeth into!

16

mpatrol

Chapter 5: Operating system support 17

5 Operating system support

Beneath every malloc library’s public interface there is the underlying operating system’s
memory management interface. This provides features which can be as simple as giving
processes the ability to allocate a new block of memory for themselves, or it can offer
advanced features such as protecting areas of memory from being read or written. Some
embedded systems have no operating systems and hence no support for dynamic memory
allocation, and so the malloc library must instead allocate blocks of memory from a fixed-
sized array. The mpatrol library can be built to support all of the above types of system,
but the more features an operating system can provide it with, the more it can do.

On operating systems such as UNIX and Windows, all dynamic memory allocation
requests from a process are dealt with by using a feature called virtual memory. This
means that a process cannot perform illegal requests without them being denied, which
protects the other running processes and the operating system from being affected by such
errors. However, on AmigaOS and Netware platforms there is no virtual memory support
and so all processes effectively share the same address space as the operating system and
any other running processes. This means that one process can accidentally write into the
data structures of another process, usually causing the other process to fail and bring down
the system. In addition, a process which allocates a lot of memory will result in there
being less available memory for other running processes, and in extreme cases the operating
system itself.

5.1 Virtual memory

Virtual memory is an operating system feature that was originally used to provide large
usable address spaces for every process on machines that had very little physical memory. It
is used by an operating system to fool! a running process into believing that it can allocate
a vast amount of memory for its own purposes, although whether it is allowed to or not
depends on the operating system and the permissions of the individual user.

Virtual memory works by translating a virtual address (which the process uses) into a
physical address (which the operating system uses). It is generally implemented via a piece
of hardware called a memory management unit, or MMU. The MMU’s primary job is to
translate any virtual addresses that are referred to by machine instructions into physical
addresses by looking up a table which is built by the operating system. This table contains
mappings to and from pages? rather than bytes since it would otherwise be very inefficient
to handle mappings between individual bytes. As a result, every virtual memory operation
operates on pages, which are indivisible and are always aligned to the system page size.

Even though each process can now see a huge address space, what happens when it
attempts to allocate more pages than actually physically exist, or allocate an additional
page of memory when all of the physical pages are in use by it and other processes? This
problem is solved by the operating system temporarily saving one or more of the least-used

! Well, perhaps that’s too harsh a word, but it will certainly seem that way to a process running on a
32-bit UNIX system with only 4 megabytes of physical memory, and yet it will be able to read from and
write to over 4 gigabytes of virtual memory!

2 The size of a page varies between operating systems and processor architectures, but they are generally
around 4 or 8 kilobytes in size, and are always a power of two.

18 mpatrol

pages (which might not necessarily belong that that process) to a special place in the file
system called a swap file, and mapping the new pages to the physical addresses where the
old pages once resided. The old pages which have been swapped out are no longer currently
accessible, but their location in the swap file is noted in the translation table.

However, if one of the pages that has been swapped out is accessed again, a page fault
occurs at the instruction which referred to the address and the operating system catches
this and reloads the page from the swap file, possibly having to swap out another page to
make space for the new one. If this occurs too often then the operating system can slow
down, having to constantly swap in and swap out the same pages over and over again. Such
a problem is called thrashing and can only really be overcome by using less virtual memory
or buying more physical memory.

It is also possible to take advantage of the virtual memory system’s interaction between
physical memory and the file system in program code, since mapping an existing file to
memory means that the usual file I/O operations can be replaced with memory read and
write operations. The operating system will work out the optimum way to read and write
any buffers and it means that only one copy of the file exists in both physical memory and
the file system. Note that this is how shared libraries® on UNIX platforms are generally
implemented, with each individual process that uses the shared library having it mapped
to somewhere in its address space.

Another major feature of virtual memory is its ability to read protect and write protect
individual pages of process memory. This means that the operating system can control
access to different parts of the address space for each process, and also means that a process
can read and/or write protect an area of memory when it wants to ensure that it won’t
ever read or write to it again. If an illegal memory access is detected then a signal will be
sent to the process, which can either be caught and handled or will otherwise terminate the
process. Note that as with all virtual memory operations, this ability to protect memory
only applies to pages, so that it is not possible to protect individual bytes.

However, some versions of UNIX have programmable software watch points which are
implemented at operating system level. These are normally used by debuggers to watch a
specified area of memory that is expected to be read from or written to, but can just as
easily be used to implement memory protection at byte level. Unfortunately, as this feature
is implemented in software* rather than in hardware, watch points tend to be incredibly
slow, mainly as a result of the operating system having to check every instruction before it
is executed.

There is also an additional problem when using watch points, which is due to misaligned
reads from memory. These can occur with compiler-generated code or with optimised
library routines where memory read, move or write operations have been optimised to work
at word level rather than byte level. For example, the memcpy () function would normally
be written to copy memory a byte at a time, but on some systems this can be improved by
copying a word at a time. Unfortunately, care has to be taken when reading and writing
such words as the equivalent bytes may not be aligned on word boundaries. Technically,
reading additional bytes before or after a memory allocation when they share the same word
is legal, but when using watch points such errors will be picked up. The mpatrol library

3 DLLs on Windows platforms.
4 The operating system is still considered software.

Chapter 5: Operating system support 19

replaces most of the memory operation functions provided by the system libraries with safer
versions, although they may not be as efficient.

An operating system with virtual memory is usually going to run ever so slightly slower
than an operating system without it®, but the advantages of virtual memory far outweigh
the disadvantages, especially when used for debugging purposes.

5.2 Call stacks and symbol tables

As stated in the section on stack memory allocations (see Section 4.2 [Stack memory
allocations|, page 13), when a function is called, a copy of the caller’s state information
(including local variables and registers) is saved on the stack so that it can be restored
when the called function returns. On many operating systems there is a calling convention®
which defines the layout of such stack entries so that code compiled in different languages
and with different compilers can be intermixed. This usually specifies at which stack offsets
the stack pointer, program counter and local variables for the calling function can be found,
although on some processor architectures the function calling conventions are specified by
the hardware and so the operating system must use these instead.

On systems that have consistent calling conventions, it is usually possible to perform call
stack tracebacks from within the current function in order to determine the stack of function
calls that led to the current function. This is extremely useful for debugging purposes and
is done by examining the current stack frame to see if there is a pointer to the previous
stack frame. If there is, then it can be followed to find out all of the state information about
the calling function. This can be repeated until there are no more stack frames. This is
generally how this information is determined by debuggers when a call stack traceback is
requested.

In addition to the pointer to the previous stack frame, the saved state information also
always contains the saved program counter register, which contains either the address of
the instruction that performed the function call, or the address of the instruction at which
to continue execution when the called function returns”. This information can be used to
identify which function performed the call, since the address of the instruction must lie
between the start and end of one of the functions in the process.

However, in order to determine this symbolic information, it must be possible to find
out where the start and end addresses of all of the functions in the process are. This can
usually only be read from object files, since they contain the symbol tables that were used
by the linker to generate the final executable file for the program®. The object file’s symbol
tables normally contain information about the start address, size, name and visibility of
every symbol that was defined, but this depends on the format of the object file and if the
symbol tables have been stripped from the final executable file.

5 Due to the overhead of having to translate every address and swap in and out pages — although memory

mapped files will usually be more efficient than using normal file operations on a system without virtual
memory.

Usually part of the Application Binary Interface, or ABIL.

Also known as the return address.

This information can also be determined from compiler-generated debugging information, but that is
another story. . .

20 mpatrol

On systems that support shared libraries, additional work must be done to determine the
symbolic information for all of the functions which have been defined in them. The symbols
for functions that are defined in shared libraries normally appear as undefined symbols in
the executable file for the program and so must be searched in the system in order to get the
necessary information. It is usually necessary to liaise with the dynamic linker® on many
systems.

9 Which is the part of the operating system that performs the run-time linking of shared libraries.

Chapter 6: Using mpatrol 21

6 Using mpatrol

This chapter contains a general description of all of the features of mpatrol and how to
use them effectively. You’ll also find a complete reference for mpatrol in the appendices,
but you may wish to try out the examples (see Chapter 9 [Examples|, page 41) and the
tutorial (see Chapter 10 [Tutorial], page 61) before reading further.

6.1 Library behaviour

Most of the behaviour of the mpatrol library can be controlled at run-time via options
which are read from the MPATROL_OPTIONS environment variable. This prevents you having
to recompile or relink each time you want to change a library setting, and so makes it really
easy to try out different settings to locate a particular bug. You should know how to set
the value of an environment variable on your system before you read on.

By default, the mpatrol library will attempt to determine the minimum required align-
ment for any generic memory allocation when it first initialises itself. This may be affected
by the compiler and its settings when the library was built but it should normally reflect
the minimum alignment required by the processor on your system. If you would prefer a
larger (or perhaps even smaller) default alignment you may change it at run-time using
the ‘DEFALIGN’ option. The value you supply must be in bytes, must be a power of two,
and should not be larger that the system page size. If you encounter bus errors due to
misaligned memory accesses then you should increase this value.

On systems that have virtual memory the library will attempt to write-protect all of its
internal structures when user code is being run. This ensures that it is nearly impossible for
a program to corrupt any mpatrol library data. However, unprotecting and then protecting
the structures at every library call has a slight overhead so you may prefer to disable this
behaviour by using the ‘NOPROTECT’ option. This has no effect on systems that have no
virtual memory.

Usually it is desirable for many system library routines to be protected from being
interrupted by certain signals since they may themselves be called from signal handlers.
If this is not the case then it may be possible to interrupt the program from within such
routines, perhaps causing problems if their global variables are left in an undefined state.
As the mpatrol library replaces some of these system library routines it is also possible
to specify that they are protected from certain interrupt signals using the ‘SAFESIGNALS’
option. However, this can sometimes result in it being hard to interrupt the program from
the keyboard if a lot of processor time is spent in mpatrol routines, which is why this
behaviour is disabled by default!.

On UNIX systems, the usual way for malloc libraries to allocate memory from the process
heap is through the sbrk() system call. This allocates memory from a contiguous heap,
but has the disadvantage in that other library functions may also allocate memory using
the same function, thus creating holes in the heap. This is not a problem for mpatrol, but
you may have a suspicion that your bug is due to a function from another library corrupting
your data so you may wish to use the ‘USEMMAP’ option. This is only available on systems
that have the mmap () system call and allows mpatrol to allocate all of its memory from a

L' In mpatrol release 1.0 it was enabled by default.

22 mpatrol

part of the process heap that is non-contiguous (i.e. each call to mmap () may return a block
of memory that is completely unrelated to that returned by the previous call).

By default, every time an mpatrol library function is called the library will automatically
check the freed memory and overflow buffers of every memory allocation, which can slow
program execution down, especially if you suspect the error you are looking for occurs at
the 1000th memory allocation, for example. You can therefore use the ‘CHECK’ option to
specify a range of memory allocations at which the mpatrol library will automatically check
the freed memory and overflow buffers. All other allocations that fall outside this range
will not be checked.

If the mpatrol library that was built for your system supports reading symbolic infor-
mation from a program’s executable file, but it cannot locate the executable file, or you
wish to specify an alternative, you can use the ‘PROGFILE’ option to do this. All this does
is instruct the mpatrol library to read symbols from this file instead. Note that on systems
that support dynamic linking, the library can also read symbols from a dynamically linked
executable file that has had its normal symbol table stripped.

Finally, a list of all of the recognised options in the mpatrol library can be displayed to
the standard error file stream by using the ‘HELP’ option. This will not affect the settings
of the library in any way, so you should be able to use other options at the same time.

6.2 Logging and tracing

If you would like to see a complete log of all of the memory allocations, reallocations and
deallocations performed by your program, use the ‘LOGALL’ option. This provides detailed
tracing for each of the mpatrol library functions, and a full description of the format of such
tracing is given in Example 1 (see Section 9.1 [Example 1], page 41). Alternatively, you may
select one or more types of functions to be traced using the ‘LOGALLOCS’, ‘LOGREALLOCS’,
‘LOGFREES’ and ‘LOGMEMORY’ options if you feel that the log file is too large when ‘LOGALL’
is used. By default all diagnostics from the mpatrol library get sent to ‘mpatrol.log’ in
the current directory, but this can be changed using the ‘LOGFILE’ option.

The mpatrol library will always try to display as much useful information as possible
in this log file, and will always display a summary of library settings and statistics when
your program terminates successfully. If you don’t get this then your program did not call
exit() and either called abort() or was terminated by the operating system instead. In
such cases, either use a debugger to see where your program crashed or use the ‘LOGALL’
option to see the last successful library call in the log file so that you have a rough idea of
where your program crashed.

It is also possible to get mpatrol to write more summary information to the log file
after it writes out its settings and statistics at program termination. Use the ‘SHOWFREED’
and ‘SHOWUNFREED’ options to display a list of freed and unfreed memory allocations. The
former will only be displayed if the ‘NOFREE’ option is used, but the latter can be useful
for detecting memory leaks. The ‘SHOWMAP’ option will display a memory map of the heap
that was valid when the process terminated, and the ‘SHOWSYMBOLS’ option will display any
symbolic information that the mpatrol library managed to obtain from any executable files
and libraries that were relevant to the program being tested. All of these options can be
selected with the ‘SHOWALL’ option.

Chapter 6: Using mpatrol 23

6.3 General errors

By default, the mpatrol library follows the guidelines for ANSI C regarding the behaviour
of the dynamic memory allocation functions it replaces?. This means that calling malloc()
with a size of zero is allowed, for example. However, warnings can be generated for all
of these types of calls by using the ‘CHECKALL’ option. The ‘CHECKALLOCS’ option warns
only about calls to malloc() and similar functions with a size of zero, the ‘CHECKREALLOCS’
option warns only about calls to realloc () and similar functions with either a null pointer
or a size of zero, and the ‘CHECKFREES’ option warns only about calls to free() and similar
functions with a null pointer.

All newly-allocated memory can be pre-filled with a specified byte by using the
‘ALLOCBYTE’ option. This can be used to catch out code that expects newly-allocated
memory to be zeroed, although this option will have no effect on memory that was
allocated with calloc(). All free memory can also be pre-filled with a different specified
byte by using the ‘FREEBYTE’ option. This will catch out code that expects to be able to
use the contents of freed memory.

Alternatively, the mpatrol library can be instructed to keep all freed memory alloca-
tions so that its diagnostics can be clearer about which freed allocation a piece of code is
erroneously trying to access. This is controlled with the ‘NOFREE’ option, but since it never
reuses any freed allocations it can result in a lot more heap memory being used. Note that
this option distinguishes between free memory and freed memory. Free memory is unallo-
cated memory that has been taken from the system heap. Freed memory is a freed memory
allocation, with all of the original details of the allocation preserved.

Normally, the ‘NOFREE’ option will fill the freed allocation with the free byte so that any
code that accesses it will hopefully fall over. However, the original contents can be preserved
using the ‘PRESERVE’ option in case you need to see what the contents were just before it
was freed. The ‘NOFREE’ option is also affected by the ‘PAGEALLOC’ option, since then the
freed allocation will have its contents both read and write protected so that nothing can
access them. If the ‘PRESERVE’ option is used in this case then the freed allocation will only
be made write-protected so that the original contents can be read from but not written to.

6.4 Overwrites and underwrites

Once a block of memory has been allocated, it is imperative that the program does
not attempt to write any data past the end of the block or write any data just before the
beginning of the block. Even writing a single byte just beyond the end of an allocation or
just before the beginning of an allocation can cause havoc. This is because most malloc
libraries store the details of the allocated block in the first few words before the beginning
of the block, such as its size and a pointer to the next block. The mpatrol library does not
do this, so a program which failed using the normal malloc library and worked when the
mpatrol library was linked in is a possible candidate for turning on overflow buffers.

Such memory corruption can be extremely difficult to pinpoint as it is unlikely to show
itself until the next call is made to the malloc library, or if the internal malloc library blocks

21 attempted to do the same for ANSI C++ but there are still namespace and exception handling issues
to be resolved.

24 mpatrol

were not overwritten, the next time the data is read from the block that was overwritten. If
the former is the case then the next library call will cause an internal error or a crash, but
only when the memory block that was affected is referenced. This is likely to disappear when
using the mpatrol library since it keeps its internal structures separate, and write-protects
them on systems that support memory protection.

In order to identify such errors, it is possible to place special buffers® on either side of

every memory allocation, and these will be pre-filled with a specified byte. Before every
mpatrol library call, the library will check the integrity of every such overflow buffer in order
to check for a memory underwrite or overwrite. Depending on the number of allocations
and size of these buffers, this can take a noticable amount of time (which is why overflow
buffers are disabled by default), but can mean that these errors get noticed sooner. The
option which governs this is ‘OFLOWSIZE’. The byte with which they get pre-filled can be
changed with ‘OFLOWBYTE’. Depending on what gets written, it might only be possible to
see such errors when a different size of buffer or a different pre-fill byte is used.

A worse situation can occur when it is only reads from memory that overflow or under-
flow; i.e. with the faulty code reading just before or just past a memory allocation. These
cannot be detected by overflow buffers as it is not possible using conventional means to
interrupt every single read from memory. However, on systems with virtual memory, it is
possible to use the memory protection feature to provide an alternative to overflow buffers,
although at the added expense of increased memory usage.

The ‘PAGEALLOC’ option turns on this feature and automatically rounds up the size of
every memory allocation to a multiple of the system page size. It also rounds up the size of
every overflow buffer to a multiple of the system page size so that every memory allocation
occupies its own set of pages of virtual memory and no two memory allocations occupy the
same page of virtual memory. The overflow buffers are then read and write protected so
that any memory accesses to them will generate an error?. Following on from the previous
section, the ‘PAGEALLOC’ option also causes free memory to be read and write protected as
well since that will also occupy non-overlapping virtual memory pages.

The remaining memory that is left over within an allocation’s pages is effectively turned
into traditional overflow buffers, being pre-filled with the overflow byte and checked peri-
odically by the mpatrol library to ensure that nothing has written into them. However,
because of this remaining memory, the library has a choice of where to place the memory
allocation within its pages. If it places the allocation at the very beginning then it will catch
memory underwrites, but if it places the allocation at the very end then it will catch memory
overwrites. Such a choice can be controlled at run-time by supplying an argument to the
‘PAGEALLOC’ option. If ‘PAGEALLOC=LOWER’ is used then every allocation will be placed at
the very beginning of its pages and if ‘PAGEALLOC=UPPER’ is used then the placement will be
at the very end of its pages. This is probably better explained in Example 3 (see Section 9.3
[Example 3], page 51) where the problems with ‘PAGEALLOC=UPPER’ and alignment are also
discussed.

Obviously, there are still some deficiencies when using ‘PAGEALLOC’ since it can use up
a huge amount of memory (especially with ‘NOFREE’) and the overflow buffers within an

3 Commonly known as overflow buffers or fence posts.
4 This is a feature that was first used by Electric Fence (see Appendix G [Related software], page 99) to
track down memory corruption.

Chapter 6: Using mpatrol 25

allocation’s pages can still be read without causing an immediate error. Both of these
deficiencies can be overcome by using the ‘OFLOWWATCH’ option to install software watch
points instead of overflow buffers, but there are still very few systems that support software
watch points at the moment, and it can slow a program’s execution speed down by a factor
of around 10,000. The reason for this is that software watch points instruct the operating
system to check every read from and write to memory, which means that it has to single-
step through a process checking every instruction before it is executed. However, this is a
very thorough way of checking for overflows and is unlikely to miss anything, although there
may be problems with misaligned memory accesses when using watch points (see Section 5.1
[Virtual memory], page 17).

Note that from release 1.1.0 of mpatrol, the library comes with replacement functions for
many memory operation functions, such as memset () and memcpy (). These new functions
provide additional checks to ensure that if a memory operation is being performed on a
memory block, the operation will not read or write before or beyond the boundaries of that
block.

To conclude, if you suspect your program has a piece of code which is performing ille-
gal memory underwrites or overwrites to a memory allocation you should use each of the
following options in sequence, but only if your system supports them.

1. ‘OFLOWSIZE=8’

‘OFLOWSIZE=32’

‘OFLOWSIZE=1" ‘PAGEALLOC=LOWER’
‘OFLOWSIZE=1" ‘PAGEALLOC=UPPER’
‘OFLOWSIZE=8 ‘OFLOWWATCH’
‘OFLOWSIZE=32" ‘OFLOWWATCH’

S A o

6.5 Using with a debugger

If you would like to use mpatrol to pause at a specific memory allocation, reallocation or
deallocation in a debugger then this section will describe how to go about it. Unfortunately,
debuggers vary widely in function and usage and are normally very system-dependent. The
example below will use gdb as the debugger, but as long as you know how to set a breakpoint
within a debugger, any one will do.

First of all, decide where you would like the mpatrol library to pause when running your
program within the debugger. You can choose one allocation index to break at using the
‘ALLOCSTOP’ option, or you can choose to break at a specific reallocation of that allocation by
also using the ‘REALLOCSTOP’ option. If you use ‘REALLOCSTOP’ without using ‘ALLOCSTOP’
then you will break at the first memory allocation that has been reallocated the specified
number of times. You can also choose to break at the point in your program that frees a
specific allocation index by using the ‘FREESTOP’ option.

The normal process for determining where you would like to pause your program in the
debugger is by using the ‘LOGALL’ option and examining the log file produced by mpatrol.
If your program crashed then you should look at the last entry in the log file to see what
the allocation index (and possibly also the reallocation index) of the last successful call was.
You can then decide which of the above options to use. Note that the debugger will break

26 mpatrol

at a point before any work is done by the mpatrol library for that allocation index so that
you can see if it was the last successful operation that caused the damage.

Having decided which combination of mpatrol options to use, you should set them in
the MPATROL_OPTIONS environment variable before running the debugger on your program.
Alternatively, your debugger may have a command that allows you to modify your environ-
ment during debugging, but you're just as well setting the environment variable before you
run the debugger as it shouldn’t make any difference®.

After you get to the debugger command prompt, you should set a breakpoint at the
__mp_trap() function. This is the function that gets called when the specified allocation
index and/or reallocation index appears and so when you run your program under the
debugger the mpatrol library will call __mp_trap() and the debugger will stop at that
point. If you are not running your program within a debugger, or if you haven’t set the
breakpoint, then __mp_trap() will still be called, but it won’t do anything. Note that there
may be some naming issues on some platforms where the visible name of a global function
gets an underscore prepended to it. You may have to take that into account when setting
the breakpoint on such systems.

Now that you have set the MPATROL_OPTIONS environment variable and have set the
debugger to break at __mp_trap(), all that is required is for you to run your program.
Hopefully, the debugger should stop at __mp_trap(). If it doesn’t then you may have to
check your environment variable settings to ensure that they are the same as when you ran
the program outwith the debugger, although obviously with the addition of ‘ALLOCSTOP’,
etc. Once the program has been halted by the debugger, you can then single-step through
your code until you see where it goes wrong. If this is near the end of your program then
you’ll have saved yourself a lot of time by using this method.

The following example will be used to illustrate the steps involved in using the
‘ALLOCSTOP’, ‘REALLOCSTOP’ and ‘FREESTOP’ options. However, it is only for tutorial
purposes and the same effect could easily be achieved by breaking at line 18 in a debugger
because in this case it is obvious from the code and the mpatrol log file where it is going
wrong. In real programs this is hardly ever the case®.

1 /%

2 *x Allocates 1000 blocks of 16 bytes, freeing each block immediately
3 x after it is allocated, and freeing the last block twice.

4 */

~

#include "mpatrol.h"

10 int main(void)

11 {
12 void *p;
13 int i;

5 Unless you’ve linked the debugger with the mpatrol library.

5 The other reason that this program is simple is because a proper example would generally involve
crashing the program, but on AmigaOS and Netware that would also involve crashing the system — not
something you’d want to do whilst trying this out.

Chapter 6: Using mpatrol 27

15 for (i = 0; i < 1000; i++)
16 if (p = malloc(16))

17 free(p);

18 free(p);

19 return EXIT_SUCCESS;

20 }

Compile this example code with debugging information enabled and link it with the
mpatrol library, then set MPATROL_OPTIONS to ‘LOGALL’ and run the resulting program. If
you examine ‘mpatrol.log’ you will see the following near the bottom of the file.

ALLOC: malloc (1000, 16 bytes, 2 bytes) [main|test.c|16]
0x80000D8E main
0x80000D24 _start

returns 0x80033000

FREE: free (0x80033000) [main|test.c]|17]
0x80000DBE main
0x80000D24 _start

0x80033000 (16 bytes) {malloc:1000:0} [main|test.c|16]
0x80000D8E main
0x80000D24 _start

FREE: free (0x80033000) [main|test.c]|18]
0x80000DE8 main
0x80000D24 _start

ERROR: free: 0x80033000 has not been allocated

In this example, we’ll want to use ‘ALLOCSTOP’ to halt the program at the 1000th memory
allocation so that we can step through it with a debugger. So, set MPATROL_OPTIONS to
‘ALLOCSTOP=1000" and load the program into the debugger. If you are using gdb you can
now do the following steps, but if you are not you will have to use the equivalent commands
in your debugger. Note that ‘(gdb)’ is the debugger command prompt and so anything
that appears on that line after that should be typed as a command.

(gdb) break __mp_trap

Breakpoint 1 at 0x80004026

(gdb) run

Starting program: a.out

Breakpoint 1, 0x80004026 in __mp_trap()
(gdb) backtrace

#0 0x80004026 in __mp_trap()

#1 0x800027ec in __mp_getmemory ()

#2 0x80001138 in __mp_alloc()

28 mpatrol

#3 0x80000d8e in main() at test.c:16

(gdb) return

Make selected stack frame return now? (y or n) y
#0 0x800027ec in __mp_getmemory()

(gdb) return

Make selected stack frame return now? (y or n) y
#0 0x80001138 in __mp_alloc()

(gdb) return

Make selected stack frame return now? (y or n) y
#0 0x80000d8e in main() at test.c:16

16 if (p = malloc(16))
(gdb) step

Single stepping until exit from function
which has no line number information.

17 free(p);

(gdb) step

15 for (i = 0; i < 1000; i++)
(gdb) step

18 free(p);

(gdb) quit

The program is running. Quit anyway (and kill it)? (y or n) y

mp_trap,

After setting the breakpoint and running the program, the debugger halts at __mp_
trap(). Because __mp_trap() is a function within the mpatrol library, you don’t want to
bother stepping through any of the library functions, and in this case you can’t since the
mpatrol library was not compiled with debugging information enabled. So, after returning
from all of the library functions, the source line becomes line 16 because that was the
location of the 1000th memory allocation. Single-stepping twice gets us to line 18 which is
our destination.

6.6 Testing

The mpatrol library has several features that make it useful when testing a program’s
dynamic memory allocations. These are features that do not help in fixing an existing bug,
but rather help to identify additional bugs that may be lurking in your code.

It is possible to set a simulated upper limit on the amount of heap memory available to
a process with the ‘LIMIT’ option, which accepts a size in bytes, but will be disabled when
it is zero. This can be extremely useful for testing a program under simulated low memory
conditions to see how it handles such errors. Of course, you should set the heap limit to a
value less than the amount of actual available memory otherwise this option will have no
effect. Note that the mpatrol library may use up a small amount of heap memory when it
initialises itself” so the value passed to the ‘LIMIT’ option may need to be set slightly higher
than you would normally expect.

It is also possible to instruct the mpatrol library to randomly fail a certain number of
memory allocations so that you can further test error handling code in a program. The

7 Actually, it’s not really the mpatrol library that uses the memory but the object file access libraries since
they call malloc() to allocate any memory that they require.

Chapter 6: Using mpatrol 29

frequency at which failures occur can be controlled with the ‘FAILFREQ’ option, where a
value of zero means that no failures will occur, but any other value will randomly cause
failures. For example, a value of ‘10’ will cause roughly one in ten failures and a value of ‘1’
will cause every memory allocation to fail. The random sequence can be made predictable
by using the ‘FAILSEED’ option. If this is non-zero then the same program run with the same
failure frequency and same failure seed will fail on exactly the same memory allocations. If
this is zero then the failure seed will itself be set randomly, but you can see its value when
the summary is displayed at program termination.

When running batch tests® it is sometimes useful to be able to detect if there have
been any memory leaks. Such leaks should normally be distinguished from code which
has purposely not freed the memory that it allocated, so there may be a certain expected
number of unfreed allocations at program termination. It may be that you would like to
highlight any additional unfreed allocations since they may be due to real memory leaks, so
the ‘UNFREEDABORT’ option can be set to a threshold number of expected unfreed allocations.
If the library detects a number of unfreed allocations higher than this then it will abort the
program at termination so that it fails. All tests that fail in this way can then be examined
after the test suite finishes.

6.7 Library functions

Along with the standard set of C and C++ dynamic memory allocation functions, the
mpatrol library also comes with an additional set of functions which can be used to provide
additional information to your program, and which can be called at various points in your
code for debugging purposes. You must always include the ‘mpatrol.h’ header file in order
to use these functions, but you can check for a specific version of the mpatrol library by
checking the MPATROL_VERSION preprocessor macro.

It is possible to obtain a great deal of information about an existing memory allocation
using the __mp_info() function. This takes an address as an argument and fills in any
details about its corresponding memory allocation in a supplied structure. The following
example illustrates this (it can be found in ‘tests/pass/test4.c’).

23 /%
24 x Demonstrates and tests the facility for obtaining information

25 * about the allocation a specific address belongs to.
26 x/

29 #include "mpatrol.h"
30 #include <stdio.h>

33 void display(void *p)

34 {
35 __mp_allocstack *s;
36 __mp_allocinfo d;

8 A set of tests that run without user intervention.

30

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

60
61
62

64
65
66
67
68
69
70

73
74
75
76

79
80
81
82
83

mpatrol

if (!'__mp_info(p, &d4))

{
fprintf(stderr, "nothing known about address 0x%081X\n", p);
return;

}

fprintf (stderr, "block: 0x%081X\n", d.block);

fprintf (stderr, "size: %lu\n", d.size);

fprintf (stderr, "type: %lu\n", d.type);

fprintf (stderr, "alloc: %lu\n", d.alloc);
fprintf (stderr, "realloc: %lu\n", d.realloc);

fprintf (stderr, "func: %s\n", d.func ? d.func : "NULL");
fprintf (stderr, "file: %s\n", d.file 7 d.file : "NULL");
fprintf (stderr, "line: %lu\n", d.line);
for (s = d.stack; s != NULL; s = s->next)
{

fprintf (stderr, "\t0xJ)081X: ", s->addr);

fprintf (stderr, "%s\n", s->name ? s->name : "NULL");
}

fprintf (stderr, "freed: %d\n", d.freed);

void func2(void)

{
void *p;
if (p = malloc(16))
{
display(p);
free(p);
}
display(p);
}

void funci(void)
{

func2();
}

int main(void)
{

funcl1();

return EXIT_SUCCESS;
}

When this is compiled and run, it should give the following output, although the pointers
are likely to be different.

block: 0x8000A068

Chapter 6: Using mpatrol 31

size: 16
type: 0
alloc: 10
realloc: O

func: func2
file: testéd.c
line: 64

0x80000BEC: func2
0x80000C3E: funcil
0x80000C48: main
0x800009E8: _start

freed: 0
nothing known about address 0x8000A068

As you can see, anything that the mpatrol library knows about any memory allocation
can be obtained for use in your own code, which can be very useful if you need to write
handlers to keep track of memory allocations, etc. for debugging purposes.

It is also possible for you to be able to intercept calls to allocate, reallocate and deallocate
memory for your own purposes. You can install prologue and epilogue functions that the
mpatrol library will call before and after every time one of its functions is called. These can
be used for additional tracing or simply to add extra checks to your code. The following
code is an example of this and can be found in ‘tests/pass/test2.c’.

23
24
25
26

29
30

33
34
35
36
37
38
39
40
41
42
43

46
a7
48
49

/*
* Demonstrates and tests the facility for specifying user-defined
* prologue and epilogue functions.

*/

#include "mpatrol.h"
#include <stdio.h>

void prologue(void *p, size_t 1)

{
if (p == (void *) -1)
fprintf(stderr, "allocating %lu bytes\n", 1);
else if (1 == (size_t) -1)
fprintf(stderr, "freeing allocation 0x%081X\n", p);
else if (1 == (size_t) -2)
fprintf (stderr, "duplicating string ‘%s’\n", p);
else
fprintf(stderr, "reallocating allocation 0x%081X to %lu bytes\n", p, 1);
}

void epilogue(void *p)
{
if (p !'= (void *) -1)
fprintf(stderr, "allocation returns 0x%081X\n", p);

32 mpatrol

50 }

53 int main(void)

54 A{

55 void *p, *Qq;

57 __mp_prologue (prologue) ;

58 __mp_epilogue(epilogue) ;

59 if (p = malloc(16))

60 if (q = realloc(p, 32))
61 free(q);

62 else

63 free(p);

64 if (p = (char *) strdup("test"))
65 free(p);

66 return EXIT_SUCCESS;

67 X

Once again, if you compile and run the above code, you should see the following output.

allocating 16 bytes

allocation returns 0x8000A068

reallocating allocation O0x8000A068 to 32 bytes
allocation returns 0x8000A068

freeing allocation 0x8000A068

duplicating string ‘test’

allocation returns 0x8000A068

freeing allocation 0x8000A068

Along with being able to install prologue and epilogue functions, you can also install
a low-memory handler with the __mp_nomemory() function, which will be called by the
mpatrol library if it ever runs out of memory during the call to a memory allocation function.
This gives you the opportunity to use that handler to either free up any unneeded memory
or simply to abort, thus removing the need to check for failed allocations.

Finally, there are three functions which affect the mpatrol library globally. The first,
__mp_check(), allows you to force an internal check of the mpatrol library’s data structures
at any point during program execution. The other two functions, __mp_memorymap() and
__mp_summary () allow you to force the generation of a memory map or library statistics at
any point in your program, in much the same way as they would normally be displayed at
the end of program execution.

6.8 Utilities

On UNIX platforms, a shell script is provided which can run programs that have been
linked with the mpatrol library using a combination of mpatrol options that can be set
via the command line. All of these options but one map directly onto their equivalent
environment variable settings and exist mainly so that the user does not have to manually
change the MPATROL_OPTIONS environment variable.

Chapter 6: Using mpatrol 33

The one option that is the exception to this is the ‘-=d’ option, which can be used to run
a program under the control of the mpatrol library, even if it wasn’t originally linked with
the mpatrol library. This can only be done on systems that support dynamic linking and
where the dynamic linker recognises the LD_PRELOAD environment variable. Even then, it
can only be used when the program that is being run has been dynamically linked with the
system C library, rather than statically linked.

The reason for all of these limitations is that some SVR4 UNIX platforms have a special
feature in the dynamic linker which can be told to override the symbols from one shared
library using the symbols from another shared library at run-time. In this case, it involves
replacing the symbols for malloc (), etc., in the system C library with the mpatrol versions,
but only if they were marked as undefined in the original executable file and would therefore
have to have been loaded from ‘libc.so’.

However, if a program qualifies for use with the ‘-d’ option, it means that you can trace
all of its dynamic memory allocations as well as running it with any of the mpatrol library’s
debugging options. This is mainly a toy feature which allows you to view and manipulate
the dynamic memory allocations of programs that you don’t have the source for, but in
theory it could be quite useful if you need to debug a previously released executable and
are unable to recompile or relink it.

Note that the mpatrol shell script must be set up to use the correct object file format
access libraries that are required for your system if you wish to use the ‘-d’ option. If
the mpatrol library was built with FORMAT=FORMAT_ELF32 support then it must be told to
preload the ELF access library (normally ‘1libelf.so’). If it was built with FORMAT=FORMAT _
BFD support then it must be told to preload the GNU BFD access libraries (normally
‘1ibbfd.so’ and ‘libiberty.so’). However, if these libraries only exist on your system in
archive form then you must build ‘libmpatrol.so’ with these extra libraries incorporated
into it so that there are no dependencies on them at run-time. However, there may well be
problems if the resulting shared library contains position-dependent code from the archive
libraries you incorporated. The only way to find out is for you to try it and see.

34

mpatrol

Chapter 7: Improving performance 35

7 Improving performance

Because of their need to cover every eventuality, malloc library implementations are very
general and most do their job well when you consider what is thrown at them. However,
your program may not be performing as well as it should simply because there may be a
more efficient way of dealing with dynamic memory allocations. Indeed, there may even be
a more efficient malloc library available for you to use.

If you need to allocate lots of blocks of the same size!, but you won’t know the number
of blocks you’ll require until run-time then you could take the easy approach by simply
allocating a new block of memory for each occurrence. However, this is going to create a lot
of (typically small) memory blocks that the underlying malloc library will have to keep track
of, and even in many good malloc libraries this is likely to cause memory fragmentation
and possibly even result in the blocks scattered throughout the address space rather than
all in the one place, which is not necessarily a good thing on systems with virtual memory.

An alternative approach would be to allocate memory in multiples of the block size, so
that several blocks would be allocated at once. This would require slightly more work on
your part since you would need to write interface code to return a single block, while possible
allocating space for more blocks if no free blocks were available. However, this approach
has several advantages. The first is that the malloc library only needs to keep track of a few
large allocations rather than lots of small allocations, so splitting and merging free blocks is
less likely to occur. Secondly, your blocks will be scattered about less in the address space
of the process, which means that on systems with virtual memory there are less likely to be
page faults if you need to access or traverse all of the blocks you have created.

A memory allocation concept that is similar to this is called an arena. This datatype
requires functions which are built on top of the existing malloc library functions and which
associate each memory allocation with a particular arena. An arena can have as many
allocations added to it as required, but allocations cannot usually be freed until the whole
arena is freed. Note that there are not really any generic implementations of arenas that
are available as everyone tends to write their own version when they require it, although
SGI IRIX systems do come with an arena library called amalloc.

However, what if you don’t plan to free all of the blocks at the same time? A slight
modification to the above design could be to have a slot table. This would involve allocating
chunks of blocks as they are required, adding each individual block within a chunk to a
singly-linked list of free blocks. Then, as new blocks are required, the allocator would
simply choose the first block on the free list, otherwise it would allocate memory for a new
chunk of blocks and add them to the free list. Freeing individual blocks would simply involve
returning the block to the free list. If this description isn’t clear enough, have a look in
‘src/slots.h’ and ‘src/slots.c’. This is how the mpatrol library allocates memory from
the system for all of its internal structures. For variable-sized structures, a slightly different
approach needs to be taken, but for an example of this using strings see ‘src/strtab.h’
and ‘src/strtab.c’.

Another optimisation that is possible on UNIX and Windows platforms is making use
of memory-mapped files. This allows you to map a filesystem object into the address space
of your process, thus allowing you to treat a file as an array of bytes. Because it uses the

L Such as for use in a linked list.

36 mpatrol

virtual memory system to map the file, any changes you make to the mapped memory will
be applied to the file. This is implemented through the virtual memory system treating
the file as a pseudo swap file and will therefore only use up physical memory when pages
are accessed. It also means that file operations can be replaced by memory read and write
operations, leading to a very fast and efficient way of performing I/O. Another added bonus
of this system means that entire blocks of process memory can be written to a file for later
re-use, just as long as the file can later be mapped to the same address. This can be a lot
faster than writing to and reading from a specific format of file.

If you really don’t want to keep track of dynamic memory allocations at all then perhaps
you should consider garbage collection. This allows you to make dynamic memory alloca-
tions that need not necessarily be matched by corresponding calls to free these allocations.
A garbage collector will (at certain points during program execution) attempt to look for
memory allocations that are no longer referenced by the program and free them for later
re-use, hence removing all possibility of memory leaks. However, the garbage collection
process can take a sizable chunk of processor time depending on how large the program is,
so it is not really an option for real-time programming. It is also very platform-dependent as
it examines very low-level structures within a process in order to determine which pointers
point to which memory allocations. But there is at least one garbage collector? that works
well with C and C++ and acts as a replacement for malloc() and free(), so it may be the
ideal solution for you.

If you do choose to use an alternative malloc library make sure that you have a license to
do so and that you follow any distribution requirements. On systems that support dynamic
linking you may want to link the library statically rather than dynamically so that you don’t
have to worry about an additional file that would need to be installed. However, whether
you have that choice depends on the license for the specific library, and some licenses also
require that the source code for the library be made readily available. Shared libraries have
the advantage that they can be updated with bug fixes so that all programs that require
these libraries will automatically receive these fixes without needing to be relinked.

If all of the above suggestions do not seem to help and you still feel that you have
a performance bottleneck in the part of your code that deals with dynamically allocated
memory then you should try using a memory profiler®. This can be used at run-time to
analyse the dynamic memory allocation calls that your program makes during its execution,
and builds statistics for later viewing. It is then possible for you to see exactly how many
calls were made to each function, where they came from and what proportion of time they
each took. Such information can then be put to good use in order to optimise the relevant
parts of your code.

And finally, some tips on how to correctly use dynamic memory allocations. The first,
most basic rule is to always check the return values from malloc () and related functions.
Never assume that a call to malloc() will succeed, because you’re unlikely to be able to
read the future®. Alternatively, use (or write) an xmalloc() or similar function, which calls
malloc() but never returns ‘NULL’ since it will abort instead. With the C++ operators it

2 A freely distributably library called GC (see Appendix G [Related software], page 99).
3 There is currently at least one memory profiler available (see Appendix G [Related software], page 99).
41t you can, why are you reading this — you’ve already read it!

Chapter 7: Improving performance 37

is slightly different because some versions use exceptions to indicate failure, so you should
always provide a handler to deal with this eventuality.

Never use features® of specific malloc libraries if you want your code to be portable.
Always follow the ANSI C or C++ calling conventions and never make assumptions about
the function or operator you are about to call — the standards committees went to great
lengths to explicitly specify its behaviour. For example, don’t assume that the contents of
a freed memory allocation will remain valid until the next called to malloc(), and don’t
assume that the contents of a newly allocated memory block will be zeroed unless you
created it with calloc().

Finally, try stress-testing your program in low memory conditions. The mpatrol library
contains the ‘LIMIT’ option which can place an upper bound on the size of the heap, and also
contains the ‘FAILFREQ’ and ‘FAILSEED’ options which can cause random memory allocation
failures. Doing this will test parts of your code that you would probably never expect to be
called, but perhaps they will one day! Who would you rather have debugging your program
— yourself or the user?

5 Whether they are documented or not.

38

mpatrol

Chapter 8: How it works 39

8 How it works

The mpatrol library was originally written with the intention of plugging it into an
existing compiler so that the compiler could plant calls to it in the code it generated when a
specific debugging option was used. These extra calls would obviously slow the code down,
but along with the stack checking options that would be provided, this would give the
user an enhanced run-time debugging environment. Unfortunately, this integration never
happened, but the way that mpatrol works is still significantly different from other malloc
tracing libraries.

In order to quickly determine exactly which memory allocation a heap address belonged
to it was necessary to be able to search the heap in an efficient manner. The traditional
way of searching along a linked list was unfeasible, so an implementation based on red-black
trees was used, where every known memory allocation in the heap was given an entry in
the tree, with their start addresses as the key. Another major design decision was to also
choose red-black trees to implement the best fit allocation algorithm. Although first fit was
considered, I decided that best fit would allow the library to have more control over the
heap, with every free memory block in the heap given an entry in the free tree, with their
sizes as the key. There was a bit of work involved in getting the splitting and merging of
free blocks to work efficiently, but it seems to work well now.

My original implementation had all of the information about each memory block stored
just before the block itself. I eventually dropped that behaviour in favour of storing all
of the library’s internal information in a separate part of the heap. I did that for two
reasons. The first was because of the problems that would occur due to memory allocations
with different alignment requirements. The second reason was that the library’s internal
structures could be write-protected on systems with virtual memory, to prevent user code
interfering with the operation of the library.

The library is written in a modular fashion so as to make it easy to add new functionality.
New modules have already been added, such as the stack and symbol modules, and perhaps
there might even be a debug module in the future for reading debugging information from
object files. Extra information about each memory allocation can be added to the allocation
information module in ‘src/info.h’ and ‘src/info.c’ without having to change much code
in any other files.

40

mpatrol

Chapter 9: Examples 41

9 Examples

Following are a set of examples that are intended to illustrate what exactly is possible
with the mpatrol library and how to go about using it effectively.

You should already have built and installed the library and should know how to link
programs with the library. Unfortunately, it isn’t possible to give specific instructions on
how to do this as it varies from system to system and also depends on your preferred
compiler and development tools.

However, on a typical SVR4 UNIX system, with mpatrol installed in ‘/usr/local’, the
mpatrol library can usually be incorporated into a program using the following commands:

e If the mpatrol library was built with no support for any object file format or was built
with support for the COFF object file format:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol
e If the mpatrol library was built with support for the ELF32 object file format access
library:
cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -lelf

e If the mpatrol library was built with support for the GNU BFD object file format
access library:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -1lbfd
-liberty

If you need to link with other libraries, make sure that they don’t contain definitions of
malloc(), etc., or if they do then you must ensure that the mpatrol library appears before
them on the link line.

You should also know how to set an environment variable on your specific system. Again,
this varies from system to system and also depends on the command line interpreter or shell
that you use. The environment variable that the mpatrol library uses is called MPATROL_
OPTIONS. You can see exactly what options are available for this environment variable by
setting it to ‘HELP’ and then running a program that has been linked with the library.

9.1 Getting started

The first example we’ll look at is when the argument in a call to free() doesn’t match
the return value from malloc(), even though the intention is to free the memory that was
allocated by malloc (). This example is in ‘tests/fail/testl.c’ and causes many existing
malloc() implementations to crash.

Along the way, I'll try to describe as many features of the mpatrol library as possible,
and illustrate them with examples. Note that the output from your version of the library is
likely to vary slightly from that shown in the examples, especially on non-UNIX systems.

23 /x

24 x Allocates a block of 16 bytes and then attempts to free the
25 * memory returned at an offset of 1 byte into the block.

26 *x/

42

mpatrol

29 #include "mpatrol.h"

32 int main(void)

33 {

34 char *p;

36 if (p = (char *) malloc(16))
37 free(p + 1);

38 return EXIT_SUCCESS;

39 }

Note that I've removed the copyright message from the start of the file and added line

numbers so that the tracing below makes more sense.

After compiling and linking the above program with the mpatrol library, the MPATROL_

OPTIONS environment variable should be set to be ‘LOGALL’ and the program should be
executed, generating the following output in ‘mpatrol.log’.

@(#) mpatrol 1.0.8 (99/12/20)
Copyright (C) 1997-1999 Graeme S. Roy

This is free software, and you are welcome to redistribute it under
certain conditions; see the GNU Library General Public License for
details.

ALLOC: malloc (13, 16 bytes, 8 bytes) [main|testl.c]|36]
0x00010AEO main
0x000109D4 _start

returns 0x00028000

FREE: free (0x00028001) [main|testi.c|37]
0x00010B24 main
0x000109D4 _start

ERROR: free: 0x00028001 does not match allocation of 0x00028000
0x00028000 (16 bytes) {malloc:13:0} [main|testl.c|36]
0x00010AEQO main
0x000109D4 _start

system page size: 8192 bytes
default alignment: 8 bytes

overflow size: 0 bytes
overflow byte: OxAA
allocation byte: OxFF
free byte: 0x55
allocation stop: 0
reallocation stop: O

free stop: 0
unfreed abort: 0

Chapter 9: Examples 43

lower check range: -
upper check range: -
failure frequency: O
failure seed: 533453
prologue function: <unset>
epilogue function: <unset>
handler function: <unset>

log file: mpatrol.log
program filename: /proc/729/object/a.out
symbols read: 3240

allocation count: 13

allocation peak: 4720 bytes
allocation limit: O bytes
allocated blocks: 1 (16 bytes)
freed blocks: 0 (0 bytes)

free blocks: 1 (8176 bytes)
internal blocks: 25 (204800 bytes)
total heap usage: 212992 bytes
total warnings: 0

total errors: 1

Ignoring the copyright blurb at the top, let’s first take a look at the initial log message
from the library. I've annotated each of the items with a number that corresponds to the
descriptions below.

(1) (2) (3) (4) (5) (6) (7 (&)
| | | | | | | |
Vv Vv v v Vv Vv Vv v
ALLOC: malloc (13, 16 bytes, 8 bytes) [main|testl.c|36]
(9) -> 0x00010AE0 main
0x000109D4 _start <- (10)

returns 0x00028000 <- (11)

1. Allocation type. This generalises the type of dynamic memory operation that is being
performed, and can be one of ‘ALLOC’, ‘REALLOC’ or ‘FREE’. This should make looking
for all allocations, reallocations or frees in the log file a lot easier.

2. Allocation function. This is the name of the function that has been called to allocate
the memory, in this case ‘malloc’.

3. Allocation index. This is incremented every time a new memory allocation is requested,
and persists even if the memory allocation is resized with realloc(), recalloc() or
expand (), so can be useful to keep track of a memory allocation, even if its start
address changes. The mpatrol library may use up the first few allocation indices when
it gets initialised.

4. Size of requested allocation.

5. Alignment for requested allocation. This is normally the default system alignment for
general-purpose memory allocations, but may be different depending on the type of
function that is used to allocate the memory.

44 mpatrol

The following information contains source file details of where the call to malloc()
came from, but is only available if the source file containing the call to malloc() included
‘mpatrol.h’; otherwise the fields will all be ‘=’. Note that calls to the C++ operators
currently do not contain this information since they cannot be rewritten as preprocessor
macros.

6. Function where call to malloc() took place. This information is only available if the
source file containing the call to malloc() was compiled with gcc or g++.

7. Filename in which call to malloc() took place.

8. Line number at which call to malloc() took place.

The following information contains function call stack details of where the call to
malloc() came from, but is only available if the mpatrol library has been built on a
platform that supports this. The top-most entry should be the function which called
malloc() and the bottom-most entry should be the entry-point for the process.

9. Address of function call. This is normally the address of the machine instruction
immediately after the function call instruction, also known as the return address.

10. Function where call took place. This information is only available if the mpatrol library
has been built on a platform that supports reading symbol table information from
executable files, and then only if there is an entry in the symbol table corresponding
to the return address. C++ function names may still be in their mangled form, but this
can be easily rectified by processing the log file with a C++ name demangler.

The following information is only available when the allocation type is ‘ALLOC’ or
‘REALLOC’ since it makes no sense when applied to ‘FREE’.

11. The address of the new memory block that has been allocated by malloc().

As you can see, there is quite a lot of information that can be displayed from a simple
call to malloc(), and hopefully this information has been presented in a clear and concise
format in the log file.

The next entries in the log file correspond to the call to free(), which attempts to free
the memory allocated by malloc(), but supplies the wrong address.

The first three lines should be self-explanatory as they are very similar to those described
above for malloc(). However, the next lines signal that a terminal error has occurred in
the program, so I've annotated them as before.

FREE: free (0x00028001) [main|testi.c|37]
0x00010B24 main
0x000109D4 _start

(1) (2)
I I
' '
ERROR: free: 0x00028001 does not match allocation of 0x00028000
(3) 4 (6) 6 (8) 9 (10)
| | I (I | | |
' v Vv vV Vv v ' '

0x00028000 (16 bytes) {malloc:13:0} [main|testl.c|36]

Chapter 9: Examples 45

1.

(11) -> 0x00010AE0 main
0x000109D4 _start

Error severity. The mpatrol library has two different severities of error: ‘WARNING’ and
‘ERROR’. The first is always recoverable, and serves only to indicate that something is
not quite right, and so may be useful in determining where something started to go
wrong. The second may or may not be recoverable, and the library terminates the
program if it is fatal, displaying any relevant information as it does this.

Allocation function. This is the name of the function used to allocate, reallocate or

free memory where the error was detected. This may be omitted if an error is detected
elsewhere in the library.

The following information is related to the information that the library has stored about

the relevant memory allocation. This information is always displayed in this format when
details of individual memory allocations are required. If any information is missing then
it simply means that the library was not able to determine it when the memory block was
first allocated.

3.
4.
D.

10.

11.

Address of memory allocation.
Size of memory allocation.

Allocation function. This is the name of the function that was called to allocate the
memory block, in this case ‘malloc’. If the memory allocation has been resized then
this will be either ‘realloc’, ‘recalloc’ or ‘expand’.

Allocation index.

Reallocation index. This is used to count the number of times a memory allocation has
been resized with realloc(), recalloc() or expand().

Function where original call to malloc() took place. If the memory allocation has
been resized then this will be the name of the function which last called realloc(),
recalloc() or expand().

Filename in which original call to malloc() took place. If the memory allocation
has been resized then this will be the filename in which the last call to realloc(),
recalloc() or expand() took place.

Line number at which original call to malloc() took place. If the memory allocation
has been resized then this will be the line number at which the last call to realloc(),
recalloc() or expand() took place.

Function call stack of original memory allocation. If the memory allocation has been
resized then this will be the call stack of the last call to realloc(), recalloc() or
expand ().

So, the mpatrol library detected the error in the above program and terminated it. When

the library terminates it always displays a summary of various memory allocation statistics
and settings that were used during the execution of the program.

The various settings and statistics displayed by the library for the above example have

been numbered and their descriptions appear below.

1 system page size: 8192 bytes
2 default alignment: 8 bytes
3 overflow size: 0 bytes

46

mpatrol

4 overflow byte: OxAA
5 allocation byte: OxFF
6 free byte: 0x55
7 allocation stop: 0

8 reallocation stop:

9 free stop:

10 unfreed abort:

11 lower check range:
12 upper check range: -

13 failure frequency: O

14 faijlure seed: 533453
15 prologue function: <unset>
16 epilogue function: <unset>
17 handler function: <unset>

I O O O

18 1log file: mpatrol.log
19 program filename: /proc/729/object/a.out
20 symbols read: 3240

21 allocation count: 13

22 allocation peak: 4720 bytes

23 allocation limit: O bytes

24 allocated blocks: 1 (16 bytes)

25 freed blocks: 0 (0 bytes)

26 free blocks: 1 (8176 bytes)

27 internal blocks: 25 (204800 bytes)
28 total heap usage: 212992 bytes

29 total compared: 0 bytes
30 total located: 0 bytes
31 total copied: 0 bytes
32 total set: O bytes
33 total warnings: 0
34 total errors: 1

System page size. This value is used on some platforms when allocating and protecting
system memory.

Default alignment. This value is the minimum alignment required for general pur-
pose memory allocations, and is usually the alignment required by the most restrictive
datatype on a given system. It is used when allocating memory that has no specified
alignment. It can be changed at run-time using the ‘DEFALIGN’ option, but setting this
value too small may cause the program to crash due to bus errors which are caused by
reading from or writing to misaligned data.

Overflow size. This value is the size used by one overflow buffer. If this is non-zero
then every memory allocation will have two overflow buffers; one on either side. These
buffers are used by the library to detect if the program has written too many bytes to
a memory allocation, thus overflowing into one of the buffers, but these extra checks
can slow down execution speed. It can be changed at run-time using the ‘OFLOWSIZE’
option.

Overflow byte.

5. Allocation byte.

Chapter 9: Examples 47

10.

11.
12.

13.
14.

15.
16.
17.

18.

19.

Free byte. These values are used by the library to pre-fill blocks of memory for checking
purposes. The overflow byte is used to fill overflow buffers, the allocation byte is used
to fill newly-allocated memory (except from calloc() or recalloc()), and the free
byte is used to fill free blocks or freed memory allocations. These can be changed at
run-time using the ‘OFLOWBYTE’, ‘ALLOCBYTE’ and ‘FREEBYTE’ options.

Allocation stop.
Reallocation stop.

Free stop. These values are used by the library to halt the program when run inside a
debugger whenever a specified allocation index is allocated, reallocated or freed. These
can be changed at run-time using the ‘ALLOCSTOP’, ‘REALLOCSTOP’ and ‘FREESTOP’
options.

Unfreed abort. This value is used when the program terminates and is used by the
library to check if there are more than a given number of unfreed memory allocations.
If there are then the library will cause the program to abort with an error. It can be
changed at run-time using the ‘UNFREEDABORT’ option.

Lower check range.

Upper check range. These values specify the range of allocation indices through which
the library will physically check every area of free memory and every overflow buffer for
errors. A dash specifies that either the lower or upper range is infinite, but if they are
both zero then no such checking will ever be performed, thus speeding up execution
speed dramatically. The library defaults to performing checks for every allocation
index. These can be changed at run-time using the ‘CHECK’ option.

Failure frequency.

Failure seed. These values are used to specify if random memory allocation failures
should occur during program execution, for the purposes of stress testing a program.
If the failure frequency is zero then no random failures will occur, but if it is greater
than zero then the higher the number, the less frequent the failures. The failure seed is
used internally by the mpatrol library when generating random numbers. If it is zero
then the seed will be set randomly, but if it is greater than zero then it will be used to
generate a predictable sequence of random numbers; i.e. two runs of the same program
with the same failure frequencies and the same failure seeds will generate exactly the
same sequence of failures.

Prologue function.

Epilogue function.

Handler function. These values contain addresses or names of functions that have been
installed as callback functions for the library. These functions, if set, will be called
from the library at appropriate times during program execution in order to handle
specific events. These can be changed at compile-time using the __mp_prologue(),
__mp_epilogue() and __mp_nomemory() functions.

Log file. Simply contains the name of the file where all mpatrol library diagnostics go
to. It can be changed at run-time using the ‘LOGFILE’ option.

Program filename. Contains the full pathname to the program’s executable file. This
is used by the mpatrol library to read the symbol table in order to provide symbolic
information in function call stacks. It can be changed at run-time using the ‘PROGFILE’
option.

48

20.

21.

22.

23.

24.
25.
26.

27.

28.

29.
30.
31.
32.

33.
34.

mpatrol

Symbols read. This value contains the total number of symbols read from a program’s
executable file and/or the dynamic linker, if applicable.

Allocation count. This value contains the total number of memory allocations that
were created by the mpatrol library. This value may be more than expected if the
mpatrol library makes any memory allocations during initialisation.

Allocation peak. This value contains the peak memory usage set by the program when
running. This value may be more than expected if the mpatrol library makes any
memory allocations during initialisation.

Allocation limit. This value is used to limit the amount of memory that can be allo-
cated by a program, which can be useful for stress-testing in simulated low memory
conditions. It can be changed at run-time using the ‘LIMIT’ option.

Allocated blocks.
Freed blocks.

Free blocks. These values contain the total number of allocated, freed and free blocks
at the time the summary was produced. A freed block is an allocated block that has
been freed but has not been returned to the free memory list for later allocation. These
values may be different from those expected if the mpatrol library makes any memory
allocations during initialisation.

Internal blocks. This value contains the total number of memory blocks (of varying
sizes) that have been allocated from the system for the mpatrol library to use inter-
nally. These memory blocks will be write-protected on systems that support memory
protection in order to prevent the program from corrupting the library’s data struc-
tures. This can be overridden at run-time using the ‘NOPROTECT option in order to
speed up program execution slightly.

Total heap usage. This value contains the total amount of system heap memory that
has been allocated by the mpatrol library.

Total compared.
Total located.
Total copied.

Total set. These values contain the total number of bytes that have been tracked by
the mpatrol library in byte comparison operations (such as memcmp()), byte location
operations (such as memchr (), byte copy operations (such as memcpy()) and byte set
operations (such as memset ()) respectively. They do not take into account any other
such operations that occur outwith these functions, such as loading and storing from
machine instructions.

Total warnings.

Total errors. The library keeps a count of the total number of warnings and errors it has
displayed so that you can quickly work out this information at program termination.

9.2 Detecting incorrect reuse of freed memory

The next example uses ‘tests/fail/test2.c’ to illustrate how the mpatrol library can

detect whereabouts on the heap an address belongs.

Chapter 9: Examples 49

23 /*

24 * Allocates a block of 16 bytes and then immediately frees it. An
25 * attempt is then made to double the size of the original block.
26 */

29 #include "mpatrol.h"

32 int main(void)

33 {

34 char *p;

36 if (p = (char *) malloc(16))

37 {

38 free(p);

39 p = (char *) realloc(p, 32);
40 }

41 return EXIT_SUCCESS;

42 3}

The relevant excerpts from ‘mpatrol.log’ appear below. The format of the log messages
should be familiar to you now.

ALLOC: malloc (13, 16 bytes, 8 bytes) [main|test2.c|36]
0x00010B18 main
0x00010A0C _start

returns 0x00028000

FREE: free (0x00028000) [main|test2.c|38]
0x00010B54 main
0x00010A0C _start

0x00028000 (16 bytes) {malloc:13:0} [main|test2.c|36]
0x00010B18 main
0x00010A0C _start

REALLOC: realloc (0x00028000, 32 bytes, 8 bytes) [main|test2.c]|39]
0x00010B88 main
0x00010A0C _start

ERROR: realloc: 0x00028000 has not been allocated

returns 0x00000000

The mpatrol library stores all of its information about allocated and free memory in
tree structures so that it can quickly determine if an address belongs to allocated or free
memory, or if it even exists in the heap that is managed by mpatrol. The above example
should illustrate this since after the allocation had been freed, the library recognised this

50 mpatrol

and reported an error. It was possible for the program to continue execution even after that
error since mpatrol could recover from it and return ‘NULL’.

It is possible for mpatrol to give even more useful diagnostics in the above situation by
using the ‘NOFREE’ option. This prevents the library from returning any freed allocations
to the free memory pool, by preserving any information about them and marking them as
freed. If you add the ‘NOFREE’ option to the MPATROL_OPTIONS environment variable you
should see the following entries in ‘mpatrol.log’ instead.

ALLOC: malloc (13, 16 bytes, 8 bytes) [main|test2.c|36]
0x00010B18 main
0x00010A0C _start

returns 0x00029DEO

FREE: free (0x00029DEO) [main|test2.c|38]
0x00010B54 main
0x00010A0C _start

0x00029DE0 (16 bytes) {malloc:13:0} [main|test2.c]|36]
0x00010B18 main
0x00010A0C _start

REALLOC: realloc (0xO0029DE0Q, 32 bytes, 8 bytes) [main|test2.c]|39]
0x00010B88 main
0x00010A0C _start

ERROR: realloc: 0x00029DEO was freed with free
0x00029DEO (16 bytes) {free:13:0} [main|test2.c]|38]
0x00010B54 main
0x00010A0C _start

returns 0x00000000

Note the extra information reported by realloc() since the library knows all of the
details about the freed memory allocation and when it was freed.

The ‘NOFREE’ option tends to use up much more system memory than normal since it
effectively instructs the mpatrol library to allocate new memory for every single memory
allocation or reallocation. It can also slow down program execution when overflow buffers
are used, since with each new memory allocation the library needs to check more and more
overflow buffers every time it is called. However, it can be quite useful for problems such
as this one. The test in ‘tests/fail/test3.c’ has a similar situation.

Normally, the ‘NOFREE’ option will cause the library to fill all freed memory allocations
with the free byte. However, the original contents of such allocations can be preserved with
the ‘PRESERVE’ option. This could help in situations when you need to determine exactly if
a program is relying on the contents of freed memory.

Chapter 9: Examples 51

9.3 Detecting use of free memory

This next example illustrates how the mpatrol library is able to check to see if anything
has been written into free memory. The test is located in ‘tests/fail/test4.c’ and simply
writes a single byte into free memory.

23 /x

24 x Allocates a block of 16 bytes and then immediately frees it. A
256 x NULL character is written into the middle of the freed memory.
26 x/

29 #include "mpatrol.h"

32 int main(void)

33 {

34 char *p;

36 if (p = (char *) malloc(16))
37 {

38 free(p);

39 pl8] = °\0’;

40 }

41 return EXIT_SUCCESS;

42 }

The following output was produced as part of ‘mpatrol.log’. Note that this test was
run using the same MPATROL_OPTIONS settings as the last example, but make sure that
‘PRESERVE’ is not set.

ERROR: freed allocation 0x0O0029DEO has memory corruption at 0x00029DES8
0x00029DE8 00555555 55555555 .Uuuuuuu

0x00029DEO (16 bytes) {free:13:0} [main|test4.c|38]
0x00010B1C main
0x000109D4 _start

The library was able to detect that something had been written into free memory and
could report on the memory allocation that was overwritten. However, these checks are
only performed whenever a function in the mpatrol library is called. In the example above,
the code which wrote into free memory could have been miles away from where the library
detected the error.

On platforms that support memory protection, the library also supports the ‘PAGEALLOC’
option. This option instructs the library to force every single memory allocation to have a
size which is a multiple of the system page size. Although the library still stores the original
requested size, it effectively means that no two memory allocations occupy the same page
of memory. It can then use page protection (which only operates on pages of memory) to
protect all free memory from being read from or written to, and uses similar features to
install a page of overflow buffer on either side of the allocation.

52 mpatrol

However, if the requested size for the memory allocation was not a multiple of the page
size this means that there will still be unused space left over in the allocated pages. This
problem is solved by turning the unused space into overflow buffers that will be checked
in the normal way. The positioning of the allocation within its pages is also important. If
you want to check for illegal reads from the borders of the memory allocation, unless it fits
exactly into its pages then there is a chance that a program could illegally read the right-
most overflow buffer if the allocation was left-aligned, or vice-versa. Two settings therefore
exist for the ‘PAGEALLOC’ option: ‘LOWER’ and ‘UPPER’. They refer to the placement of every
memory allocation within its constituent pages.

The following diagram illustrates the ‘PAGEALLOC’ option. In the diagram, the system
page size is assumed to be 16 bytes (very unlikely, but will serve for this example) and each
character represents 1 byte.

x = allocated memory
o = overflow buffer (filled with the overflow byte)
overflow buffer page (read and write protected)

PAGEALLOC=LOWER, allocation size is 16 bytes or
PAGEALLOC=UPPER, allocation size is 16 bytes:

PAGEALLOC=LOWER, allocation size is 8 bytes:
................ XXXXXXXX00000000. . oo vt vvnnnnn.

PAGEALLOC=UPPER, allocation size is 8 bytes:
................ 0000000 OXXKXXXKXKK « « v v v v e eeeennenn
In our original example, if the ‘PAGEALLOC=LOWER’ option is added to the MPATROL_
OPTIONS environment variable then the following error will be produced instead of the
original error.
ERROR: illegal memory access at address 0x0009E008
0x0009E000 (16 bytes) {free:13:0} [main|test4.c|38]
0x00010B1C main
0x000109D4 _start

call stack
0x00010B1C main
0x000109D4 _start
On systems that support memory protection, the mpatrol library has a built-in signal

handler which catches illegal memory accesses and terminates the program. In the above
case, the freed memory was made write-protected and so could not be written to. The
underlying virtual memory system in the operating system noticed this and signaled this
to the library immediately after it happened.

Along with the details of the freed memory allocation that was being written to, the
library also attempts to display the function call stack for the location in the program that
caused the illegal memory access, although this can be quite unreliable. A better solution
would be to run the program in a debugger to catch the illegal memory access.

Note that the ‘PAGEALLOC’ option also modifies the behaviour of the ‘NOFREE’ and
‘PRESERVE’ options when used together. The memory allocation being freed will always

Chapter 9: Examples 53

be made write-protected when the ‘PRESERVE’ option is used, otherwise it will also be made
read-protected to prevent further accesses.

Note also that the ‘PAGEALLOC=UPPER’ option is potentially much less efficient at catching
illegal memory accesses than the ‘PAGEALLOC=LOWER’ option. This is due to alignment
requirements, since an allocation of 1 byte requiring an alignment of 16 bytes cannot be
placed at the very end of a page of size 4096 bytes. The following diagram illustrates this,
using the same page size as the last diagram.

x = allocated memory
0 overflow buffer (filled with the overflow byte)
overflow buffer page (read and write protected)

PAGEALLOC=UPPER, allocation size is 16 bytes, alignment is 8 bytes:
................ P 0.9.9.0.0.0.0.0.0.0.0.0.0 0. O GNNNNENEE

PAGEALLOC=UPPER, allocation size is 3 bytes, alignment is 1 byte:
................ 0000000000000 KK + + v v v v v v v v vvvnn

PAGEALLOC=UPPER, allocation size is 3 bytes, alignment is 8 bytes:
................ 00000000XXXO00000 . « v v v v vvvve e nnnn

Everything is OK until the last allocation, where the alignment requirement means that
there must be two overflow buffers. This slows down program execution since the library
must check an additional overflow buffer, and also means that the program would have to
read six bytes beyond the end of the allocation before the illegal memory access would be
detected.

9.4 Using overflow buffers

This example illustrates the use of overflow buffers and so the MPATROL_OPTIONS environ-
ment variable should have ‘OFLOWSIZE=2’ added to it. However, turn off any ‘PAGEALLOC’
options for the purposes of this example. The test is located in ‘tests/fail/testb5.c’, and
‘tests/fail/test6.c’ is very similar.

23 /x

24 Allocates a block of 16 bytes and then copies a string of 16

256 x bytes into the block. However, the string is copied to 1 byte
26 *x before the allocated block which writes before the start of the
27 * block. This test must be run with an OFLOWSIZE greater than O.
28 x/

*

31 #include "mpatrol.h"

34 int main(void)
35 {
36 char *p;

38 if (p = (char *) malloc(16))

54 mpatrol

39 {

40 strcpy(p - 1, "this test fails!");
41 free(p);

42 }

43 return EXIT_SUCCESS;

44 %

The following error should be produced in ‘mpatrol.log’.

ERROR: allocation 0x00029E28 has a corrupted overflow buffer at 0x00029E27
0x00029E26 AAT4 t

0x00029E28 (16 bytes) {malloc:13:0} [main|test5.c|38]
0x00010BOC main
0x00010A00 _start

Once again, the library attempts to show you as much detail as possible about where
the corruption occurred. Along with showing you a memory dump of the overflow buffer
that was corrupted, it also shows you the allocation to which the overflow buffer belongs.

Using overflow buffers can reduce the speed of program execution since the library has
to check every buffer whenever it is called, and if the buffers are larger then they’ll take
longer to check and will use up more memory. However, larger buffers mean that there is
less chance of the program writing past one memory allocation into another.

Alternatively, the ‘CHECK’ option can be used to limit the number of checks that the
library has to perform, thus speeding up program execution. This option specifies a range of
allocation indices through which the library will check overflow buffers and free memory for
corruption. Such checks occur when they normally would, but only if the current allocation
index falls within the specified range. This feature can be used when there is a suspicion
that free memory corruption or overflow buffer corruption occurs at a certain point during
program execution, but checking them at every library call would take too long.

On systems which support software watch points, there is an extra option called
‘OFLOWWATCH’” which allows additional memory protection. Watch points allow individual
bytes to be read and/or write protected as opposed to just pages. The ‘OFLOWWATCH’
option installs software watch points at every overflow buffer instead of requiring the
library to check the integrity of the overflow buffers, and can be used in combination with
‘PAGEALLOC’. However, software watch points slow down program execution to a crawl
since every machine instruction must be checked individually by the system to see if
it accesses a watch point area. Slowing the program down by a factor of 10,000 is not
uncommon on some systems when the ‘OFLOWWATCH’ option is used.

9.5 Bad memory operations

In C there are several basic memory operation functions that are often called to perform
tasks such as clearing memory, copying memory, etc. The mpatrol library contains replace-
ments for these which allow for better checking of their arguments to prevent reading and
writing past the boundaries of existing memory allocations. The following source can be
found in ‘tests/fail/test9.c’.
23 /%
24 x Allocates a block of 16 bytes and then attempts to zero the contents of

Chapter 9: Examples 55

256 x the block. However, a zero byte is also written 1 byte before and 1
26 x byte after the allocated block, resulting in an error in the log file.
27 x/

30 #include "mpatrol.h"

33 int main(void)

34 {

35 char *p;

37 if (p = (char *) malloc(16))
38 {

39 memset(p - 1, 0, 18);

40 free(p);

41 }

42 return EXIT_SUCCESS;

43 }

When this is compiled and run, the following should appear in the log file.
ERROR: memset: range [0x00027FFF,0x00028010] overflows [0x00028000,0x0002800F]
0x00028000 (16 bytes) {malloc:13:0} [main|test9.c|37]
0x00010B18 main
0x00010A0C _start
As you can see, the library detected that the memset () function would have written past
the boundaries of the memory allocation and reported this to you. It then proceeded to
ignore the request to copy the memory and continued with the execution of the program.
Note that this will only be done for known memory allocations. Reading and writing past
the boundaries of static and stack memory allocations cannot be detected in this way.

If the ‘LOGMEMORY’ option is added to the MPATROL_OPTIONS environment variable then
it is possible to see a log of all the mpatrol library memory operation functions that were
called during program execution. For example, adding this option and running the above
program again will produce something similar to the following.

MEMSET: memset (0x00027FFF, 18 bytes, 0x00) [main|test9.c]|39]
0x00010B18 main
0x00010A0C _start

This is similar to the tracing produced for memory allocation functions, except that the
arguments in parentheses mean different things. For ‘MEMSET’, the first argument represents
the start of the memory block to set, the second argument represents the number of bytes
to set and the third argument represents the actual byte to set.

For ‘MEMCOPY’, the first argument represents the source memory block, the second ar-
gument represents the destination memory block and the third argument represents the
number of bytes to copy. This is similar for ‘MEMCMP’.

Note that as with the memory allocation functions, ‘MEMCMP’, ‘MEMCOPY’ and ‘MEMSET’ are
used to generalise the types of operations being performed and are followed by the names
of the actual functions being used. In some cases the functions may use a different ordering
of parameters than that shown.

56 mpatrol

9.6 Incompatible function calls

This example illustrates how the mpatrol library checks for calls to incompatible pairs
of memory allocation functions. It requires the use of C++, although does not use any
C++ features except for overloaded operators. The source is in ‘tests/fail/test7.c’, and
‘tests/fail/test8.c’ is similar.

23/

24 * Allocates a block of 16 bytes using C++ operator new[] and then
25 * attempts to free it using C++ operator delete.

26 x/

29 #include "mpatrol.h"

32 int main(void)

33 {

34 char *p;

36 p = new char[16];

37 delete p;

38 return EXIT_SUCCESS;
39 }

The relevant parts of ‘mpatrol.log’ are shown below.

ALLOC: operator new[] (17, 16 bytes, 8 bytes) [-|-|-]
0x00010A28 __builtin_vec_new
0x00010ADC main
0x000108D0 _start

returns 0x00028000

FREE: operator delete (0x00028000) [-|-]-]
0x00010A74 __builtin_delete
0x00010AF0 main
0x000108D0 _start

ERROR: operator delete: 0x00028000 was allocated with operator new[]
0x00028000 (16 bytes) {operator newl[]:17:0} [-[-]-]
0x00010A28 __builtin_vec_new
0x00010ADC main
0x000108D0 _start

This shows a call to operator new[], closely followed by a call to operator delete.
However, in C++ calls to operator new[] must be matched by calls to operator delete[]
and not operator delete. Hence, the library reports this as an error and does not free the
memory allocation.

Chapter 9: Examples 57

9.7 Additional useful information

This last example illustrates the various ‘SHOW’ options that are available for displaying
additional information from the mpatrol library at program termination. It also shows how
to easily detect memory leaks. Use the ‘OFLOWSIZE=16’, ‘NOFREE’ and ‘SHOWALL’ options in
MPATROL_OPTIONS before running.

1 /%

2 *x Introduces a memory leak by clobbering a pointer with a new
3 * memory allocation. Use with SHOWUNFREED to display it.

4 x/

7 #include "mpatrol.h"

10 int main(void)

11 {

12 void *p;

14 p = malloc(4);

15 p = malloc(4);

16 if (p != NULL)

17 free(p);

18 return EXIT_SUCCESS;
19 }

The information that we are interested in comes after the summary of library statistics
generated in the log file. The first block of data shows a memory map of the heap that is
being handled by mpatrol. This can be used to see graphically where a particular allocation
is located, or to look for memory fragmentation. The ‘SHOWMAP’ option also displays this
information.

Note that gaps in the memory map can either be due to space used by internal memory
blocks or to some other memory allocation library using up space. On some systems that
don’t have virtual memory, gaps are likely to be owned by other processes or belong to the
system free memory list.

memory map:
/ 0x8000A000-0x8000A00F overflow (16 bytes)
|+ 0x8000A010-0x8000A077 allocated (104 bytes) {malloc:1:0} [-|-]-]
\ 0x8000A078-0x8000A087 overflow (16 bytes)
/ 0x8000A088-0x8000A097 overflow (16 bytes)
|+ 0x8000A098-0x8000A115 freed (126 bytes) {free:2:0} [-|-|-]
\ 0x8000A116-0x8000A125 overflow (16 bytes)
/ 0x8000A126-0x8000A135 overflow (16 bytes)
|+ 0x8000A136-0x8000AF05 freed (3536 bytes) {free:3:0} [-]-1-]
\ 0x8000AF06-0x8000AF15 overflow (16 bytes)
/ 0x8000AF16-0x8000AF25 overflow (16 bytes)
|+ 0x8000AF26-0x8000AFA3 freed (126 bytes) {free:4:0} [-|-]-]
\ 0x8000AFA4-0x8000AFB3 overflow (16 bytes)
/ 0x8000AFB4-0x8000AFC3 overflow (16 bytes)

58

0x8000AFC4-0x8000AFC7
0x8000AFC8-0x8000AFD7
0x8000AFD8-0x8000AFE7
0x8000AFE8-0x8000AFEB
0x8000AFEC-0x8000AFFB
0x8000AFFC-0x8000AFFF
0x8000E000-0x8000EOQF
0x8000E010-0x8000EA27
0x8000EA28-0x8000EA37
0x8000EA38-0x8000EA47
0x8000EA48-0x8000EACS5
0x8000EAC6-0x8000EADS
0x8000EAD6-0x8000EAES
0x8000EAE6-0x8000EB63
0x8000EB64-0x8000EB73
0x8000EB74-0x8000EFFF
0x80011000-0x8001100F
0x80011010-0x800127F7
0x800127F8-0x80012807
0x80012808-0x80012FFF
0x8002D000-0x8002DO0F
0x8002D010-0x8002DBBF
0x8002DBCO-0x8002DBCF
0x8002DBD0-0x8002DFFF

mpatrol

allocated (4 bytes) {malloc:10:0} [main|test.c|14]
overflow (16 bytes)

overflow (16 bytes)

freed (4 bytes) {free:11:0} [main|test.c|17]
overflow (16 bytes)

free (4 bytes)

gap (12288 bytes)

overflow (16 bytes)

freed (2584 bytes) {free:5:0} [-|-]-]
overflow (16 bytes)

overflow (16 bytes)

freed (126 bytes) {free:6:0} [-|-1-]
overflow (16 bytes)

overflow (16 bytes)

freed (126 bytes) {free:8:0} [-|-|-]
overflow (16 bytes)

free (1164 bytes)

gap (8192 bytes)

overflow (16 bytes)

freed (6120 bytes) {free:7:0} [-]-]-]
overflow (16 bytes)

free (2040 bytes)

gap (106496 bytes)

overflow (16 bytes)

freed (2992 bytes) {free:9:0} [-|-1-]
overflow (16 bytes)

free (1072 bytes)

The next block of data shows a summary of all the symbols that could be read from
the program’s executable file and/or any shared libraries that the program requires. This
can be useful to see which symbols have actually been read by the mpatrol library. The
‘SHOWSYMBOLS’ option also displays this information.

Note that the following data has been dramatically cut down in size for the purposes of
this example. The ‘. ..’" marks text that has been removed.

symbols read: 2438

0x8000076C-0x800007D9
0x80000900-0x8000094F
0x80000950-0x8000096F
0x80000970-0x80000977

0x80003B24-0x80003B4B
0x80003B4C-0x80003B6F
0x80003B70-0x80003B77
0x80003B78-0x80003BA9
0xC0002604-0xC0002609
0xC000260A-0xC0002659
0xC000265A-0xC0002B1B

0xCO00266A

_init [/proc/789/exe] (110 bytes)

_start [/proc/789/exe] (80 bytes)
__do_global_dtors_aux [/proc/789/exe] (32 bytes)
fini_dummy [/proc/789/exe] (8 bytes)

__clear_cache [/proc/789/exe] (40 bytes)
__do_global_ctors_aux [/proc/789/exe] (36 bytes)
init_dummy [/proc/789/exe] (8 bytes)

_fini [/proc/789/exe] (50 bytes)

_start [/1ib/1d.so.1] (6 bytes)

_dl_start_user [/1lib/1ld.so.1] (80 bytes)
_dl_start [/1ib/1d.so.1] (1218 bytes)

here [/1ib/1d.so.1] (O bytes)

Chapter 9: Examples 59

0xCO0007A78-0xCO007AB5 __libc_read [/lib/ld.so.1] (62 bytes)

0xC0007A78 read [/1ib/1ld.so.1] (O bytes)

0xCO007A9A __syscall_error [/lib/ld.so.1] (O bytes)
0xC0007AB8-0xCO007ADF __clear_cache [/1lib/ld.so.1] (40 bytes)
0xCO013E70-0xCO013E8B __mp_newlist [/usr/lib/libmpatrol.so.1.0] (28 bytes)

0xC0013E8C-0xC0013EB3 __mp_addhead [/usr/lib/libmpatrol.so.1.0] (40 bytes)
0xC0013EB4-0xCO013EE7 __mp_addtail [/usr/lib/libmpatrol.so.1.0] (52 bytes)
0xCO013EE8-0xC0013F1B __mp_prepend [/usr/lib/libmpatrol.so.1.0] (52 bytes)

0xCO001A0DC-0xCOO01AOFF __nw__FUi [/usr/lib/libmpatrol.so.1.0] (36 bytes)
0xC001A100-0xC001A123 __arr_nw__FUi [/usr/lib/libmpatrol.so.1.0] (36 bytes)
0xC001A124-0xC001A143 __dl__FPv [/usr/lib/libmpatrol.so.1.0] (32 bytes)
0xC001A144-0xC001A163 __arr_dl__FPv [/usr/lib/libmpatrol.so.1.0] (32 bytes)
0xC003BB14-0xC003BB45 __libc_global_ctors [/lib/libc.so.6] (50 bytes)
0xC003BB48-0xC003BB97 __libc_init [/1lib/libc.so.6] (80 bytes)
0xC003BB98-0xCO03BBC3 __libc_print_version [/1ib/libc.so.6] (44 bytes)

0xC003BBC4-0xC003BBD7 __libc_main [/lib/libc.so.6] (20 bytes)

0xCO08F8BC-0xCOO8FA4D __moddi3 [/1lib/libc.so.6] (402 bytes)

0xCOO08FA50-0xCO08FB19 __udivdi3 [/1lib/libc.so.6] (202 bytes)

0xCOO08FB1C-0xCO08FC1B __umoddi3 [/1lib/libc.so.6] (256 bytes)
0xCOO8FC1C-0xCO08FCAD _fini [/1ib/libc.so0.6] (50 bytes)

The next block of data shows a summary of all freed memory allocations. This is only
possible because the ‘NOFREE’ option was also given, otherwise there would be no details on
freed memory allocations. All of these entries show where the allocation was freed, which
can be useful if you quickly needed to see where an allocation was freed. The ‘SHOWFREED’
option also displays this information.

As this example was run on UNIX, the mpatrol library replaces the default implemen-
tations of malloc (), free(), etc. As can be seen below, this allows the library to trace all
calls to allocate dynamic memory in a process, even from functions that were not compiled
with mpatrol. The two functions shown below were called by the mpatrol library in order
to read the symbols from ELF object files. However, they are located in the ELF access
library which was not compiled with mpatrol.

Note that the following data has again been cut down in size for the purposes of this
example. The ‘. ..” marks text that has been removed.

freed allocations: 9 (15740 bytes)
0x8000A098 (126 bytes) {free:2:0} [-|-1-]
0x800011BC elf_end
0xC0019668 __mp_init
0xC001982A __mp_alloc
0x8000099C main

0x80000944 _start

0x8000A136 (3536 bytes) {free:3:0} [-|-1|-]
0x8000104E _elf_free
0xC0019668 __mp_init

0xC001982A __mp_alloc
0x8000099C main

60 mpatrol

0x80000944 _start

The final block of data shows a summary of all unfreed memory allocations. This can
show up memory leaks, although the first unfreed memory allocation in this example comes
from the standard C library. On systems such as UNIX it does not really matter about
these unfreed allocations since they will automatically be returned to the system on process
termination.

However, the second unfreed allocation shows an example of a memory leak, where no
pointers referencing that allocation remain in the program to free it with. If this was within
a loop then the program could quickly run away with memory, causing at least a decrease
in performance, and at most a memory shortage. The mpatrol library makes it easier to
spot memory leaks.

The ‘SHOWUNFREED’ option also displays this information.
unfreed allocations: 2 (108 bytes)

0x8000A010 (104 bytes) {malloc:1:0} [-|-|-]
0xC0052B4A _IO_fopen
0xCO017A0C __mp_openlogfile
0xC0019648 __mp_init
0xCO001982A __mp_alloc

0x8000099C main
0x80000944 _start

0x8000AFC4 (4 bytes) {malloc:10:0} [main|test.c|14]
0x8000099C main
0x80000944 _start

Chapter 10: Tutorial 61

10 Tutorial

In this chapter we’ll look at a real example of using the mpatrol library to debug a
program. All of the following building and debugging steps were performed on a Linux/m68k
machine so the details may differ slightly on your system, but the concepts should remain
the same. However, on systems without virtual memory some of the steps may actually
cause the machine to lock up or crash so be aware of this if you are running such a system
— you may be safer just reading this tutorial rather than attempting it!

The program we are going to look at is a simple filter which processes its standard input
and displays the processed information on its standard output. In this case the program
converts all lowercase characters to uppercase and removes any blank lines. The source for
the program is given below, but can also be found in ‘tests/tutorial/testl.c’.

23 /x

24 x Reads the standard input file stream, converts all lowercase

25 * characters to uppercase, and displays all non-empty lines to the
26 * standard output file stream.

27 x/

30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <ctype.h>

36 char *strtoupper(char *s)

37 {

38 char *t;

39 size_t i, 1;

41 1 = strlen(s);

42 t = (char *) malloc(l);
43 for (i = 0; i < 1; i++)
44 t[i] = toupper(s[il);
45 t[i] = °\0’;

46 return t;

47}

50 int main(void)

51 {

52 char *b, *s;

54 b = malloc(BUFSIZ);

55 while (gets(b))

56 {

57 s = strtoupper(b);

58 if (xs != ’\0’)

62 mpatrol

59 {

60 puts(s);

61 free(s);

62 }

63 }

64 free(b);

65 return EXIT_SUCCESS;

66 }

If you quickly skimmed over the above code then you might have noticed some rather
obvious errors, but there are also some less obvious ones hidden there as well. After com-
piling and linking with the system C compiler and libraries it successfully runs, even when
its source code is piped to it. So if it runs, why bother trying to debug it?

The short answer to that is that this program does in fact contain one rather major
error that is likely to prevent it from running portably on other systems. However, for the
purposes of this tutorial, we’ll pretend that we’ve just been handed the source code for this
program and have not worked on it before. So let’s now try to compile and link it with the
mpatrol library!.

First, add the inclusion of ‘mpatrol.h’ to line 34 so that we can replace calls to malloc()

and free() with their mpatrol equivalents?. Then, recompile the program and link it with
the mpatrol library. This time, running it with even the simplest of non-empty input lines

should cause it to abort!

If you look at the ‘mpatrol.log’ file produced, you should see something along the lines

of the following at the end of the log file.

ERROR: free memory

0x8000706C
0x8000707C
0x8000708C
0x8000709C
0x800070AC
0x800070BC
0x800070CC
0x800070DC
0x800070EC
0x800070FC
0x8000710C
0x8000711C
0x8000712C
0x8000713C
0x8000714C
0x8000715C

corruption at 0x8000706C

00555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555

55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555
55555555

55555555
55555555
55555555
555555655
555555655
55555555
55555555
55555555
55555555
55555555
55555555
555555655
555555655
55555555
55555555
55555555

55555555
55555555
55555555
555555655
555555655
55555555
556555555
55555555
55555555
55555555
55555555
555555655
555555655
55555555
556555555
55555555

.guuuuuuuuuuuuuy
uuuuuuuuuuuuuuuy
Uuuuuuuuuuuguuuu
Uuuuuuuuuuuuuuuu
Uuuuuuuuuuuguuuu
Uuuuuyuuuuuuuuuy
uuuuuyuuuuuuuuuu
uuuuuyuuuuuuuuuu
uuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuy
Uuuuuuuuuuuguuuu
Uuuuuuuuuuuguuuu
Uuuuuuuuuuuguuuu
Uuuuuyuuuuuuuuuu
uuuuuyuuuuuuuuuy
uuuuuuuuuuuuuuuu

This tells us that something has written a zero byte into free memory at location
Unfortunately, the library only caught it at the next call to one of its

‘0x8000706C".

1 On UNIX systems with dynamic linking it might also be possible to run the program under the mpatrol
shell script with its ‘-d’ option without having to recompile or relink, but compiling and linking with
the mpatrol library is a more generic solution across different platforms.

2 This is not strictly necessary on UNIX platforms, but it does give us more debugging information.

Chapter 10: Tutorial 63

functions so it had already happened somewhere in between the last call and the current
call. Turning on the ‘LOGALL’ option in the MPATROL_OPTIONS environment variable allows
us to see the last successful function call to the mpatrol library.

ALLOC: malloc (50, 8192 bytes, 2 bytes) [main|testl.c|54]
0x80000A30 main
0x80000944 _start

returns 0x80009000

ALLOC: malloc (51, 4 bytes, 2 bytes) [strtoupper|testl.c|42]
0x800009AE strtoupper
0x80000A54 main
0x80000944 _start

returns 0x80007068

Unfortunately, this only tells us that the last successful mpatrol library function call was
malloc() called from strtoupper (). If we add the option ‘OFLOWSIZE=8’ to the MPATROL_
OPTIONS environment variable then we get slightly more information about which memory
allocation was affected?.

ERROR: allocation 0x80007080 has a corrupted overflow buffer at 0x80007084
0x80007084 OOAAAAAA AAAAAAAA oo,

0x80007080 (4 bytes) {malloc:51:0} [strtoupper|testl.cl|42]
0x800009AE strtoupper
0x80000A54 main
0x80000944 _start

Now we can make a better guess about what is happening. Since the start of the upper
overflow buffer of allocation 51 has been written to, we can assume that something has
written one byte beyond the end of that memory allocation. You can probably see where
that is happening now by looking at the code, but let’s try to be even more sure that this
is what is wrong.

The only foolproof way to do this is to add a software watch point to keep an eye on the
address that is being written to. This can normally only be done within a debugger, but on
systems that support programmable software watch points, the ‘OFLOWWATCH’ option can be
used to do the same thing. For the sake of generality, we’ll use the debugger watch point
approach, in this case with gdb. In order for the following example to work correctly you’ll
need to add the ‘ALLOCSTOP=51’ option to the MPATROL_OPTIONS environment variable so
that we can stop just after the last successful memory allocation.

(gdb) break main

Breakpoint 1 at 0x80000a10: file testl.c, line 54.
(gdb) run

Starting program: a.out

Breakpoint 1, main() at testl.c:54

54 b = malloc(BUFSIZ);

3 Note that the start address of the allocation has changed slightly since we added padding around it with
the ‘OFLOWSIZE’ option.

64 mpatrol

(gdb) break __mp_trap

Breakpoint 2 at 0xc00182ac

(gdb) continue

Continuing.

test

Breakpoint 2, 0xc00182ac in __mp_trap()
(gdb) backtrace

#0 0xc00182ac in __mp_trap()

#1 0xc0016494 in __mp_getmemory ()

#2 0xc001a618 in __mp_alloc()

#3 0x800009ae in strtoupper (s=0x80009008 "test") at testl.c:42
#4 0x80000ab54 in main() at testl.c:57

(gdb) step

Single stepping until exit from function __mp_trap,

which has no line number information.
0xc0016494 in __mp_getmemory ()

(gdb) step

Single stepping until exit from function
which has no line number information.
0xc001a618 in __mp_alloc()

(gdb) step

Single stepping until exit from function
which has no line number information.
strtoupper (s=0x80009008 "test") at testl.c:43

43 for (1 = 0; 1 < 1; i++)

(gdb) watch *0x80007084

Watchpoint 3: *2147512452

(gdb) continue

Continuing.

Watchpoint 3: *2147512452

01d value = -1431655766

New value = 11184810

strtoupper (s=0x80009008 "test") at testl.c:46

46 return t;

(gdb) quit

The program is running. Quit anyway (and kill it)? (y or n) y

mp_getmemory,

mp_alloc,

After loading the program into gdb, we need to break at main () so that we can run to a
point where all of the shared library symbols have been loaded into memory®*. We can then
set another breakpoint at __mp_trap() and continue until allocation 51 has been reached.

Because the mpatrol library has not been built with debugging information in this ex-
ample we can quickly step back to the strtoupper () function since gdb won'’t step through
functions that have no debugging information. We then set a watch point on address
‘0x80007084’, which is the address of the memory location that has been causing the prob-
lems. After continuing, the debugger stops at line 46, but this is more likely to be line 45
since that is where a zero byte is being written to®.

4 This is only necessary when the mpatrol library has been built as a shared library.
5 This is not necessarily the fault of the debugger or the debugging information generated by the compiler
since most debuggers show the next statement to be executed rather than the current one.

Chapter 10: Tutorial 65

So, we have located the problem, which is simply a case of not allocating enough memory
to contain the copied string and the terminating zero byte. We can also improve the
strtoupper () function by checking the pointer returned by malloc() to see if it is ‘NULL’,
and if so simply exit with an error. You can try running the program with the ‘FAILFREQ’
option to see how it would originally behave in a low memory situation.

The following listing shows the above modifications that we have made to our program.
It can also be found in ‘tests/tutorial/test2.c’.

23 /%

24 * Reads the standard input file stream, converts all lowercase

25 * characters to uppercase, and displays all non-empty lines to the
26 * standard output file stream.

27 x/

30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include "mpatrol.h"

37 char *strtoupper(char *s)

38 {

39 char *t;

40 size_t i, 1;

42 1 = strlen(s);

43 if ((t = (char *) malloc(l + 1)) == NULL)
44 {

45 fputs("strtoupper: out of memory\n", stderr);
46 exit (EXIT_FAILURE) ;

47 }

48 for (i = 0; 1 < 1; i++)

49 t[i] = toupper(s[il);

50 tli]l = °\0’;

51 return t;

52 }

55 int main(void)

56 {

57 char *b, *s;

59 b = malloc(BUFSIZ);

60 while (gets(b))

61 {

62 s = strtoupper(b);

63 if (xs !'= °\0%)

66

64
65
66
67
68
69
70
71

{
puts(s);
free(s);
}
}
free(b);

return EXIT_SUCCESS;
}

mpatrol

Leaving aside the obvious problem with gets() and the general inefficiency of the al-

gorithm, we could assume that our program works safely now and we can release it to the
outside world. However, a user soon reports a problem with our program steadily using
more and more memory during its execution when processing very large files.

This is generally attributable to a memory leak and so we can use the ‘SHOWUNFREED’

option to try to detect where the memory leak is coming from. Following is some example
output from the mpatrol log file when our program is run and is given a relatively small
text file as input.

unfreed allocations: 6 (109 bytes)
0x80007000 (104 bytes) {malloc:1:0} [-|-1-]

0xCO08DB4A _IO_fopen

0xC00183DC __mp_openlogfile

0xCO001A584 __mp_alloc

0x80000A98 main
0x80000980 _start

0xCO01A3A4 __mp_init

0x80007068 (1 byte) {malloc
0x800009EE strtoupper
0x80000ABC main
0x80000980 _start

0x8000706A (1 byte) {malloc
O0x800009EE strtoupper
0x80000ABC main
0x80000980 _start

0x8000706C (1 byte) {malloc
0x800009EE strtoupper
0x80000ABC main
0x80000980 _start

0x8000706E (1 byte) {malloc
0x800009EE strtoupper
0x80000ABC main
0x80000980 _start

0x80007070 (1 byte) {malloc
0x800009EE strtoupper
0x80000ABC main

:52:0%}

:54:0%}

:56:0%

:58:0%}

:60:0}

[strtoupper|test2

[strtoupper|test?2

[strtoupper|test2

[strtoupper|test2

[strtoupper|test2

.cl43]

.c|43]

.c|43]

.cl43]

.c|43]

Chapter 10: Tutorial 67

0x80000980 _start

We can discount the first entry since that is obviously coming from when the mpatrol
library first initialises itself. However, all of the other entries appear to be coming from line
43 within strtoupper () and appear to be only 1 byte in length. At that point in the code,
the only possible reason for allocating 1 byte is when the string is empty and so that must
mean that we are not freeing memory that contains empty strings. Looking at line 66 we
can see that free() is only ever called for non-empty strings and therefore if we move the
call to free() outside the test for an empty string we will fix the memory leak. The file
‘tests/tutorial/test3.c’ contains the source for the final program.

68

mpatrol

Appendix A: Functions 69

Appendix A Functions

The mpatrol library contains implementations of dynamic memory allocation functions
for C and C++ suitable for tracing and debugging. The library is intended to be used
without requiring any changes to existing user source code except the inclusion of the
‘mpatrol.h’ header file, although additional functions are supplied for extra tracing and
control. Note that the current version of the mpatrol library is contained in the MPATROL _
VERSION preprocessor macro.

The following 14 functions are available as replacements for existing C library functions.
To use these you must include ‘mpatrol.h’ before all other header files, although on UNIX
platforms they will be used anyway, albeit with slightly less tracing information.

void *malloc(size_t size)

Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be suitably aligned for
casting to any type and can be used to store data of up to size bytes in length.
If size is ‘0’ then the memory allocated will be implicitly rounded up to ‘1’ byte.
If there is not enough space in the heap then the ‘NULL’ pointer will be returned
and errno will be set to ENOMEM. The allocated memory must be deallocated
with free() or reallocated with realloc().

void *calloc(size_t nelem, size_t size)

Allocates nelem elements of size zero-initialized bytes from the heap and returns
a pointer to the first byte of the allocation. The pointer returned will be suitably
aligned for casting to any type and can be used to store data of up to nelem
*x size bytes in length. If nelem * size is ‘0’ then the amount of memory
allocated will be implicitly rounded up to ‘1’ byte. If there is not enough space
in the heap then the ‘NULL’ pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free () or reallocated
with realloc().

void *memalign(size_t align, size_t size)

Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be aligned to align bytes
and can be used to store data of up to size bytes in length. If align is zero
then the default system alignment will be used. If align is not a power of two
then it will be rounded up to the nearest power of two. If align is greater
than the system page size then it will be truncated to that value. If size is ‘0’
then the memory allocated will be implicitly rounded up to ‘1’ byte. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and
errno will be set to ENOMEM. The allocated memory must be deallocated with
free() or reallocated with realloc(), although the latter will not guarantee
the preservation of alignment.

void *valloc(size_t size)
Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be aligned to the system
page size and can be used to store data of up to size bytes in length. If size is

70 mpatrol

‘0’ then the memory allocated will be implicitly rounded up to ‘1’ byte. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and
errno will be set to ENOMEM. The allocated memory must be deallocated with
free() or reallocated with realloc(), although the latter will not guarantee
the preservation of alignment.

void *pvalloc(size_t size)

Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be aligned to the system
page size and can be used to store data of up to size bytes in length. If size is ‘0’
then the memory allocated will be implicitly rounded up to ‘1’ page, otherwise
size will be implicitly rounded up to a multiple of the system page size. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and
errno will be set to ENOMEM. The allocated memory must be deallocated with
free() or reallocated with realloc(), although the latter will not guarantee
the preservation of alignment.

char *strdup(char *str)

Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allo-
cation after copying str to the newly-allocated memory. The pointer returned
will have no alignment constraints and can be used to store character data up
to the length of str. If str is ‘NULL’ then the ‘NULL’ pointer will be returned. If
there is not enough space in the heap then the ‘NULL’ pointer will be returned
and errno will be set to ENOMEM. The allocated memory must be deallocated
with free() or reallocated with realloc().

char *strndup(char *str, size_t size)

Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the alloca-
tion after copying str to the newly-allocated memory. The pointer returned will
have no alignment constraints and can be used to store character data up to
the length of str. If str is ‘NULL’ then the ‘NULL’ pointer will be returned. If the
length of str is greater than size then only size characters will be allocated and
copied, with one additional byte for the nul character. If there is not enough
space in the heap then the ‘NULL’ pointer will be returned and errno will be set
to ENOMEM. The allocated memory must be deallocated with free() or reallo-
cated with realloc(). This function is available for backwards compatibility
with older C libraries and should not be used in new code.

char *strsave(char *str)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the alloca-
tion after copying str to the newly-allocated memory. The pointer returned will
have no alignment constraints and can be used to store character data up to the
length of str. If str is ‘NULL’ then the ‘NULL’ pointer will be returned. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and
errno will be set to ENOMEM. The allocated memory must be deallocated with

Appendix A: Functions 71

free() or reallocated with realloc (). This function is available for backwards
compatibility with older C libraries and should not be used in new code.

char *strnsave(char *str, size_t size)

Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the alloca-
tion after copying str to the newly-allocated memory. The pointer returned will
have no alignment constraints and can be used to store character data up to
the length of str. If str is ‘NULL’ then the ‘NULL’ pointer will be returned. If the
length of str is greater than size then only size characters will be allocated and
copied, with one additional byte for the nul character. If there is not enough
space in the heap then the ‘NULL’ pointer will be returned and errno will be set
to ENOMEM. The allocated memory must be deallocated with free() or reallo-
cated with realloc(). This function is available for backwards compatibility
with older C libraries and should not be used in new code.

void *realloc(void *ptr, size_t size)

Resizes the memory allocation beginning at ptr to size bytes and returns a
pointer to the first byte of the new allocation after copying ptr to the newly-
allocated memory, which will be truncated if size is smaller than the original
allocation. The pointer returned will be suitably aligned for casting to any type
and can be used to store data of up to size bytes in length. If ptr is ‘NULL’ then
the call will be equivalent to malloc(). If size is ‘0’ then the existing memory
allocation will be freed and the ‘NULL’ pointer will be returned. If size is greater
than the original allocation then the extra space will be filled with uninitialized
bytes. If there is not enough space in the heap then the ‘NULL’ pointer will
be returned and errno will be set to ENOMEM. The allocated memory must be
deallocated with free() and can be reallocated again with realloc().

void *recalloc(void *ptr, size_t size)

Resizes the memory allocation beginning at ptr to size bytes and returns a
pointer to the first byte of the new allocation after copying ptr to the newly-
allocated memory, which will be truncated if size is smaller than the original
allocation. The pointer returned will be suitably aligned for casting to any type
and can be used to store data of up to size bytes in length. If ptr is ‘NULL’
then the call will be equivalent to calloc(). If size is ‘0’ then the existing
memory allocation will be freed and the ‘NULL’ pointer will be returned. If
size is greater than the original allocation then the extra space will be filled
with zero-initialized bytes. If there is not enough space in the heap then the
‘NULL’ pointer will be returned and errno will be set to ENOMEM. The allocated
memory must be deallocated with free() and can be reallocated again with
realloc(). This function is available for backwards compatibility with older
C libraries and calloc() and should not be used in new code.

void *expand(void *ptr, size_t size)
Attempts to resize the memory allocation beginning at ptr to size bytes and
either returns ptr if there was enough space to resize it, or ‘NULL’ if the block
could not be resized for a particular reason. If ptr is ‘NULL’ then the call will be
equivalent tomalloc (). If size is ‘0’ then the existing memory allocation will be

72 mpatrol

freed and the ‘NULL’ pointer will be returned. If size is greater than the original
allocation then the extra space will be filled with uninitialized bytes and if size
is less than the original allocation then the memory block will be truncated. If
there is not enough space in the heap then the ‘NULL’ pointer will be returned
and errno will be set to ENOMEM. The allocated memory must be deallocated
with free() and can be reallocated again with realloc(). This function is
available for backwards compatibility with older C libraries and should not be
used in new code.

void free(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed.
All of the previous contents will be destroyed.

void cfree(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed.
All of the previous contents will be destroyed. This function is available for
backwards compatibility with older C libraries and calloc() and should not
be used in new code.

The following 5 functions are available as replacements for existing C++ library functions.
To use these you must include ‘mpatrol.h’ before all other header files, although on UNIX
platforms they will be used anyway, albeit with slightly less tracing information.

void *operator new(size_t size)

Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be suitably aligned for
casting to any type and can be used to store data of up to size bytes in length.
If size is ‘0’ then the memory allocated will be implicitly rounded up to ‘1’
byte. If there is not enough space in the heap then the ‘NULL’ pointer will be
returned and errno will be set to ENOMEM — no exceptions will be thrown. The
allocated memory must be deallocated with operator delete.

void *operator new[] (size_t size)

Allocates size uninitialized bytes from the heap and returns a pointer to the
first byte of the allocation. The pointer returned will be suitably aligned for
casting to any type and can be used to store data of up to size bytes in length.
If size is ‘0’ then the memory allocated will be implicitly rounded up to ‘1’
byte. If there is not enough space in the heap then the ‘NULL’ pointer will be
returned and errno will be set to ENOMEM — no exceptions will be thrown. The
allocated memory must be deallocated with operator deletel[].

void operator delete(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed.
All of the previous contents will be destroyed. This function must only be used
with memory allocated by operator new.

Appendix A: Functions 73

void operator delete[] (void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed.
All of the previous contents will be destroyed. This function must only be used
with memory allocated by operator new[].

void (*set_new_handler(void (*func) (void))) (void)

Installs a low-memory handler specifically for use with operator new and
operator new[] and returns a pointer to the previously installed handler, or
the ‘NULL’ pointer if no handler had been previously installed. This will be
called repeatedly by both functions when they would normally return ‘NULL’,
and this loop will continue until they manage to allocate the requested space.
Note that this function is equivalent to __mp_nomemory () and will replace the
handler installed by that function.

The following 9 functions are available as replacements for existing C library memory
operation functions. To use these you must include ‘mpatrol.h’ before all other header
files, although on UNIX platforms they will be used anyway, albeit with slightly less tracing
information.

void *memset (void *ptr, int byte, size_t size)
Writes size bytes of value byte to the memory location beginning at ptr and
returns ptr. If size is ‘0’ then no bytes will be written. If the operation would
affect an existing memory allocation in the heap but would straddle that allo-
cation’s boundaries then an error message will be generated in the log file and
no bytes will be written.

void bzero(void *ptr, size_t size)
Writes size zero bytes to the memory location beginning at ptr. If size is ‘0’
then no bytes will be written. If the operation would affect an existing memory
allocation in the heap but would straddle that allocation’s boundaries then an
error message will be generated in the log file and no bytes will be written.
This function is available for backwards compatibility with older C libraries
and should not be used in new code.

void *memcpy(void *dest, void *src, size_t size)
Copies size bytes from src to dest and returns dest. If size is ‘0’ or src is the
same as dest then no bytes will be copied. The source and destination ranges
should not overlap, otherwise a warning will be written to the log file. If the
operation would affect an existing memory allocation in the heap but would
straddle that allocation’s boundaries then an error message will be generated
in the log file and no bytes will be copied.

void *memmove (void *dest, void *src, size_t size)
Copies size bytes from src to dest and returns dest. If size is ‘0’ or src is the
same as dest then no bytes will be copied. If the operation would affect an
existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes
will be copied.

74 mpatrol

void bcopy(void *src, void *dest, size_t size)
Copies size bytes from src to dest. If size is ‘0’ or src is the same as dest
then no bytes will be copied. If the operation would affect an existing memory
allocation in the heap but would straddle that allocation’s boundaries then an
error message will be generated in the log file and no bytes will be copied.
This function is available for backwards compatibility with older C libraries
and should not be used in new code.

int memcmp(void *ptrl, void *ptr2, size_t size)
Compares size bytes from ptrl and ptr2 and returns ‘0’ if all of the bytes are
identical, or returns the byte difference of the first differing bytes. If size is ‘0’
or ptrl is the same as ptr2 then no bytes will be compared. If the operation
would read from an existing memory allocation in the heap but would straddle
that allocation’s boundaries then an error message will be generated in the log
file and no bytes will be compared.

int bemp(void *ptrl, void *ptr2, size_t size)

Compares size bytes from ptrl and ptr2 and returns ‘0’ if all of the bytes are
identical, or returns the byte difference of the first differing bytes. If size is ‘0’
or ptrl is the same as ptr2 then no bytes will be compared. If the operation
would read from an existing memory allocation in the heap but would straddle
that allocation’s boundaries then an error message will be generated in the log
file and no bytes will be compared. This function is available for backwards
compatibility with older C libraries and should not be used in new code.

void *memchr(void *ptr, int byte, size_t size)
Searches up to size bytes in ptr for the first occurrence of byte and returns a
pointer to it or ‘NULL’ if no such byte occurs. If size is ‘0’ then no bytes will
be searched. If the operation would affect an existing memory allocation in the
heap but would straddle that allocation’s boundaries then an error message will
be generated in the log file and no bytes will be searched.

void *memmem(void *ptrl, size_t sizel, void *ptr2, size_t size?2)
Searches up to sizel bytes in ptrl for the first occurrence of ptr2 (which is
exactly size2 bytes in length) and returns a pointer to it or ‘NULL’ if no such
sequence of bytes occur. If sizel or size2 is ‘0’ then no bytes will be searched. If
the operation would affect an existing memory allocation in the heap but would
straddle that allocation’s boundaries then an error message will be generated
in the log file and no bytes will be searched.

The following 7 functions are available as support routines for additional control and
tracing in the mpatrol library. To use these you should include the ‘mpatrol.h’ header file.

int __mp_info(void *ptr, __mp_allocinfo *info)
Obtains information about a specific memory allocation by placing statistics
about ptr in info. If ptr does not belong to a previously allocated memory
allocation then ‘0’ will be returned, otherwise ‘1’ will be returned and info will
contain the following information:

Field Description
block Pointer to first byte of allocation.

Appendix A: Functions 75

size Size of allocation in bytes.

type Type of function which allocated memory.
alloc Allocation index.

realloc Number of times reallocated.

thread Thread identifier.

func Function in which allocation took place.
file File in which allocation took place.

line Line number at which allocation took place.
stack Pointer to function call stack.

freed Indicates if allocation has been freed.

void __mp_memorymap(int stats)
If stats is non-zero then the current statistics of the mpatrol library will be
displayed. If the heap contains at least one allocated, freed or free block then
a map of the current heap will also be displayed.

void __mp_summary (void)
Displays information about the current state of the mpatrol library, including
its settings and any relevant statistics.

void __mp_check(void)
Forces the library to perform an immediate check of the overflow buffers of

every memory allocation and to ensure that nothing has overwritten any free
blocks.

void (*__mp_prologue(void (*func) (void *, size_t))) (void *, size_t)
Installs a prologue function to be called before any memory allocation, reallo-
cation or deallocation function. This function will return a pointer to the pre-
viously installed prologue function, or the ‘NULL’ pointer if no prologue function
had been previously installed. The following arguments will be used to call the
prologue function:

Argument 1 Argument 2 Called by

-1 size malloc(), etc.
ptr size realloc(), etc.
ptr -1 free(), etc.
ptr -2 strdup(), etc.

void (*__mp_epilogue(void (*func) (void *))) (void *)
Installs an epilogue function to be called after any memory allocation, real-
location or deallocation function. This function will return a pointer to the
previously installed epilogue function, or the ‘NULL’ pointer if no epilogue func-
tion had been previously installed. The following arguments will be used to call
the epilogue function:

Argument Called by
ptr malloc(), realloc(), strdup(), etc.
-1 free(), etc.

void (*__mp_nomemory(void (*func) (void))) (void)
Installs a low-memory handler and returns a pointer to the previously installed
handler, or the ‘NULL’ pointer if no handler had been previously installed. This

76

mpatrol

will be called once by C memory allocation functions, and repeatedly by C++
memory allocation functions, when they would normally return ‘NULL’. Note
that this function is equivalent to set_new_handler() and will replace the
handler installed by that function.

Appendix B: Environment 7

Appendix B Environment

The library can read certain options at run-time from an environment variable called
MPATROL_OPTIONS. This variable must contain one or more valid option keywords from the
list below and must be no longer than 1024 characters in length. If MPATROL_OPTIONS is
unset or empty then the default settings will be used.

The syntax for options specified within the MPATROL_OPTIONS environment variable is
‘OPTION’ or ‘OPTION=VALUE’, where ‘OPTION’ is a keyword from the list below and ‘VALUE’
is the setting for that option. If ‘VALUE’ is numeric then it may be specified using binary,
octal, decimal or hexadecimal notation, with binary notation beginning with either ‘Ob’ or
‘OB’. If ‘VALUE’ is a character string containing spaces then it may be quoted using double
quotes. No whitespace may appear between the ‘=’ sign, but whitespace must appear
between different options. Note that option keywords can be given in lowercase as well as
uppercase, or a mixture of both.

‘ALLOCBYTE’'=<unsigned-integer>
Specifies an 8-bit byte pattern with which to prefill newly-allocated memory.
This can be used to detect the use of memory which has not been initialised
after allocation. Note that this setting will not affect memory allocated with
calloc() or recalloc() as these functions always prefill allocated memory
with an 8-bit byte pattern of zero. Default value: ‘ALLOCBYTE=0xFF’.

‘ALLOCSTOP’=<unsigned-integer>
Specifies an allocation index at which to stop the program when it is being
allocated. When the number of memory allocations reaches this number the
program will be halted, and its state may be examined at that point by using
a suitable debugger. Note that this setting will be ignored if its value is zero.
Default value: ‘ALLOCSTOP=0’.

‘CHECK’=<unsigned-range>

Specifies a range of allocation indices at which to check the integrity of free
memory and overflow buffers. The range must be specified as no more than
two unsigned integers separated by a dash. If numbers on either the left side or
the right side of the dash are omitted then they will be assumed to be ‘0’ and
infinity respectively. A value of ‘0’ on its own indicates that no such checking
will ever be performed. This option can be used to speed up the execution
speed of the library at the expense of checking. Default value: ‘CHECK=-".

‘CHECKALL’
Equivalent to the ‘CHECKALLOCS’, ‘CHECKREALLOCS’ and ‘CHECKFREES’ options
specified together.

‘CHECKALLOCS’
Checks that no attempt is made to allocate a block of memory of size zero. A
warning will be issued for every such case.

‘CHECKFREES’

Checks that no attempt is made to deallocate a ‘NULL’ pointer. A warning will
be issued for every such case.

78 mpatrol

‘CHECKREALLOCS’
Checks that no attempt is made to reallocate a ‘NULL’ pointer or resize an
existing block of memory to size zero. Warnings will be issued for every such
case.

‘DEFALIGN’=<unsigned-integer>
Specifies the default alignment for general-purpose memory allocations, which
must be a power of two (and will be rounded up to the nearest power of two if it
is not). The default alignment for a particular system is calculated at run-time.

‘FAILFREQ'=<unsigned-integer>
Specifies the frequency at which all memory allocations will randomly fail. For
example, a value of ‘10’ will mean that roughly 1 in 10 memory allocations will
fail, but a value of ‘0’ will disable all random failures. This option can be useful
for stress-testing an application. Default value: ‘FAILFREQ=0’.

‘FAILSEED =<unsigned-integer>
Specifies the random number seed which will be used when determining which
memory allocations will randomly fail. A value of ‘0’ will instruct the library
to pick a random seed every time it is run. Any other value will mean that the
random failures will be the same every time the program is run, but only as
long as the seed stays the same. Default value: ‘FAILSEED=0’.

‘FREEBYTE’=<unsigned-integer>
Specifies an 8-bit byte pattern with which to prefill newly-freed memory. This
can be used to detect the use of memory which has just been freed. It is also
used internally to ensure that freed memory has not been overwritten. Note
that the freed memory may be reused the next time a block of memory is
allocated and so once memory has been freed its contents are not guaranteed to
remain the same as the specified byte pattern. Default value: ‘FREEBYTE=0x55".

‘FREESTOP’=<unsigned-integer>
Specifies an allocation index at which to stop the program when it is being
freed. When the memory allocation with the specified allocation index is to be
freed the program will be halted, and its state may be examined at that point
using a suitable debugger. Note that this setting will be ignored if its value is
zero. Default value: ‘FREESTOP=0".

‘HELP’ Displays a quick-reference option summary to the stderr file stream.

‘LIMIT’=<unsigned-integer>

Specifies the limit in bytes at which all memory allocations should fail if the total
allocated memory should increase beyond this. This can be used to stress-test
software to see how it behaves in low memory conditions. The internal memory
used by the library itself will not be counted as part of the total heap size, but
on some systems there may be a small amount of memory required to initialise
the library itself. Note that this setting will be ignored if its value is zero.
Default value: ‘LIMIT=0’.

‘LOGALL’ Equivalent to the ‘LOGALLOCS’, ‘LOGREALLOCS’, ‘LOGFREES’ and ‘LOGMEMORY’
options specified together.

Appendix B: Environment 79

‘LOGALLOCS’
Specifies that all memory allocations are to be logged and sent to the log file.
Note that any memory allocations made internally by the library will not be
logged.

‘LOGFILE’=<string>
Specifies an alternative file in which to place all diagnostics from the mpatrol li-
brary. A filename of ‘stderr’ will send all diagnostics to the stderr file stream
and a filename of ‘stdout’ will do the equivalent with the stdout file stream.
Note that if a problem occurs while opening the log file or if any diagnostics re-
quire to be displayed before the log file has had a chance to be opened then they
will be sent to the stderr file stream. Default value: ‘LOGFILE=mpatrol.log’.

‘LOGFREES’
Specifies that all memory deallocations are to be logged and sent to the log file.
Note that any memory deallocations made internally by the library will not be
logged.

‘LOGMEMORY’
Specifies that all memory operations are to be logged and sent to the log file.
These operations will be made by calls to functions such as memset() and
memcpy (). Note that any memory operations made internally by the library
will not be logged.

‘LOGREALLOCS’
Specifies that all memory reallocations are to be logged and sent to the log file.
Note that any memory reallocations made internally by the library will not be
logged.

‘NOFREE’ Specifies that the mpatrol library should keep all reallocated and freed memory
allocations. Such freed memory allocations will then be flagged as freed and
can be used by the library to provide better diagnostics. However, as no system
memory will ever be reused by the mpatrol library, this option can quickly lead
to a shortage of available system memory for a process. Note that this option
will always force a memory reallocation to return a pointer to newly-allocated
memory, but the expand () function will never be affected by this option.

‘NOPROTECT’
Specifies that the mpatrol library’s internal data structures should not be made
read-only after every memory allocation reallocation or deallocation. This may
significantly speed up execution but this will be at the expense of less safety if
the program accidentally overwrites some of the library’s internal data struc-
tures. Note that this option has no effect on systems that do not support
memory protection.

‘OFLOWBYTE’'=<unsigned-integer>
Specifies an 8-bit byte pattern with which to fill the overflow buffers of all
memory allocations. This is used internally to ensure that nothing has been
written beyond the beginning or the end of a block of allocated memory. Note
that this setting will only have an effect if the ‘OFLOWSIZE’ option is in use.
Default value: ‘OFLOWBYTE=0xAA’.

80

mpatrol

‘OFLOWSIZE’'=<unsigned-integer>

Specifies the size in bytes to use for all overflow buffers, which must be a power
of two (and will be rounded up to the nearest power of two if it is not). This is
used internally to ensure that nothing has been written beyond the beginning
or the end of a block of allocated memory. Note that this setting specifies the
size for only one of the overflow buffers given to each memory allocation; the
other overflow buffer will have an identical size. No overflow buffers will be
used if this setting is zero. Default value: ‘OFLOWSIZE=0’.

‘OFLOWWATCH’

Specifies that watch point areas should be used for overflow buffers rather than
filling with the overflow byte. This can significantly reduce the speed of program
execution. Note that this option has no effect on systems that do not support
watch point areas.

‘PAGEALLOC’=<‘LOWER’ | ‘UPPER’>

‘PRESERVE’

Specifies that each individual memory allocation should occupy at least one
page of virtual memory and should be placed at the lowest or highest point
within these pages. This allows the library to place an overflow buffer of one
page on either side of every memory allocation and write-protect these pages
as well as all free and freed memory. Note that this option has no effect on
systems that do not support memory protection, and is disabled by default on
other systems as it can slow down the speed of program execution.

Specifies that any reallocated or freed memory allocations should preserve their
original contents. This option must be used with the ‘NOFREE’ option and has
no effect otherwise.

‘PROGFILE’=<string>

Specifies an alternative filename with which to locate the executable file con-
taining the program’s symbols. On most systems, the library will automatically
be able to determine this filename, but on a few systems this option may have
to be used before any or all symbols can be read.

‘REALLOCSTOP’=<unsigned-integer>

Specifies a reallocation index at which to stop the program when a memory
allocation is being reallocated. If the ‘ALLOCSTOP’ option is non-zero then
the program will be halted when the allocation matching that allocation in-
dex is reallocated the specified number of times. Otherwise the program will
be halted the first time any allocation is reallocated the specified number of
times. Note that this setting will be ignored if its value is zero. Default value:
‘REALLOCSTOP=0’.

‘SAFESIGNALS’

Instructs the library to save and replace certain signal handlers during the
execution of library code and to restore them afterwards. This was the default
behaviour in version 1.0 of the mpatrol library and was changed since some
memory-intensive programs became very hard to interrupt using the keyboard,
thus giving the impression that the program or system had hung.

Appendix B: Environment 81

‘SHOWALL’ Equivalent to the ‘SHOWFREED’, ‘SHOWUNFREED’, ‘SHOWMAP’ and ‘SHOWSYMBOLS’
options specified together.

‘SHOWFREED’
Specifies that a summary of all of the freed memory allocations should be dis-
played at the end of program execution. This option must be used in conjunc-
tion with the ‘NOFREE’ option and this step will not be performed if an abnormal
termination occurs or if there were no freed allocations.

‘SHOWMAP’ Specifies that a memory map of the entire heap should be displayed at the end of
program execution. This step will not be performed if an abnormal termination
occurs or if the heap is empty.

‘SHOWSYMBOLS’
Specifies that a summary of all of the function symbols read from the program’s
executable file should be displayed at the end of program execution. This step
will not be performed if an abnormal termination occurs or if no symbols could
be read from the executable file.

‘SHOWUNFREED’
Specifies that a summary of all of the unfreed memory allocations should be
displayed at the end of program execution. This step will not be performed if
an abnormal termination occurs or if there are no unfreed allocations.

‘UNFREEDABORT’=<unsigned-integer>
Specifies the minimum number of unfreed allocations at which to abort the
program just before program termination. A summary of all the allocations
will be displayed on the standard error file stream before aborting. This option
may be handy for use in batch tests as it can force tests to fail if they do not
free up a minimum number of memory allocations. Note that this setting will
be ignored if its value is zero. Default value: ‘UNFREEDABORT=0’.

‘USEMMAP’ Specifies that the library should use mmap () instead of sbrk () to allocate system
memory on UNIX platforms. This option should be used if there are problems
when using the mpatrol library in combination with another malloc library
which uses sbrk () to allocate its memory. It is ignored on systems that do not
support the mmap () system call.

82

mpatrol

Appendix C: Options 83

Appendix C Options

On UNIX platforms, a shell script called mpatrol is provided to run commands that
have been linked with the mpatrol library.

mpatrol [options] <command> [arguments]

The mpatrol command is used to set various mpatrol library options when running
command with its arguments. In most cases, command must have been linked with the
mpatrol library, unless the ‘-~d’ option is used in which case command need only have been
dynamically linked.

All mpatrol library diagnostics are sent to the file ‘mpatrol.%n.log’ in the current
directory by default (where ‘%n’ is the current process id) but this can be changed using the
‘=1’ option. Any existing MPATROL_OPTIONS environment variable settings which are not
overridden by options will be passed through unchanged to the mpatrol library.

All of the following options (except ‘=d’) correspond to their listed mpatrol library option
(see Appendix B [Environment|, page 77).

‘-A’ <unsigned-integer>
[‘ALLOCSTOP’| Specifies an allocation index at which to stop the program when
it is being allocated.

‘-a’ <unsigned-integer>

[[ALLOCBYTE'| Specifies an 8-bit byte pattern with which to prefill
newly-allocated memory.

‘~C’ <unsigned-range>
[‘CHECK’] Specifies a range of allocation indices at which to check the integrity
of free memory and overflow buffers.

-c [‘CHECKALL’| Specifies that all arguments to functions which allocate, reallocate
and deallocate memory have rigorous checks performed on them.

‘-D’ <unsigned-integer>
['[DEFALIGN’] Specifies the default alignment for general-purpose memory allo-
cations, which must be a power of two.

‘~d’ Specifies that the LD_PRELOAD environment variable should be set so that even
programs that were not compiled with the mpatrol library can be traced, but
only if they were dynamically linked. This option will only work if the dynamic
linker recognises the LD_PRELOAD environment variable.

-e’ <string>
[[PROGFILE’] Specifies an alternative filename with which to locate the exe-
cutable file containing the program’s symbols.

‘-F’ <unsigned-integer>
[[FREESTOP’] Specifies an allocation index at which to stop the program when
it is being freed.

‘~f’ <unsigned-integer>
[[FREEBYTE’] Specifies an 8-bit byte pattern with which to prefill newly-freed
memory.

84 mpatrol

‘~g’ [‘SAFESIGNALS’] Instructs the library to save and replace certain signal handlers
during the execution of library code and to restore them afterwards.

‘~L’ <unsigned-integer>
['LIMIT’] Specifies the limit in bytes at which all memory allocations should fail
if the total allocated memory should increase beyond this.

‘-1’ <string>
['LOGFILE’] Specifies an alternative file in which to place all diagnostics from
the mpatrol library.

‘-m’ [[USEMMAP’] Specifies that the library should use mmap () instead of sbrk() to
allocate system memory.

=N ['NOPROTECT’| Specifies that the mpatrol library’s internal data structures should
not be made read-only after every memory allocation, reallocation or dealloca-
tion.

‘-n’ ['NOFREE’] Specifies that the mpatrol library should keep all reallocated and

freed memory allocations.

‘-0’ <unsigned-integer>
[‘OFLOWSIZE’] Specifies the size in bytes to use for all overflow buffers, which
must be a power of two.

-0’ <unsigned-integer>
['OFLOWBYTE’] Specifies an 8-bit byte pattern with which to fill the overflow
buffers of all memory allocations.

=P’ ['PAGEALLOC=UPPER’] Specifies that each individual memory allocation should
occupy at least one page of virtual memory and should be placed at the highest
point within these pages.

‘-p’ ['PAGEALLOC=LOWER’| Specifies that each individual memory allocation should
occupy at least one page of virtual memory and should be placed at the lowest
point within these pages.

‘-R’ <unsigned-integer>
[‘[REALLOCSTOP’] Specifies an allocation index at which to stop the program when
a memory allocation is being reallocated.

‘-8’ [‘SHOWMAP’ & ‘SHOWSYMBOLS’] Specifies that a memory map of the entire heap
and a summary of all of the function symbols read from the program’s exe-
cutable file should be displayed at the end of program execution.

‘-’ [‘'SHOWFREED’ & ‘SHOWUNFREED’] Specifies that a summary of all of the freed
and unfreed memory allocations should be displayed at the end of program
execution.

‘U’ <unsigned-integer>
[‘'UNFREEDABORT’| Specifies the minimum number of unfreed allocations at which
to abort the program just before program termination.

-v ['PRESERVE’] Specifies that any reallocated or freed memory allocations should
preserve their original contents.

Appendix C: Options 85

-’ [‘OFLOWWATCH’] Specifies that watch point areas should be used for overflow
buffers rather than filling with the overflow byte.

‘~Z’ <unsigned-integer>
[[FAILSEED’| Specifies the random number seed which will be used when deter-
mining which memory allocations will randomly fail.

‘-z’ <unsigned-integer>
[[FAILFREQ’] Specifies the frequency at which all memory allocations will ran-
domly fail.

86

mpatrol

Appendix D: Library performance 87

Appendix D Library performance

The following times were obtained on a Sun Ultra 5 with an UltraSPARC IIi pro-
cessor running at 333MHz and running Solaris 7. The test performed was the one in
‘tests/pass/testl.c’ and all tests were run on a lightly loaded system, but were run
several times to obtain an average result. Obviously, these times can only be an approxi-
mation, but should serve to illustrate the effects on performance that each option can have.
All times are given in seconds, and the second time on each line was obtained with the
same options plus the ‘NOPROTECT’ option. Running with the ‘CHECK=0" option would speed
things up dramatically, albeit at the expense of less error checking.

Running with basic options:

no options 0.618 0.258
‘OFLOWSIZE=2’ 0.645 0.296
‘OFLOWSIZE=8’ 0.686 0.327
‘PAGEALLOC=LOWER’ 7.785 7.372
‘PAGEALLOC=UPPER’ 7.821 7.469

Running when all freed memory allocations are kept:
‘NOFREE’ 0.943 0.506
‘NOFREE OFLOWSIZE=2’ 1.026 0.579
‘NOFREE OFLOWSIZE=8’ 1.091 0.645
‘NOFREE PAGEALLOC=LOWER’ 8.013 7.598
‘NOFREE PAGEALLOC=UPPER’ 8.026 7.616

Running when all freed memory allocations are kept and their contents are preserved:
‘NOFREE PRESERVE’ 0.719 0.292
‘NOFREE PRESERVE OFLOWSIZE=2’ 0.792 0.367
‘NOFREE PRESERVE OFLOWSIZE=8’ 0.850 0.419
‘NOFREE PRESERVE PAGEALLOC=LOWER’ 8.043 7.616
‘NOFREE PRESERVE PAGEALLOC=UPPER’ 8.052 7.631

Running using watch points to check the overflow buffers:
‘OFLOWSIZE=2 OFLOWWATCH’ Interrupted after half an hour as

it still hadn’t finished.
Running using the Solaris 7 malloc libraries:

Solaris 7 malloc(3c) library 0.033
Solaris 7 malloc(3x) library 0.036
Solaris 7 bsdmalloc(3x) library 0.028
Solaris 7 mapmalloc(3x) library 0.033

Solaris 7 watchmalloc(3x) library 40.845

88

mpatrol

Appendix E: Supported systems 89

Appendix E Supported systems

Following is a list of systems on which the mpatrol library has been built and tested.
The system details include the operating system and version, the processor type, the object
file format and the C compiler used to compile the library and tests. The details following
each system list any features of the library that are not (or cannot be) supported on that
system.

e DG/UX 4.11, Intel Pentium Pro, ELF32, gcc
e The thread-safe version of the library does not work.
e The ‘OFLOWWATCH’ option has no effect.
e The ‘-d’ option to the mpatrol shell script has no effect.

e DG/UX 4.11, Motorola 88100, ELF32, gcc
e The thread-safe version of the library does not work.
The ‘OFLOWWATCH’ option has no effect.

e Cannot automatically determine the program filename.

e (Call stack traversal only works with unoptimised code.
e The ‘-d’ option to the mpatrol shell script has no effect.

e DYNIX/ptx 4.5, Intel Pentium Pro, ELF32, cc
e The thread-safe version of the library does not work.
e The ‘OFLOWWATCH’ option has no effect.
e The ‘-d’ option to the mpatrol shell script has no effect.

e HP/UX 10.20, HP PA/RISC 9000, BFD, gcc
e The thread-safe version of the library does not work.
e The ‘OFLOWWATCH’ option has no effect.
e The ‘USEMMAP’ option has no effect.
e (Cannot automatically determine the program filename.
e No support for call stack traversal.

e The ‘~d’ option to the mpatrol shell script has no effect.
e RedHat Linux 6.0, Intel Pentium III, BFD, gcc

e The thread-safe version of the library does not work.
e The ‘OFLOWWATCH’ option has no effect.
e The address of an illegal memory access cannot be determined.

e The ‘-d’ option to the mpatrol shell script does not work properly.
e RedHat Linux 5.1, Motorola 68040, BFD, gcc

e The thread-safe version of the library does not work.
e The ‘OFLOWWATCH’ option has no effect.
e The address of an illegal memory access cannot be determined.

e The ‘-d’ option to the mpatrol shell script does not work properly.

90

mpatrol

e LynxOS 3.0.0, PowerPC, BFD, gcc

The thread-safe version of the library does not work.

The ‘OFLOWWATCH’ option has no effect.

The ‘USEMMAP’ option has no effect.

Cannot automatically determine the program filename.

No support for call stack traversal.

The address of an illegal memory access cannot be determined.

The ‘-d’ option to the mpatrol shell script has no effect.

e Solaris 2.6, Intel Pentium Pro, ELF32, gcc

The thread-safe version of the library does not work.

e Solaris 7, SPARC V9, ELF32, gcc

The thread-safe version of the library does not work.

e AmigaOS 3.1, Motorola 68040, n/a, SAS/C

The shared version of the library does not work.

No automatic override of malloc (), etc., without inclusion of ‘mpatrol.h’.
No memory protection so the ‘PAGEALLOC’ option has no effect.

The ‘OFLOWWATCH’ option has no effect.

The ‘USEMMAP’ option has no effect.

No support for call stack traversal.

No support for reading symbols.

No detection of illegal memory accesses.

e Microsoft Windows NT 4.0, Intel Pentium III, n/a, Microsoft Visual C/C++

No automatic override of malloc(), etc., without inclusion of ‘mpatrol.h’.
The ‘OFLOWWATCH’ option has no effect.

The ‘USEMMAP’ option has no effect.

No support for reading symbols.

The address of an illegal memory access cannot be determined.

E.1 Adding a new operating system

Add a new TARGET and/or SYSTEM definition in ‘target.h’. The TARGET macro is for
fundamentally different operating systems, whereas the SYSTEM macro is for differenti-
ating variations of a particular operating system.

Make any necessary modifications to ‘config.h’.

Add any support for memory allocation in ‘memory.c’.

Add any support for stack traversal in ‘stack.c’.

Add any support for signals in ‘signals.c’.

Add any support for threads in ‘mutex.c’.

Appendix E: Supported systems 91

e Add a new version and date format (or use an existing one) in ‘version.c’.
e Decide if the malloc() replacements should be used from ‘mpatrol.c’.

e Add a new subdirectory in the ‘build’ directory that contains a ‘Makefile’ and any
other files that are required to build the library on the new operating system.

E.2 Adding a new processor architecture

e Add a new ARCH definition in ‘target.h’.

Make any necessary modifications to ‘config.h’.

Add any support for memory allocation in ‘memory.c’.

Add any support for stack traversal in ‘stack.c’.

E.3 Adding a new object file format

e Add a new FORMAT definition in ‘target.h’.

Make any necessary modifications to ‘config.h’.

Add any support for stack traversal in ‘stack.c’.

Add any support for symbol reading in ‘symbol.c’.

92

mpatrol

Appendix F: Notes 93

Appendix F Notes

This section contains information about known bugs and limitations in the mpatrol
library as well as listing potential future enhancements.

Bugs should be reported to mpatrol@cbmamiga.demon.co.uk along with the details of
the operating system, processor architecture and object file format that the mpatrol library
is being used with — and don’t forget to include the version of the mpatrol library you are
using! Keep in mind that I only have access to an Amiga running RedHat Linux/m68k 5.1
and AmigaOS 3.1, so I will be most likely unable to reproduce most of the system-specific
bugs. A bug report that comes with an associated fix will be most welcome.

Enhancement requests and source code containing enhancements should also
be sent to mpatrol@cbmamiga.demon.co.uk or the mpatrol discussion group at
http://www.egroups.com/group/mpatrol/. If you are planning to implement an
enhancement, let me know first in case I am (or someone else is) working towards the same
goal — that way, work won’t be wasted. If you wish to send me source code changes please
send the changes as context diffs or in an e-mail attachment as a compressed tar archive.

F.1 Notes for all platforms

e C++ support is very limited, and will only really work for old C++ code due to the way
the operators are overridden (i.e. there are no exceptions versions of the functions and
they are not defined in a namespace). There are also likely to be problems with the
macros which redefine malloc(), etc., since there may be member functions in code
that will mistakenly be redefined if their names match the macro definitions. Note
also that I haven’t yet figured out a way to pass down the function, filename and line
number from a call to operator new, for example. Perhaps there isn’t one and it would
have to be done from within the compiler.

e Need to add support for 64-bit processors. This shouldn’t be too hard, but I haven’t
got access to a 64-bit environment to test it, so I haven’t bothered yet.

e The thread-safe code in the library doesn’t yet work properly, probably because of the
recursion flag which is incremented or decremented before the mutex is locked. Hence,
the threads test (‘tests/pass/test5.c’) doesn’t work yet.

e Need to make the library re-entrant. This could be achieved by moving the static vari-
ables in ‘memory.c’, ‘mutex.c’, ‘diag.c’ and ‘option.c’ into the infohead structure
and then having an array of infohead structures from which to allocate new memory
headers when a new one is required. This is only necessary for Amiga shared libraries
and Netware NLMs since UNIX and Windows platforms allocate a new copy of the
data section in a shared library or DLL when it is opened by a new process.

e The current implementation of call stack traversal is limited and will only likely work
for unoptimised code. A much better solution would be write the implementation at a
lower level in assembly, but this is much less portable. Perhaps there is a library which
can be used to perform this across many operating systems and processor architectures,
or maybe someone would like to write one? I can think of many applications that would
benefit from such a library besides this one.

94

mpatrol

An alternative implementation for call stack traversal uses the functions __builtin_
frame_address() and __builtin_return_address() that are available when the li-
brary is compiled with gcc. However, they can only traverse a number of stack frames
at compile-time, not run-time so there is a maximum number of stack frames that can
be traversed at any one time. The implementation depends on both of these builtin
functions returning ‘NULL’ when the top of stack is reached. If this is not the case then
this method cannot be used.

An option should be added to suppress stack traversal, and therefore symbol reading,
in case of problems where the library crashes during reading a call stack.

In object file formats that support nested symbols (such as ELF), the current imple-
mentation will tend to show some shortcomings. This is because there is currently no
nesting count in the function that deals with symbol name lookup, so the wrong symbol
name may be displayed in diagnostics.

In object file formats that don’t store the sizes of symbols (such as basic COFF, or
when using the GNU BFD library), the current implementation will simply assume
that the current symbol terminates at the beginning of the next symbol in the virtual
address space.

Perhaps debugging information could be utilised when the library is reading the symbol
table from an executable file. This could be used to add line number information to
the call stack, but could also be used to extend the library to monitor static and stack
variables.

Possibly add ability to interface with various debuggers, including gdb, which could
be used to provide reliable stack traces and symbolic information as well as complete
debugging information if available.

Perhaps add a memory allocation profiling feature (something similar to mprof), which
could be used to determine where most of the memory allocations occur, or if bottle-
necks could be removed from the code. This could take the form of the library writing
out an additional file which could be analysed by an external program, and could take
advantage of the stack tracebacks and symbol tables in the mpatrol library.

Improve use of watch points by allowing an option which will only install write watch
points instead of both read and write watch points. Not only will this speed up the
use of watch points, but will also cause less problems with reading from misaligned
memory allocations.

Add a ‘SHOWFREE’ option to display a list of all free memory blocks at program ter-
mination for debugging purposes to view memory fragmentation. If that option is
added then perhaps ‘SHOWALL’ should only be equivalent to ‘SHOWFREE’, ‘SHOWFREED’
and ‘SHOWUNFREED’, and ‘SHOWMAP’ and ‘SHOWSYMBOLS’ should be explicitly given.

Add an option, similar to ‘NOFREE’, that would prevent a freed memory allocation from
being used until a certain number of memory allocations later. This would be far less
of a resource-hogger than the ‘NOFREE’ option and might catch just as many errors.

Add versions of mallopt(), mallinfo(), memorymap(), mallocctl(),
mallocblksize() and msize() which are provided in many other malloc libraries.
These won’t necessarily behave in exactly the same way as existing implementations,
but at least there won’t be link errors when compiling source code which uses them.

Appendix F: Notes 95

e Perhaps add debugging/tracing versions of the string manipulation functions, such as
strlen() and strcmp() in much the same way as was done for the memory operation
functions. The only problem with this would be locale support, but perhaps it might
be easier just to assume the C locale to begin with.

e Script files similar to the mpatrol shell script provided for UNIX platforms could be
added for the other operating systems that the mpatrol library is available on. Perhaps
this could even be extended to a common executable command that is written in C.

e Perhaps use GNU autoconf to automatically work out values for ‘config.h’ on the
platform it is being built on, and also use automake, libtool and install when building
and installing files.

F.2 Notes for UNIX platforms

e Need to add watch point area support for non-Solaris operating systems. This may
be a case of preventing all heap memory from being accessed and providing a signal
handler that is called when a read from or write to such memory triggers a signal. The
handler could then determine if the address is in a watch point, and if it is not it could
unprotect the memory and return.

e Need to improve watch point facility in order to speed it up by an order of magnitudes.
This will most likely involve removing all watch points when entering the library and
replacing them when returning to user code.

e Need to add advanced signal information for operating systems that do not support the
siginfo() system call. This information is used by the signal handler that handles the
SIGSEGV signal in order to provide useful information about where an illegal memory
access occurred. However, there is currently a problem in that the call stack displayed
from within that handler is not necessarily accurate with respect to the function at the
top of the stack. Also, signal handlers shouldn’t technically call I/O functions in case
of additional signals being caught so this may need to be improved.

e Need to add a portable way of initialising the thread-safe version of the library when
it is compiled by a C compiler. There is already a solution to this problem when it is
compiled by a C++ compiler.

e Need to add support for call stack traversal for at least the Alpha, MIPS, PA/RISC and
PowerPC processor architectures. The current implementation of call stack traversal
for the Motorola 88xx(0 family is also a bit flaky and so should only be used when the
library and program are built unoptimised.

e Need to add support for obtaining the program name from the stack for at least the
Alpha, Motorola 88xx0, MIPS, PA/RISC and PowerPC processor architectures. Also
need to add support for reading the program symbols from a suitable file in ‘/proc’
for other operating systems that support it. If there is no support for either of these
methods then the ‘PROGFILE’ option can currently be used to specify the program name
at run-time.

e The library cannot currently read any symbols from shared objects that have been read
via dlopen().

96

mpatrol

The ‘-d’ option to the mpatrol shell script does not always work on systems whose
dynamic linkers support the LD_PRELOAD environment variable. This needs to be looked
into in order to find out the cause.

F.3 Notes for Amiga platforms

The supplied SAS/C ‘Makefile’ contains support for building the mpatrol library as
a shared library, but this is incomplete and will result in link errors. The reason for
this is that an Amiga shared library is a separate task and would need to build itself a
process structure before being able to make any calls to the DOS library. Perhaps it’s
not even worth implementing as the archive library works fine.

All source code that uses the mpatrol library currently needs to be compiled using
the ‘PARMS=BOTH’ SAS/C compiler option (or equivalent) in order to correctly pass
arguments to the library. This is a side-effect of supporting the shared library as well
as the archive library.

Need to add support for call stack traversal for both the Motorola 680x0 and PowerPC
processor architectures. At first glance, this doesn’t seem to be very easy, or perhaps
even impossible.

Need to add support for reading symbols from Amiga executable files. Also need to add
support for reading symbols from any shared libraries that are required by the program.
The Amiga executable file format doesn’t seem to contain enough information for this
to be worthwhile, and even then it would only be worth doing if call stack traversal
worked.

Possibly make use of other software such as Enforcer, Mungwall or MuLib in order to
provide some form of memory protection. The features of SegTracker could also be
put to good use so that the file and hunk location of entries on the call stack could be
determined.

It is currently not possible to override the definition of malloc (), etc., without including
the ‘mpatrol.h’ header file first. This is because the compiler startup code and libraries
call malloc () before everything is set up, and so the library cannot properly initialise
itself if the malloc () that the startup code finds is the malloc () in the mpatrol library.

F.4 Notes for Windows platforms

Need to add watch point area support, possibly by using guard pages as a basis for an
implementation.

Need to add support for reading symbols from Windows executable files. Also need
to add support for reading symbols from any DLLs that are required by the program.
This may be possible in a limited fashion by using the GNU BFD library, but may only
work with code compiled with gcc.

It is currently not possible to override the definitions of malloc(), etc., without in-
cluding the ‘mpatrol.h’ header file first. This is because the system startup code calls
malloc() before anything is set up, such as streams, and so the library cannot prop-
erly initialise itself if the malloc() that the startup code finds is the malloc() in the
mpatrol library.

Appendix F: Notes 97

F.5 Notes for Netware platforms

The library has not yet been built (let alone tested) on Netware platforms. The names
of the system functions that the library calls for Netware were obtained by looking
at Novell’s developer documentation, so they may not even compile correctly without
modification.

Need to add support for building the mpatrol library as an NLM. This is not currently
a high priority requirement as the archive library should suffice for most purposes.

Need to add way to determine when the base of the stack has been reached during call
stack traversal, since on Netware every application is really a thread running under one
large process.

Need to add support for reading symbols from Netware load modules. Also need to
add support for reading symbols from any NLMs that are required by the program.
This may be possible in a limited fashion by using the GNU BFD library, but may only
work with code compiled with gcc.

Need to investigate if it is safe (or even possible) to override the definitions of malloc(),
etc., without including the ‘mpatrol.h’ header file first. Currently, non-macro defini-
tions for these functions have been disabled in the Netware version of the library in
case they affect other NLMs that are currently running.

98

mpatrol

Appendix G: Related software 99

Appendix G Related software

A list of software which helps in debugging dynamic memory allocation problems is
given below!. They all provide some of the features that mpatrol contains and you may
wish to use one of them to solve your problem if you have trouble using mpatrol. I have
only ever used Dbmalloc and Electric Fence, so I can’t vouch for any of the others, although
if you have any recommendations feel free to let me know so I can add them to this list. In
particular, there seems to be a shortage of such programs for Netware platforms.

e APurify
Author
License
Platforms
Location

Overview

Samuel Devulder (Samuel.Devulder@info.unicaen.fr)

Free Software

AmigaOS

http://wuarchive.wustl.edu/ aminet/dirs/dev_debug.html

Instruments an assembler source file to insert code that checks all memory
accesses.

e BoundsChecker

Author
License
Platforms
Location

Overview

e Ccmalloc
Author
License
Platforms
Location

Overview

e Chaperon
Author
License

Platforms

NuMega Corporation (info@numega. com)
Commercial Software

MS-DOS, Windows
http://www.numega.com/

Detects and diagnoses errors in static, stack and heap memory and in
memory and resource leaks.

Armin Biere (armin@ira.uk.de)

GNU General Public License

Various UNIX

http://iseran.ira.uka.de/ armin/ccmalloc/

Can interface with gdb to find memory leaks, multiple deallocations and
memory corruptions in C or C++ programs.

John Reiser (jreiser@BitWagon.com)
Commercial Software

Linux

1 This list can be considered to be a slightly more up to date version of Debugging Tools for Dynamic Stor-
age Allocation and Memory Management (http://www.cs.colorado.edu/ zorn/MallocDebug.html) by
Ben Zorn (zorn@cs.colorado.edu).

100

Location

Overview

e Checker
Author
License
Platforms
Location

Overview

e Dbmalloc
Author
License
Platforms
Location

Overview

e Debauch
Author
License
Platforms
Location

Overview

e Dmalloc
Author
License
Platforms
Location

Overview

mpatrol

http://www.BitWagon.com/chaperon.html

Runs existing Intel Linux binary application programs, but checks for and
reports bad behaviour in accessing memory.

Tristan Gingold (bug-checker@gnu.org)
GNU General Public License

Various UNIX

http://www.gnu.org/

Detects illegal memory accesses when reading from uninitialised memory;,
writing to freed memory or outside memory blocks. Also contains a garbage
collector for detecting memory leaks.

Conor P. Cahill (cpcahil@virtech.vti.com)

Free Software

Various UNIX
http://www.clark.net/pub/dickey/dbmalloc/dbmalloc.html

Provides replacements for memory management library functions and pro-
vides a full set of debugging features which detect memory overruns and
other types of misuse.

Jon A. Christopher (jac8792@tamu.edu)
GNU General Public License

Linux
http://quorum.tamu.edu/jon/gnu/

A memory allocation debugger for C which will detect memory leaks, cor-
rupted memory, stores to freed memory and more.

Gray Watson (gray@burger.letters.com)
Free Software

Various UNIX, MS-DOS, Windows
http://www.dmalloc.com/

A drop-in replacement for the system’s memory management routines, pro-
viding powerful debugging facilities configurable at run-time.

e Electric Fence

Appendix G: Related software 101

Author
License
Platforms
Location

Overview

e Enforcer
Author
License
Platforms
Location

Overview

Bruce Perens (Bruce@Pixar.com)

GNU General Public License

Various UNIX
ftp://ftp.perens.com/pub/ElectricFence/

Uses virtual memory hardware to protect dynamically allocated memory
in order to detect illegal memory accesses.

Michael Sinz (Enforcer@sinz.org)

Free Software

AmigaOS
http://www.iam.com/amiga/enforcer.html

Sets up MMU tables to watch for illegal accesses to memory, such as the
low page and non-existent pages.

e FDA (Free Debug Allocator)

Author
License
Platforms
Location

Overview

e Fortify
Author
License
Platforms
Location

Overview

Thomas Helvey (tomh@inxpress.net)

GNU General Public License

Linux, Windows
http://www.debian.org/Packages/unstable/devel/fda.html

Provides routines that can be plugged in to replace malloc(), calloc(),
realloc() and free().

Simon Bullen (sbullen@cybergraphic.com.au)

Free Software

AmigaOS

http://wuarchive.wustl.edu/ aminet/dirs/dev_c.html

Provides a fortified shell for memory allocations, trapping memory leaks,
writes beyond and before memory blocks and writes to freed memory.

e GC (Garbage Collector)

Author
License
Platforms
Location

Overview

Hans-J. Boehm (boehm@acm.org)

Free Software

Various UNIX, AmigaOS, MS-DOS, Windows, MacOS
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

A general-purpose, garbage-collecting storage allocator that is intended to
be used as a plug-in replacement for malloc(), but can also be used to
detect memory leaks.

102 mpatrol

e Great Circle
Author Geodesic Systems (info@geodesic.com)
License Commercial Software
Platforms Various UNIX, Windows
Location http://www.geodesic.com/

Overview Provides complete heap profiling, allowing programmers to see what parts
of a program are using the most memory with symbolic stack tracing.

e HeapAgent
Author MicroQuill (info@microquill.com)
License Commercial Software
Platforms Windows
Location http://www.microquill.com/

Overview Instruments the heap to provide heap error detection without the need to
recompile any source code.

e Insure++
Author ParaSoft (info@parasoft.com)
License Commercial Software
Platforms Various UNIX, Windows
Location http://www.parasoft.com/

Overview Uses Source Code Instrumentation and Runtime Pointer Tracking technolo-
gies to pinpoint memory corruption, memory leaks, operations on unrelated
pointers and more.

e Malloc Debug Library
Author Rammi (rammi@quincunx.escape.de)
License Free Software
Platforms Various UNIX
Location http://www.escape.de/users/quincunx/rmdebug.html

Overview Implements wrappers for the normal heap handling functions.

e MemCheck
Author Stratosware Corporation (info@stratosware.com)
License Commercial Software

Platforms Windows

Location http://www.stratosware.com/

Appendix G: Related software 103

Overview

e MemDebug

Author
License
Platforms
Location

Overview

Detects various run-time errors related to operating system resources and
provides information on memory leaks.

Rene Schmit (rene.schmit@crpht.lu)

Free Software

Various UNIX, MS-DOS, Windows, MacOS
ftp://ftp.crpht.lu/pub/sources/memdebug/

Provides memory management error detection, memory usage error detec-
tion, memory usage profiling and error simulation.

e Memory Advisor

Author
License
Platforms
Location

Overview

e MemWatch

Author
License
Platforms
Location

Overview

e MemWatch

Author
License
Platforms
Location

Overview

PLATINUM Technology (info@platinum.com)
Commercial Software

Various UNIX

http://www.platinum.com/

Disassembles an object module into system-independent assembler code,
inserts error checking instructions, then re-assembles the code. Can also
replace existing malloc libraries in order to provide greater error checking.

Johan Lindh (johan@link-data.com)
Free Software

Various UNIX, Windows
http://www.link-data.com/

A fault-tolerant memory leak and corruption detection tool.

Doug Walker (walker@unx.sas.com)

Free Software

AmigaOS

http://wuarchive.wustl.edu/ aminet/dirs/dev_debug.html

Provides replacement memory allocation routines for adding lots of memory
debugging features that you link into your program.

e MM (Shared Memory Library)

Author
License

Platforms

Ralf S. Engelschall (rse@engelschall.com)
Free Software

Various UNIX, Windows

104

mpatrol

Location http://www.engelschall.com/sw/mm/

Overview Simplifies the usage (and can help debug) the use of shared memory be-
tween related processes.

Mmalloc

Author Mike Haertel (mike@ai.mit.edu) and Fred Fish (fnf@cygnus.com)

License GNU General Public License

Platforms Various UNIX

Location http://www.gnu.org/

Overview Uses mmap () to allocate separate pools of memory which can be mapped
onto files for later reuse.

Mprof

Author Ben Zorn (zorn@cs.colorado.edu)

License Free Software

Platforms Various UNIX

Location ftp://gatekeeper.dec.com/pub/misc/mprof-3.0.tar.Z

Overview Profiles the dynamic memory allocation behaviour of programs by logging
details for each function than makes a memory allocation, including call
stack tracebacks.

MuForce

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

License Free Software

Platforms AmigaOS

Location http://www.math.tu-berlin.de/ thor/thor/index.html

Overview Uses the MMU to monitor the system for any writes to non-existent mem-
ory and reports them over the serial port or any other output stream.

MuGuardianAngel

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

License Free Software

Platforms AmigaOS

Location http://www.math.tu-berlin.de/ thor/thor/index.html

Overview An extension to the MuForce program which protects free memory and
detects all illegal memory accesses.

MuLib

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

Appendix G: Related software 105

License Free Software
Platforms AmigaOS
Location http://www.math.tu-berlin.de/ thor/thor/index.html

Overview Provides access to the MMU in modern Amigas so that features such as
virtual memory can be implemented.

e Mungwall
Author Commodore-Amiga, Inc. (info@amiga.de)
License Free Software

Platforms AmigaOS
Location http://wuarchive.wustl.edu/ aminet/dirs/dev_debug.html

Overview Patches the system to check for free memory corruption.

e Purify
Author Rational Software (info@rational.com)
License Commercial Software

Platforms Various UNIX, Windows
Location http://www.rational.com/

Overview Uses Object Code Insertion technology to provide run-time error checking
and memory leak detection.

e QC
Author Onyx Technology (sales@onyx-tech.com)
License Commercial Software
Platforms MacOS
Location http://www.onyx-tech.com/

Overview Runs in the background as a control panel and detects various memory
errors which can then be caught and run under a debugger.

e Wipeout
Author Olaf Barthel (olsen@sourcery.han.de)
License Free Software
Platforms AmigaOS
Location http://wuarchive.wustl.edu/ aminet/dirs/dev_debug.html

Overview Runs in the background checking free memory for corruption.

e YAMD (Yet Another Malloc Debugger)
Author Nate Eldredge (neldredge@hmc.edu)

106 mpatrol

License GNU General Public License
Platforms Linux, DOS
Location http://www3.hmc.edu/ neldredge/yamd/

Overview A tool for finding bugs related to dynamic memory allocation in C and
C++, and includes paging mechanisms to catch bugs immediately.

e ZeroFault
Author The Kernel Group (info®@zerofault.com)
License Commercial Software
Platforms AIX UNIX
Location http://www.zerofault.com/

Overview Uses run-time emulator technology to provide run-time error checking and
memory leak detection.

However, before you try out any of the above software, there may already be a malloc
library with debugging support on your system that might be suitable for solving your
problem. For example, on Solaris 7 the following libraries are available:

malloc(3c) Trade-off between performance and efficiency.

malloc(3x)
Slower performance, space-efficient.

bsdmalloc(3x)
Better performance, space-inefficient.

mtmalloc(3t)
Thread-safe memory allocator.

mapmalloc(3x)
Uses mmap () instead of sbrk() to allocate heap space.

watchmalloc(3x)
Uses watch point areas to check for overflows.

Function index

Function index

mp_check.......... i 75
__mp_epilogue 75
_omp_info.... 74
__MP_MEMOTYMAP -+ - e voeveveeeeeeeennnn. 75
Z_MP_NOMEMOTLY .« e e vevveeteeaeaeaeeneennns 75
__mp_prologue, 75
C_MP_SUMMATY .+ . e veveeeeeeeeeeee e 75
bemp 74
DCOPY « v ee e 73
DZETOo ..ot 73
[0 0 o Yo 69
cfree 72
expand 71
free ..o 72
MAlloC ..ttt 69
memalign............... ..., 69

MEMCHT . ..ttt 74

107
MEMCIP -« v eeveete et e et et et et e e e 74
MEIMCPY -« v e eveeee et et et e e e 73
MEMMEM .« . eeveetee et et e e et e e e e 74
MEMMOVE . . e vev e v et e e e e e e e e ee e 73
MEMSEt . ..ottt 73
operator delete.............. 72
operator deletel[] 72
OPEratoOr MEW . .o\ v ettt ie e 72
operatormnew[].......... 72
pvalloc..... ... i 70
realloC .. .ot 71
recalloC.ot 71
set_new_handler 73
Strdup ... 70
strodup 70
strosave........... .. 71
strsave............ .. 70
ValloC ...t 69

108 mpatrol

Index

Index

L 83
A 83
B 83
O 83
F 83
D 83
< S 83
S 83
B 83
S 83
Sl 84
I 84
010 84
B 84
SN 84
S0 e e 84
SO 84
P 84
P 84
SR 84
S e e e 84
S 84
U 84
SV e e 84
B2 84
B /2 85
B/ 85

ABL. . 19
adding a new object file format 91
adding a new operating system............... 90
adding a new processor architecture 91
address SPaCeot 17
address, physical L 17
address, virtual, 17
alignment L 21
all (make target)........... 11
alloca ... 15
allocated blocks........... 48
allocation algorithm 39
allocation byte..........., 23
allocation index............................. 43
allocation information....................... 74
allocation type........... 43
ALLOCBYTE 7
ALLOCSTOP ... 7
amalloc 35
Amiga 4000/040 11
Amiganotes. i 96

109
AmigaOS, Motorola 680x0................... 90
ANST . 37
application binary interface.................. 19
APurify ... 99
AR o 11
archive library 7
ATEIIAS .« o v ettt e e e 35
author, contacting...................... 3
B
BASIC .. 13
batch testing L. 29
best fit ... 39
BED . 41
binary.o 7
blOCKS .« et 48
BoundsChecker 99
breakpoint........... 25
bsdmalloc(3x) ..o 106
BSS . 13
buffers, overflow 24
bug reports. ... 3
bUugs . oo 93
building the library 11
DUS €ITors « . oo 21
bytes compared 48
bytes copied 48
bytes located L 48
bytesset 48
C
C o 13
Gt 13
C++ mangled names......................... 44
call stacks 19
call-by-value.........., 13
callback functions........................... 47
calling convention........................ ... 19
CO 11
Cemalloc. ... 99
CEFLAGS .. 11
Chaperonc.oiiinnnnei.. 99
CHECK . ..o 7
CHECKALL. ..ot 7
CHECKALLOCGCS ... 7
Checker 100
CHECKFREES......... 7
CHECKREALLOCS 7
clean (make target) 11

clobber (make target) 11

110

COFF . 41
command line options 83
Commodore-Amiga, Inc.................. ... 105
common variables.......... 13
compiler. ... 11
compiling.......... 11
contacting the author 3
crash. ... 41

data sections L 13
Dbmalloc.............o o 100
Debauch 100
debugger 25
debugging 25
decimal 7
declarations, tentative 13
DEFALIGN 78
demangler.......... 44
DG/UX, Intel 80x86cccvvuuenn... 89
DG/UX, Motorola 88xx0.................... 89
DLLS oot 19
Dmalloc...........oo o 100
documentation.............. L. 11
dumping memory 54
dynamic link libraries 19
dynamic linker......... 19
dynamic linking 19
dynamic memory allocations................. 14
DYNIX/ptx, Intel 80x86..................... 89

E

Electric Fence 100
ELF32 .. 41
embedded systems 17
Enforcer......... 101
enhancements............................... 93
entry-point Lo 44
environment 7
epilogue function.............. 47
eITor Severity 45
errors, run-time oL 5
examples 41
executable files.............................. 19

failure frequency

FDA (Free Debug Allocator)

file scope variables
files, mapping

fitting allocations

free memory
FREEBYTE

freed memory
FREESTOP

function call stacks

functions, callback
functions, handler
future enhancements

garbage collector
GC (Garbage Collector)

general errors
Geodesic Systems
getting updates
Great Circle

halting the library
handler functions

mpatrol

........................ 93

Index

hexadecimal 7
hints.......... 36
HP/UX,HP PA/RISC 89
I

illegal memory accesses. 52
implementation details 39
improving performance 35
information about an allocation.............. 74
installation 11
Insure++. 102
internal blocks 48
IRIX, MIPS ... o 35
K

Kernel Group, The......................... 106
known bugs............... ... oL 93
L

LD 11
LD PRELOAD ... 83
library behaviour 21
library functions 29
library settings........... 22
library statistics 22
library, archive.............. 7
library, building. 11
library, mpatrol 5
library, shared 7
library, thread-safe 7
LIMIT ..o 78
limitations. i 93
limiting available memory 28
Hnker ... 11
linking 11
links, symbolic........... 11
Linux, Intel 80x86........... 89
Linux, Motorola 680x0 89
local static variables......................... 13
logfile ... 42
LOGALL. ... 78
LOGALLOCS 78
LOGFILE 79
LOGFREES 79
logging ... 22
LOGMEMORY ... 79
LOGREALLOCS 79
low memory handler function 47
LynxOS, PowerPC 90

Malloc Debug Library
malloc libraries for Solaris 7
malloc(3¢) ..o
malloc(3x)
mangled names
manual layout
manual PAges
map of Memoryoiuiiii.
mapmalloc(3X).............. i
mapping files
MemCheck
MemDebug.......... ...
Memory Advisorcoiiiii...
memory allocations
memory allocations, dynamic
memory allocations, stack
memory allocations, static...................
memory blocks....... oo ool
memory dump
memory leaks.......... il
memory management interface...............
memory management unit
TNEIMOTY MAD .« .t vvvvveeeeeeeeeeeeeeeee e
memory mapped files................
memory profiler........ o oL
memory protection...............
INEMOTY USAZE -+« v voeeee e e e eteeeeeeeeeee
memory, physical
memory, virtual L
MemWatch...........
MicroQuill
Microsofto
misaligned data.............................
misaligned memory accesses.
ML .o
MM (Shared Memory Library)..............
Mmalloc

mpatrol
mpatrol command...........
mpatrol features
mpatrol library
mpatrol.h
mpatrollog....... ...
MPATROL_OPTIONS

111

54
Y
17
17
22
18
36
18
48
17
17
103
102
90
21
18
14
103
104
21

112

mtmalloc(3t) 106
MuForce ... 104
MuGuardianAngel 104
Muliib ..o 104
Mungwall 105
N

Netware notes 97
NOFREE o 79
non-static local variables.................. ... 13
NOPROTECT ... 79
NOLES. .ot 93
notes for all platforms....................... 93
notes for Amiga platforms................... 96
notes for Netware platforms.................. 97
notes for UNIX platforms.................... 95
notes for Windows platforms................. 96
NuMega Corporation........................ 99
O

object file formats, adding support 91
object files........... .. 19
octal ... 7
OFLAGS ... 11
OFLOWBYTE ... 79
OFLOWSIZE 79
OFLOWWATCH 80
Onyx Technology 105
operating systems........... 17
operating systems, adding support............ 90
optimisation............. 11
option summary 78
options. ... 83
original implementation 39
other programs 99
overflow buffers............................. 24
overflow byte 24
overflow size 24
OVEIVIEW . . ottt e 5
OVEIWTites ..., 23
P

PAZE « vttt 17
page fault L 18
PAgE SIZE 17
PAGEALLOC ... 80
parameter variables 13
Parasoft.......... 102

Pascal........ 13

peak memory usage
performance bottleneck
performance improvements
performance times
physical address
physical memory

platform-independent notes

PLATINUM Technology

PRESERVE
preserve freed contents

prevent freeing memory

processor architectures, adding support
PROGFILE

program counter

prologue function

random failures
Rational Software
read protection
REALLOCSTOP

recoverable errors

related software
release builds
reporting bugs
return address

run-time errors

mpatrol

Index

S

SAFESIGNALS. ... 80
Sbhrk. ... 21
SECtiONS . ..o 13
settings 22
severity of errors 45
SFLAGS ... 11
SGIIRIX, MIPS 35
shared libraries 19
shared library........ 7
shell script 83
SHOWALLo 80
SHOWFREED. 81
SHOWMAP 81
SHOWSYMBOLS....... ... 81
SHOWUNFREED 81
signal handler............................... 52
signals ... 9
similar programs..........o L 99
single-step............. i 26
slot tables....... 35
SOftware 99
Solaris 7 malloc libraries.................... 106
Solaris, Intel 80x86...............c.ooiioi. .. 90
Solaris, SPARC 90
StaCK . .o 14
stack memory allocations.................... 13
stack tracebacks il 19
static memory allocations.................... 13
statistics il 22
Stratosware Corporation.................... 102
stress testing 37
stripped executable file...................... 22
summary of optionso ... 78
supported systems 89
SVRA .. 41
swap file....... ... 17
SWAD IML .ottt 17
SWaApP OUb . ..o 17
SWaPPING ... oe i 17
symbol summary............. 22
symbol tables................., 19
symbolic links L 11
symbols 19
system page size 17
systems ... 89
systems, embedded, 17

T

tentative declarations........................ 13
test suite............ 10

testing 28

113
TEXinfo 11
TFLAGS ..o 11
thrashing......... 18
thread-safe library 7
times. 87
DS e e 36
tracebacks......... ... 19
tracing 22
tree structure......... L L L 49
tutorial........ ... L 61
type of allocation 43
U
underwrites......... i 23
unfreed allocations 47
UNFREEDABORT 81
UNIX notes ... 95
updates ... 3
USEMMARP 81
using mpatrol......... L 21
using with a debugger 25
utilities. 32
\Va
variable length arrays 15
variables, file scope.......... 13
variables, local static........................ 13
variables, non-static local 13
variables, parameter......................... 13
virtual address. L. 17
virtual memory ... oo 17
%%
warranty 3
watch points......... o L. 18
watchmalloc(3x) 106
Windows notes 96
Windows, Intel 80x86 90
Wipeout 105
write protection........... L. 18
Y
YAMD (Yet Another Malloc Debugger). 105
Z
ZeroFault 106

114 mpatrol

	mpatrol
	Foreword
	Overview
	Features
	Installation
	Memory allocations
	Static memory allocations
	Stack memory allocations
	Dynamic memory allocations

	Operating system support
	Virtual memory
	Call stacks and symbol tables

	Using mpatrol
	Library behaviour
	Logging and tracing
	General errors
	Overwrites and underwrites
	Using with a debugger
	Testing
	Library functions
	Utilities

	Improving performance
	How it works
	Examples
	Getting started
	Detecting incorrect reuse of freed memory
	Detecting use of free memory
	Using overflow buffers
	Bad memory operations
	Incompatible function calls
	Additional useful information

	Tutorial
	Functions
	Environment
	Options
	Library performance
	Supported systems
	Adding a new operating system
	Adding a new processor architecture
	Adding a new object file format
	Notes
	Notes for all platforms
	Notes for UNIX platforms
	Notes for Amiga platforms
	Notes for Windows platforms
	Notes for Netware platforms
	Related software
	Function index
	Index

