Using the Beans DevelopmentKit 1.0

September 1997

ATutorial

Alden DeSoto

sssssssssssssssssssssss

2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
408-343-1400

Sept 97

Contents

1. GettingStarted e 1-1
Beans Development Kit (BDK). 1-1
Example Beans and Online Documentation................ 1-1
The BeanBoX.t 1-2
TestingSampleBeans ..., 1-2
Creating and Testing the SimplestBean 1-5
Using the BeanBox to Create an Applet 1-7

2. Properties. 2-1
Simple Properties. 2-1
Indexed Properties. it e 2-2
Bound Properties 2-3
Constrained Properties i 2-6
Example Beans and Properties. 2-7

3. BVeNtS .. 3-1
WaterEventObject 3-2

ValVe . 3-3
PIpE .. e 3-5
Testing WaterSource, Valve,and Pipe 3-6
Example Beansand Events. 3-8
CuStoMIZatioNo 4-1
CustomizerInterface............. .. i 4-1
PropertyEditor Interface 4-2
BeanInfoInterface i 4-2
Example Beans and Customization....................... 4-3
Persistence 5-1
Whatto Save. 5-1
Changesand Versioning 5-1
Packaging 6-1
MANIFEST file. o 6-1
Example. 6-1
Additional Jar and Manifest File Information 6-2

JavaBeans Tutorial—September 1997

Getting Started 1

JavaBeans is a portable, platform-independent software component model
written in Java. It enables developers to write reusable components once and
run them anywhere - benefiting from the platform-independent power of Java.

Beans are Java classes that can be manipulated in a visual builder tool and
composed together into applications. Any Java class that adheres to certain
property and event interface conventions can be a Bean. This short tutorial
provides simple examples of how to program to these conventions.

Beans Development Kit (BDK)

The Beans Development Kit (BDK) is a pure Java application whose only
dependency is the Java Development Kit (JDK) 1.1. The BDK provides support
for the JavaBeans APIs, a test container (the “BeanBox” to test Bean behavior),
sample Beans complete with their source code, the JavaBeans Specification, and
this Tutorial.

Example Beans and Online Documentation

Extensive online documentation for the sample Beans is available from
beans\doc\examples.html in the distribution. The online documentation is
an important complement to this book and provides descriptions, suggestions
for experimentation, and in some cases annotated code for each sample Bean.
The online documentation also provides information on the BeanBox.

1-1

The BeanBox

Testing Sample Beans

1-2

Icon

represen-
tations are
specified in
the .gmk
files of some
Beans

The BeanBox is a sample container for testing Beans. The BeanBox handles
visible Beans, those Beans that have a visual element, and invisible Beans,
those Beans that are purely computational objects.

When you start the BeanBox, a ToolBox of sample Beans is displayed. Source
code for these Beans is provided in the demo\sunw\demo\ subdirectory of the
distribution.

Start the BeanBox with the following commands:

C:>cd beanbox
C:>nmake run

The BeanBox, ToolBox, and PropertySheet appear on the screen. To instantiate
a Bean in the BeanBox, click on the desired Bean in the ToolBox and then click
in the BeanBox area. In the example below, a Juggler and two OurButtons have
been instantiated in the BeanBox. The buttons have been labeled “Start” and
“Stop” by editing the label property in the PropertySheet.

save/load, cut/copy/paste, and
other operations supported via
File and Edit menus.

Efanbng FrapriTps el
= _|I»
Inkal |t editable
properties for
= st [|} | the selected
bomiSipe | Bean in BeanBox
n_b._# Pl ANCEE
i LTLT] e
ingaicn) Fais
fabyy T —
: (]

Beans instantiated
from ToolBox

JavaBeans Tutorial—September 1997

|
1]

To test the OurButton and Juggler sample Beans:

1. Instantiate two OurButtons and a Juggler in the BeanBox as shown above.
Label one button “start” and the other “stop” in the PropertySheet.

2. Select the “start” button.

Getting Started 1-3

3. Select the Edit-->Events-->action-->actionPerformed pulldown menu as
shown above.
The BeanBox positions a line under your mouse arrow which you can use to
connect “start” to the Juggler.

4. Connect the line to the Juggler and click the mouse button.
The BeanBox responds with an Event Target Dialog as shown below. Juggler
methods which either take no argument or which take an argument of type
actionPerformed are listed in this dialog.

JavaBeans Tutorial—September 1997

[EEN
I

5. Select the start method and press “OK”.
The BeanBox will generate an adapter class. Once the BeanBox has
generated this code, press the “start” button in the BeanBox and the Juggler
will start juggling.

6. Connect the “stop” button to the Juggler stop method in the same
fashion.
Test by pressing the “stop” button.

Creating and Testing the Simplest Bean

constructor
sets a visible
attribute

getMinimumSize —
assures that Bean
will be big enough
to see in BeanBox

1. Create a SimplestBean.java source file as shown below.
Create a simplest directory under demo\sunw\demo\ and create a
SimplestBean.java within it.

package sunw.demo.simplest;

import java.awt.*;

public class SimplestBean extends Canvas{
public SimplestBean(){

setBackground(Color.red);

public Dimension getMinimumSize(){
return new Dimension(50,50);

}
}

2. Create a SimplestBean.mk file as shown below.
Create this file in the demo\ directory. Refer to the sample Bean .mk files
provided in demo\ for additional examples.

Getting Started 1-5

1-6

list of compiled —
class files

Beansin —
in this location will
be found by the
BeanBox

package classes
“Java-Bean: True”
causes class to
appear in Toolbox

CLASSFILES=\
sunw\demo\simplest\SimplestBean.class

JARFILE= ..\jars\SimplestBean.jar
.SUFFIXES: .java .class
all: $(JARFILE)

$(JARFILE): $(CLASSFILES) $(DATAFILES)
jar cfm $(JARFILE) <<manifest.tmp sunw\demo\simplest*.class
$(DATAFILES)
Name: sunw/demo/simplest/SimplestBean.class
Java-Bean: True
<<
Rule for compiling a normal .java file
{sunw\demo\simplest}.java{sunw\demo\simplest}.class :
set CLASSPATH=.
javac $<

clean:
-del sunw\demo\simplest\SimplestBean.class
-del $(JARFILE)

3. Build the example
C:>nmake -f SimplestBean.mk

4. Run the BeanBox and create an instance of your SimplestBean.
Your simplestbean will automatically appear in the ToolBox at startup.

JavaBeans Tutorial—September 1997

Tl Bis Eiran B

[i imaze File Edi
R T
ﬂ_ﬂl.lilu
"':'Mf-rr
Tladinge Bebp i
PUrE
sz s

Frapielys bl

——
S

ot Abode_

narpe | Furens

o i bl g
T SELECT
| M PRYESY A PH

P i e

SimplestBean instance of
added to ToolBox SimplestBean
in the BeanBox

Using the BeanBox to Create an Applet

You can use the BeanBox’s File | MakeApplet... menu selection to create an
applet from the BeanBox contents. The resulting applet uses Java Object
Serialization to record the state of the Beans.

The File| MakeApplet... menu item creates a JAR file containing serialized data
and class files, a test HTML file that uses the JAR file (and any other JAR file
needed), a subdirectory with Java sources and makefile, and a readme file with
complete information about the generated applet and all files involved. This
generated readme file contains much useful information.

The generated applet can be used in any JDK 1.1-compliant browser. A good
test platform is the JDK 1.1 appletviewer (see http://java.sun.com/jdk/1.1/).
Another fully compliant browser is the HotJava browser (see http://
java.sun.com/products/hotjava). The preview?2 Internet Explorer 4.0 release
does not yet support JAR files, and you will have to expand the JAR and
HTML files that are generated. A deserialization bug causes components to not
listen to mouse events also. See the generated readme file for more
information. The generated applet will not work in Netscape Communicator
versions 4.0 and 4.01; versions with full JDK 1.1 support are expected later this
year.

Getting Started 1-7

1]l
H

Here’s a snapshot of the BeanBox’s File| Make Applet dialog:

Make am Apglet
ARbT B A Ak S e e § Erce W Af§BL

W R b App b ma AppieEjar g [AE !ll-..

dppd el Hame: | fapappsn

OF | Cdeipl | Hdp

To see how Make Applet works, instantiate the Juggler Bean and two buttons,
and connect them like you did at the beginning of this chapter.

1. The generated applet will have the same size as the BeanBox frame, so you

may want to start by adjusting the BeanBox size to the size of the applet you
want.

2. Choose File| Make Applet to bring up the above dialog. Use the default JAR
file and applet name for this example.

3. Press the OK button. You can inspect your handiwork by moving to the
beanbox/tmp/myApplet directory of your BDK installation.

4. Bring up appletviewer in the following way:
appletviewer <BDKlInstallation>/beanbox/tmp/myApplet.html
Here is what you should see:

Apphet Viewer MyApsle

Al

e
gr o

......

= =

Bpplat sbartad

1-8 JavaBeans Tutorial—September 1997

Don’t forget to look at the generated myApplet_readme
files generated.

Getting Started

file, and the other

1-10

JavaBeans Tutorial—September 1997

Simple Properties

Properties 2

A property is a single public attribute. Properties can be read/write, read-only
or write-only. There are several types of properties: simple, indexed, bound,
and constrained.

A simple property represents a single value and can be defined with a pair of
get/set methods. A property’s name is derived from the method names. For
example the method names setX and getX indicate a property named “X”. A
method name isX by convention indicates that “X” is a boolean property.

2-1

public class alden2 extends Canvas {

property will —— String ourString="Hello";
be called
ourstring public alden2(){

setBackground(Color.red);
setForeground(Color.blue);

}

“set” property — public void setString(String newString){

ourString = newsString;

}

“get” property — public String getString() {

return ourString;

}

public Dimension getMinimumSize(){
return new Dimension(50,50);

}
}

Indexed Properties

2-2

An indexed property represents an array of values. Property element get/set
methods take an integer index parameter. The property may also support
getting and setting the entire array at once.

The BDK 1.0 BeanBox does not support indexed properties.

JavaBeans Tutorial—September 1997

N
1]

public class alden3 extends Canvas {
dataSet isan —— int[] dataSet={1,2,3,4,5,6};
indexed property
public alden3(){
setBackground(Color.red);
setForeground(Color.blue);

}
set entire array — Public void setDataSet(int[] x){
dataSet=x;
}
public void setDataSet(int index, int x) {
set one element— dataSet[index]=x;

of array

public int[] getDataSet() {
return dataSet;

}

get one element — public int getDataSet(int x) {
of array return dataSet[x];

get entire array —

public Dimension getMinimumSize(){
return new Dimension(50,50);

}
}

Bound Properties

A bound property notifies other objects when its value changes. Each time its

value is changed, the property fires a PropertyChange event which contains

the property name, old, and new values. Notification granularity is per bean,

not per property.

Properties

2-4

declare and instantiate
aproperty change =
object

send change event to
listeners when
property is changed

implement methods
to add and remove
listeners. The BeanBox
will call these methods
when a connection

is made.

public class alden5 extends Canvas {
String ourString="Hello";
private PropertyChangeSupport changes =

new PropertyChangeSupport(this);

public alden5()
{

setBackground(Color.red);
setForeground(Color.blue);

}

public void setString(String newString){
String oldString = ourString;
ourString = newString;
changes.firePropertyChange("string",o0ldString,newString);

}

public String getString() {
return ourString;

}

public Dimension getMinimumSize()

{

return new Dimension(50,50);

}

public void addPropertyChangeListener(PropertyChangeListener) {

changes.addPropertyChangeListener(l);

public void removePropertyChangeListener(

PropertyChangeListener) {

changes.removePropertyChangeListener(l);

}
}

You can test bound properties in the BeanBox as follows.

1. Instantiate a Bean with bound properties and any other Bean in the

Beanbox. Select the Bean with bound properties.

2. Select the Edit-->Events-->propertyChange-->propertyChange pulldown

menu as shown below.

JavaBeans Tutorial—September 1997

N
1]

———
Teallon
Tkl fuln im |
s aa
@ cipd
g [
e]
S Laru1 5
R -
wrare bl T)
e b
[2H]
Ll i
Mt [
e
wiira

3. Connect the Bean with bound properties to the second Bean and select a
target method.

The BeanBox will add the second bean to the bound property Bean’s list of

listeners.
LT EEERNED L L)

eam e | |
B — e borparcand

T ——ar7
[* E ﬂ Crrm fargeiisieg e
-+

Jppar b P boap g rergwi =mfmd

gy g E n_. -

e el

wAd il

o — |

b B

B T . BT
ol — -

fresm— IIH'-_

uhirs .

e Eamad | o= |

[

e

4. When the BeanBox has finished generating code, change the bound
property value in the PropertySheet.
The selected method on the listener bean will be invoked.

Properties 2-5

2

Constrained Properties

2-6

An object with constrained properties allows other objects to veto a
constrained property value change. Constrained property listeners can veto a
change by throwing a PropertyVetoException.

The JellyBean class in demo\sunw\demao\jelly\ has a constrained property
called PricelnCents.

public class JellyBean extends Canvas {
private PropertyChangeSupport changes =
new PropertyChangeSupport(this);
private VetoableChangeSupport vetos =
new VetoableChangeSupport(this);

set method throws a public void setPriceInCents(int newPricelnCents)
Property\VetoException _ _ throws PropertyVetoException {
int oldPricelnCents = ourPricelnCents;

tell vetoers about the change; | vetos.fireVetoableChange("pricelnCents",
exception is not caught but new Integer(oldPricelnCents),
passed on to caller. new Integer(newPricelnCents));
| ourPricelnCents = newPricelnCents;

change the property

and send change event to changes.firePropertyChange("pricelnCents",

new Integer(oldPricelnCents),

listeners new Integer(newPricelnCents));
}
define methods to add and public
remove veto ers. void addVetoableChangeListener(VetoableChangelListener I) {
vetos.addVetoableChangeListener(l);
}
public

void removeVetoableChangelListener(VetoableChangeListener 1) {
vetos.removeVetoableChangeListener(l);

In general, constrained properties should also be bound. As illustrated above
with PricelnCents, the source should notify any registered vetoableChange
listeners that a vetoableChange has been proposed. If the change is acceptable,

JavaBeans Tutorial—September 1997

2

the source notifies any registered propertyChange listeners that the change has
completed. If any vetoable change listener rejects the change then a new
vetoableChange event will be delivered reverting to the previous value.

This allows a property watcher to either:

® treat constrained/bound property updates in a "two phase” fashion by
registering both a VetoableChangeListener and a PropertyChangeListener.
The watcher ignores the vetoableChange event unless it wants to veto the
change. At propertyChange event time it acts on the new value, as it knows
that this new value has successfully passed the vetoableChange phase.

® register only a vetoableChange listener. In this case, the watcher will be
notified about proposed changes and will also get subsequently notified if
the proposed change is vetoed. This approach means that the watcher is
deliberately choosing to assume that vetoable changes will "pass" and is
prepared to act on information that may be subsequently vetoed.

Example Beans and Properties

Several of the sample Beans illustrate properties. Refer to
beans\doc\examples.html

Properties 2-7

2-8

JavaBeans Tutorial—September 1997

Events 3

This chapter uses three example Beans to explain Events: WaterSource, Valve,
and Pipe. A WaterSource drips one WaterEventObject per second to its list of
WaterListeners. The list of WaterListeners may include any number and/or

combination of Valves and Pipes. An open Valve passes on WaterEventObjects
that it receives to its own list of WaterListeners. A closed Valve does not pass
on any WaterEventObijects. A Pipe behaves in the same way as an open Valve.

public interfacéWVaterListener extends EventListener {
void handleSplash(WaterEventObject weo);

(implements)

(implements)

[vector WaterListeners —

vector WaterListenets

(1 event per second)
m
WaterEventObject

WaterEventObject

3-1

|
=3
WaterEventObject
public class WaterEventObject extends EventObject {
WaterListeners
check timeOfEvent long timeOfEvent;
to determine
whether it is more public WaterEventObject(Object o) {
than 2 seconds old. super(o);
timeOfEvent = System.currentTimeMillis();
}
public long getTimeOfEvent() {
return timeOfEvent;
}
}
WaterSource
public class WaterSource extends Canvas implements Runnable {
maintain a list of ——Private Vector waterListeners = new Vector();
of objects which have ~ Thread thread;
registered to recieve
water events public WaterSource() {
setBackground(Color.blue);
thread = new Thread(this);
thread.start();
public Dimension getMinimumSize()
{
return new Dimension(15,15);
}
public void run() {
while(true) {
splash();
try {
thread.sleep(1000);
} catch (Exception e) {}
}
}
3-2 JavaBeans Tutorial—September 1997

w
1]

BeanBox will call ublic synchronized void addWaterListener(WaterListener I) {

these methods to add : .
and remove registere waterListeners.addElement(l);

listeners

ublic synchronized void removeWaterListener(WaterListener 1) {
waterListeners.removeElement(l);

send a water event __griyate void splash
to registered IisteneE'a Vectorpl; 01

WaterEventObject weo = new WaterEventObject(this);

you must copy the

vector before sending synchronized(this) {
the event in order to | = (Vector)waterListeners.clone();

avoid a timing race

for (inti=0;i < l.size(); i++) {
WaterListener wl = (WaterListener) l.elementAt(i);
wl.handleSplash(weo);
}
}

Valve

public class Valve extends Canvas implements WaterListener,
Runnable {

list of listeners ————rivate Vector waterListeners = new Vector();
last water event received —private WaterEventObject lastWaterEvent;
open/close valve property —private boolean open = true;

Thread thread;

public Valve() {
setBackground(Color.white);
thread = new Thread(this);
thread.start();

property get and set bublic boolean isOpen() {
methods return open;

bublic void setOpen(boolean x) {
open = X;

Events 3-3

1]l
w

this method is specified
in the WaterListener
interface (which this class
implements).

make the valve white if
a WaterEventObiject has
not been recieved in the
last 2 seconds or if the
valve is closed

BeanBox will call these
methods to add and
remove registered
listeners

send a water event to
registered listeners

... method continued on
next page

public Dimension getMinimumSize() {
return new Dimension(20,30);

}
public void handleSplash(WaterEventObject e) {
lastWaterEvent = g;
if (isOpen()) {
setBackground(Color.blue);
repaint();
splash();
}
}

public void run() {
while(true) {
try {
thread.sleep(1000);
} catch (Exception e) {}

if (lastWaterEvent != null) {
long dt = System.currentTimeMillis() -

lastWaterEvent.getTimeOfEvent();

if ((dt > 2000) || (tisOpen())) {
setBackground(Color.white);
repaint();

}
}

public synchronized void addWaterListener(WaterListener I) {
waterListeners.addElement(l);

bublic synchronized void removeWaterListener(WaterListener) {
waterListeners.removeElement(l);

void splash() {
Vector |;
WaterEventObject weo = new WaterEventObiject(this);

synchronized(this) {
| = (Vector)waterListeners.clone();

3-4 JavaBeans Tutorial—September 1997

w
1]

send a water event to for (inti = 0; i < l.size(); i++) { .
registered listeners WaterListener wl = (WaterListener) |.elementAt(i);

wl.handleSplash(weo);
... method continued from

previous page }
}
Pipe
public class Pipe extends Canvas implements WaterListener,
Runnable {
list of listeners ———Pprivate Vector waterListeners = new Vector();
last water event received —private WaterEventObject lastWaterEvent;
Thread thread;
public Pipe() {
setBackground(Color.white);
thread = new Thread(this);
thread.start();
public Dimension getMinimumSize() {
return new Dimension(150,10);
}
This method is specified public void handleSplash(WaterEventObject e) {
in the WaterListener lastWaterEvent = e;
interface (which this object setBackground(Color.blue);
implements) repaint();
splash();
}
public void run() {
while(true) {
try {
thread.sleep(1000);
} catch (Exception €) {}
] o if (lastWaterEvent != null) {
make the pipe white if long dt = System.currentTimeMillis() -
a water event has not lastWaterEvent.getTimeOfEvent();
been received in the if (dt > 2000) {

last 2 seconds setBackground(Color.white);

repaint();

Events 3-5

1]l
w

}
}
. public synchronized void addWaterListener(WaterListener I) {
BeanBox will call these waterListeners.addElement(l);
methods to add and }
remove registered
listeners

public synchronized void removeWaterListener(WaterListener [) {
waterListeners.removeElement(l);

}

void splash() {
WaterEventObject weo = new WaterEventObiject(this);

for (inti=0; i < waterListeners.size(); i++) {
WaterListener wl =
(WaterListener)waterListeners.elementAt(i);
wl.handleSplash(weo);

}
}
}

Testing WaterSource, Valve, and Pipe

1. Instantiate a collection of WaterSources, Valves, and Pipes in the BeanBox.

2. Select a WaterSource Bean and invoke the
Edit-->Events-->water-->handleSplash pulldown as shown in the picture

below.

3-6 JavaBeans Tutorial—September 1997

w
1]

Tecizae EFEPESS Prapemeilisn

I U]

e i et [
@t wowers (IR

f— L

e e . fza) AR Em

e ¥ L'_ -

e (1111 WL, TR T

M by

e T [LEREE 500
| I el - nll:wq:u-ul

YRS e Ingmp -

il e (e Lre e]

b

L]

3. Connect the WaterSource to a Pipe or Valve and select the handleSplash
method in the EventTargetDialog.
The BeanBox will generate an adaptor class.

4. Continue to connect water event producers to water event consumers as
desired.
You can manipulate the water flow by turning valves on and off as
illustrated in the example below.

Tanlias ErankaK Frajseitsle er
[E1 [Fie Ed |
o L
ol u g
b red |
B e il Y

Chungehrpariee = . Forri RACile
Yeur

M e rama |Farrem
e M i
o ST
bl mriipa tirar
TrimiE s
vl e
Wil
W

Fipr E E

Events 3-7

3

Example Beans and Events

Several of the sample Beans illustrate events. Refer to
beans\doc\examples.html

3-8 JavaBeans Tutorial—September 1997

Customizer Interface

Customization 4

You can customize how a Bean appears and behaves within a builder
environment by using the Customizer, PropertyEditor, and Beanlnfo interfaces
as described in this chapter.

Implement the java.beans.Customizer interface to provide your own GUI
implementation of the property sheet. For example, the OurButton bean in
demo\sunw\demo\buttons\ is packaged with a custom property sheet:

public OurButtonCustomizer extends Panel implements Customizer {

When implementing a custom property sheet such as OurButtonCustomizer, be
sure to implement addPropertyChangeListener and
removePropertyChangeListener. These will allow the BeanBox or other builder
environment to add property event listeners for the Bean as required.

4-1

1]l
N

private PropertyChangeSupport support =
new PropertyChangeSupport(this);

public void addPropertyChangeListener(PropertyChangeListener I) {
support.addPropertyChangeListener(l)

public void

removePropertyChangeListener(PropertyChangeListener I){
support.removePropertyChangelListener(l)

}

PropertyEditor Interface

PropertyEditorSupport
is a basic implementation
of the PropertyEditor
interface

BeanlInfo Interface

Implement the PropertyEditor interface to create a custom editor for a specific
property. The MoleculeNameEditor class in demo\sun\demo\molecule\ of
the distribution provides a good example of this.

If you provide a custom property editor class, you must refer to this class with
a call to PropertyDescriptor.setPropertyEditorClass in a Beanlnfo
class (see next section).

public class MoleculeNameEditor
extends java.beans.PropertyEditorSupport {

public String[] getTags() {
String result[] = {
"HyaluronicAcid",
"benzene",
"buckminsterfullerine”,
"cyclohexane",
"ethane",
"water"};
return result;
}
}

Each Bean class may have a BeanlInfo class which customizes how the Bean is
to appear in a builder. The Beaninfo can define properties, methods, events,
with display names and short help.

JavaBeans Tutorial—September 1997

N
1]

The example shown below is from MoleculeBeanlInfo.java in
demo\sunw\demo\molecule\ of the distribution.

SimpleBeaninfo public class MoleculeBeaninfo extends SimpleBeaninfo {

is a basic implementation

of the Beanlnfo interface public PropertyDescriptor[] getPropertyDescriptors() {
try {
PropertyDescriptor pd = new PropertyDescriptor(
. "moleculeName",Molecule.class);
Egilpotrto custom property — pd.setPropertyEditorClass(MoleculeNameEditor.class);

PropertyDescriptor result[] = { pd };
return result;
} catch (Exception ex) {
System.err.printin("MoleculeBeaninfo:
unexpected exeption: " +ex);
return null;

The ExplicitButtonBean in demo\sunw\demo\buttons\ also illustrates the use
of a BeanInfo class. ExplicitButtonBeanInfo defines four property descriptors,
rather than just one as in MoleculeBeanInfo. Note that properties are displayed
in the order they are listed in the PropertyDescriptor.

ExplicitButtonBean also illustrates the use of EventSetDescriptor and
BeanDescriptor. EventSetDescriptor allows you to specify the text labels used
in event dialogs and pulldowns. BeanDescriptor allows you to graphic image
files to represent the Bean.

Example Beans and Customization

Refer to beans\doc\examples.html for additional discussion of sample
Beans and customization.

Customization 4-3

4-4

JavaBeans Tutorial—September 1997

Persistence 5

To make fields in a Bean class persistent, simply define the class as
implementing java.io.Serializable.

public class Button implements java.io.Serializable {

}

The fields in any instance of a Bean which implements Serializable will
automatically be saved. You need do nothing else. You can prevent selected
fields from being saved by marking them transient or static ; transient
and static variables are not saved.

What to Save
Generally, a Bean should store the state of any exposed properties. Selected
internal state variables may also be saved. Beans should not, however, store
pointers to external Beans.

Changes and Versioning

As you update software, you can add fields, add or remove references to
classes, change a field’s private/protected/public status without altering the
persistence schema of the class. However, deleting fields from the class,
changing a variable’s position in the class hierarchy, changing a field to or from
transient/static, or changing a field’s data type will change the persistence
schema.

5-1

5-2

If you need to make changes to a class which alter its persistence, you might
define a version id field which can be checked at runtime. For example,

static final long SerialVersionUID 348749695999L;

JavaBeans Tutorial—September 1997

MANIFEST file

Example

Packaging 6

JavaBeans are distributed through JAR files. A JAR file is a ZIP format archive
file that may optionally have a MANIFEST file. The MANIFEST describes the
contents of the JAR file. A JAR file may contain .class files, serialized Beans
(.ser), help files in HTML format, and resources (images , audio, text).

If a JAR file does not have a MANIFEST, then all classes and serialized objects
in the package are treated as beans. Providing a MANIFEST file allows you to
specify which classes are Beans via "Java-Bean: True" entries (see Example
below).

This example .mk file illustrates the compiling and packaging of three Beans
and two auxiliary classes. This .mk file was used to package the example
discussed in chapter 3, “Events”.

6-1

1]l
(@)

CLASSFILES=\
sunw\demo\valves\WaterListener.class \
sunw\demo\valves\WaterSource.class \
sunw\demo\valves\Valve.class \
sunw\demo\valves\Pipe.class \
sunw\demo\valves\WaterEventObiject.class

JARFILE= .\jars\valves.jar

.SUFFIXES: .java .class

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$(JARFILE): $(CLASSFILES) $(GIFFILES)
jar cfm $(JARFILE) <<manifest.tmp sun\demo\valves*.class $(GIFFILES)

Name: sunw/demol/valves/WaterListener.class

do not dlsplay_ Java-Bean: False

in ToolBox

Name: sunw/demo/valves/WaterSource.class
Java-Bean: True

Name: sunw/demol/valves/Valve.class
Java-Bean: True

Name: sunw/demo/valves/Pipe.class
Java-Bean: True

do not display Name: sunw/demol/valves/WaterEventObject.class
in ToolBox —— Java-Bean: False
<<

Rule for compiling a normal .java file
{sunw\demo\valves}.java{sun\demo\valves}.class :
set CLASSPATH-=..\classes;.
javac $<
clean:

-del sunw\demo\valves*.class
-del $(JARFILE)

Additional Jar and Manifest File Information

Refer to beans\doc\jar.html in the distribution for more information.

6-2 JavaBeans Tutorial—September 1997

