Installing Version 9 of Icon on UNIX Platforms
Gregg M. Townsend, Ralph E. Griswold, and Clinton L. Jeffery

Department of Computer Science
The University of Arizona
Tucson, Arizona

IPD243c
November 29, 1996
http://www.cs.arizona.edu/icon/docs/ipd243.html

1. Introduction

Version 9[1] isthe current version of Icon, superseding Version 8. Version 9 contains new features and major
changes to the implementation. This report provides the information necessary to install Version 9 of Icon on
computers running UNIX.

The implementation of Icon is designed so that it can be installed, largely automatically, on avariety of UNIX
platforms. Thisis accomplished by configuration information that tailors the installation to specific platforms.

The distribution contains configuration information for many UNIX platforms. These arelisted in the
appendix. Some of these originated under earlier versions of Icon. The platforms marked with an asterisk in
the appendix have been tested under Version 9. Installation on atested platform should be routine, although
minor configuration adjustments may be necessary for local conditions.

If there is configuration information for your platform, you may be able to install 1con without modification,
but if problems show up, you may have to modify configuration files[2]. In some cases, there may be partial
configuration information. If the configuration information for your platform is partial or lacking altogether,
you still may be ableto install Version 9 of Icon by providing the information yourself, using other
configurations as guides.

If your platform is not listed in the appendix, it may have been added since this report was written. See Section
2 for information on how to check for a configuration for a specific platform.

2. The Installation Process

There are only afew steps needed to install 1con proper. In addition to the Icon trandlator and interpreter, there
are three optional components that you can install: a compiler [3], avariant trandator system [4], and a
program library [5]. Y ou may want to review the technical reports describing these optional components before
beginning the installation. In any event, the installation of optional components can be done separately after
Icon itself isinstalled.

There are Makef i | e entries for most steps. Those steps are marked by asterisks. Steps that are optional are
enclosed in brackets:

1. Deci de where to unl oad |con.

2 Unl oad the lIcon hierarchy at the sel ected pl ace.

3* Check the status of the configuration for your system
4* Configure the source code for your system

5* Conpi l e I con.

6* Run sinmple tests.

[7*] Run extensive tests.
[8*] Run benchnarks.
[9.] Install lcon at the desired place.

Step 1: Deciding Where to Unload |con

Y ou can build Icon at any place you wish. The executable binaries can be moved to another place later.

In the balance of this report, relative paths and the location of files are given with respect to the location at
which the Icon hierarchy is unloaded. For example, areference to make iswith respect to the Makef i | e at the
top level of this hierarchy.

Step 2: Unloading the Files

The distribution consists of a hierarchy, whichisrootedin". . Iconisdistributed in avariety of formats. It
requires about 20 MB of disk space when unloaded. The amount of space it takes to build Icon depends on the
platform, what components are built, and whether intermediate files are deleted between building components.

If the root of the Icon hierarchy isicon, the resulting hierarchy should look like this after the distribution files
are unloaded:

| -bin------ execut abl e binaries and support files
| -config---|-unix------ UNI X configuration directories
| -docs----- docunent s
|-ipl------ Icon programlibrary
| | -comon---- common source
| |-h--------- header files
| | -iconc----- I con conpiler source
| -icon----|-src------ |-icont----- I con transl ator source
| | -preproc--- preprocessor source
| [-rtt------- run-time translator source
| |-runtime--- run-tine source
| | -vtran----- variant translator source
| | -xpm------ XPM support
| | - bench----- benchmar ks
| | -calling--- calling C functions
| | -general --- general tests
| -tests----|-graphics-- graphics tests
| - sanpl es--- sanpl e prograns
| -vtran----- variant translator tests

There are additional subdirectories that are not shown above.
Step 3: Checking the Status of the Configuration for Your Platform

Check the status of the configuration for your platform before attempting an installation; it may contain
essential information. This can be done by

make Status name=nane

where name is one of those given in the table in the appendix at the end of thisreport. For example,

make Status name=sun4 solaris

lists the status of the configuration for a Sun 4 workstation running Solaris 2.x.

In many cases, the status information was provided by the person who first installed Icon on the platform in
guestion. The information may be obsolete and possibly inaccurate; use it as aguide only.

There are some configurations for which not all features of 1con are implemented. If the status information
shows this for your platform, proceed with the installation, but you may wish to implement the missing
features later. See Reference 2 for this.

Step 4. Configuring Icon for Your Platform

Configuring lcon creates severad filesfor general use. Before starting the configuration, be sure your umask is
set so that these files will be accessible.

There are two configuration possibilities: with or without graphics facilities.
To configure Icon without graphics facilities, do

make Configure name=name

where nane is the name of your platform as described above. For example,

make Configure name=sun4_solaris

configures Version 9 of Icon for a Sun 4 Workstation, but without graphics facilities.

To configure Icon with the X Window System graphics facilities, use X- Conf i gur e instead of Confi gure, as
in

make X- Configure nane=sun4_sol ari s

Note: On some platforms, error exit codes from installation processes may be intercepted by make and result in
warning messages. These messages can be safely ignored.

If you first configure without graphics facilities and later decide to add them, you will need to re-install Icon
starting with this step.

If errors occur because the X include files or libraries are not found where they are expected, modify the
appropriate filesin the subdirectory of confi g/ uni x (see Reference 2) and restart from the make

X- Conf i gur e step.

Step 5: Building the lIcon Interpreter

Next, compile the Icon interpreter by

make | con

There may be warning messages on some platforms, but there should be no fatal errors.

Step 6: Performing Simple Tests

If 1con compiles without apparent difficulty, afew simple tests usually are sufficient to confirm that Iconis
running properly. The following does the job:

nmake Sanpl es

Thistest compares loca program output with the expected output. There should be no differences. If there are
no differences, you presumably have arunning installation of Icon.

Step 7: Extensive Testing
If you want to run more extensive tests, do

make Test

Some differences are to be expected, since testsinclude date, time, local host information, and
platform-specific formats for floating-point numbers. In addition to Test there are someindividual tests of
optional features. See the main Makef i | e for more information about the tests.

To test Icon's graphic facilities, use gpxt est . i cn intest/ graphi cs. It should build and run without error,
producing awindow similar to the GIF image gpxt est . gi f in the same area.

Step 8. Benchmarking
Programs are provided for benchmarking Version 9 of Icon. To perform the benchmarks, do

make Benchmar k

See also the other material in the subdirectory t est s/ bench. It contains aform that you can use to record your
benchmarks with the Icon Project (see Section 9).

Step 9: Installing Icon
Thefiles needed to run Icon are placed in bi n in the Icon hierarchy as the result of building the Icon interpreter:

icont Icon transl ator
iconx lcon interpreter

Some other files related to installing Icon and the optional components mentioned earlier also are placed in bi n.
The executable files needed to run Icon -- i cont and i conx -- can be copied or moved to any desired place,
and they need not be in the same directory.

Sincei cont must know the location of i conx, it isnecessary to patchi cont if i conx ismoved. The program
pat chstr, asoinstalled in bi n, is provided for this purpose. It is used as follows:

patchstr icont-|ocation iconx-location

For example, if i cont ismovedto/usr/1ocal /icont andi conx ismovedto/usr/1ocal /i con/iconx, the
patching step is

patchstr /usr/local/icont /usr/local/icon/iconx

Patching can be repeated if necessary. The patch value can be checked by using pat chst r without a second
argument, asin

patchstr /usr/local/icont

which printsthe pathtoi conx in/usr/1 ocal /i cont.

3. Installing the Compiler

In addition to the interpreter, whose installation is described above, thereis acompiler. The interpreter getsa
program into execution quickly and is recommended for program devel opment, debugging, and most
production situations. The compiler produces code that executes somewhat faster than interpreted code (a
factor of 2 or 3istypical), but the compiler requires alarge amount of resources and is very sow in producing
executable code. The compiler is recommended only for small programs where execution speed isthe
paramount concern.

Theinterpreter and compiler are independent of each other and can be built or rebuilt separately. Y ou can skip
this section if you do not need the compiler.

Installing the compiler isvery similar to installing the interpreter. Steps 1 through 4 in Section 2 apply to both
the interpreter and compiler and need be done only once.

For subsequent steps, there are Makef i | e entries that are the same as for the combined installation, but with
the suffix - i conc to distinguish the compiler. The steps to build the compiler are:

make | con-i conc

make Sanpl es-iconc
make Test-iconc

make Benchmar k-i conc

Note: When testing the Icon compiler in conjunction with some C compilers, it may be necessary to remove the
options - p - wfor suppressing warning messages that appear ini con/ t est s/ gener al / Makef i | e. Thefile

i conc needed to run the Icon compiler is placed in bi n in the Icon hierarchy as the result of building Icon.
Filesneeded by i conc aso are placed in bi n:

dirgint.o stubs for large integer arithnetic
i bXpm a XPM library if configured for graphics

rt.a conpiler library
rt.db conpi | er dat abase
rt.h include file

The executable filei conc can be moved to any place. Similarly, the files needed by i conc can be moved to
another directory. ThereisaMakef i | e entry for doing this:

make CopyLi b Target=directory
where directory isthe directory in which the files needed by i conc areto be placed.

Sincei conc must know the location of thefilesit uses, it is necessary to patchi conc if thefilesit needs are
moved:

patchstr iconc-1ocation directory/

wherei conc- | ocat i on iswherei conc islocated and di r ect ory iswherethefilesthat i conc needs are
located. For example, if i conc ismoved to/ usr/ 1 ocal /i conc and thefiles needed by i conc are placed in
thedirectory / usr/ 1 ocal /i con/i conc. | i b, the patching step is

patchstr /usr/local/iconc /usr/local/icon/iconc.lib/

Note that afull path should be used for the directory that contains the filesi conc needs and that this path must
be followed by aterminating slash. The patching of i conc can be repeated if necessary.

The path used by i conc can be checked by using pat chst r without a second argument, asin

patchstr /usr/local/iconc
4. Variant Translators

The variant trandator system facilitates the construction of preprocessors for variants of the Icon programming
language.

The variant trandator system requires aversion of yacc(1) with large regions. Y ou may have to tailor your
version of yacc(1) for this. If thereisaproblem, it will show up during testing.

A script, i con_vt , for creating variant trandators, is placed in bi n during the configuration step described
earlier. Thereis no separate step for building the variant trandator system.

For testing, do

make Test-vtran

There may be warning messages during compilation, but there should be no fatal errors.

5. Icon Program Library

The Icon program library contains a variety of programs and procedures. Thislibrary not only isuseful inits
own right, but it provides numerous examples of programming techniques that may be helpful to novice Icon
programmers. While thislibrary is not strictly necessary for using Icon, most sitesinstall it, and it isrequired
for al but the most trivial graphics programs.

In addition to the library proper, the directory i pl /i dol contains an object-oriented version of Icon writtenin
Icon. Go to that directory for more information.

The Icon program library can be used with both the interpreter and the compiler. However, its use under the
compiler requires command-line options in some programs to enable features that are not enabled by default
when using the compiler. Because of this problem, the installation of the the Icon program library is not
supported for i conc.
To build the Icon program library, do

make | pl
This puts compiled programsini pl /i code and translated proceduresini pl / ucode.

Totest the library, do

make Test-i pl

No differences should show.

Y ou can copy the executable programsini pl / i code and the trandated proceduresini pl / ucode to other
places to make them more accessible, although they can be used from any location that is readable by the user.

6. Installing Documentation
The directory docs contains manual pages:

icon.1 I con conpiler and interpreter
icon_vt.1l lcon variant translator

Y ou may wish to copy these manual pages to a standard location for such documentation. If you are replacing
an earlier version of Icon, you should delete the obsolete manual pages, i cont . 1,iconc. 1, andi con_pi . 1.

The docs directory aso contains PostScript files for technical reports related to Version 9 of Icon, including
those listed under Refer ences.

7. Cleaning Up
Y ou can remove object files and test results by

make Cl ean

If you copied components of Icon to other places, you can delete the copies |eft in the Icon hierarchy.

Y ou also can remove source files, but think twice about this, since source files maybe useful to persons
studying or modifying the implementation. In addition, you can remove files related to the option components
of the Icon system that you do not need. If you are tight on space, you may wish to remove documents as
well.

8. Communicating with the lIcon Project
If you run into problems with the installation of Version 9 of Icon, contact the Icon Project:

Icon Project

Department of Computer Science
The University of Arizona

P.O. Box 210077

Tucson, AZ 85721-0077

U.S.A.

(520) 621-6613 (voice)
(520) 621-4246 (fax)

icon-project@cs.arizona.edu

Please also let us know if you have any suggestions for improvements to the installation process or corrections
or refinements to configuration information.

Acknowledgement
Cliff Hathaway assisted in the testing and distribution of Version 9 of Icon for UNIX platforms.
References

1. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Version 9.3 of the Icon Programming Language,
The Univ. of Arizonalcon Project Document 1PD278, 1996.

2. G. M. Townsend, R. E. Griswold and C. L. Jeffery, Configuring the Source Code for Version 9 of Icon,
The Univ. of Arizonalcon Project Document 1PD238, 1995.

3. R. E. Griswold,Version 9 of the Icon Compiler , The Univ. of Arizonalcon Project Document 1PD237,
1995.

4. R. E. Griswold, Variant Trandatorsfor Version 9 of Icon, The Univ. of Arizonalcon Project Document
IPD245, 1994.

5. R. E. Griswold and G. M. Townsend, The Icon Program Library; Version 9.3, The Univ. of Arizona
Icon Project Document |PD279, 1996.

Appendix -- UNIX Icon Configurations

Configuration information for the platforms listed below is provided in Version 9 of Icon. Asterisks identify
configurations that have been tested under Version 9, athough some have documented problems.

conput er UNI X system nanme

Andahl UTS andahl _uts
Apol | o Workstation BSD domai n_bsd
Astronautics ZS-1 UNI X zsl

AT&T 3B1 (UN X PC) System | 11 uni xpc

AT&T 3B2 System V att3b_2

AT&T 3B5 System V att3b_5

AT&T 3B15 System V att3b_15
AT&T 3B20 System V att3b_20
AT&T 3B4000 System V att 3b_4000
AT&T 6386 System V att 6386

CDC Cyber NOS/ VE cdc_vxve
Celerity 4. 2BSD celerity bsd
Codat a 3400 Uni si s codat a
Conver gent MegaFrane CTI X mega

Convex C240 BSD convex
Cray-2 UNI COS cray?2

*DEC Al pha OSF/ 1 Version 3.X dec_osf

DEC M PS Utrix decstati on
DG AVi i ON System V aviion

Dl AB D- NI X di ab_dni x

El xsi - 6400 BSD el xsi _bsd
Encore UVAX mul ti max_bsd
Goul d Power node uUTXx goul d_pn

HP 9000/ 330 HP- UX hp9000_s300
HP 9000/ 500 HP- UX hp9000_s500
*HP RI SC HP- UX hp_risc

| BM 370 Al X i bmB70_ai x

| BM PS/ 2 Al X ps2_ai x

| BM RS6000 Workstation Al X rs6000_ai x

| BM RT Workstation AClI S rtpc_acis

| BM RT Workstation Al X rtpc_aix
Intel 286 XENI X 286 i 286_xeni x
Intel 386 BSDYCS 2.0 i 386_bsdos
Intel 386 Fr eeBSD i 386_freebsd
Intel 386 Li nux i 386_I i nux
Intel 386 Li nux i x86_1inux_elf
Intel 386 Sol ari s i 386_sol aris
Intel 386 System V i 386_sysv
Intel 386 System V/ GNU C i 386_sysv_gcc
Intel 386 System V, Rel ease 4 i 386_svr4
Intel 386 XENI X 386 i 386_xeni x
Intel 386 XENI X 386/ GNU C i 386_xeni x_gcc
Intel 486 Fr eeBSD i 486_freebsd_gcc
I ntergraph Cipper System V clix

Maci nt osh AU X mac_aux
Massconp 5500 System V massconp

M croport VI AT System V m croport

M PS/ r 3000 System V m ps

Mot or ol a 8000/ 400
Mul tiflow Trace
NeXT

Pl exus P60

Pyram d 90x

Ri dge 32

Sequent Bal ance 8000
Sequent Symmetry
Si emrens MX500

*SE 4D

Stride 460

Sun 2 Wrkstation
Sun 3 Wrkstation
Sun 3 with 68881
Sun 386i

*Sun 4 Workstation
Sun 4 Wrkstation
Sun 4 Wrkstation
Sun 4 Wrkstation
*Sun 4 Workstation
Sun 4 Wrkstation
Sun 4 Wrkstation
Uni sys 7000/ 40
VAX-11

VAX-11

VAX-11

VAX-11

VAX- 11

System V
UNI X

Mach
System V
4, 2BSD
RGOS

Dyni x
Dyni x

SI NI X
Irix

Uni Stri de
SunGos
SunGCS
SunGCS
SunCS
SunCs 4.
SunCS 4.
SunCS 4. 1/ Open W ndows
SunCS 4. 1/ Code Center

Sol aris 2.x/SunPro C
Solaris 2.x/Centerline C
Solaris 2.x/GNU C

4, 3BSD

4, 1BSD

4. 2BSD and 4. 3BSD
System V

Utrix

9th Edition

1
1/G\U C
1
1

not _8000

trace

next

pl exus

pyram d_bsd
ridge

bal ance_dyni x2
symmetry
MX_si ni x
irisad

stride

sun2

sun3
sun3_68881
sun386i

sun4

sun4_gcc
sund_openw n
sund_saberc
sund_sol ari s
sun4_sol ar_clc
sun4_sol ar _gcc
t ahoe_bsd
vax_41 bsd
vax_bsd
vax_sysv
vax_ul trix
vax_v9

|con home page

