The Canonical Csound Reference
Manual

Version 6.08

Barry Vercoe, MIT Media Lab
et. al.

The Canonical Csound Reference Manual: Version 6.08
by Barry Vercoe and et. al.

Table of Contents

PrE aCE ..o XXXiii
Prefacetothe Csound Manualooouiiiiiiiiiii e XXXl
History of the Canonical Csound Reference Manualcoooiviiiiiiiiiiiiiiieinns XXXIV
(0001 o o1 01N L1 o XXXV
Getting Started With CSOUNGcoevniiiiiie e XXXVil
What'snew in CSOUNA 6.08c.uuiiiiiiiiiiii e XXXiX

L OVEIVIBIW ..ottt et e e e e e e e e e e e et e et a e aans 1
g1 oo (8 o 1 o o PP 4
The Csound COMMANGieiiiii e e e e e aaaas 5

Order Of PreCeABNCEieeiiiiii et 5
Description of the command SYNEaXcceueieiiiiiiiiiiei e 5
Csound COMMANG TINEuuiiiii e 7
Command-line Flags (DY Cat@gory)ccouuuiiiieiiiiiiiiiiin e 17
Csound Environment Variablescoooiiiiiiiiii e 28
Unified File Format for Orchestras and SCOreSooeuiieiiiiiiiniiiiieeiieeeieen 31
(D1 1 (o) o 31
EXAMPIE e 33
Command Line Parameter File (.CSOUNAIC)ccvuvviineiieeiii e 34
SCOrE File PreprOCESSING ... eeeeiieeeiii ettt ettt et eeeans 34
ThE EXIraCt FEAIUEccvniiiii e e 34
Independent Pre-Processing with SCSOrtocoeeiiiiiiiiiiii e, 35

L 1S o T 5o 11 T N 36
CsoUNd'S CONSOIE OULPULvueeeieiiiieeie e e e e e e e e e e e e e e et e e e eanaas 36
HOW CSOUNT WOTKS ...ttt et e e e 37
Amplitude valuesSin CSOUNGuuuiiiiiiiieeiii e 38
REAI-TIMEAUIO ...eniiii e eaas 40
REAITIME 1/O ON LINUX .eeiiiiieee e 40
IMIBE OSX ittt e e et e et a et aae 46
WINAOWS ettt e e et e et eeeaan s 47
Realtime 1/0 with JACK Connection Kitccoeuiiiiiiiiiiiiiiiinecieceeieees 48
Optimizing AUAIO 1/O LEENCYeiveiiieeiiii et 50
1600]01 1T 01T oo R PP UPPPTI 52
Syntax of the OrChESIIaciee e e 53
OrchestraHeader SEAteMENtSc.uiietiiii e 54
Instrument and Opcode BIOCK StAEMENESoovvnieiiieiii e ee e 54
Ordinary StAEMENES ...vevneei e e e e e e e e e e anas 55
Types, Constants and Variablesoouiiiiiiiiiiii e 55
Variable Initializationcooouiiiii i, 56
EXPIESSIONS ...ttt ettt et e e e e ea e eaas 57
DirectorieSand FilESoiiuiii e 57
[\ o 01 oo = (0 = PPN 57
Y=ot o ST R PP 58
NamMed INSEIUMENTSoeiiiii e e eaaas 58
User Defined Opcodes (UDO)ciieiiieiiiiiieeeeeii ettt 61
K-REIE VECIONS ...ttt e e e e e e aaas 62
Function Syntax in CSOUNGoceuiiiiiii i e e e e 62
The Standard NUMENC SCOMvveuuiiiiiii e 64
Preprocessing of Standard SCOMEScvvvviiiiiiiii i e 64
GBI Y et 64
TEOIMPO et 65

S0 PP 65
SCOME SEALEMENTS ...ttt e e e e e e ees 66
Next-P and Previous-P SymbolScccuiiiiiiiiii e 66

The Canonical Csound Reference Manual

L 1110 1o 67
SCOME IMBCIOS ..ceeeiii ettt ettt ettt e e et et e e eenes 68
MUIIPIE FIlE SCOME ... 70
Evaluation Of EXPreESSIONScccuuuiiiiiiiieeiiii ettt e 71
SNGSIN P-FIRIAS ..o 73
001 =10 To PP UPPTUPTRUPRRN 74
LO:S'a 11 o /AN PR 75

L0 o110 |V PSP 76
BUITAING CSOUNG ...ttt et e et e eeeb e eees 79
(05 o T8 [9To J I oS RPP 80
[1. OPCOUES OVEIVIEIW ...ttt ettt e e e et et e e et eeea e e et e e ean e e eanaaeens 81
S Lo gL [CT= 1 = o] U 85
Additive SynthesiS/RESYNthESISccvviiiici e 85
BaSiC OSCHIALOIS ...ceevvieeiiii e e e e 85
Dynamic SPectrum OSCIHIBLOISiiiiiiieeeii e 85

FIM SYNENESIS .ottt e 86
Granular SYNNESISniie e 86
Hyper Vectorial SynthesiS ..o 87
Linear and EXponential GENEIatorsSceuueeuuieieieeeiieeeiieeeaneeaneeei e eaneeeaes 87
ENVEIOPE GENEIAONS ... cvvi it e e e e e ea e eaes 88
Models and EMUIGLIONSoiieieiie et eees 88
PRIBSOIS . 90
RaNdom (NOISE) GENEIEIONSccuuiiieiei e eees 0
SaMPlE PlaybacKccoeni e 91
SOUNTFONES . .evtiee it e e e eeaans 92

o 0 01C 0 IS 011 1S 93

LI o Lo A o=\ %!
Wave Terrain SYNthESISuuii e 95
Waveguide Physical MOEliNgooouuiiiiiiiiii e 95
Signal INPUE 8N OULPULieeie et e e e et e eaa e eees 97
File INput @and OQULPULovveeei e e e e e e e e eees 97
S0 7= oL 97
SIGNEAL OULPUL ...ttt ettt e et e e e e eaans 97
SOftWAIE BUS ...ttt ettt e e et e e e e e e aa s 98
Printing and DiSplayc.ueeeeiieiee e 98
SOUNA Fil@ QUENIES ... e e e e e ees 98

S 7= 1Y, Ko o [1= £ 100
Amplitude Modifiers and DynamiC ProCeSSINGuvevvrerrnereiereiieeeiieraneerannns 100
Convolution and MOFPhiNgieeiiiiii e 100

D A it 100
Panning and SpatialiZationc..iiiiuiiiiiii e 101
REVEIDEIAION ...t 103
SaMPlE LEVE OPEratOrSuuiiiiiieii e e e e e e eees 103

S 7= I T 11 (= 104
SPECIAl EffECLS .. 104
StanNdard FIIErS ..o 104
SPECIAlIZEA FIIEIS ..vvvieiiii i 106
WaAVEGUIAESoeiiieii i e e e 106
Waveshaping and Phase DIStOrtioncccceveiiiiiiiiieiiiiecin e e 107
INSEIUMENE CONEFOL ..ot e et eeran s 108
101 o Tox Qo 1o | 108
ConditioNal VAIUESceeeieieee et 108
Duration Control SEAtEMENESc.uiiiriiiiiieii e 108
FLTK Widgets and GUI CONrollerscouvviniiiiiiiiieee e 108
FLTK CONAINEIS ..oiitiieieeii ettt e e e e s 111

FLTK VAIUBLOS ..t 111

Other FLTK WIAQELS ...cevveieiiiiie e 112

Modifying FLTK Widget APPERIranCEccuvuveeiiviiieeiiiiiieeeeiieee e 112

The Canonical Csound Reference Manual

General FLTK Widget-related Opcodesocvvvveviiiiiiiieeiieciieeeieeeaenn, 113

INSEIUMENE INVOCEEION ...t 113
Program FIOW CONLrolooiiiuiieiiiii e 114
Real-time Performance CONtrolcoviiiiiiiiiii e 115
Initialization and REINItializationc..oiiiiiiiiiii e, 115
Sensing and Controlovvniii e 116
SEACKS vttt ettt 117
SUb-iNStrUMENt CONLIOLeiiei e 118
TIMEREAAING ...oeeii e e 118
Function Table COoNrolooieiii e 119
TaDIE QUENTES ..eeiie e 119
Read/WIte OPEralioNSccuuueiiiiiii et ea s 119
Table Reading with Dynamic SEleCtionccccoviiiiiiiiiiiei e, 120
Mathematical OPErioNSceuueiiieeie e e e e e e e e e e e annas 121
AMPLITUAE CONVEITEIS ...ttt 121
Arithmetic and LOgiC OPEratioNSc.uuuivieiiieeiiiie e 121
Comparators and ACCUMUIALONSiiuuniiii it 121
Mathematical FUNCLIONScouuniiiiiiei e 122
Opcode Equivalents of FUNCLIONSccevuieiiiiieii e 122
RaNAOM FUNCLIONS ...uiiiiiiiii e 123
TrigoONOMELNIC FUNCLIONSccvviiiiiiiiie e 123
Linear AlgebraOpCodesccoouuiiiiiiiie e 124
ATTAY OPCOUES ...ceneieieiit et et e e e e e et e et e e e e eeanns 134

PILCN CONVEITENS ...t e e e 141
FUNCEIONS .. e e et e et e e e e s 141

LI 10110 @) 0o o L= 141
Real-time MIDI SUPPOIT ...ttt e 142
Virtual MIDI Keyboardooceeuuiiiiiiiiieeiiii e 143
T T o LU | PSP 146

MIDI MESSAE OULPUL ..eeneeieitieei ettt e e e e enns 146
Generic INPUL and OULPULovvneiieeee e e e e e e e e e e e eees 147
CONVEITEIS ettt ettt et e e et e e e e e e e e e e enes 147
Y A =0 (= £ 147
NOte-ON/NOE-OFf OULPUL ... eeierieeeeeii et 147
MIDI/Score Interoperability OPCOUEScevuiiiiiiiiiiiiii e 148
System RealtiMeMESSAGEScvuiiveii e e 149
SHAEN BANKS ... 149
SPECEIAl PrOCESSING ..uvvvneiii ettt e e e e e e e e e e e e e e e e e e e ans 151
Short-time Fourier Transform (STFT) Resynthesisc.oooviiiiiiiiiiieiinees 151
Linear Predictive Coding (LPC) ReSynthesiscoooeiiviiiiiiiiiineeieieeceiie 152
Non-standard Spectral ProCESSINGcocvuiieiiiiiiiaiii e eas 152
Tools for Real-time Spectral Processing (pvS Opcodes)c.veevnvveiieeenneennnn. 152

ATS SPECral PrOCESSING ..vucvvviieiiiee e e e e e e e e e 153
LOMSOPCOUESvuieiiieeieee ettt e e e e e e e e e e e ea e aaaees 154
Array-based SpPectral OPCOUESiiiiiiiieiiii e 157

S {110 TP UPP PP UPPPTPRUPPIN 159
String Manipulation OPCOOESceuiiitiiiieei e 160
String CONVErSioN OPCOESc.uniuneiiiee ettt eees 161
VA= v (0 = @ oo o L= 162
Tables Of VECIOIrS OPEIaLOrSuiveeeieiiieeei e e e e e e e e e e aas 162
Operations Between a Vectorial and aScalar Signalcooevvveiiiiinieiiiinnenes 162
Operations Between two Vectorial SIgnalsvveieiiiiiiiiiinieiiieceeieees 163
Vectorial ENVElOpe GENEIratorsSc.ueieuiiiiiiiiiee e 163
Limiting and wrapping of vectorial control Signalsccoooeeiiiiiiniiiiniinnes 164
Vectorial Control-rate Delay Pathsc.ccooviiiiiiiiiiii e, 164
Vectorial Random Signal GENEratorscc..vvveeveeiieviieeiineeeneeeieeeaneeeannns 164

ZaK PalCN SYSLEIM ... 166
PLUGIN HOSHING ..t e e 167

Vi

The Canonical Csound Reference Manual

DSSI and LADSPA fOr CSOUNoeviiiiieiiiiiie e 167

VST FOF CSOUNM ...t e e e 167

105 @3- To J A\ 111 g 169
L0 S PSPPSR 169
= A1 S SPP 169
REMOE OPCOES ...t 169
Dt E] o 1eo o === 170
Signal FIow Graph OPCOOESuiveeieiiiici e e e e e 171
JACKO OPCOUES ...ttt et 174
LUB OPCOUES ...ttt ettt ettt e et e e et eeena s 177
PYthon OPCOOESceeeiete e e e e e e e 182
INEFOTUCTION ...ee et et aaae 182
OFChESLIA SYNEAX ..evvveeeieeee et e e e e e e e e eeees 182
IMage ProCeSSING OPCOUESuuiveeniieiiieeeteeet e e e e e e et e e et e e et e e e e e e e eetn e eanaeeees 184
STK OPCOUES ... ettt ettt e et et e et et e e eeae e e e eeaaaeeees 185
MiSCElBNEOUS OPCOTESvuneeeiii ettt et e e 187
T REFEIEINCE ... et et e e e e e eeaas 188
Orchestra Opcodes anNd OPEIaLOrSuieuueeeieeii et eaenas 214
PSPPSR 215
FAEFING .o 217

o 10 (= 221
220107 [S 223
FTAED L 224

BT NOEE 226

BN AME 228
PP 231
PP 233
DS UPPRPN 235

D PSPPI 237
SRS 239

DG U UPPRTPN 241
S PSPPI 243
PSSP 246
PSPPI 249

L e et 252
OO PP PP PO PPTPRTPPPRS 255
USRS 257
SO TSP PPPPRTRPR 259
AP 261

| S SPPT 263
00 SRR 265

A s 268
DGOSR 269

D USRS 271
PP 272
PSP 274
TSP 275

< 276

- PSPPI 277

BB e 279
0 1 Y 281

0 PSP 285

=0 5 o PSPPSR 288

=0 1S L 290
=015V 0 2 293
BFEOUCK ... e 296

Bl PSS . e 298
BIWEYSON ...t 300

Vii

The Canonical Csound Reference Manual

AMPAD <o 303
AMPADTS L.t 305
BMPIMIAT .« et 307
AMPMITIT e 309
= (== o 311
P21 | 314
= (0] = 316
= 0 1= G 318
= 0] 1< G, 320
AT SA0 .. 322
YN IS0 [0 [AR 325
F LIS 01U == [328
PN S 01X 330
NN IS T o N 333
ATSINEENPIEAA ...t 336
YN S == o TR 338
YN S == 0 A 342
ATSPAIBITAD ... 345
AN IS 11T LN 347
072 0o N 351
DA ANCE e 355
DAMDIO0 ..e e 357
DAIMOTEL ...o.eei e 359
o]0 70111 1/ 1 361
o] 0o U1 £ 366
DELAIANG ...oeieie e 369
DEXPING ... 372
o] 0] 1112 [374
o] 0] 11116 [1 T 376
o1 N 379
o]0 17 o P 381
DIQUAOA ... e 385
o111 1o [T 387
BOrEZ . 389
UL e 391
o101 o N 392
UL e 393
01011 1 394
BULLEIDD . e 395
010110 o S 397
BULLEIND e e 399
BULEEITID e e 401
01110] N 403
UZZ oo e 405
072 S 407
(072 0= == T 409
(o= 1 o |V PP 411
Lo Lo 0 413
(0| 415
(0 | 417
07 11 420
(015 011 10 [0 [T 422
(00 oL TP 424
(00 o1 01V PP 426
o0 0] (o 1 428
(02 1721001 1 o 430
ChANGEA ... e 432
ChaNGEOZ ...t e 434

The Canonical Csound Reference Manual

0 0 o PSPPI 437
ChAINO .ot 438
ChEDYSNEVPOIY ... e 439
ChECKIIOX ... 442
CIN e 444
CRNCIBAN ... 446
ChNEXPOIT .o 448
NGB .o 450
CRINMIX e e e e 453
CHNPEIAIMIS ..eee ettt e e et e e e e 455
CINSEL e 456
CRUBD - 459
o1 oo (o 1 463
0120 (00 465
ot S 467
o PSP 469
(ol 1T o PP 472
ClOCKOTT e e 475
ClOCKON Lo 477
ot 0] 0] D14 oo N 479
(0010 0] o T P 431
(o] 1 0] o TR P 483
(o] 101 o1 0|V 2P 485
COMPITECST ..ot e e 487
(010 0107 071 1o o 489
o0 0] 0] 1= 491
(60 010 1= J 493
(000] 0] 0= S PP UPTPP T PN 496
(000] 0= ol AT 499
(o] 111 {0 I PO 502
(070 01V] = PSPPI 503
COMVOIVE ..ttt e et e et e et e e et et e e e e et e e e eebe e eeees 504
COPYBZFLAD ..oeve e 508
COPYT2BITAY .ttt ettt ettt ettt e et e e et e e e eeba e eees 510
(00 1 TP 512
(00155 <o [PPSR 514
(0001350 | o T 516
00153 | 518
001 o 520
001 0 1Y 522
(00015721 ool o HO PSPPI 524
(01015 1 01T [P PTUPTPPTP 528
CPSMIAID .o 530
ot 01 211 1 o] o 532
0101 o P 536
CPSICN e e 539
(0101511 01T PP 542
(000 1= [LT 545
ot 01 110 548
ot 015174 0o 551
CPUIMELES .ottt a e a e 555
(61 010 o) (o2 PP 557
(0l (01557 560
(o0 101 1 1 PSPPI 562
(o1 o o OSSP 565
o 1 ST UPPRTTPN 567
o 1 20 PSP 569
1 USSP 571

The Canonical Csound Reference Manual

11 o T O UPPRTPN 574
(o= 1 o PSPPSR 575
aM 578
0 PSSP 581
01 =S PSPPSR 583
0] o PSP N 585
(07 1 1o T 587
(0185720 0] 589
0 (o o] o G 591
0 [0 o] o o2 PR 593
0 (oo VPP 595
0o PRSP PN 597
[0t [|V UPPRT PN 599
01 601
R AY L oo e 603
E AYK v 605
(01 Y PSPPI 607
EIAYW et 609
(01 !0 T 611
(01 -0 1 614
(01 1 1o PSPPSR 617
EITADN oo 620
(015 1710) PP 622
EITAPXW et aes 624
0 1= 0704 1 o TSP 627
T e 629
o[11< ol (o] Y OO TUPPPTTRUPPIN 631
(01 ES o =] o TP P PP TUPPRTPUPPPPN 633
(0TS 1 o [PPSR 636
(0TS (1 2PN 639
(01 ES o i 1 P UPPRTSPN 643
0TS0 645
0T (o 647
011 (o g o PP 649
IV Z e 651
(0070 o] 1= SR PP 653
0 (011 15 o 655
0T oY (= 657
(0SS T o 7= = 659
(0SS T2 11 o [0 P 661
(0155 T £ UPPRTPN 663
(0SS o PP 665
(0155] PSPPI 667
011 0T o] 669
UMPKZ o et 672
UMPKS e e 675
AUMIPKA .ottt e et e e e e et eeaa e ees 678
(011 11 0o PSPPI 681
0 L1 683
USEZ e 685
OB i 687
Bl BT i e 689
=0T L PSPPSR 691
BNOIN e 693
<210 (o o T 695
<1771 698
L= 01V o) S OO TUPPPTTRPPPN 701
BPNBSOT ... 703

The Canonical Csound Reference Manual

= | 11 705
BVl ST e e 707
<YL | 708
LS YL 0| P 711
LS ol [PP 713
EXITNMOWY ..ttt ettt ettt et et e e e 715
(2 o PP RPPRP 717
L2 0oL 719
LS4 07 T 721
EXPIANG ..ttt et et e aee 723
EXPPANAT ..t et e e 725
[0S <o TP 727
L2 01 = 729
o 150 | T 731
EXPSEOIA ...t 733
LS8 < | TP 735
FAUSLALIAIO ... et 737
FAUSICOMPILE ..o 739
FAUSICEL .« 740
L1215 1= o 742
FAIEYIEN 744
FAEYIENT .o 746
IOl O e 749
111 1= o PP 751
FHLRION e 753
FHENCNNIS .o e 755
FHIEPEEK ..ieiie e 757
FHIESCAl oeieiie i 759
111 1= PP 761
FHEVAIT .. 763
L1 = Y/ 765
1L PSPPI 767
1L = 2 PP PPPPN 769
I e 771
0 PP 773
0P 775
L] o= R 777
L2 1= 779
11 S 50 PP 781
L I o o) P 783
FLBUEBANK ..iiviieceiii e e et e e e s 788
FLDUIEON .ottt ettt e e 791
FLCIOSEBULLON ..uiiiiieee et e e 796
L OO0 et 799
FLCOIOZ oo e 801
I o011 | PPN 802
FLEXECBULION ...ttt e e e e 805
FLGEISNAD .. ettt 808
I 0 809
L I 0110 = o P 811
FLOMOUD_ BN ..ottt 812
0T L= PSP 813
[I 01V 2o PSP 814
FLAVSBOXSEIVAIUE ...uiiiiiiieecii et e e 815
L Oy ettt 816
L IV o 819
FLKNOD e 821
FLIADED e 826

Xi

The Canonical Csound Reference Manual

L I o= o £ = TP 828
FLIMOUSE ...ttt ettt et e e e e e 829
FLOOPET . 831
FIOOPEIZ ..ot 833
FLOOr e e 835
FLPACK et e 837
L I 7= o 4 = o 840
L I 7= o G o 841
FLPANEL ..o 842
FLPANEIENGoeniiii e 845
FLPANEL_ BN ..ot e 846
FLPIINEK et ea s 847
I 101102 848
[I o = SO SPPRT 849
L UN e e 852
FLSBVESNADeiiiiiet ettt 853
FLSCION e ettt ea 858
FLSCIOIENG ... et 861
L IEox o) | = oo 862
L IR 1A [o o 863
FLSEIBOX ..ttt ettt ettt 864
[IR (0o Lo PPN 866
FLSEICOIOIZ ..ottt et e e e e e e e e e e aa s 868
I | o] | SO SPPT 869
FLSEIPOSITION vttt e e e 871
FLSEISIZE oot 872
FLSEISNGD ..oeeeieieiee e 873
FLSEESNBPGIOUD ...ieviieeiie ettt e e e e e 875
I = PSP 876
FLSETEXICOIOr ..t e e 878
FLSEITEXISIZE .vvueiiiiii ettt e e e e e 879
L IS =T 3/ 0= 880
FLSEEV @Al i cieiiiiii ettt 883
FLSEEV AL oot 884
I 0o U SPP 885
FLSIHABINK ..ttt e et e e et e e e e e 886
FLSIABNKZ ...t e e e e 890
FLSIABNKGEIHANAIEccvvviieiiiiieee e 893
FLSIABNKSELciiiiiieeiiie et e e e e e e e e 894
FLSIABNKSELK ...iiiiiiiee it e e et e e et e e e e 895
FLSIHABNK2SEL ... coevviiieeiiie et e e e et e e e et e e e aa e 897
FLSIABNK2SELKccevvieeiiii e e e 898
I T L= ST SPPR 901
FLtAS et 907
FLEADSENG ..oeieiiei e 912
FLEEIS ENA ..o 913
= PSP 914
FLUPELE ... ettt e e e e 917
11T 7N 1 1 L | PSPPI 918
10 T [o PSP PPP 920
10 o [PP 922
FIUIACONLION ... e 924
FIUIAENQGING ... e e aan s 927
1110 T | o = o PP 930
1118 T |1 o (PP 932
FIUIAOUL ..o et eaans 934
FIUIAPrOgramSEIECEcoveie e 937
fluidSetiNterpMEthodcooveiii e 940

Xii

The Canonical Csound Reference Manual

L IR 7 | P 942
L IR =Y oo 944
FLVSHOABIIK ...t e e eans 945
FLVSHABIKZ ...vviciiii et e e e e et e e e e et e e e e 949
L 1Y 1 o R UPTRPPRN 951
TN e 954
FMDELL e 956
FMMELAL ... 959
TMPEICE] 962
FMENOAE ..o 964
FIMVOICE e e e 967
TIMWUITIE e e 969
O e 972
OF 2 e 975
{0 {11 (= ST PPPPN 981
(0o PP UP PP UPPPT 983
0] PP 986
FOHOW e e 988
FOIOWZ . e 990
FOSCIL et 992
{015 v 1 | TP PPPPN 994
FOUL et e 996
FOULE et 1000
1018111 S PP PP 1002
FOULK vt 1004
FPIINEKS et e 1006
FPITINES Lo 1012
L= o PSP 1014
FraCtalNOISE ... e 1016
FramEDUTTEY ... 1018
frEBVEID . 1020
FECNNIS Lo 1022
B CONV e 1024
L1000 PP UPPPPTRUPPPPN 1027
L= SRR 1029
L1001 1 1031
L0 (=210 0T 1034
L0 1= 111] 1036
11 PSPPSR 1038
1110 o PSPPSR 1040
1110 o | UPPPRPPRN 1041
TN e e 1042
FEMIONT e e 1044
FLSAMPIEDANK ...eecee e 1046
FE SV e 1048
155 Y/ PSPPSR 1050
155 PSPPSR 1051
0= 11 1053
(072 11 o L= 1055
0T 15\ 1057
QAUSST ettt 1059
[0 F= 0SS o [TP UPPRTRN 1061
0] 010 7274 PP TUPTTPPRRN 1064
[0 = = PP 1066
(0= 7= 11 - Y/ 1068
0= 10 Y 1070
0= 010 1Y o PRSPPI 1074
GENAYX ettt 1077

The Canonical Csound Reference Manual

01 (ot o 1081
011 = 101 1083
01 (0 PP 1085
GEISEO ...t 1087
(01070 0] o= PP PP 1088
[0 0] PP 1090
0 1092
07502 1094
0] = 1 0 X PSP PPT PP PP 1098
GrANUIE ..ot 1103
[0 18 (o TP 1106
REIMON . 1108
REIMONZ ... e 1110
NAFSIEAA 1113
0 Y (= 1115
RITBET ..o e 1117
RIFEAITY .. 1121
RIFMOVE . e 1125
AIFMOVEZ ... 1128
RIFFEVEID . 1131
0181 v | PSPPI 1134
1S T ot | PP 1137
1Y £ 1140
PV S 1144
Y5 PSP 1149
PSPPSR 1152
O TSPTP 1153
L1 1 PP 1158
oo (o TP 1160
127] o P 1162
L g=T 1= (= (= 1164
=T T = 1166
IMAGEOELPIXE] ... et 1168
IMAGEIOBA ...t 1170
IMBOESAVE ... ettt ettt et et et e e et e et e et e et e e it et e e aan s 1172
IMBGESELPIXE] ...t 1174
IMIBOESIZE ..eveeeei et e et e e e e e aa 1176
1 TP 1178
G 72 1180
] e o PP 1181
] o 1183
1 P 1184
g (ot PSP 1187
1 (o722 PSPPSR 1188
1 o 1189
0] = PP 1191
1= P 1194
1= 1o PP 1196
N e e 1197
ENTEIV e 1198
5T PP TRPPRPPR 1199
1T PPN 1200
18] (o VTP 1202
1 PP PPTP 1203
101 =10 S PSP PR 1205
INSTIODEL ... 1208
o 1210
1 1212

Xiv

The Canonical Csound Reference Manual

1= 1214
11 1 1216
INVAIUE .o e 1219
] TP 1221
] 1222
JACKOAUIOIN ..o e 1223
JACKOAUAIOINCONNECE ...t e eees 1224
JACKOAUAIOOUL ...ttt e e e 1225
JACKOAUAIOOULCONNECTeiiieeeeee et e e e e 1226
JACKOFTEEWNEED ..o 1227
JACKOINTO .. 1228
= ot (o) o 11 S UPPPRSPPRN 1230
JACKOMIAITNCONNECE ...ttt e e 1232
JACKOMIIOULCONNECTeiiiiiieeceii et et 1233
JACKOMIAIOULuiieeiiiie e e 1234
JACKONOLEOUL ...cuiiiii e e e e e 1235
N = Tot (0@ | o PRSPPI 1236
JACKOTIANSPOMT ... e 1237
L2 = L 1238
L 1240
L= 2P 1242
JOYSICK ettt e 1244
JO TN e 1247
K e e 1249
00 (0 T 1250
PSPPSR 1252
KSIMIPS et 1253
[ENMAITAY .t 1254
o P 1256
T 00 1258
1T =P PR 1260
1] 07 o PSP 1262
1] 4 1= o P SPTP 1264
1] 1= (o T PP 1267
INFANG <. e 1269
T 1S o 1271
1T 0= | o 1273
T 0= | 1275
[OCSENA .oeitii e 1277
[oloi= T o TSP UPPRTRN 1280
o PP 1283
T 1 0 PP 1285
0T 2 1287
0T 1 1289
[OQCUIVE ..ttt e s 1291
[ole] o I o =SSP ST PTUPPRTRN 1293
FeTe] o o | TP 1295
L0008 e 1297
oo o T 1300
a0 015" o 1302
[ole] oIS <" | IO PSPPSR 1304
[ole] o 15 =s H TSP PTUPPPTRRN 1306
Fole] 0 e <o TP 1308
[OFBNZ e 1310
Lo 1S == o PSP 1313
0] 1S 1370 o] X 1316
[OTTSPIAY et 1319
oS o 1 TP 1321

XV

The Canonical Csound Reference Manual

[OSCHIB <. 1324
TOSCHIX ettt 1327
[OWPBSS2 ...ttt 1330
Lo = PP 1332
Lo = TP 1334
o)1 PP 1336
01 (=:S o o P 1338
0] 7= o 1340
Fol] 010 o I PSPPSR 1342
Fol0 S ol | TSP PPPTUPPRTR 1343
[POSCHIS e 1345
[POSCHA ..o 1347
o T0 1S o 1= 1349
00 1S 1= 2 1351
[PFEAA ...t e 1353
Fol='e) o I S P S PP UPPRTON 1356
07 2o o P 1359
[PSNOIAD e 1361
0T o 1362
L= T == 1363
[UBL OPAER . 1364
TUBL OPCAIL .. 1369
10 P 1372
11T o= R TP UPTP 1374
00 PP 1376
7= 0 1380
00 (= 1383
MBNAOL ... 1386
01T 072 - VTP 1388
MBINTMDA ... e 1391
0= o o 1394
0= PP PPT 1397
MBXBIS . ee ettt 1399
MBXBISACCUNN ...ttt e e e e et e et e e e e e ea e eeanaas 1401
01Tz 7= o ol B o VTP 1403
MBXBIIOC ... 1405
0= G 1407
T2 = = 1409
1170 o QPSPPI 1411
MAEIAY e 1413
00= [T TP 1415
MEAIANK ... e 1417
101 1o TP TUPTPPTN 1419
D e 1421
MIAGIONEAl ... 1423
0T L P 1424
01T o2 PP 1426
10T o TP UPTRPPT 1428
Midichannel aftertOUCKooiiiiiiii e 1430
MIAICHN Lo e 1432
MIICONETOICNANGE ... e 1435
0o 1 1 PP 1437
01T [T L= = | P 1439
(00T 11 ISP PPT 1441
MIEAITHTESIAEUS .. 1444
MIAINOLEOTT ..ot 1445
MIAINOIEOMNCIS ... eeet ettt et e e et e e e 1447
MIAINOIEONKEY ...ttt 1449

XVi

The Canonical Csound Reference Manual

0017 [0] (=0T o: 1451
001 10) =701 o o [1453
0010 [T 0] V- 1455
0010 o] o 1457
0010 [0 | 1460
MIdIPITCNDENG ..o 1462
MIdiPOlYaftertoUChcveiii e 1464
MIdiPrOgramCNANGE ... cvveeei e e e e e 1466
MIAITEIMPO et 1468
(00110 (=1 210) A 1470
0011 1473
0T 7= 01 1475
QT T= 01 ot U o T 1477
1T =0t U o 1479
0011 1< P 1481
(1011 0= = Y ST SPPPTUPPRTPN 1483
0 0T () 1485
MIXEISEILEVEL ..o.ieieie i e 1487
MIXEFrSELEVEL 1 ovnieiiei e 1490
Y DS L= (I =Y/ 1491
Y DS 5= 1o P 1493
MIXEIRECEIVE ... et 1495
Y D (S O == TR 1497
0101070 [T 1499
010 0= 1 1502
70711 (o) 1507
1100 PP 1509
MOOGIAAUES ...t 1511
(p00T0To | F=To (o (< o TP 1513
170700 X 1515
101070 1Yo 2 1517
707 o 1 1519
10102571 o T PSP UPPRT 1521
1010151 = o EO TSP UPPRTRN 1523
10100 o | TP 1525
IMIPUISE . ettt 1527
0100 1529
01U) =T 1530
12101 1532
VO e 1534
[001Y7o 1o i TP 1536
MVCI T2 e 1538
0177 o 1540
MV C DT e 1542
0007 0 = (P 1544
1 0] 0 = 1547
NCHNIS W e 1549
70 1 1550
1S =0 o T 1552
] 1 1555
012 1558
0TS 1561
0101020 i 1564
[110]0=" o 1565
(910)= 000 1 2 1566
100 0o [1568
101511 1570
L TE=YL= 1 o T 1572

The Canonical Csound Reference Manual

3]0 0 PP 1575
(0152 1] o PP PPPR 1577
157> 0 = 1579
1 1 [1582
011700 TSP 1583
(0701 r= Y/ T PP 1585
(0 (0! 01 S PP 1587
(o7 11 0o 1590
OCEMIAID oo 1592
(oot 10 010 1 2o R 1594
(oox1 oo [P UPTUPTTPPRN 1597
(o F=1 o U i =, 1600
(o]0 0 /= 1602
OSCIINK et 1607
(07 o1 | 1 P 1612
(07 o1 | 1 1614
(01 o7 | 1 1616
(07 o | 1618
(0= o | 1, 1620
(0= o | 112 1622
OSCHTKED e 1624
(01 o 11 £ 1626
(07 o7 1 1 o 1628
(07 o7 1 £ 1630
(0= o | 1632
[1T T 1633
(05O 1= 1< IR 1635
(@505 =0 o I TP 1639
(o111 1C 72T 1641
(o 1 | T 1642
o (o 1644
(011 (o o 1646
(o111 o P 1649
(o101 1650
(o101 o 2 ST 1652
o o2 1654
(o110 1656
(o111 o 1657
OULTIIC ettt ettt e et e e et ettt e et 1659
(o111 €= 1661
(01011 (o3 1 T 1663
0 11 (o 1664
(011140 | 1666
01114 o] 1667
(01011 o o PRSPPI 1669
(01011 1< = 1672
(o]0 11 1< 1 [T 1674
(01011 1= 1675
(01011 1= 1o 1677
(01111 1= 1Y 2, 1678
(11 1o 1679
(011 (o 1 PP UPRTPPTI 1680
(011 |0 /TP 1682
(011 [0 1C TP 1684
01 0 1686
01 o 1688
011 1 o PP 1690
[0 0] 5 P 1692

The Canonical Csound Reference Manual

OUESZ v
OUISD o 1694
OUIS 1696
OUIVBIU oo 1698
o .. 1700
e 1701
B o 1702
POGUALA v 1704
e ... 1706
D 1708
Dy 1710
e 1712
Py 1 1715
B sy 1717
P ATG o 1724
gy 1728
P v 1730
a1 1732
o 1734
el 1736
By, 1738
DO 1740
ey 1743
PV 1746
B 1749
Py 1752
Py, 1755
DY 1758
e ... 1761
BN v 1763
B 1767
it ... 1770
B or 1774
DOBSDIDIK 1776
B T 1778
B 1781
By 1785
B o 1786
a1 1789
Bl v 1792
ety 1794
gy 1797
Bk 1799
By 1801
ooy | 1803
B, 1806
el 1808
PONMOMIEL oo 1810
B 1813
B 1815
PO 1817
POSKI o 1820
powershape........._,_,_,_,_,_:::: ... 1822
e 1824
e © 1826
B 1828
PORIENO o 1830
e 1833
.. 1835

XiX

The Canonical Csound Reference Manual

printk2cooveviiieiiee,
B 1837
g 1839
B 1841
B, 1844
Do 1846
POt o 1848
e 1850
DG 1852
B 1854
Dby 1857
g 1859
Dok 1862
s 1864
o raag] 1866
B 1870
pvmterp ... 1872
AP 1875
T 1878
ey 1 1880
ey 1882
Vel 1884
o ... 1887
o 1890
Yol o 1892
by 1894
et ... 1896
gl 1898
ety | 1899
e 2 1902
B 1904
B 1906
o 1908
B 1910
e 1912
B 1914
D, 1916
B eroagy T 1918
P efrenge 1921
e 1923
e 1925
it 1927
D ILE 1929
By 1931
Ve 1933
B 1935
e 1937
e 1939
e 1940
o 1941
g 1943
Do 1945
gl 1947
e e 1950
By 1952
gy 1953
ey 1956
e 1959
.. 1961

XX

The Canonical Csound Reference Manual

PVSVOC ..vvveveeernrernennnnnnnnnns
DSV 1963
DU 1965
DUSHELD. 1967
DISZED 1969
DY OPEOIES - 1970
DY OPOOUES - 1971
R 1975
PYCKED OPOGES - 1976
DYIIE OPOOIS - 1979
PYTUN OPODIES - 1980
DIV 1982
G0 1984
Y 1986
2 1988
A0 1990
AU 1992
AU 1994
FANOM 1996
OO 1998
OO 2001
P 2004
FEICIOCK 2007
O 2009
O 2011
K 2013
R —— 2016
KD 2019
. 2022
FORISCOTE 2025
FORBTIEC 2027
FOEZDO 2029
B 2031
BB 2033
FOMOEDOM 2034
OG- 2035
FODIUCK 2036
O 2038
DI 2040
O 2042
. 2045
FOSOTRK 2047
TSI 2049
OO 2051
O 2054
BT 2056
FOUED 2057
FOUSDD 2059
VRIS 2060
FOMNGSEONE 2062
22 2064
L 2066
L 2068
IGO0 2070
BT 2071
I 2073
] 2075
B 2077
.. 2082

XXi

The Canonical Csound Reference Manual

0oL 0 2084
([0 Tox 2086
S, 2088
SLBDA ..o 2089
LY o) 7 ST 2091
SAMPNOIA ... e 2093
LSS 110 010 = 2095
[or= [2097
SCAIEAITAY vttt 2099
Lo 0072 11010 01 SR 2101
LS o= 101 2102
SCANMADIE .. e 2105
LS o= [2107
SCHEAKWINEN ... 2109
SChEOKWNENNAMEAeieiieiii e e e e e ens 2112
LS00 1< o L1 T 2114
SCNEOWRNEN ...t e e ens 2117
LS o0 £ 1T TS 2119
S o] (= 11 0= 2121
£ S o 2123
(S S 2 (=TT 2125
LS S 110 (ST 2127
LSS 15 S 2129
GBS Y ..ttt 2130
SETAIBEOIN it 2134
SEITAIENG e 2136
SENTAIFIUSN oo 2137
LS = 1 1| 2138
SEITAIREAM ... e 2139
SEBIVWIITE I ovieniie e 2141
LS = AAY L (= 2142
LSS0 (1] .17 2144
S < |01 PSP UPPPRTRSPPRN 2147
L=< (o1 1 T 2150
SO SIMPIS ettt ettt e aa e 2152
LSS0 TN 2154
LSS 00 1 0L 2156
LS L= 2158
L 1S 1 ST 2160
L IS] 0 T 2163
LS 1 1S 1 2166
LS 1S 1 2169
L= = 2171
SEIOOPEY ..t 2174
SEPBSSIGN et 2177
S A 3 e 2180
Il Y M e 2183
I LAY e 2186
LS 0] = 1Y/ o 2188
S o] 1 2191
S o= = PSP UPPPRTRUPPRN 2193
ST <. 2195
SN N e 2197
L= 0T (o | 2199
LS o 10 o 2201
£ 2203
SN e e 2205
L T 1 Y2 2207

The Canonical Csound Reference Manual

LS 1153 0 2209
SEGNDEIS oo 2211
SHCBAITAY ettt et 2213
LS T (= o1 TSP 2215
LS T (= o1) PPN 2217
SHAEILBLADIE ... 2219
SHAErLBtabl €f ..o 2221
SHEI B2 o 2223
LS T (= < ¥4 PSPPSR 2225
SHAErB2LADIE ...oiiiiiiee e 2227
SHAErB2tAblEf ..o 2229
LS T (= PSPPSR 2231
SO BAS . e 2233
SHAErBALADIE ... 2235
SHAErBAtAbIEf ...oooeeieie e 2237
LS Lo (= o TSP 2239
LS T (= 2 SPPPTPPRN 2241
SHAErBLADIE ... 2243
SHAErBLADIEF ... 2245
SHABTKBVEL ... et 2247
SNAIOOP ettt 2248
S 01611 o PP PUPPPRTRSPPPPN 2250
S 00 = o PP 2254
S 00 (= oY PP UPPTPT 2258
LS 010 S < o [PSPPSRI 2260
LS o110 [o PSPPSR 2262
SPBCE ..ttt 2265
LS 07z 11 o [PPSR 2270
LS 7= 11 o PSPPSR 2278
LS 7= 11 o | PP 2282
S0 [2287
5077 [0 [0 2291
SPECAITT e 2292
S 01 o [o B PP PTTPUPPPPTRUPPRPN 2293
LS 1= o1 PSPPSR 2294
SPECRISE ..t 2295
S 0= o 1 2296
S 0= o 2298
S 0] ois U PP 2299
SPECIIUM .ot 2300
S o1 (o T PP 2302
S o110 11 PP PP 2304
LS 0101 2306
LS 01500 2308
o | PP 2310
S PSPPSR 2312
SO OV .t 2314
S PP TP TP 2316
STKBANAEAWG ..o 2318
STKBEETIIEE ... 2320
Y I 1 =3 o V1] = o | 2322
STKBIOWHOIE ... e e 2324
Y 112101 = o U 2326
Y 11 2] = TSP 2328
S 1N T 11 0= S PSP 2330
STKDIUMIMES ettt e e e e e et e e e e eaaaeees 2332
Y I LV 1= 2334
STKFMVYOICES ...ciiiiieiiie et e e e e et e e e e e e e 2336

The Canonical Csound Reference Manual

STKHEVYMEL ..o e e e e e 2338
S IS =770 (o T o 2340
STKMOGAIBEASoeieieieiii e ettt e e aen e 2342
STKIMOOG . reiitiieiiie et et 2344
STKPEICFIUL . ..veeiiieeee e e e e e e et e e aees 2346
STKPIUCKED ...t e e 2348
S IR (5= 0] 0= (=N 2350
Y I 110 L= 2352
STKSAXOFONY ... 2354
Y 5 7= = £ TP 2356
ST SIMPIE it 2358
Sy I S 1 = T 2360
Y IS (11 o T 2362
STKTUDEBE .onieiiiieee e 2364
STKVOICFOIM <. et a e 2366
STKWHIISHIE ..o e 2368
STKWUIIEY vt e e e e 2370
LS 7= 2372
L= = 2374
S o o 2375
S 1010 PSP UPPPRTRSPPRN 2376
LS (= | N 2378
L= [or- | TP 2380
S (o110 o PP TP 2382
S 1010 2384
LS = o 2385
LS (1 01U TP 2387
ST EE e 2389
LS] (0 [2391
LS T 001 2392
L= < T 2394
SITTENK e 2395
L= L0 Y= TP 2396
LS L0 2398
LS A 1010 1) 2399
LS T 10 1) 2401
LS . 2402
LS £« 2404
LS ST o] TP 2406
LS (0 [2407
L= T (oo [P 2408
£ (o 2409
L= (o) 2410
S 0] 7 2411
SEUPPETK et 2412
LS 0 o] T 2413
L 0 o0 0= (1 T 2416
LS 1 N 2417
LS 7= 1 = 2419
L2 1= 2421
LSy oo =] PSP UPPPRTRSPPRN 2424
SYNCIOOP ..ttt ettt et e een 2427
Sy (e o] 7= S o PP 2429
LS L 1 PP 2433
11 o T 2435
1 €=« 2438
1= o 1 {0 IR 2440
1720 [T TP 2442

The Canonical Csound Reference Manual

12210 =G T PSPPSR 2444
1221 0] 1= o] oY 2445
TADIEfI TN oo 2448
TBDIEFIITENT oovve e 2450
€20 =0 1 PP 2452
12210 = SRR PPR 2453
1= 0] 1= o1 oY 2456
1221 0] 1= . 2457
TBIEIKE L. e 2458
BAD B MIX et 2461
BB I Lo e 2463
122! o) =T U PRPP 2466
FBDIEIMIX e e 2469
12210 = 3o 2471
152 o 1= - I PSPPSR 2473
1= o1 1=S o SRR 2476
tADIESNUTTIE Luueee e 2478
122! o) = U SPPRN 2480
FBDIBIWA .. 2483
TBDIEWKL .o e 2486
TBIEXKE .ot 2489
BB EXSEY ettt 2492
tADMOIPN <. 2494
tADMOIPNA ... 2496
tADMOIPhaK ... 2498
tADMOIPNI ..o 2500
BBPIAY e 2502
L= (= oS PP 2503
TBSUIM L. e 2504
T2V ot 2506
TBMBOUNING ..o e 2507
221 PSPPSR 2509
BANN L 2511
L7010 1Y PP 2513
16210122 2515
1107/ o PSPPSR 2517
L= 110 2520
L= 1110 2523
TEMPOSCE] ...veeeeeii e 2525
TEMPOVEAL <. 2527
Lo o) (o PP 2529
L1 0 S o [PPSR 2531
HIMBINSEK .ot 2534
HIMBINSES ..ot 2536
HIMIEK e e 2538
LT 0= T PRSP 2540
L0110 L | PP 2543
LAY 2545
111131 0TSSP SPPR 2547
(00 TP UPPTPPT 2549
1001 11= QPSPPI 2551
L0] 1= G PP 2553
L1810 (o] 1 4 PP 2555
L7205 Y 0 2557
L= 1S 2559
L= | o 2561
LS 1S o | PP 2563
L0 05\ PP 2565

XXV

The Canonical Csound Reference Manual

L1 111 S PSPPSR 2567
TIGNESE ..o 2569
(4]0 o = TSP UPPPRTRUPPRN 2571
(L]0 = o [PPSO UPPPPTRUPPPPN 2573
L1 =T [PP P 2576
THTOWESE ..ot 2578
L1 0TGPPSR 2580
EFSCBIE L.t 2582
LS L1 PSPPSR 2584
LU o PP UPPPPTRUPPPPR 2586
118 210 1 S PP 2588
TUPNOFT2 Lo e 2590
L1810 o PP UPPTPPT 2593
00T = 1o PSPPSR 2594
01 2596
01011 =" o PP 2598
01075100 o VTP 2600
0121010 (o] o ¢ TP PT 2602
o PSPPSR 2605
1 e o PP 2607
VA Lo 2609
1 o o [P 2612
1 o o 2614
VAOAV T e 2617
1= o < PP 2619
L= 1 0 2621
A S = TP 2624
VDD e 2626
VDBPIMOVE ... e 2629
VBP0 e 2632
L4000 1270V 2635
VBBPLG .. 2638
VDBPLOIMOVE ...ttt 2640
VB4 L. 2642
VDBPAMOVE ..o 2645
VDBD8 .. 2648
VOBPBMOVE . .eeiiii e 2650
VBOEPISINIT .o 2653
VDBDZ ..o 2655
VDBDZIMOVE ... 2657
VLT e 2659
Lo o TP UPT PP PPPRPPP 2662
1o 2 PP 2665
1o 2 PP 2669
1L Y22 i 2671
[l Y221 1 1 S PP 2673
[Vo001 o TSP 2676
(Vo0 o PP TP PR PPPRPPRPN 2679
L0012 2682
1L L= 2684
VAEIAY3 . 2686
VOBIBYX ettt 2688
(Vo L= = 0 (o [PPSR 2690
VOB Y XS ottt 2692
[0 1= =L 2694
[0 L= 2L o 2696
VOBIGYXWS ..ottt 2698
VABIAYK ..ot 2700

The Canonical Csound Reference Manual

VIV e 2701
VAIVV T oo 2704
VECAEIAY .o 2706
(V7= o P 2707
V= o PP PTPPRPPRPN 2709
(V= o PP UPT PR PPPRPPRP 2712
A2 0= 2714
L= 2716
1SV PP 2719
VDB e 2721
A VZ1 o SR 2723
(V71 L= (0 PSPPI 2725
(V7121 SRR UTPRPPRN 2727
(VL1211 PSRRI 2730
VIINSEg it 2731
(V2o T =P 2733
V007 |« R PP UPT PR PPRPPRPN 2735
AV 01 o S TP 2737
1722110 PR PRPRPTRN 2738
18 210 2742
A2 4V 2744
1740218 Y PP 2747
(Vo o PP 2749
(V70 = 11 £ I PP 2752
(0175 5 == 2757
177 2759
VPOW ettt ettt ettt et e e e e e r e 2760
VPOW T oottt 2763
VPOWVV ettt ettt ettt et e ettt e ettt ettt e e h e e ea e et e et et e e a e en e e e e e ea e eaae 2766
VPOWVY I ettt ettt ettt et e et ettt et e et e e e e aans 2769
RV 1Yo o 2771
VEANON Lot 2774
L2 (o 2777
(VA = 0o o MRV = 0o [oo PP 2780
VSEDANKIOAAonieii 2782
AV = o [TSR 2783
AV 11 1 PRSP 2785
(V2 111 (o PRSP 2787
AV (0o [0 | 2789
LV 1 00 2791
VSEPAramSel, VSIParamMIOELcceiee e e 2793
(T 1 00 PP UPT PP PPPRPPP 2795
VSUBV et 2796
L2 0 2799
VEADIELK e 2801
1210 1< RPN 2803
VEBILEK L .ie it 2805
VEBILEA ..ot 2807
(V2710 1= Y PRSP 2809
VEBILEWK oot 2810
VEADIEWA ... 2812
(2= o PR 2814
VEBIK et e 2816
VBB oot 2818
VBB et 2820
VEBIWK Lot 2821
(V2= 171V 2822
LA = VPP PIPPI 2823

The Canonical Csound Reference Manual

1= === < PP 2824
LTS o150 o 2826
WEIDUIL L. e 2828
WODOW .ttt ettt ettt e et e et et n e aaa s 2831
WODOWEADEN ...t 2833
WODIBSS . oet it 2835
170 o - 2837
1T L 0= 2839
WOPIUCK ettt 2841
WOPIUCKZ ..ottt 2844
WOUIAEL .ottt e e e e e e e et e et e e e e eaans 2846
17170 10 =P 2848
WL e 2851
1K o0 = 2853
WIHHHBEA L. eeeie e e 2855
WITBIIJE ettt ettt e et et e et e e e b e eeeneas 2858
1L = o T 2859
111 2 [0 PP 2861
1o 2863
LT =S (o o 2865
L C = T o PR PTPRPPRN 2867
DG - S PP 2869
(1 2871
(0 | PP 2873
D o= 0 7= 2875
D 0 0 0 2877
D07 L 2878
D072 11 [PP 2882
D= 11 0 1P 2886
D47/ PP 2889
ZACl 2891
. (] 2893
y.Z- 11100 RO STPTP 2896
2| P 2898
pZ o R TP 2900
2 1 P 2902
.1 0 2904
41 = 2907
74 | GRS 2909
11 PP 2911
74 1LY/ 0 P 2913
2 (o P 2915
.41 110 o 2917
. 2919
KW e 2921
7 AT 1 [P 2923
Score Statements and GEN ROULINESccouiiiiiiiiiii e 2926
SCOIE LA EIMIEINES ..ttt 2926
a Statement (Or Advance StAEMENE)cvevieiii i e 2927
D SAtEMENt ... 2929
LR 110 0| 2931
LSS = = 1.1 | 2933
f Statement (or Function Table Statement)ooeveiiiiiiiiiii e, 2935
i Statement (Instrument or Note Statement)ccoevveiiieiiii e, 2937
m Statement (Mark StaEEMENE)covviiiiie e 2941
TSP 0= 0 2943
O SEAEEIMENT ...ttt et 2945
r Statement (Repeat StAEMENE)oveeveieieii e 2947

XXVill

The Canonical Csound Reference Manual

S SEAIEIMENT ...ttt ettt et et 2949
t Statement (Tempo SEAEMENL)uvevniiei e e 2951
AV = (0= 0| P 2953
X SIAEMENT <. e 2955
y Statement (Or Seed StAEMENL)oeveiiei e 2957
{ SEALEMENT .. e 2959
S (11 o | 2962
GEN ROULINES ...ttt et 2962
GENOL oo 2966
GENDZ oo 2969
GENDS oo 2971
GEND oo 2974
GENDD oo 2977
GENDB ... 2979
GEN T e 2981
GENDB .o 2983
GENDD oo 2985
GENLD oo 2988
GENLL oo e 2990
GENLZ oo 2992
GEN LS oo 2995
GEN LA oo 2999
GEN D oo 3002
GENLB oo 3007
GEN LT e e 3010
GEN LS e 3012
GEN LD o 3015
GEN 20 oo 3017
GEN 2L oo 3020
GEN 23 o e 3023
GEN 24 e 3025
GEN 2D o 3027
GEN 27 e 3029
GEN 28 oo 3031
GENBD oo 3034
GEN B o 3036
GEN B2 e 3037
GEN B e 3039
GEN B o 3042
GENAD oo 3045
GENAL oo 3047
GENAZ oo 3049
GEN S o 3051
GENAD o 3052
GEN D L o 3054
GEN D2 oo 3057
GENLANN L. 3060
GEN XD ittt 3062
GENSONE ...ttt 3064
(€1 Lo U =0 o=/ T S 3066
GENTAIBY .t 3069
GENWAEVE ...ttt eas 3074
GENPASYNTN ... 3077
Experimental Orchestra Opcodes and GEN ROULINEScceeuiiiiviiiiiniiiiineeiieeenn, 3081
Experimental OrchestraOpCodesccuuveiiiieiiiiiiiiieee e e 3081
o o = PSP 3082
CUBSYNEN .t 3085
CUABSIITING ettt 3087

The Canonical Csound Reference Manual

Deprecated Orchestra Opcodes and GEN ROULINEScccceveviviiiiiiieiiicccieee e, 3089
Deprecated OrchestraOpCOdeSvvvreieeiieiiieeee e e 3089
BDELArANGiei e 3090
BDEXPINA .. 3091
BCAUCKY ...ttt ettt et et e e e e eaaaee 3092
BEXPIANG ..ot 3093
= 11 3094
=T (00 0] o 1= 3095
BlINTANG ... 3096
BPCAUCHY .. 3097
20 To 1SS o o PRSPPI 3098
21001 TP PPTUP 3099
1Y 3100
1 =g To PSP 3102
=0 1] = 0 o PSPPI 3103
AVEIDUIL .. 3104
BIOMMAEC ... 3105
BIOMMENC .o 3107
ClOCK et 3109
1= PRSP 3110
IDEtArANG ..o 3112
TDEXPINA ... 3113
o= 18 o g | TP 3114
04 P 3115
14 2 PSP 3116
11 PSPPSR 3117
FEXPIBNG ...t 3118
[0 = TSP UPPRTRN 3119
HINIrANd ..o e 3120
01T Lo PP 3121
01T L o722 PSP 3122
IMIAICT e e 3123
NS MK et 3124
1S 1T 1= PP 3125
1 PP 3126
o] ISP PPT 3127
FOMAUIZ .o e e et e et e et e e e 3128
FOMAU <.ttt et e e et e et e e e e e b 3129
Lo U - | PSPPI 3130
Lo 11 (o 72 PP 3131
01U (P 3132
[o 1011 o7 PP UPT PP 3133
0011 o T 3134
01011 3135
TPCAUCKY ..t 3136
[[ol0 T o] o [PPSO UPPRTRRN 3137
] o0 1 VTP 3138
1S o 1 PP 3139
15 721 o 1 PR 3140
1 o = L PSPPSR 3141
1S 0 = 2 PP 3142
1S T T0 = 7 PP 3143
1 T o (= = 7 3144
TEADIECOPY ettt 3145
=0 = o o 1 3146
1= o] =015 PRSP 3147
1= o] 1= PP 3148
LT =" (o PP 3149

XXX

The Canonical Csound Reference Manual

180T =" o [PPSR 3150
IWEIDUIL oo 3151
0= 7= o [3152
KDEXPINA ... 3153
KCALICHY .. 3154
KAUMIPZ .ttt 3155
0 L1 0] 2 3156
0 L1 0] 7 3157
KAUMD et 3158
KEXPIAND ...t 3159
1= 2P 3160
0= 115\ 3161
[T 0= o [PSP 3162
KON e e 3163
01 3164
011 (o PP 3165
KOULC . ettt et e ean e 3166
01111 0 | TSP RPPT 3167
011 11 o) o 3168
011 11 oo 3169
KPCAUCKHY ...t 3170
KPOISSON ...ttt 3171
10 TP 3172
= o 12 P 3173
KI@AOS ...t 3174
KI@BOA ... 3175
= o 3176
KEADIESEY ...t 3177
KEFFANA ..o e 3178
KUNIFN ... et 3179
KWEIDUIL ..o 3180
SNAIOAA . 3181
PEAKK ..ttt ee et 3183
6167 o PP 3184
0]0] o I SRR 3186
010 o PP 3187
PUSI e 3189
LS o1 0 (o 11 | PSPPSRI 3190
S o o (01U 3192
S = o SRR PPN 3194
Deprecated GEN ROULINEScceuuiiiiiiiieeie e 3195
GEN 22 o 3196
The Utility Programscoue i e e e e e e e e e e e ean s 3197
(D1 ok (] 1= PSPPSR 3197
SOUNAFIl€ FOMMIEES.ieeeeeeeiee e e e e e e e e e 3197
Analysis File Generation (ATSA, CVANAL, HETRO, LPANAL, PVANAL)
.. 3198
File QUEries (SNDINFO)iiiiiiieieiie et 3209
File Conversion (HET_IMPORT, HET_EXPORT, PVLOOK, PV_EXPORT,
PV_IMPORT, SDIF2AD, SRCONV)iiiiiiiiiiiiiiiiieccii e 3210
Other Csound Utilities (CS, CSB64ENC, ENVEXT, EXTRACTOR, MAKEC-
SD, MIXER, SCALE, MKDB)iiiiiiiiieciiiie e 3226
L0 oo PP 3242
Events, Lists, and OPerationSovieuuiiiiiiiiie e 3242
Writing a Cscore Control Programoceeeceeeieeiieeei e e e e v e e e 3245
Compiling @aCSCOre@ PrOgramcvuuieii e e e e e 3249
More Advanced EXAMPIEScoouuiiiiiiieee e 3252
(O o= £ P 3255

The Canonical Csound Reference Manual

V. Opcode QUICK REFEIENCEccvueiiiieeii et e e e e e e e e aens 3260

Opcode QUICK REFEIENCEu.ivieieie e e e e e e e e e e 3262
AL LISt Of @XEMPIES ..o 3315
B. PItCh CONVEISION ... e e e 3355
C. SOUNd INEENSITY VBIUBS ...ttt ettt e e et e et e eaneees 3359
D. FOrmMant VaIUBSouniiiiiii ettt 3360
E. Modal FrequenCy RaiOSuuiiiiiiiie e e e e et e e e e e e 3365
F. WINAOW FUNCLIONS ...t ettt e e 3367
G. SOUNAFONE2 FilE FOMMELEoeeeeee e e e e e e e e e eenaeees 3372
H. Csound Double (64-bit) vs. Float (32-DIt)cceuuiiiiiiiiiiii e 3373
(€110 o PPN 3375

XXXil

Preface

Table of Contents

Preface to the Csound ManUalcoooeeiiiiiiiiiie e XXXl
History of the Canonical Csound Reference Manualc.ovveiiiiiiiiiiiiinieniieeeeiie, XXXiV
COPYHIGNE NOLICE .evenee et e et e e e e XXXV
Getting Started With CSOUNGccieiiiiiii e XXXVil
What'snew in CSOUN 6.08uuiiiiiiiiiiiii et XXXiX

Preface to the Csound Manual

Barry Vercoe, MIT MediaLab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different
manner of control. Direct synthesis generates waveforms by sampling a stored function representing a
single cycle; additive synthesis generates the many partials of a complex tone, each with its own loud-
ness envelope; subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses
frequency modulation and waveshaping to give simple signals complex characteristics, while sampling
and storage of anatural sound alowsit to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is
really a computer program that can produce sound, while a score is a body of data which that program
can react to. Whether arise-time characteristic is afixed constant in an instrument, or a variable of each
note in the score, depends on how the user wants to control it.

The instruments in a Csound orchestra (see Syntax of the Orchestra) are defined in a simple syntax that
invokes complex audio processing routines. A score (see The Sandard Numeric Score) passed to this or-
chestra contains numerically coded pitch and control information, in standard numeric score format. Al-
though many users are content with this format, higher level score processing languages are often con-
venient.

The programs making up the Csound system have a long history of development, beginning with the
Music 4 program written at Bell Telephone Laboratories in the early 1960's by Max Mathews. That initi-
ated the stored table concept and much of the terminology that has since enabled computer music re-
searchers to communicate. Valuable additions were made at Princeton by the late Godfrey Winham in
Music 4B; my own Music 360 (1968) was very indebted to hiswork. With Music 11 (1973) | took a dif-
ferent tack: the two distinct networks of control and audio signal processing stemmed from my intensive
involvement in the preceding years in hardware synthesizer concepts and design. This division has been
retained in Csound.

Because it iswritten entirely in C, Csound is easily installed on any machine running Unix or C. At MIT
it runs on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI's under 5.0, on IBM PC's un-
der DOS 6.2 and Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single lan-
guage for defining the audio signal processing, and portable audio formats like AIFF and WAV, users
can move easily from machine to machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI converter and
control units, enabling Csound to be run from MIDI score-files and externa keyboards. In 1994 the
sound analysis programs (Ipc, pvoc) were integrated into the main load module, enabling al Csound
processing to be run from a single executable, and Cscore could pass scores directly to the orchestra for

XXX

Preface

iterative performance. The 1995 release introduced an expanded MIDI set with MIDI-based linseg, but-
terworth filters, granular synthesis, and an improved spectral-based pitch tracker. Of special importance
was the addition of run-time event generating tools (Cscore and MIDI) allowing run-time sensing and
response setups that enable interactive composition and experiment. It appeared that real-time software
synthesis was now showing some real promise.

History of the Canonical Csound Reference
Manual

Thisinitial version of this manual for early versions of Csound was started at MIT by Barry L. Vercoe
and maintained there during the 1980's and start of the 1990's. Some of the manual comes from docu-
ments for programs like Music11 from the 1970's. This original manual was improved and worked on by
Richard Boulanger, John ffitch, Jean Piché and Rasmus Ekman.

This manual led to the Officid Csound Reference Manual, dill located at: ht-
tp:/imww.l akewoodsound.com/csound [http://www.lakewoodsound.com/csound/hypertext/manual .htm],
for Csound version 4.16, November, 1999, which was maintained by David M. Boothe.

A pardlel version of the manual called the Alternative Csound Reference Manual, was developed by
Kevin Conder using DocBook/SGML [http://www.docbook.org/]. This version later became the Canon-
ical version.

When Csound was licenced as LGPL by MIT in 2003, the manua was licenced GFDL and placed on
Sourceforge along with the sources of Csound.

In the winter of 2004, the Canonical Manual was converted to DocBook/XML by Steven Yi to alow for
more people to be able to compile and maintain the manual.

The manual is currently maintained by Andrés Cabrera with continuous contributions from the Csound
Community.

The manua continues to be a community run project that depends on the contributions of developers
and usersto help refine the coverage and accuracy of its contents. All contributions are welcome and ap-
preciated.

Table 1. Other Contributors

Mike Berry

Eli Breder
Michael Casey
Michael Clark
Perry Cook
Sean Costello
Richard Dobson
Mark Dolson
Dan Ellis

Tom Erbe

Bill Gardner
Michael Gogins
Matt Ingalls

XXXIV

http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.docbook.org/
http://www.docbook.org/

Preface

Richard Karpen
Anthony Kozar
Victor Lazzarini

Allan Lee

David Macintyre
Gabriel Maldonado
Max Mathews
Hans Mikelson
Peter Neubacker
Peter Nix

Ville Pulkki
Maurizio Umberto Puxeddu
John Ramsdell
Marc Resibois

Rob Shaw

Paris Smaragdis
Greg Sullivan
Istvan Varga

Bill Verplank
Robin Whittle
Steven Yi

Francois Pinot
Andrés Cabrera
Gareth Edwards
Joachim Heintz
John ffitch

Oeyvind Brandtsegg
Menno Knevel
Felipe Sateler

And many others.

This list is by no means complete. More information can be gathered from the Changelog file in the
manual's sources repository.

Copyright Notice

This version of the Csound Manual ("The Canonical Csound Manual") is released under the GNU Free
Documentation Licence [http://www.gnu.org/licenses/fdl.txt]. Below are listed, for historical purposes,
previous copyrights and requests for credit from previous authors.

Previous copyright notices

Copyright (c) 1986, 1992 by the Massachusetts I nstitute of Technology. All rights reserved.

XXXV

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

Preface

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cam-
bridge, Massachusetts, with partial support from the System Development Foundation and from Nation-
al Science Foundation Grant # |RI-8704665.

Manual

Copyright (c) 2003 by Kevin Conder for modifications made to the Public Csound Reference Manual.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of this license is
available in the examples sub-directory [examples/fdl.ixt] or at: www.gnu.org/licenses/fdl.txt [ht-
tp://www.gnu.org/licenses/fdl.txt].

This Csound language documentation in this manual is derived from Kevin Conder's Alternative Csound
Reference Manual, which in turn is derived from the Public Csound Reference Manual.

Copyright 2004-2005 by Michael Gogins for modifications made to the Alternative Csound Reference
Manual.

This legal notice is from the Public Csound Reference Manual: “The original Hypertext Edition of the
MIT Csound Manual was prepared for the World Wide Web by Peter J. Nix of the Department of Music
at the University of Leeds and Jean Piché of the Faculté de musique de I'Université de Montréal. A Print
Edition, in Adobe Acrobat format, was then maintained by David M. Boothe. The editors fully acknow-
ledge the rights of the authors of the original documentation and programs, as set out above, and further
request that this notice appear wherever this material is held.”

The Public Csound Reference Manud's last known network location was ht-
tp://www.lakewoodsound.com/csound/hypertext/manual .htm.

The Alternative Csound Reference Manual's network location, for both the Transparent and Opaque
copies, is http://kevindumpscore.com/downl oad.html#csound-manual .

The Csound and CsoundAC Manual's network location is http://sourceforge.net/projects/csound.

Csound and CsoundAC

Csound is copyright 1991-2008 by Barry Vercoe, John ffitch and others.
CsoundAC is copyright 2001-2008 by Michael Gogins.

Csound and CsoundAC (formerly CsoundVST) are free software; you can redistribute them and/or
modify them under the terms of the GNU Lesser General Public License as published by the Free Soft-
ware Foundation; either version 2.1 of the License, or (at your option) any later version.

Csound and CsoundAC are distributed in the hope that they will be useful, but WITHOUT ANY WAR-
RANTY: ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera Public License along with Csound and

CsoundAC; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Virtual Synthesis Technology

Virtual Synthesis Technology (VST) Plugin interface technology by Steinberg Soft- und Hardware
GmbH.

XXXVi

examples/fdl.txt
examples/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://www.lakewoodsound.com/csound/hypertext/manual.htm
http://kevindumpscore.com/download.html#csound-manual
http://sourceforge.net/projects/csound

Preface

Getting Started with Csound

Downloading

In case you don't already have Csound (or have an older version) download the appropriate Csound ver-
son for your plaform from the Sourceforge Csound Download Page [ht-
tp://sourceforge.net/projects/csound/files/]. Installers for Windows have '.exe' extension and for Mac
".dmg'. If the installer's filename ends in '-d' it means the installer has been built with double precision
(64-bit) which provides higher quality output than the ordinary float precision (32-bit). The float ver-
sions provide quicker output, which may be important if you're using Csound in a real-time setting. You
can also download the sources and build them, but this requires more expertise (See the section Building
Csound).

It may also be useful to download the most recent version of this manual, which you will also find there.

Running

Csound can be run in different ways. Since Csound is a command line program (DOS in Windows
terms), just clicking on the csound executable will have no effect. Csound must be called either from the
computer's command line or from a front end. To use Csound from the command line, you must open a
Terminal (Command Prompt or DOS Prompt on Windows, or Terminal on MacOS). Using Csound from
the command line can be difficult if you've never used a terminal, so you may want to try to use one of
the front ends, either QuteCsound, which is included with the latest distributions, or another front end. A
front end is a window-based (not necessarily Windows-based) program that assists running Csound.
Most front ends include text editors with which you can edit csound files, and many include other useful
features.

Whether being run from a front end or being executed from the command line, Csound needs two
things:

» A Csoundfile (".csd' or possibly an.orc' and a'.sco' file)

» A list of command line flags (or configuration options) that configure execution. They determine
things like output filename and format, whether real-time audio and MIDI are enabled, which audio
output to use for real-time audio, the buffer size, the types of messages printed, etc. These options can
be included in the ".csd' file itself, so for the examples included in this manual you shouldn't need to
worry about them. Front end programs often have dialog boxes in which the command line flags can
be set. The complete and very long list of available command flags can be found here, but you might
want to have alook there later...

See the section Configuring if Csound is giving you trouble.

This documentation includes many '.csd' files which you can try out, and which should work directly
from the command line or from any front end. A simple example is oscil.csd [examples/oscil.csd],
which can be found in the examples folder of this documentation. Y our front end should alow you to
load the file, and the front end should have a 'play’ or ‘render’ button that will allow you to hear the file.
If you want to experiment with the file, you're well advised to use the front end's 'Save As..." command
to copy it to some other directory on your hard drive, such as a'csound scores' directory that you create.

Note for MacCsound users

You might need to remove al the lines from the command options slot in order for the
manual examplesto work.

You can aso try the manual examples from the command line. To do this, navigate to the examples dir-

XXXVil

http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
http://sourceforge.net/projects/csound/files/
examples/oscil.csd
examples/oscil.csd

Preface

ectory of the manua using something like this on Windows (assuming the manual is located at
c:\Program Files\Csound\manual\):

cd "c:\Program Fil es\ Csound\ doc\ manual \ exanpl es"

or something like:

cd /manual di rect ory/ manual / exanpl es

for the Mac or linux Terminal. Then type:

csound oscil.csd

The example files are configured to run in real time by default, so with this command you should hear a
two-second sine wave.

Writing your own .csd files

A .csd file looks like this (thisfile is oscils.csd [examples/oscils.csd]):

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform

- odac ;s realtine audi o out

;-1 adc ;;,unconment -iadc if realtime audio input is needed too
For Non-realtine ouput |eave only the line bel ow
-0 oscils.wav -W;;; for file output any platform

Q/Cscptions>
<Csl nstrunent s>

sr = 44100
ksmps = 32
nchnls = 2
Odbfs =1
instr 1

iflg = p4

asig oscils .7, 220, 0, iflg
outs asig, asig

endin
</ Csl nstrunent s>
<CsScor e>

i 1020

i 132 2 ;double precision
e

</ CsScor e>

</ CsoundSynt hesi zer >

Csound's .csd files have three main sections between the <CsSynthesizer> and </CsSynthesizer> tags:

e CsOptions - Includes the Command Line flags specific to this particular file. These options can also
be set using the .csoundrc file, which you can edit in a text editor, or directly in the command line.
Some front ends also provide ways to specify global or local options.

» Cslnstruments - Contains the instruments or processes available in the file. Instruments are defined
using the instr and endin opcodes. The Cslnstruments section also contains the Orchestra Header,
which defines things like sample rate, the number of samples in a control period, and the number of
output channels.

» CsScore - Contains the 'notes' to be played, and optionally the definition of f-tables. Notes are created

XXXViii

examples/oscils.csd
examples/oscils.csd

Preface

using the i statement, and f-tables are created using the f statement. Several other score statements are
available.

Anything after asemicolon (;) until the end of the line is acomment, and isignored by Csound.

You can write .csd files in any plain text editor, such as Notepad or Textedit. If you use a word pro-
cessor (not recommended), be sure to save the file as plain text (not rich text). Many front ends include
advanced editing capabilities, such as syntax highlighting and auto-completion of code.

You can find an in-depth tutorial on getting started with Csound written by Michael Gogins here [ht-
tp://michael-gogins.com/archives/tutorial .pdf].

What's new in Csound 6.08
Release Notes for Csound 6.08 (2016 November)

As usual there are a number of opcode fixes and improvements, but the mgjor changes are in the lan-
guage structures. First the score language has all-new treatment of macros and preprocessing, bringing it
in line with those of the orchestra. The parsing of the orchestra has had a number of fixes as outlined be-
low.

A major, and not totally compatible change as been made in reading and writing array elements. The
rate of the index now often determines the time of processing; check the entry below under Orchestra.
This simplifies much code and seems to capture expectations; the earlier ad hoc code had many anom-
alies.

Also as usual there are a number of new opcodes and internal fixes to memory leaks and more robust
code.

» New opcodes:
* dct: Discrete Cosine Transform of asample array (type-1l DCT).
* getftargs: copy arguments of agen to an S-variable.
« mfb: implements a mel-frequency filterbank for an array of input magnitudes.
* New Gen and Macros:
e quadbezier: generating Bezier curvesin atable.
* Orchestra:
e The character = is now correctly treated as a variant of ~ for bitwise not.
» Lexing bug which could corrupt strings fixed.
 Ensure no newlinesin string-lexing.
* Small improvement in reported line numbers.
* Better checking of macro syntax.
* Improved parsing of setting of |abels.

» Added error handling for unmatched brackets for UDO arg specification.

XXXIX

Preface

Check that #included fileis not a directory.
Deeply nested macro calls better policed.

For years Csound has fixed the pitch of A4 at 440Hz. Now this can be set in the header using the
new r-variable A4, and also read with that variable.

Floating point values can use e or E for exponent.

Array access semantics have been clarified:

* i[i] => reading at i-time and perf-time, writing at i-time only.

* i[k] => reading at perf-time, writing yields a runtime error.

* K[i], k[K] => reading at perf-time, writing at perf-time.

 dli], ak] => reading at perf-time, writing at perf-time.

* other (5[], f[]) => reading and writing according to index type (i k).

In particular, i(k[i]) will continue not to work, as before, but the new operator i(k[],i) is provided to

cover this case.

xout validation no longer fails when constants are given.

Score:

L]

New code to handle macros and other preprocessor commands. Brings it into line with orchestra
code.

New score opcode C introduced as a way of switching automatic carry off (C 0) or on (default) (C
1).

Options:

The tempo setting can now be a floating point value (previously fixed to integer).

New option --version prints version information and exits.

Modified Opcodes and Gens:

Problemsin centroid fixed.

Better treatment of rounding in printks.

OSC extended to include multicast.

Faust opcodes brought up to date with faust.

oscil1 and oscili can take a negative duration.

fout opcode documentation clarified.

Release time in mxadsr fixed.

centroid opcode extended to take array inputsin addition.

ptable opcodes are now identical to table family.

xl

Preface

ftgen now as array input option.
subinstr can now have string arguments.

thei() format is extended to work on k-rate arrays with the first argument being an array, followed
by the indices.

o Utilities:

L]

pvlook now always prints explicit analysis window name.

* Frontends:

L]

HTML5
« csound.node: Implemented for Linux, minor AP fix.

 pnacl: Added compileCsdText method to csound object.

» Genera Usage:

L]

Checking of valid macro names improved.

#undef fixed.

» Bugs Fixed:

L]

Fixesto printsin format use.

jitter2 reworked to make it more like the manual.

oscbank has had multiple fixes and now works as advertised.

bformdecl with arrays and type 4 fixed.

Bug in pvsceps fixed.

In various formatted print opcodes extra trash characters might appear -- fixed.

Assigning variables with --sample-accurate could give unexpected results; this is believed fixed
now.

padsynth square profile fix, and opcode prints less depending on warn level.
gen3L1 fixed.

gendl fixed.

Bug in sensekey fixed.

A number of issuesin centroid fixed.

» System changes:

New score lexing and preprocessor.
MAC line endings now work again.

System information messages (system sampling rate, etc) are now directed to stdout.

xli

Preface

rtjack reworked to deal with names and numbers.

The version printing now includes the commit as so the developers know which patches have been
applied.

* AP

API version now 4.0.

Now supports named gens.

fterror now in API.

API functions SetOutput and GetOutputFormat fixed.

Many API functions now use const where appropriate.

M essages can now be directed to stdout from the API by using CSOUNDMSG_STDOUT attribute.

New Lisp CFFI and FFI interfaces tested with Steel Bank Common Lisp (64 bit CPU architecture),
runsin separate thread.

ctcsound.py, a new FFI interface for Python was introduced in version 6.07. It is now the recom-
manded interface for Python, csnd6.py being deprecated.

 Platform Specific:

Android.
» Multichannel input and output allowed.
Windows.

 csound64.lib import library added to Windows installer.

Release Notes for Csound 6.07 (2016 March)

A large number of bug fixes, some quite major, some internal are included, as well as some new facilit-
ies and extensions. As ever there are coding improvements as well.

» New opcodes:

compress2: like compress but using amore normal use of dB (0.0 for full scale).
(Experimental, source code-only) New cuda opcodes: cudasynth2 and cudanal 2.
directory opcode: reads a directory and outputsto a string array alist of file names.
ftsamplebank: to load a sample library from a directory.

mvclpfl, mvelpf2, mvelpf3, mvclpf4, mvchpf: Moog voltage-controlled filter emulations from Fons
Andriaensen.

) converter from k-rate and i-time number to a string.

xlii

Preface

cepsinv opcode to calculate the inverse cepstrum of an array.
moogladder?2, is afaster, less accurate implementation of moogladder.

paulstretch opcode is a lightweight implementation of the Paul Stretch time-stretching algorithm by
Nasca Octavian Paul. It isidea for timestretching asignal by very large amounts.

mp3scal implements phase-locked vocoder processing from mp3-format disk files, resampling if
necessary.

filescal implements phase-locked vocoder processing from disk files, resampling if necessary.

Orchestra:

L]

The boolean ?.. : .. construction can now have string results, while previously it only allowed num-
bers.

The line number reported when an error is detected at the end of aline is now correct. Also more
improvements in line numbers for complex syntax.

while loop improved/fixed.
Better and consistent reading of comments.
Continuation lines handled better, especialy respecting line numbers.

opcode: §.) syntax now allowed.

Score:

L]

The list of tempo pointsin score opcode t is now arbitrarily long.

A stupidity in r and { opcodes fixed.

Options:

L]

The -z option now suppresses deprecated opcodes, unless given a2 or 3 argument.

The new option --fftlib controls which real fft library to use internally (FFTLIB = 0, PFFFT = 1,
vDSP =2)

Modified Opcodes and Gens:

In OSC opcodesit is now possible to send and receive arrays, tables and audio.
Better diagnostic if diskin2 fails.

rezzy now checks for unstable filter and modifies to close stable version.

adsr rewritten so it gives an error if the segments are longer than p3.

Use of diskin to an array now resizes the output array if necessary.

chnget now checks for achange in channel name as well as data.

interp can take an optional extraargument to give aninitial value.

oscilikts uses amore liberal table lookup.

xliii

Preface

» opcode in can read mono or stereo, obviating the in/ins distinction.
« sensekey rewritten to provide better diagnostics and fixes aminor bug.
» Fix to acase of defining a macro with arguments.

* sockrecv now works at aand k rate.

* GEN49 now works from ftgen calls.

e GEN34 liberalised in tables it accepts.

« chnget now allows channel names to be changed at perf time.

« iceps has been renamed cepsinv to avoid name clashes.

« mp3 support improved in a number of minor ways.

< A minor fix to alow aladspa plugin to be re-loaded by the host.
Frontends:

 csdebugger:

* Some memory issues fixed.

e HTMLS5:
e CsoundQT has its own notes a ht-
tps: //github.com/CsoundQt/CsoundQt/bl ob/devel op/release_notes/Rel ease%20Notes%200.9.2.1.
md [ht-

tps.//github.com/CsoundQt/CsoundQt/blob/devel op/release_notes/Rel ease%20N otes%200.9.2.1.
md].

General usage:

» The multicore options somewhat improved.

* When replacing instruments the new version inherits maxalloc and active flags.
* Multicore code now works with midi instruments.

« MIDI operations now available via a new rtmidi jack module (-+rtmidi=jack).
Bugs fixed:

» Fix totrigseq.

* Major error in rezzy fixed.

* p() fixed for high numbers of p-arguments.

¢ p() now works from MIDI events.

¢ The 31-bit random number generator could give avery short loop if seeded with zero; fixed.

* Macrosin .orc files now work.

L]

A long-standing bug in display of graphs fixed.

xliv

https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md
https://github.com/CsoundQt/CsoundQt/blob/develop/release_notes/Release%20Notes%200.9.2.1.md

Preface

Fixes to the envelope opcodes linen, expsegr, linsegr, cossegr, transegr, envlpx, including new
warnings.

Many fixesin string opcodes (strsub, strcpy and others).
Fixed bugs in print formats (sprintf, printf, prints).
pvsmooth had a missing initialisation.

Array initialisation how robust.

Bug in copya2ftab fixed.

Fix in cudapvsanal (EXPERIMENTAL).

partikkel fix to subsample grain placement.

Opcodes that require an odd number of arguments are now properly checked.
pvswrite now takes proper notice of Odbfs.

GEN34 now allowing non-power-of-two source tables.
vstdcs will now work on 64bit architecture.

strcat mended.

nstance mended.

fixed small issues in rtauhal module.

Windows installer for 64 bit CPU architecture now sets environment variables on system level asit
should.

transeg at k-rate with itype non-zero had an initial delay if one cycle.
log function on arrays fixed.
Rescaling of named GENSs fixed.

A fencepost error in reading ATS files believed fixed; it generated spurious errors about file finish-
ing early.

Initialisation error in pvbandp fixed.
readfi string allocation fixed.

System changes:

L]

Extensive use made of in-memory files. Orc and sco are always thus, as are .csoundérc. This sim-
plifies much internally.

Nested longjmps fixed which affected some APl use.
If anon-existent .csd fileis presented Csound no longer crashes.

The kcounter value is now consistently an unsigned 64bit value, allowing for long performances.

API:

xlv

Preface

» csoundCompileCsdText: New function to compile a CSD from a string of text.

e Thefunction call csound->GetK counter(csound) now returns an unsigned 64 hit integer. Previously
it returned along which is unclear.

« ctesound.py is a new wrapper file to the Csound API for the Python language. It is a pure Python
file using the FFI (Foreign Function Interface) module ctypes. It does not depend on Swig, and it
works with Python2 and Python3 as well. It uses numpy for its data structures, numpy being the
fundamental package for scientific computing with Python.

 Platform Specific:

* Windows.

The Windows installer for Csound now contains all executables built for 64 bit CPU architec-
ture.

The Windows installer for 64 bit CPU architecture now provides NW.js "out of the box." It runs
all features of Csound, as well as all features of HTMLS5, in a browser-like runtime with JavaS-
cript scripting, and includes a Csound editor implemented in HTML. The editor will run pieces
either as .csd files with embedded <html> or as .html files calling the csound object, and includes
JavaScript debugging.

A new simplified build system has been implemented in the csound/mingw64 directory for
building Csound using the MSY S2/mingw64 toolchain.

Linking to pthreads and other libraries now static.

Some limited support for non-ASCII charactersin file names.

* OSX.

Installer fixed for link namesfor _csnd6 and _CsoundAC.

* GNU/Linux.

date opcode more accurate.

Release Notes for Csound 6.06 (2015 September)

A number of bug fixes, some quite major, are included, as well as some new facilities and extensions.

» New opcodes:

getseed reads the state of the PRN generator; opposite of seed opcode.

tabifd — Instantaneous Frequency Distribution, magnitude and phase analysis.

websocket — Read and write signals and arrays using a websocket connection.

framebuffer — Read audio signalsinto 1 dimensional k-rate arrays and vice-versa with a specified
buffer size.

olabuffer — Sum overlapping frames of audio as k-rate arrays and read as an audio signal

xIvi

Preface

» Orchestra:

L]

Labels are allowed in instrument 0.

» Score:

L]

Maximum string length in scores increased to 1024.

» Modified Opcodes and Gens.

L]

diskin2 array version uses array sizeto give number of channelsin raw file form.
diskin2 now has the kpitch parameter defaulting to 1 for smple use.

Vibrato f-table in wgflute and wgcar optional, defaulting to sine wave.

schedule now accept string arguments.

urandom now available on OSX platforms.

GEN18 had fencepost problem; largely rewritten.

In poscil family of opcodesit is possible to skip initialisation of phase.

svfilter now can skip initialisation.

When opening an input file nchncls_i is used rather than nchnls. This is a change that should have
followed the existence of nchnls i

rtjack module now reports the sampling rate.
The opcodes rfft, rifft, fft, fftinv, r2c and c2r now havei-rate array versions.
New optional threshhold parameter in opcodes tradsyn, sinsyn and resyn.

New thresholding option for partials.

o Utilities:

extract fixed.
src_conv improved and integrated with -U options.

fixesin atsa, and heti.

* Frontends:

pnacl:
 Support for 48000 sample rate fixed.
csound-~:

» Changes to the threading system. String channel initialisation fixed. A number of other bugs
were fixed.

Emscripten:

» Csound Javascript object can now receive data from the outvalue opcode.

xlvii

Preface

HTMLS:

* Integrate HTML, JavaScript, and other features of HTML5 with Csound, either by embedding a
Web page as an <html> element in the CSD file for CsoundQt or Csound for Android, or by
hosting Csound in the JavaScript context of a standalone Web browser (Emscripten, PNaCl) or
embedded Web browser (csound.node).

» Genera usage:

I11-formatted macros in the orchestra now trapped.

» Bugsfixed:

Use of Windows-style environments for INCDIR etc now works with device numbers.
vibrato opcode fixed.

Clicking in real-time sample accurate case fixed.

Copying of strings now correct; did confuse memory sometimes.

Bug in pvstanal fixed.

Rounding error in cpspch fixed.

Removed crash on recompiling a named instrument.

Fix interpolation bug in tablexkt.

Fix to plltrack when ksmpsis 1.

» System changes.

The "error" message from STK plugin is now awarning.

* APl

Redefinition of opcodes and UDOs fixed.

 Platform Specific:

OSsX.
» csnd6.jar link installed in the correct location.
» Java NI linking issues solved.

« fixed link name for libpng in libfltk_image.

Release Notes for Csound 6.05 (2015 April)

As ever there are new facilities and numerous bug-fixes. A major part of this release is the removal of a
number of memory leaks and over use of memory. Naturally these changes are all but invisible, just a
smaller memory foot-print. Note that we track bugs and requests for enhancements via the github issues
system, and these had a significant affect on this release.

xIviii

Preface

Opcodes :

L]

The opcode sndload is now deprecated.

New Gen and Macros:

L]

Paul Octavian Nasca's padsynth algorithm implemented as a gen.

Score:

L]

Fixed string location cal culation bug when processing score lines [fixes #443]

Options:

L]

L]

A short-format copyright option is available, with afixed number of well-known licences (CC, etc)
New command-line option to report MIDI devicesin simple format

New command-line option to set ksmps

Modified Opcodes and Gens:

L]

adsynt handles amplitude changes better

sfont has better checking for corruptions

better checking in physical models for out-of-range frequencies
ftgenonce and others allows string parameters

gausstrig reworked and extended with new features

use of p() function no longer complains overrides the pent warning
fix to midirecv

OSCsend cleans up after use improved

fillarray islimited to 1 or 2 dimensional arrays; in fact it failed silently previously for 3D and high-
er.

oscbnk now works when the equaliser is used.

mp3in now works with both mono and stereo input files

flooper & flooper2 now allow stereo tables

Release phase of expsegr fixed

f-tables created by alarge number of arguments could overwrite memory, now fixed
performance of plltrack improved

init of arrays clarified and checked

gen23 corrected to stop an infinite loop

alwayson now starts from score offset; this is part of a fix to the long-standing problem with al-
wayson in CsoundV ST

xlix

Preface

« invalue now checks for output string size and reallocates memory if smaller than default string size
(set at 256 bytes for backwards compatibility)

Utilities:

» The srconv utility has been improved but it does not work well, with groups of noise in otherwise
good output. We recommend the use of Erik de Castro Lopo's Secret Rabbit Code (aka libsampler-
ate) as providing sample rate conversion at high quality. srconv will be removed shortly possibly to
be replaced by an SRC-based utility.

Frontends:

e pnacl
* Added interface to alow the use of Csound's MIDI input system.
 Fixed audio input to conform to the latest Pepper API spec.

Bugs fixed:

 bugsin fastabi,oscktp, phasorbnk, adsr, xadsr, hrtfer fixed.

 bugsin the harmon. harmon2, harmon3 and harmon4 fixed.

e Csound could crash after aparsing error, a case now removed.

System changes.

« There are now checks that xin/xout types match those defined as part of UDO definition.

¢ jack now has atimeout.

Internal Changes:

« Many defects indicated by coverity fixed or code changed. Should make csound more robust in
edge cases.

* Parser-related changes simplifies allocation of temporary variables, with some new optimisations.
« code for multi-thread rendering improved and stablised vis-a-vis redefinition of instruments.
Platform Specific:
« i0OS.

* Fixed audio callback to work correctly with lightning output and Apple TV.
e Android.

* New experimental audio 10 mode: csoundPerformKsmps() is called from the OpenSL ES output
callback. This mode can be optionally enabled by passing a value of "false" to a new second
parameter to the CsoundObj constructor (bool isAsync). The default constructor and the one-
parameter setsthisto "true" (keeping backwards compatibility with existing code).

» The OSC opcodes are included in distribution.

e Android app

» There are new file open and save dialogs that permit the user to access the SD card on the

Preface

device, if thereis one, in addition to internal storage.

* Thereisanew "Saveas..." button that permits the user to save the csd as a new file with a new
name,

» Many of the examples in the archive of Android examples are now built into the app and can
be run from the app's menu.

* Includes now the exciter opcode.
e OSX.
« Ingtallation now places csladspa.so rather than csladspa.dylib on disk.
e Linux.

e Linux is now build without FLTK threads. This removes system hangs and is in line with other
builds.

Release Notes for Csound 6.04 (2014 November)

This new version has many extensions and fixes;, many new opcodes and significant numbers of internal
reworking. Thereis anew frontend and iOS and Android version have seen many improvements.

As ever we track bugs and requests for enhancements via the github issues system. Already proposals
for the next release are being made but the volume of changes require a release now.

» New opcodes:
 pinker generates high quality pink noise.
* power opcode * now works with array arguments.
 exciter opcode, modelled on the calf plugin.
« vactrol opcode simulates an analog envel ope follower.
« family of hdf5 opcodes to handle hdf5 format files.
» (experimental undocumented) buchla opcode models the lowgate filter of Buchla.
« New k-rate opcodes acting on arrays:
« transforms; rfft, rifft, fft, fftinv
« complex product: complxprod
 polar - rectangular conversion: rect2pol, pol 2rect, mags, phs
« real - complex: r2c, c2r

* windowing: window

Preface

* cepstrum: pvscpes, iceps, ceps
« column/ row access: getrow, getcol, setrow, setcol
» aratedata- k-array copy: shiftin, shiftout

* phase unwraping: unwrap

New Gen and Macros:

Line numbers corrected in instr statements.

New control operation, while, for looping.

A long-standing bug with macros which use the same name for an argument has been corrected.
Redefinition of an instrument in asingle call to compileisflagged as an error.

ID3 header skip for mp3 files now properly implemented.

Errorsinduced by not defining the location of STK's raw wave files has been removed.

bug fixed where UDO's could not read strings from pfields.

Modified Opcodes and Gens:

stackops opcodes deprecated.

lenarray extended to handle multi-dimensional arrays.

ftgenonce accepts string arguments correctly and multiple string arguments.

max and min now have initialisation-time versions.

gen23 improved regarding comments and reporting problems.

in OSCsend the port is now ak-rate value.

socksend now works at k-rate.

anumber of envelope-generating opcodes are now correct in sample-accurate mode.
faust compilation is now lock-protected.

mp3 fixed to allow reinit to be used with it.

In remote opcode the name of the network can be set via the environment variable
CS NETWORK. Defaults to en0 (OSX) or ethO.

Frontends:

icsound: New frontend icsound is now ready for general use. icsound is a python interface for inter-
active work in the ipython notebook.

csdebugger: A number of changes and improvements have been made, like stepping through active
instruments, better line number use.

General usage:

Preface

Jack module now does not stop Csound if autoconnect fails.

Bugs fixed:

atsinnoi fixed.
ftsavek fixed.
sprintf fixed.

gen27 fixed, especialy with extended arguments, as well as fixed a number of errors in extended
score arguments.

Physem opcodes (guiro cabasa, sekere) fixed so second call works.
flooper fixed in mode 2.

OSCsend multiple fixes.

UDO fix for case of local ksmps of 1.

More changes/fixesto dssi code.

xscanu and scanu fixed.

temposcal and mincer fixed.

crash in ftload fixed.

System changes.

In server mode exit is now clean.

Fixes to rtalsamodule.

Pulseaudio rt module fixes.

Fix to remove fluidEngine entries for csound instance (prevents crash on moduleDestroy).

Opcodes called through function calls that returned arrays did not correctly synthesize args as array
types due to not converting the arg specifier to the internal format.

fixed crashing issue during note initialization for tied notes due to goto skipping over code.

fixed incorrect initialization of pfields when note's pfields length were less than instrument expec-
ted (off-by-one).

Internal Changes:

Added Runtime Type Identification for instrument variables; removed use of XINCODE/
XOUTCO.

fix malloc length in negative number parsing, and improved handling of negative numbers.
writing to circularBuffer is now atomic.
anumber of memory leaks and potential dangerous code have been fixed.

type-inference has been extensively reworked, as have afew parsing areas.

Preface

* API:

« Added API function for retrieving GEN parameters used for creating atable.
 Platform Specific:

« iOS.

» API Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundV aueCacheable).

» Updated to remove deprecated code.
« A significant amount of reworking has been done on the code.
¢ Android.

* APl Refactored for clearer method names and abstraction names (i.e. CsoundBinding instead of
CsoundVaueCacheable).

» Changes to enable HTML 5 with JavaScript and it is to be hoped WebGL in the Csound6 An-
droid app.

 Enabled change of screen orientation in the Csound6 app without forcing a restart of the app.
» Enabled local storage (useful for saving and restoring widget values, etc.).
* Windows.
« fixed pointer arithmetic that caused crashing on Windows.
 pyexec changed to use python's file opening functions to prevent crash on Windows.
* OSX.
e CsoundAC now compiles.
e Linux.

« threadlocks bug fix on linux.

Release Notes for Csound 6.03 (2014 May)

This new version has a large number of bug fixes (including clearing many tickets on SourceForge and
GitHub) aswell internal changes to improve performance.
» New opcodes:

e prinks2
: prints anew value every time a control variable changes using a printf() style syntax

* mp3sr, mp3bitrate, and mp3nchnls to get information on mp3 files

« EXPERIMENTAL: CUDA opcodes for partitioned convolution direct convolution and dliding
phase vocoding; OpenCL opcode for additive synthesis

liv

Preface

compilecsd
to compile instruments from a standard CSD file

Orchestra:

L]

The argument for i() is supposed to be a variable not an expression. This is now enforced. (bug
#90)

Score:

New score opcode y sets the random seed (for ~) at read time

Options:

There was a bug in CsOptions; the last argument was missed being read(i ssue #296)

As command-line options expression-opt and no-expression-opt do nothing in Csound6 a warning
is printed

Modified Opcodes and Gens.

For ogg output it is possible to specify aVBR (variable block rate) quality.
dssi4cs code has been extensively reworked to avoid potential memory faults.
Many array operations now available for i-arrays as well as k-arrays.
fillarray will work for string arrays

Displays of FFT (via dispfft) improved with scaling/zooming options

Signal flow graph opcodes are now working with a-rate array signals.

In alsaRT code the samplerate is taken from the device

Faust opcode system updated to latest faust AP

Utilities:

fixed bug in Ipanal

csound-~:

OSX - fix for running with 32-bit cpu architecture

Windows - csound~ now available for Windows

Emscripten:

Thisis now generally merged into the code-base

General usage:

--displays now switches graphs on, as expected
New commandline option --get-system-sr added to obtain the machine's sample rate

New command-line option --deviceg =injout] gives alist of available audio devices and then exit

v

Preface

Bug fixes:

L]

fixed the bug when tables were replaced but the size did not change

A number of bugs in --sample-accurate have been detected and fixed. This includes opcodes out,
outn, and line

A number of bugsin grain3 were fixed

Bug in str_chanel could cause a crash; fixed

Small bug in rtjack fixed

Error in resize opcode corrected

Fixed an unlikely bug in atsa

Fixed rtauhal pause issue

A number of bugs/untidiness fixed in GEN23

Array bound checks fixed

strings channels were not correctly set for dynamic-size strings, now fixed
memory allocation for string formatting in printfsk was fixed, stopping string truncation
strcat safe against overflow

error in compilation of arrays fixed (issue #293)

GetPvsChannd fixed against a crash

System Changes:

L]

turnoff opcode now checks that the instrument being affected is active
lenarray can accept any array type
the way of rounding atable number to an integer was changed and is now more as expected

there is a new possible section in a csd file called <CsFile...> which is like csFileB but with unen-
coded text.

UDO compilation now uses the type system. This means that UDOs now allow any array type to be
used

Improved orchestra parsing speeds with better algorithms

Internal Changes:

L]

The whole system has been checked by the Coverity static checker which identified a number of
(mainly minor) problems. These have been reviewed and checked. In particular better use of print-
ing and string copying should prevent overflows

The type and variable system has been extensively rewritten; this allows better array and UDO sup-
port

Alignment of variables got right in al cases

Ivi

Preface

« Array copying is how using the type system to copy values; fixes issues with copying string arrays,
f-sigs, etc

« Always reset Csound when stopping to ensure state is clean; was not being reset when there was a
compile error, so that next successful run would start with an invalid Csound engine (issue #305)

* APl

< All opcodes etc now use the APl memory allocation operations, so it is possible to replace the
whole memory allocator

« Added csoundCompileCsd to API and associated new compilecsd opcode
 Protected csoundGetStringChannel against null and short strings and added a check for string size

< A number of API functions have had char* changed to const char* which reflect the usage

The performance engine now includes debugging capabilities to alow interrupting rendering and
providing introspection into the engine's state and instrument variables. The following new functions
are available by including the csdebug.h header:

voi d csoundDebugger|nit (CSOUND *csound);

voi d csoundDebugger C ean (CSOUND *csound);

voi d csoundSet | nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr, int skip);

voi d csoundRenovel nstrunent Breakpoi nt (CSOUND *csound, MYFLT instr);

voi d csoundd ear Breakpoi nts (CSOUND *csound) ;

voi d csoundSet Br eakpoi nt Cal | back (CSOUND *csound, breakpoint_cb_t bkpt_cb, void *userdata);
voi d csoundDebugConti nue (CSOUND *csound);

voi d csoundDebugSt op (CSOUND *csound) ;

debug_instr_t *csoundDebugGet | nstrlnstances(CSOUND *csound) ;

voi d csoundDebugFreel nstrlnstances(CSOUND *csound, debug_ instr_t *instr);
debug_variabl e_t *csoundDebugGet Vari abl es(CSOUND *csound, debug_instr_t *instr);
voi d csoundDebugFr eeVari abl es(CSOUND *csound, debug_variable_t *varHead);

* Windows:

» Soundfonts in Windows had an internal alignement problem which is fixed

Release Notes for Csound 6.02

This new version has a large number of bug fixes (including clearing all general tickets on Source-
Forge). It also introduces some major new facilities such as use as a server, code to run Csound in a
browser and alarge generalisation of filter opcodes to have parameters changeable at audio rate.

» New opcodes:
 nstance opcode schedules a new instrument instance, storing the instance handle.
* turnoff nw variant to stop a given instrument instance.
 strfromurl to set astring from a URL.
* Orchestra:
« If building supportsit, a#include string can be aURL or afile.

* A space is again permitted between a function name and the opening bracket for all functions al-
lowed in Csound5 (but not in general).

Ivii

Preface

¢ The Csound command can start with an empty CSD in daemon mode (--daemon): do not exit if
CSD/orchestrais not given, is empty or does not compile).

» Score:

« If building supportsit, a#include string can be a URL or afile.

» Modified Opcodes and Gens.

* Many filters generalised to allow k- or a-rate parameters. In particular it includes these:

areson atonex
butterworth filters fofilter
lowres lowresx
Ipf18 mode
moogladder moogvcf
reson resonr
resonx resonz
statevar tonex

¢ The maximum number of presetsin sfont increased to 16384.

e cpsmidinn is now more accurate.

« max_k now behaves like the documentation. There were cases when it gave strange results.

« The vstdcs opcodes have been re-factored. FLTK code has been encapsulated. The build system has

been updated for Csound 6.

 In alwayson opcode changes for better handling of pfields, more reliable insert of an instrument in-

stance for repeating or re-started score sections.

* The signal flow graph opcodes have replaced OpenMP multi-threading with pthreads, using one-

timeinitialization of static structures.

* Frontends:

» PNaCl is now supported as a platform, allowing Csound to run under the Chrome browser in all en-

abled operating systems.
» Bugsfixed:
 adsynt2 opcode fixed.
« ftgentmp opcode fixed.
« dates opcode fixed.
« fixed abug in pvsfilter.
« fixed stereo out in temposcal and mincer.

e pan2 opcode fixed.

Iviii

Preface

index overflow in randh and randi fixed.

A number of fixes to CsoundV ST: initialization, score handling, and MIDI driver initialization, so
it now works for Csound 6.

fixed pycalln for no inputs.
fixed/revised setting and use of ksmps and kr in UDOs.
fixed problem in sending a score event from max to csound via csound-~ (Ticket #58).

If itype in chn_k was set to 3 and values are set less than 1, Csound6 used to give an INIT Error.
(Ticket #67).

A number of reported seg faults have been dealt with.
xtratim opcode was using incorrect ekr value from csound instead of from instance; when used in

conjunction with setksmps, was causing notes to have very long xtratim set and thus notes were ef-
fectively not getting turned off

» System changes:

L]

A server mode is now available, accepting input via UDP (with --port option).
A longstanding bug in extract was detected and fixed. It does suggest that this facility islittle used!

The way the external score generator was coded is substantially changed. In particular this should
fix avery strange bug in Windows.

Fixed crashing bug with invalue channel callback due to wrong data object being pulled from
csound host data.

Fixed bug in UDOs with no local ksmps where kcounter was being used incorrectly.
Better checking in channels.

(Experimental) If the environment variable CS_ UDO_DIR is set then any files in the directory that
have an .udo extension are automatically included at the start of the orchestra. This facility needs
review to seeif it iswhat isrequired.

(Experimental) There are new cuda GPGPU opcodes (source only): cudasynth (3 versions for ad-
ditive synthesis, additive synthesis of fsigs and phase vocoder resynthesis) and cudanal (a GPGPU
version of pvsanal).

* Internal changes:

L]

Many attempts at faster code.

Type inference and parsing still improving.

* i0OS:

L]

Fixed crash where no csoundSetHostlmplementedMIDIIO is used on iOS and no _RTMIDI value
isset.

 OSX:

Fixed input device name for auhal.

lix

Preface

Release Notes for Csound6

Csound6 is a significant rewrite of much of the code. In particular the API is not compatible, athough
all orc/sco/csd works should still run.

There are new facilities, like sample accuracy and realtime mode, described below.

IMPORTANT: The environment variable to find plugins are called OPCODEGDIR64 or OP-
CODES6DIR (notethe 6) so it can co-exist with Csoundb.

Similarly .csoundrc is renamed .csound6r c.

Arrays are now mainstream, with syntax and opcode support. They also exist in multidimensional
format. They are created (usually) with init opcode or fillarray.

Ki[] init 4

generates ak-rate 1-D array of length 4. Similarly

az[][] init 4, 4

creates a square 4x4 a-rate array.

k2[] fillarray 1, 2, 3, 4

creates a 4-element vector filled with 1,..4, which a so defines the length.
Elements are used viaindexing in [] such as k1[2] or a2[2][3]. One dimensional arrays replace tvars, and

can be used in opcodes like maxtab, mintab and sumtab (see below). Array setting can be done in |eft-
hand side of opcodes, i.e.

aSigs[0] vco2 .1, 440
aSigs[1] vco2 .1, 880

The new realtime priority mode can be switched on with by passing the --redtime or setting the
CSOUND_PARAMSfield realtime_mode to 1. This has the following effects:

1. al opcode audio file reading/writing is handled asynchronously by a separate thread.

2. dl init-pass operations are al so performed asynchronously.

Multicore support is totally rewritten using a different algorithm for task-dispatch, which should use less
memory and fewer locks.

» New opcodes:

 faustgen

Preface

array -- many new or revised opcodes -- see Array Opcodes.

compileorc takes a filename containing a collection of instrument definitions and compiles them,
replacing existing versions. It returns O on success.

compilestr is like compileorc but takes a string.

readscore runs the score preprocessor on a string and then schedules new events via the RT event
mechanism, returning O if successful.

Orchestra

Note events can start and end in mid-kcycle. As this is an incompatible change it is only invoked
when the command-line option --sample-accurate is specified. Note that this does not work for tied
notes, and use of skipping initialisation has questionable use.

Instruments can run at local ksmps values using set ksnps i ksnps asin Csound 5 UDOs.

Compilation can be done at any stage, new instruments are added or replace old ones. Running in-
stances of old instrument definitions are not affected. Only limitation is that header constantsin in-
str 0 are read only once at the time of the first compilation. Init-time code can be placed outside in-
struments in the global space, and this will be executed once-only following the compilation. In this
case, score event generation can be completely replaced by orchestra code. See also new opcodes
compileorc and compilestr.

New syntax operators +=, -=, *= and /=. These are more than syntactic sugar; please use += and -=
for accumulating reverbs as it gives better multicore behaviour.

The opcodes add, sub, mul and div have been deleted; use the forms + - * /. Not many people were
aware of these opcodes.

Any opcode with a single output or with no outputs can be used as a function. Some opcodes might
reguire type annotation to resolve ambiguities, more details on the Function syntax in Csound 6.

A statement can be broken across lines after a, = or arithmetic operation.

There are arange of new or recoded operations on k-valued arrays, most restricted to 1 dimensional
arrays (vectors):

kans m narray ktab returns the snallest value in the
(possi bly) nultidinensional array

kans nmaxarray ktab is like mntab

kabs sumarray ktab returns sumof all values in the array

ktab genarray imn, imax[, inc]

generates vector of values fromimn

to imax by increments of inc (default 1)
kt ab2 nmaparray ktabl, "sin" naps the k-rate 1l-arg function in

the string to every elenment of the vector
ktab2 maparray_i ktabl, "sin" naps the i-rate 1-arg function

in the string to every elenment of the vector
kt ab2 slicearray ktabl, istart, iend

returns a slice of ktabl fromktabl[istart]

to ktabl[iend]
copyf2array ktab, kfn copi es data froman ftable to a vector
copya2ftab ktab, kfn copi es data froma vector to an ftable

Arithmetic on arrays is alowed. In particular addition, subtraction, multiplication, division on a
element-by-element version is provided in arithmetic format. Similar operations between an array
and a scalar are alowed.

IXi

Preface

» Each instance of any instrument has a scratchpad of 4 values that persist; allows values to carry to
next use of the instrument; hope it may be useful in legato etc.

« If atable number is given as -1 then an internal sine wave equivalenttof. 0 16382 10 1 isused.
Attempts to write to this table will give unpredictable results, but is not policed. The 16382 can be
change by command line option --sine-size=# where the # is rounded up to a power of two.

< A number of oscil opcodes now have the f-table parameter as optional, defaulting to the internal
sine wave. (oscil1, oscilli, oscil, oscil3, oscili, foscil, foscil1, loscil, loscil 3).

Score:
 Score lines can have multiple strings.
» Change to escape charactersin score strings -- they do not happen.
« Also note the readscore opcode.
Modified Opcodes and Gens:
¢ Thek() function can take an a-rate argument in which caseit isacall to downsamp.
Utilities
« Hetro/adsyn analysis files can be machine byte-order independent if created with -X. Down side is
alonger file and a little slower loading. The het_export utility will create the independent format
from the old, and het_import is no longer necessary.
< cvanal and Ipanal will produce machine independent files if -X option is used. The convolve and
Ipread etc opcodes will accept either format. Y ou are encouraged to use the machine independent
form. Analysis files produced with -X can be used on other systems.
Frontends
Bugs fixed:
System Changes:
¢ InLinux and OSX the treatment of localesis now thread-safe and local .
Platform Changes:
API:
New API functions...
« new configuration/parameter setting functions
PUBLI C i nt csoundSet Opti on(CSOUND *csound, char *option);
PUBLI C voi d csoundSet Par ans(CSOUND *csound, CSOUND_PARANMS *p);
PUBLI C voi d csoundGet Par ans(CSOUND *csound, CSOUND_PARAMS *p);
PUBLI C voi d csoundSet Qut put (CSOUND *csound, char *name, char *type,
char *fornat);
PUBLI C voi d csoundSet | nput (CSCUND *csound, char *nane);
PUBLI C voi d csoundSet M DI | nput (CSOUND *csound, char *nane);
PUBLI C voi d csoundSet Fi | el nput (CSOUND *csound, char *nane);

M
PUBLI C voi d csoundSet M DI Qut put (CSOUND *csound, char *nane);
PUBLI C voi d csoundSet M DI Fi | eQut put (CSOUND *csound, char *nane);

gogogo

Ixii

Preface

e new parsing/compilation functions

PUBLI C TREE *csoundPar seOr c(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eTree(CSOUND *csound, TREE *root);
PUBLI C i nt csoundConpi | eOrc(CSOUND *csound, const char *str);
PUBLI C i nt csoundReadScor e(CSOUND *csound, char *str);

PUBLI C i nt csoundConpi | eArgs(CSOUND *, int argc, char **argv);

« new function for starting csound after first compilation

PUBLI C i nt csoundStart(CSOUND *csound);

* new software bus threadsafe getters/setters

PUBLI C MYFLT csoundGet Cont r ol Channel (CSOUND *csound, const char *nane);

PUBLI C voi d csoundSet Cont r ol Channel (CSOUND *csound, const char *nane, MYFLT val);
PUBLI C voi d csoundGet Audi oChannel (CSCUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet Audi oChannel (CSOUND *csound, const char *nane, MYFLT *sanpl es);
PUBLI C voi d csoundSet St ri ngChannel (CSOUND *csound, const char *name, char *string);
PUBLI C voi d csoundGet Stri ngChannel (CSOUND *csound, const char *nane, char *string);

« new table threadsafe copy functions

PUBLI C voi d csoundTabl eCopyQut (CSOUND *csound, int table, MYFLT *dest);
PUBLI C voi d csoundTabl eCopyl n(CSOUND *csound, int table, MFLT *src);

API has been made threadsafe so that performance and control can occur in separate threads (after a
call to csoundSart() or csoundCompile()). Threadsafety is ensure by

1. use of atomic read/writing to control channels

2. spinlocksin audio and string channels

3. mutexes protecting compilation, score events and table access.
* Internal:

e Thebuild system is now cmake (and not scons asin Csound5).

« A number of table access opcodes have been rewritten but should behave the same. Similarly diskin
and diskin2 now use the same code and so diskin should be more stable.

¢ Theold parser is completely removed.
* New interna functionsin Csound

void (
void *

*Fl ushCircul arBuffer)(CSOUND *, void *);

(*Fi | eOpenAsync) (CSOUND *, void *, int, const char *, void *,
const char *, int, int, int);

unsi gned int (*ReadAsync)(CSOUND *, void *, MYFLT *, int);

Ixiti

Preface

unsigned int (*WiteAsync)(CSOUND *, void *, MYFLT *, int);
int (*FSeekAsync)(CSOUND *, void *, int, int);
char *(*GetString)(CSOUND *, MYFLT);
Extract a string originating froma score-event argunent.

Functions removed

void *(*FileOpen) (CSOUND *, void*, int, const char*, void*, const char*);

The "private" parts of the APl have been changed considerably. Also structures like EVTBLK have
changed.

The LINKAGEVFLINKAGE1L macros are renamed as LINK-
AGE_BUILTIN/FLINKAGE _BUILTIN.

Template for a-rate perf-pass opcodes is

int perf_nyopcode(CSOUND *csound, MYOPCODE *p)
{
uint32_t offset = p->h.insdshead->ksnps_of f set;
uint32_t early = p->h.insdshead->ksnps_no_end;
uint32_t nsnps = CS_KSMPS;
if (UNLI KELY(of fset)) nemset(p->res, '\0', offset*sizeof (MYFLT));
if (UNLI KELY(early))
nsnps -= early;
menset (&p->res[nsnps], '\0', early*sizeof (MYFLT));
for (n=of fset; n<nsnps; n++) {

p->res[n] =

return

String variables re-implemented

OENTRY structure has changed and has a new dependency field; please use thisfield asit is required
for multicore semantics. Y ou could set it to -1 and disallow all parallelism, but at least it is safe.

All opcodes that touch audio should take note of sample-accurate code.

A number of previous API functions are removed; OpenFile and OpenFile2 both replaced by new
OpenFile2 with additional argument.

Additions have been made for arg type specifications for opcodes.
« Any-types have been added, as follows:

« ''signifiesarequired arg of any-type

» '? signifiesan optional arg of any-type

o "*'gignifiesavar-arg list of any-type

« Arrays are now specified using "[x]" where x is a type-specifier. The type-specifier can be any of

Ixiv

Preface

the of the current specifiers, including any-types. See Opcodes/arrays.c for example usage.

* New Type System

A new type system has been added to Csound6, and significant changes have been made to the com-
piler. The previous system for handling types involved depending on the first-letter of a variable's
name every time it was used to determine type. This meant there was a lot of re-checking of types.
Also, adding new types was difficult, as there was a lot of custom code that had to be updated to
check for new type letters.

In Csound6, a separate system of types was added. Types are defined as CS_TY PE's. The creation of
variables from types and the initialisation of memory has been encapsulated within the CS TYPE's.
This change alows easier addition of new types, as well as generic calculations of memory pools,
amongst other things.

The compiler has been modified since Csound5 to now use the type system as an integral part of its
semantic checking phase. Variables are now registered into a CS VAR _POOL when they are first
defined, with the CS VARIABLE having a reference to its CS TYPE. After first time definition
within the pool, the type information is then looked up in consequent variable lookups, rather than re-
calculated from the variable name. This opens up possibilities for new variable naming and typing
strategies, i.e. using "myVar:K" to denote a k-rate arg. This also opens up possibilities for user-
defined types, such as "data myType kval, aval”, then using "myVar:myType" to define a var of that
type. (The previousis speculative, and is not an active proposal at thistime.)

The addition of the type system has formalised the static type system that has existed in Csound prior
to Csound6. It has, arguably, simplified the code-base in terms of type handling, as well as laid the
ground work for future type-related research to be integrated into Csound.

New in Version 5.19 (2013 January 7)

Thisis mainly a bug-fixing release but with a number of new opcodes and enhanced features.

New opcodes:

¢ ipmidi module for MIDI over network.

 ppltrack opcode.

« combinv opcode.

New Gen and Macros:

 Better checking in GEN28.

e Check range in outrg, and optionally allow wrapping.
Orchestra:

e Change empty statement to awarning.

¢ Added line numbers to many input args message (new parser).
Modified Opcodes and GENSs:

 Better error and warning messages.

Ixv

Preface

* loopseg now checks argument count.

harmon2/3/4 improved.

active: added the option to skip the instances in rel ease phase.
< New and more tested implementation of ChordSpace.
Bug fixed:
 Fix botched optimisation in lowpass filters.
» Chn opcodes fixed in Linux.
« Fix bugin loscil with silence.
 Correct GEN23 when comment does not end in newline.
 Correcting loopseg.
« Number of input and output channels fixed in new parser.
» Fixed GEN43 issue.
 Fixed fout.
« centroid was likely to crash.
e Minor bug in printing which lost %.
* Anuninitialised value in fold fixed.
 Uninitalised valuesin dconv fixed.
¢ Assignment of fsigs now works.
System Changes:
¢ Avoid seg fault on some user errors.
» Faster modal4 opcodes.
< Allow cabbage compilation.
* Made pfield size dynamic in event message csoundapi~.
« The default output format with pipe and double float is AU.
» Change to ircam with default format, "-o stdout' and pipe.
« Added double float precision for output format.
Platform Changes:
e Linux:
« Spinlocksinitialised (fixes bug in chn opcodes).
* OSX:

Ixvi

Preface

 Improved selection of devicesin rtauhal module.

» Added acircular buffer interface and lock-free operation to rtauhal.
» Fixed MacOSX installer (creating symlinksto lib_csnd.dylib).
Haiku:

* New platform

Android:

« Using -B now in android to set circular buffer size.

» Added fluid synth opcodes for android.

» Added inputM essage method to CsoundOb;.

* Allow CSDPlayer to beinstalled on SD Card.

iOS:

* Improved audio routing.

 Bottom speaker the default for iOS.

* AP

Added new API function csoundCompileFromStrings().

New in Version 5.18 (2012 August 29)

Thisis mainly a bug-fixing release but with a number of new opcodes and enhanced features.

» New opcodes:

L]

L]

centroid opcode like pvscent but acting on audio signals

cosseg like linseg but with cosine interpolation

cossegb like linsegb but with cosine interpolation

cossegr like linsegr but with cosine interpolation

joystick to read input values from an external joystick (Linux only)
log2 function for logarithms base 2

platerev opcode to model areverberating square plate

pwd opcode to determine the current working directory

readf opcode to read strings from afile

readfi opcode to read strings from afile on initialisation

Ixvii

Preface

vbap opcode like other vbap family but flexible about number of speakers and choice of layouts.

vbapg opcode like vbap but only calculate the gains on the channels.

* New functionality

L]

Changes to <CsOptions> to allow spaces between words, and escaped characters.
fout and fin use a better buffering strategy, and so are faster

It is possible to specify just an orchestra with the --orc flag. This is useful when a score is not
needed.

A new command-line flag --ogg flag has been added for easy use of ogg/vorbis outpuit.
Added alsaseq real-time midi

» Bug fixes and improvements:

L]

dates opcode could crash on 64bit architecture; thisis fixed

Some multicore interlocks were wrong. It is believed that this was not actually a problem, but
would bein the future.

There were cases when afile was double closed, leading to a crash on exit.

Two new features added in partikkel. Panning law for channelmasks can now be set using a func-
tion table (second optional argument to partikkel) and new support opcodes partikkelget and
partikkel set, to access and modify the internal mask indices of partikkel.

follow2 was reworked do the i-rate and k-rate calcul ations are the same.

pvscent is corrected as it returned half the correct value.

vbaplsinit can create more than one speaker layout which vbap/vbapg can use. Also much better
diagnostics on incorrect layouts.

* Internal Changes:

Code changed so bison 2.6 can be used.
It is assumed that libsndfile version 1.0.19 or later is available.

If the score is omitted a near-infinite wait is generated.

New in Version 5.17 (March 2012)

Thisis mainly a bug-fixing release with no major changes, but the number of fixes warrants arelease.

» New opcodes:

L]

cell opcode, for cellular automata

» Modified Opcodes and Gens.

Ixviii

Preface

active now will report total number of active or alocated instrumentsif argument in zero
stsend and strecv the TCP socket opcodes reworked to alogical design
DSSI system now will take up to 9 channels

FL savesnap works with other widgets where imin > imax

 Utilities:

csbeats better documented and built by default; also more note lengths available

Some security holesin utilities fixed

* Bugfixes:

unirand opcode at a-rate fixed
Localefix for floating point literalsin orchestra

transegr fixed

e System Changes:

Score can now last longer (change to size of time variable)
An empty score gives avery long performance time (years and years)
Android code released

Changes to use of tmp files; now al are deleted at end of run (previously some were left) and the
environment variable TMPDIR is used.

interaction between Comments, end of line and end of file fixed

Hexadecimal numbers now allowed in orchestra

Empty orchestra now not a crash

change to macro expansion inside a string

avoid infinite loop when eof in malformed score macro

fixed macroname-with-args diagnostics and memory leak

change to preprocessor: {{ }} inside"..." and better diagnostics

fix windows installer so it removes full $INSTDIR\bin from PATH during uninstall: this cleans up
the PATH environment variable when uninstalling on Windows. Previoudly, it was leaving a trail-
ing "\bin" on the PATH.

CsoundAC MusicModel class more usable by C++ programs

ftcps had been missed as afunction

* Internal Changes:

Many! Some messages quietened, code improvements etc

Ixix

Preface

New in Version 5.16 (February 2012)

The major change is that the new parser is now the default. The old parser is till available in case of dif-
ficulty but the new has been given extensive testing since the start of the year, including complete re-
structuring of macro expansion. A side effect is that the runtime of most orchestras is faster, although
parsing is slower. There are a few optimisations implemented like constant folding in simple cases. Line
numbers and file names are traced better than before.

Some memory leaks also fixed.

» New opcodes:

Opcodes adapted from SuperCollider by Tito Latini: dust, dust2, gausstrig, gendy, gendyc, and
gendyx.

Fractal noise generator by Tito Latini: fractalnoise.

Opcodes for accessing table values by direct indexing, by John ffitch: ptable, ptablei, ptable3, and
ptablew. These opcodes are respectively like table, tablei, table3, and tablew, but they do not re-
quire a power-of-2 table size.

» Modified Opcodes and Gens:

There was a fence post problem in tab opcode that could falsely report a reference out of range.

GEN15 mis-called gens 13 and 14 internally, using uninitialised values voice amplitude. Problem
fixed.

fmbell now takes an optional argument to control the sustain time.
Change to pvsbasic for tab to table conversions.

poscil is now polymorphic, allowing k- or a-rate amplitude and frequency.
p() and i() changed when argument at k-rate.

gend9 deferred now works.

gen23 now available deferred.

o Utilities:

Checked for use with the new parser in memory files.

* Frontends:

Table access added to csoundapi~ via new get/set methods.

» Bug fixes and improvements:

Many in new parser related to precedence and multicore.
Better diagnostics when orchestrafile/csd is missing.
cdd file: fix CsFileB and CsSampleB.

Fixed score statement 'n'.

Ixx

Preface

Fixed bug in diskin2 leading to infinite loop.
Fixed bug causing crossfade noise in hrtfmove.
Fixed unlikely buffer overflowsin some utilities.
Avoid segfault in midicN.

Bug in mp3in in skip=0 case fixed.

'r' score statement fixed with respect to macros.

sndwarp could segfault.

e System Changes:

Preprocessor #if #else #endin working.

#includes depth now limited rather than infinite recursion.

Really turn off al displays if --nodisplays or -d is used; fixes bug where using -d or --nodisplays
would still cause the winFLTK.c csoundM odul el nit to setup display callbacks; bug caused with py-
thon TK apps and CsoundYield FLTK being called.

Memory leak in mp3in and mp3len fixed.

* Internal Changes:

Very, very, very many! And the new parser...

New in Version 5.15 (December 2011)

» New opcodes:

L]

L]

L]

ftab2tab opcode.

tab2pvs opcode.

pvs2tab opcode.

cpumeter opcode, (not really new but now available in OSX)
minmax opcode.

(EXPERIMENTAL) ftresize opcode.

(EXPERIMENTAL) ftresizei opcode.

hrtfearly opcode.

hrtfreverb opcode.

New Gen and Macros

L]

Codeto allow GENA49 to be deferred [NB does not seem to work]

Ixxi

Preface

Modified Opcodes and Gens

socksend and sockrecv no longer uses MTFU check and work on Windows
mpulse changed so if next event is at negative time use the absolute value
serial opcode now runs on Windows as will as Un*x

out, out2, outg, outh, outo outx and out32 are now identical opcodes and will take up to as many ar-
guments as nchnls. This replaces the current remapping of opcodes

turnoff2 now polymorphic wrt S and k types (ie accepts instrumnet names)

Bugs fixed:

GEN42 fixed

jacko: fixed a segfault removing the unused JackSessionl D option
doppler memory leak fixed

transegr fixed in release mode when skipping most of envelope
FLPack now agrees with manual

max_k now agrees with manual

hrtfreverb fixed

atsa code now works on Windows in more cases

tabmorph bug fixed

fixed problem with user-defined opcodes having no outputs

Variousfixesto * ... */ comments

System Changes:

Various licence issues sorted

Lorisisno longer part of the Csound tree

Memory leaks fixed

If no scoreis given adummy that runs for over 100 yearsis created
All score processing takes place in memory without temporary files
String memory now expandable and no size limitation

#if #else #end now in new parser

Adjustmentsto MIDI file precision in output

On OSX move from Coreaudio to AUHAL

Multicore now safe for ZAK, Channels and modifying tables

Ixxii

Preface

L]

New coremidi module

Virtual Keyboard improved: 1) Dropdown for choosing base octave (the one that starts with the vir-
tual key mapped to physical key Z). Default value is 5 which is backwards compatible. 2) Shift-X
mappings which add two octaves to X mappings for a total of 4 octaves playable from the physical
keyboard (starting from selected base octave). 3) Control-N / Control-Shift-N mappings to incre-
ment / decrement slider for control N. 4) Mouse wheel now controls sliders.

tsig type for vectors

tsigs and fsigs allowed as argumentsin UDOs

API: Minor version upped

* Internal Changes:

L]

Very, very, very many!

New in Version 5.14 (October 2011)

» New opcodes:

L]

mp3len opcode.
gnan opcode.

ginf opcode.
exprandi opcode.
cauchyi opcode.
gaussi opcode.
cpumeter opcode.
linsegb opcode.
expsegh opcode.
transegb opcode.
expseghba opcode.
pvsgain opcode.
pvsbufread2 opcode.
serial opcodes.

lua opcodes opcodes.

plustab opcode.

Ixxiii

Preface

multtab opcode.

maxarray opcode.
minarray opcode.
sumarray opcode.

scalearray opcode.

New functionality

beats processor renamed to csbeats and distributed

mkdb utility to provide a catal ogue of plugin libraries/opcodes

ladspa library build in default system

macros are now expanded inside string in the score

therein an until .. do .. od looping syntax (in the new parser only)

SIGPIPE signals are ignored rather than causing Csound to exit

It is possible to use vectors of k-rate values, named t-variable. They are initialised to a fixed sizw

with init adncan be read with a simple [] syntax. assignment to elements is only via =. There are
also afew new opcodes that provide wider functionality.

Bug fixes and improvements:

reading values to fill tables was broken with respect to comments
internal error in wii_data fixed

pvsshift fixed

jacko fixed

gen23 minor fixes

wiimote fixed

atsaadd fixed

compress fixed to work with Odbfs

pvsbufread corrected with respect to position counting
tempo opcode fixed

CsFileB sectionin .csd files had a bug, now fixed
deferred genOL1 tables could have wrong size

vbap zak made to work(!)

fixed memory issue in ATSsinoi

various fixes to cscore

Ixxiv

Preface

 variousfixesto partials and tradsyn
« transegr could crash in some cases
* loris opcodes updated to latest version
« date opcode has new base in some platforms to avoid overflow
* pvsblur now works over reinit
« diskin, diskin2 and soundin now can read up to 40 channels
* prints behaves better with rounding
« fmpercfl now has working vibrato
* atreson now has gain parameter at k-rate
< comb opcode made safe if in and out arguments the same
* better accuracy in line and expon
« OSCsend recovers space previously lost
* OSCsend can send atable asablob with the T tag -- experimental and untested.
« |pf18 now has an optional iskip argument
 i() will also accept an i-rate value in which caseit isano-op
« makecsd revised and extended to have options for MIDI and score processing and licenses
* Ipanal reworked to remove bugs and oddities
e anissuewith noisein asafixed and aclick in portaudio fixed
 portaudio driver changed to be more robust on stop/exit
* Internal Changes:
* Many many changesto the new parser so it is now operational, but should be used with care

e The multicore system is distributed in an experimental mode and should be used with great care.

New in Version 5.13 (January 2011)

» New opcodes:
< median opcode.
« filevalid opcode.

 pvstanal, pvswarp, temposcal, pvslock spectral processing opcodes.

Ixxv

Preface

mincer opcode

fareylen sequence opcodes.

New functionality

L]

Real random number generators using /dev/random (Linux only).
INF macro added to orchestras; z read as infinity in scores

init changed to allow multiple initsin on statement

GEN for support of farey sequences

maxalloc,cpuprc, active now accept named instruments.

If normalisation in pow opcodesis zero treat as 1

inch can take upto 20 inputs and outputs.

pvscale, pvsvoc and pvsmix now have very good spectral envel ope preservation modes (1 = filtered
cepstrum, 2 = true envel ope).

oscil1 could be stetic if the duration was long; now there is a positive minimum increment.

GENA49 now uses search paths.

Bug fixes and improvements:

L]

Count of linesfixed in orchestras, and \ inside strings
Fast tab opcodes made safe from crashes

% in formated printing could crash

Double freein fgen fixed

sndwarp quietened (gave too many messages)
gendl deals with positive probabilities
adsynt reworked removing many bugs
adsynt2 phase error fixed

Bug in max number of gens fixed

Better checking in graind

Better checking in adsyn

modulus was wrong in new parser
atonex/tonex did wrong operation

mp3in could repeat sound at end of file

changed opcode initialised to zero

IXxvi

Preface

* Serious bug in tabmorpha fixed

« GEN49 has serious bug removed, so no longer incorrect silences.

 partikkel opcode: fixed bug in sub-sample grain placement when using grain rate FM
* Internal Changes:

* Inthe new parser only there are operator @ and @@ to round up the next integer to a power of 2 or
powerof2+1

 Score sorting made much faster

¢ lineto improved

* Named gens allowed

» Various printing include instrument name if available

» Command option to omit loading alibrary

* Number of out channels no longer constrained to be number of in

¢ Many fixesto new parser

* More use of Warnings than Messages (allows for them to be switched off)

« csoundSetM essageCallback reset if callback set to null

New in Version 5.12 (January 2010)

» New opcodes:

* transegr isaversion of the transeg opcode which has a release section which is triggered by midi, a
turnoff2 opcode or a hegative instrument number i score event.

« ftgenonce generates a function table from within an instrument definition, without duplication of
data.

 passign allows quick initialization of i-rate variables from p-fields
* crossfmimplements crossed fm synthesis.
 loopxseg islike loopseg but with exponentia envelope.
« looptseg islike loopseg but with a flexible envelope like transeg
» Bug fixes and improvements:;
* pvshift would overwrite in double mode.
e pan2 case 3 fixed.

« clockon and clockoff now work again.

IXxvii

Preface

cross2 and interp could have divided by zero

linecount for error messages no longer includes text from .csoundrc
p5gconnect changed to use a separate thread to avoid timeout problem.
transeg checks argument count.

sfload used to be limited to 10 sound fonts and was not policed. Now open-ended.

* Internal Changes:

\" allowed as an escape in orchestral strings

New parser fixed on optional arguments

Better checking of f statement with negative number

Soundfonts only initialise pitches array once, in the soundfont opcodes.

Usual collection of gratuitous minor changes, layout and comments

New in Version 5.11 (June 2009)

» New opcodes:

mp3in allows reading of mp3 files directly in the orchestra.

wiiconnect, wiidata, wiisend, wiirange opcodes by john ffitch to receive and send data to a wiimote
controller.

New opcodes to receive data directly from a p5glove by john ffitch p5gdata
tabsum sums sections of ftables

Mixer SetLevel i aninit-time only version of MixerSetLevel

doppler implements a simulation of the doppler effect.

filebit reports the file depth of afile.

The new Sgnal Flow opcodes enable the usage of signal flow graphsin Csound.

» New functionality

New panning type for pan2 opcode

New csd score tag <CsExScore>.

New -Maoption for ALSA RT MIDI module which listensto all devices.
Thereisagen49 to read mp3 files

Added rounding bin code to pvscale

Ixxviii

Preface

Added non-power-of-2 table support for ftload and ftsave

GENZ23 totally rewritten to be more consistent in what constitutes a separator and comments. (Still
no /* */ comments)

* Bug fixes and improvements:

New examples for pvs opcodes by Joachim Heintz: pvsarp, pvscent, pvsbandp, pvsbandr, pvsbu-
fread, pvsadsyn, pvsynth, pvsblur, pvscale, pvscross, pvsfilter, pvsfreeze, pvshift, pvsmaska, pvs-
morph

Use of automatic numbering of ftables reuses table numbers

seed with positive argument was wrong

sprintf with an empty string printed wrong data

mute now works with both numeric and named instruments

Small fixesin diskin, and in tablexkt

* Internal Changes:

SConstruct now builds completely independent shared libraries for Python, Lua, and Java wrap-
pers.

New Parser aimost usable
Redrawing of graphs fixed so that only selected ones get redrawn.
RT-alsamore forgiving on near sample rates

It is possible to have the score generated by an external program rather than using standard score
format using <CScore bin="translater"> to call the program trandlater on the score data

Ipc_export fixed
Removed limit on macro names length

PMAX, the number of arguments to a score event has been reduced by 2, and an overflow system
introduced so GENs can have arbitrary numbers of arguments.

Increased API versionto 2.1.

New API function pointer Idmemfile2withCB() which is a version of ldmemfile() allowing a call-
back to be set and called exactly once to process the MEMFIL buffer after it isloaded.

csound->floatsize set; zero in earlier versions

GetChannelLock added

New in Version 5.10 (December 2008)

» New functionality

IXxix

Preface

L]

New option to listen to al MIDI devices using the portmidi realtime module. To enable listening to
all devices use "-+rtmidi=portmidi -Ma".

Dither on output implemented; rectangular and triangular dither available in some cases

GENZ20 type 6 now has option to set variance

* Bug fixes and improvements:

L]

L]

Locale set to C numeric to avoid , versus . problems.
diskin fixed

outo was broken regarding channel 6

pitchamdf fixed

Zilter2 intialization fixed

s32b14 fixed

Fixed other bugs fixed that have not been reported publicly.

* Internal Changes:

L]

L]

The major version of the Csound API isincreased to 2; affected csound.so as well. This means that
Csound 5.10 is incompatible with applications ("front ends’, "clients’, or "hosts") that were built
for Csound 5.08 and earlier and that use APl version 1.x. These applications will need to be rebuilt
to work with the current and future versions of Csound. Csound front ends written in interpreted
languages such as Python or Java may continue to work without modification. It may aso be pos-
sible to keep both an earlier version of the Csound library and an APl 2.0 version on the same ma-
chine together so that new and old Csound-based applications can run side-by-side. These changes
do not in any way affect the compatibility of Csound orchestras and scores: al old documents
should continue to work as before.

Time now counted internally in samples, overcoming a longstanding bug with rounding of time to
k-rate.

Many internal changes related to branch prediction. Some opcodes are substantially quicker.

New in Version 5.09 (October 2008)

» New opcodes:

New vosim opcode by Rasmus Ekman which recreates the historic VOSIM (VOca SIMulator)
technique.

New dcblock2 opcode by Victor Lazzarini.
New Chua's oscillator model: chuap by Michagl Gogins.
New Linear Algebra opcodes by Michael Gogins. Standard Linear algebra over real and complex

vectors and matrices: elementwise arithmetic, norms, transpose and conjugate, inner products, mat-
rix inverse, LU decomposition, QR decomposition, and QR-based eigenvalue decomposition. In-

[xxx

Preface

L]

cludes copying vectors to and from a-rate signals, function tables, and f-signals.

New ambisonic opcodes: bformdecl and bformencl. These opcodes deprecate the older bformdec
and bformenc.

New Score control opcodes by Victor Lazzarini: rewindscore and setscorepos.

* New functionality:

L]

The vbap family of opcodes (vbap4, vbap8, vbapl6 and vbapz) now accept k-rate variables for all
their input arguments.

New pulseaudio 1/0 module on Linux.

New optional ienv parameter to generate envelopes for the soundfont opcodes: sfplay, sfplay3, sf-
playm and sfplay3m.

Added 'skip normalisation argument' to "tanh" named GEN routine. (See Named GEN Routines)

Added scheduler priority option on asa.

* Bug fixes and improvements:

Allow scientific notation (as was in csound4!) in GEN23.

Fixed bug in FLTK initialization. Should make FLTK usage more stable.
Error on /* */ comments in orchestra fixed.

poscil no longer overwrites frequency if variable is shared.

printk and printks check that opcodeisinitialised.

Deprecate soundout and soundouts in favour of fout.

Fixed space opcode to accept non-pow-2 (deferred) tables.

Fixed pvsmorph bug.

* Internal Changes:

New parser has #include and argumentless macros.

L ess casting between floats and doublesin float version.
Includes experimental multicore support.

buzz opcode rewritten.

Many other internal changes and small bug fixes.

New in Version 5.08 (February 2008)

» New opcodes:

IXXXi

Preface

imagecreate, imagesize, imagegetpixel, imagesetpixel, imagesave, imageload and imagefree: New
image file processing opcodes by Cesare Marilungo to read/write png images from Csound.

pvsbandp and pvsbandr by John ffitch, which perform band-pass and band-reject filtering in the
spectral domain on apvssignal.

New HRTF opcodes by Brian Carty:hrtfmove, hrtfmove2 and hrtfstat.

New waveshaping opcodes. powershape, polynomial, chebyshevpoly, pdclip, pdhalf, pdhalfy, and
syncphasor

New jack transport control opcode: jacktransport

* New functionality

L]

Added --csd-line-nums= command line option to select mode for error line reporting.

New "no-carry" operator (!) for score language that prevents implicit carrying of p-fields in i-
statements.

Added --syntax-check-only commandline flag (exclusive with --i-only)

<Cslicence> tag for CSDs. <CslLicense> is accepted as an alternative to <CsLicence>.

* Bug fixes and improvements:

L]

Changed order of outputs for hilbert. This change breaks compatibility with previous versions, but
fixes the opcode and now works as documented.

M essages about |oading opcode plugins modified so can be suppressed with message level flag.

Major changes to score error reporting; now accurately reports the line numbers for the chain of in-
puts for most errors.

Corrected pan2 so it agrees with documentation.
<CsVersion> tag works again according to the manual.

Fixed the{ and } score looping statements. Added missing documentation for them and ~, &, |, and
operators in score expressions.

hilbert had its outputs reversed, now correct. Manual example updated.

* Internal Changes:

L]

Change to gettext localisation; French and Columbian-Spanish translations available.

Internal changes to partikkel, interpolation of waveform read and windowing, alowing more pre-
cise pitch synchronous granular synthesis. Updated examples for partikkel.

pvscale: Improved algorithm for SDFT case so no ampltitude variation.

New in Version 5.07 (October 2007)

» New opcodes:

IXxxii

Preface

pan2: a stereo panning opcode

cpsmidinn, pchmidinn, octmidinn: converters for MIDI note numbers
fluidSetinterpMethod: interpolation in fluid sound fonts

sflooper: a soundfont version of flooper2

pvsbuffer and pvsbufread: buffering/reading of fsigs for delays/timescale changes.

» New functionality

SDFT - the Sliding Discrete Fourier Transform -- added seamlessly to pvsanal, etc opcodes if the
overlap is less than the ksmps or less than 10. Some pvsX XX opcodes extended to take a-rate para-
meters when dliding.

New feature (-O null / --logfile=null) that disables all messages and printing to the console.

» Bug fixes and improvements:;

partikkel -- particle synthesis had an inadvertent bug, now fixed.
Closing of MIDI input on Windows(MM) failed; now fixed

fluidEngine opcode now takes optional number of channels (range 16-256, default to 256) and
polyphony (range 16-4096, default to 4096) to use.

atsa utility safer when given silence.

ATSaddnz improved checking.

Ambisonics (bformdec, bformenc) has more options for controlled opposites.
Bug in turnoff2 fixed.

het_export: invalid check caused export to fail.

* Internal Changes:

Improved Windows installer.
CsoundV ST replaced by CsoundAC, that does not depend on the VST SDK headers.
L ess messages in Windows(MM) startup.

P argument type added (k-rate defaults to 1) for opcode in and out types.

New in Version 5.06 (June 2007)

* New granular opcodes: partikkel, partikkelsync and diskgrain.

» New opcode for event dispatch: scoreline.

* Many new opcodes from Gabriel Maldonado's CsoundAV: hvsl, hvs2, hvs3, vphaseseg, inrg, outrg,
Iposcila, Iposcilsa, Iposcilsa2, tabmorph, tabmorpha, tabmorphi, tabmorphak, trandom, vtablelk,

Ixxxiii

Preface

dider8table, diderl6table, slider32table, slider64table, slider8tablef, dider16tablef, slider32tablef,
dlider64tablef, diderKawai and the a-rate version of ctrl7.

Also from CsoundAV, many new FLTK widget opcodes. FLkeyln, FLslidBnk2, FLvslidBnk,
FLvsidBnk2, FLmouse, FLxyin, FLhvsBox, FLdidBnkSet, FLslidBnkSetk, FLslidBnk2et,
FLdlidBnk2Setk, FLslidBnkGetHandle,

New pvs opcodes: pvsdiskin, pvsmorph,

eqfil

New command line options (--m-warnings)to control messages

cdadspa: a CSD to LADSPA plugin kit.

And many bug fixes including (but not limited to): fixed k-rate version of system; fixed scaling prob-
lems of vrandh and vrandi; fixed ocasional failure of turnoff; fixed OS X bug; fixed ATScross and
fixed mod.

Csound5GUI now works properly on all platforms and csoundapi~ (pd object) has been updated.

Ixxxiv

Part |. Overview

Table of Contents

Fp (oo (8 7ol o H PP 4
The CsouNd COMIMANGcuuiiiii et e e e e e e e et e e e e e e aeeaneees 5
Order Of PreCedENCEooieiiiii et 5
Description of the command SYNtaXcc.vevuiiiiiiiiiiie e 5
Csound COMMANG [INEuiiiiiii e 7
Command-line Flags (BY Category)vvveuieeiiieii i e e 17
Csound Environment Variablesccoooiiiiiiiiiiicee e 28
Unified File Format for Orchestras and SCOreSoovevviiiiiiiniiiiieieieeei e 31
Dol 1] o)1) o FR PP 31
EXAMIPIE e 33
Command Line Parameter File (.CSOUNIC)uvvvvnieiiieiii e e e 34
SCOrE File PreprOCESSING . .ovvuiieii i eeie et e e et e e e e e e e e e e anas 34
THEEXIrACt FEAIUEuivniiiie e 34
Independent Pre-Processing With SCSOIoveiiiiiiiiiiiiiiieeii e 35
USING CSOUNG ...ttt ettt ettt e et ettt e e et e e et e et e e e e e et e e ean e eeanaaeees 36
Csound's CONSOIE OULPULuveeeeieei e e e e e e e ees 36
HOW CSOUNT WOTKS ..t e et e et e eees 37
Amplitude valueSin CSOUNGocvuuiiiiieie e e e 38
REAI-TIMEAUIO ...ieniiii e 40
Realtime 1/O 0N LINUXivniiiii e e e 40
IMBE OSX oottt e e e e e e e e e et aaa e aan 46
WINAOWS ..o ettt e e et ettt e e e e ea e 47
Realtime 1/0O with JACK Connection Kitccoeuviiiiiiiiiiniiiiiiecneeeeieees 48
Optimizing AUiO /O LAENCY ...uovveeii e e e 50
L000] 01T |01 7T oo RN PP TUPPR 52
Syntax Of the OFChESIIacooeiie e 53
OrchestraHeader SEAtemMENtSc.uiiitiiiii e 54
Instrument and Opcode Block Statementscccvevveiiiiiiiii e, 54
Ordinary StAEMENES ...oovniei e e e e e e aeas 55
Types, Constants and Variablescovvviiiiiiiiiii e 55
Variable INitialiZationcccoiiiiiiii e 56
EXPIESSIONS ...ttt 57
DirectorieS and FilES 57
NOMENCIALUIE ...t e 57
= o (0 S TSP 58
NEME INSEIUMENES ...t e e ees 58
User Defined Opcodes (UDO)ciiiiinieiiiiie ettt 61
K-REIE VECIOIS ...t e a e 62
Function Syntax in CSOUNGBcceuuiiiiiiiiieii e 62
The Standard NUMEIC SCOMEieuuiiiiieii et 64
Preprocessing of Standard SCOIESccuuviiiieiiiiiie e e 64
L% 64
TOIMPO et 65
S0 65
SCOME SEALEMENTS ...ttt ettt e e e e e e e ees 66
Next-P and Previous-P SymboISooiiii e 67
L 1110 1o 67
SCOME MBCIOS ..ceeeiii ettt ettt ettt et et e e et et e e e e e e eenes 68
MUIIPIE FIlE SCOME ... 70
Evaluation Of EXPreESSIONScccuuuuiiiiiiiiieieiii et 71
SHNGSIN P-FIEIAS ..o 73
L 001 =13 To PPN 74
L0 o110 /AN PR 75

Overview

L0 o 11110 |V PR
2T T o [T T T 550 T o

Csound Links

Introduction

Csound is a unit generator-based, user-programmable computer music system. It was origin-
ally written by Barry Vercoe at the Massachusetts Institute of Technology in 1984 as the
first C language version of this type of software. Since then Csound has received numerous
contributions from researchers, programmers, and musicians from around the world.

Around 1991, John ffitch ported Csound to Microsoft DOS. Csound currently runs on many
varieties of UNIX and Linux, Microsoft DOS and Windows, al versions of the Macintosh
operating system including Mac OS X, and others.

There are newer computer music systems that have graphical patch editors (e.g. Max/M SP,
PD, jMax, or Open Sound World), or that use more advanced techniques of software engin-
eering (e.g. Nyquist or SuperCollider). Yet Csound still has the largest and most varied set
of unit generators, is the best documented, runs on the most platforms, and is the easiest to
extend. It is possible to compile Csound using double-precision arithmetic throughout for
superior sound quality. In short, Csound must be considered one of the most powerful mu-
sical instruments ever created.

In addition to this "canonical" version of Csound and CsoundAC, there are other versions of
Csound and other front ends for Csound, many of which can be found at ht-
tp://csound.github.io.

http://csound.github.io
http://csound.github.io

The Csound Command

The command csound is a basic frontend to the system that can be used to generate a sound
output from an orchestra file and a score file (or a unified csd file). It is designed to be
called from a termina or DOS window. In addition to it, there are other front-ends, which
might be simpler to use. The score file can be in one of many different formats, according to
user preference. Trandlation, sorting, and formatting into orchestra-readable numeric text is
handled by various preprocessors; all or part of the score is then sent on to the orchestra. Or-
chestra performance is influenced by command flags, which set the level of displays and
console reports, specify /0 filenames and sample formats, and declare the nature of real-
time sensing and control.

Order of Precedence

There are five places where options for Csound performance may be set. They are processed
in the following order:
1. Csound's own defaults

2. File defined by the CSOUNDRC environment variable, or .csoundrc file in the HOME
directory

3. A .csoundrc filein the current directory

4. <CsOptions>tagina.csdfile

5. Passed on the Csound command line

The later options in the list will override any earlier ones. As of version 5.01 of Csound,

sample and control rate override flags (-r and -k) specified anywhere override sr, kr, and ks-
mps defined in the orchestra header.

Description of the command syntax

The csound command is followed by a set of Command Line Flags and the name of the or-
chestra (.orc) and score (.sco) files or the Unified csd file (containing both orchestra and
score) to process. Command Line Flags to control input and output configuration may ap-
pear anywhere in the command line, either separately or bundled together. A flag taking a
Name or Number will find it in that argument, or in the immediately subsequent one. The
following are thus equivalent commands:

csound -nn8 orchnane -Sxxfilenane scorename
csound -n -m 3 orchnane -x xfilenane -S scorenane

All flags and names are optional. The default values are:

csound -s -otest -bl1024 -B1024 -n¥V -P128 orchnane scorenane

The Csound Command

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in
standard numeric score format, optionally presorted and time-warped. If scorename is omitted, there are
two default options:

1. if real-timeinput is expected (e.g. -L, -M, -iadc or -F), adummy scorefile is substituted consisting of
the single statement 'f 0 3600 (i.e. listen for RT input for one hour)

2. else Csound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it executes, performing vari-
ous syntax and error checks along the way. Once the actual performance has begun, any error messages
will derive from either the instrument loader or the unit generators themselves. A CSound command
may include any rational combination of flag arguments.

Running the examples in this manual from the command

line

Most of the manual's examples come ready to run without the need of adding any command line flags
since they specify options within the csd file's <CsOptions> tag, so you only need to type something
like:

csound oscil.csd

within the examples folder, and realtime audio output should be generated.

The Csound Command

Csound command line

csound

Description

The csound command executes Csound.
Syntax

csound [flags] [orchname] [scorenang]

csound [flags] [csdfilenane]

Csound command line flags

Listed below are the command line flags available in Csound6 in alphabetical order. Various platform
implementations may not react the same way to different flags! Y ou can view the command line flags
organized by category in Command-line Flags (by Category).

The command line arguments are of 2 types: flags arguments (beginning with a “-”,“--" or “-+"), and

name arguments (such as filenames). Certain flag arguments take a following name or numeric argu-
ment. Flags that start with “--” and “-+” usually take an argument themselves using “=".

Command-line Flags

-@FILE Provide an extended command-linein file“FILE”

-3, --format=24bit Use 24-hit audio samples.

-8, --format=uchar Use 8-hit unsigned character audio samples.

--format=type Set the audio file output format to one of the formats available in

libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, MPC, nist, ogg, paf, pvf, raw, sd2, sds, svx, voc,
w64, W64, wav, wavex, WVE, xi. Can aso be used as -
-format=type:format or --format=format:type to set both the file
type (wav, aiff, etc.) and sample format (short, long, float, etc.) at

the same time.
-A, --aiff, --format=aiff Write an AIFF format soundfile. Use with the -c, -s, -I, or -f flags.
-a, --format=alaw Use a-law audio samples.
-B NUM, - Number of audio sample-frames held in the DAC hardware buf-
-hardwarebufsamps=NUM fer. Thisis athreshold on which software audio 1/O (above) will

wait before returning. A small number reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024

7

The Csound Command

-b NUM, --iobufsamps=NUM

-C, --cscore
-c, --format=schar

--csd-line-nums=NUM

-D, --defer-genl

-d, --nodisplays

-d

--devices

--deviceg[=X]

--displays
--default-paths

--env:NAME=VALUE

on Linux, 4096 on Mac OS X and 16384 on Windows.

Number of audio sample-frames per sound i/o software buffer.
Large is efficient, but small will reduce audio I/O delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/O0 on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps* -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

Use Cscore processing of the scorefile.
Use 8-hit signed character audio samples.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

¢ 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Defer GENOL soundfile loads until performance time.

Suppress all displays. See -O if you want to save the log to afile.
Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.
Givesalist of available audio devices and then exits.

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Enables displays, reverting the effect of any previous -d flag.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Set environment variable NAME to VALUE. Note: not al envir-

8

The Csound Command

--env:NAME+=VALUE

--expression-opt

onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and SS

DIR are known to work.

Append VALUE to '} separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS&
DIR). If a file is found in multiple directories, the last will be

used.

Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control
rate is (see also below), etc.; thus, the difference may be less,

but also much more).

e number of a and k-rate temporary variables is significantly re-

duced. This expression

(al

will compile as

#al
#al
#a0

instead of

#a0
#al
#a2

The advantages of less temporary variables are:

+ a2 + a3 + a4)

Add al, a2
Add #a0, a3
Add #a0, a4

Add al, a2
Add #a0, a3
Add #al, a4

; (the result is in #a0)

; (the result is in #a2)

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control

rate (e.g. ksmps = 100)

« large orchestras may load faster due to less different identifi-

er names

* index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable namesin a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

The Csound Command

-F FILE, --midifile=FILE

-f, --format=float

-G, --postscriptdisplay
-g, --asciidisplay
--get-system-sr

-H#, --heartbeat=NUM

-h, --noheader

--help

-l, --i-only

-i FILE, --input=FILE

. Warning

When --expression-opt is turned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
time is unsafe.

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
prints system sr and exits, requires -o dac.

Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

« NUM =1, arotating bar.

« NUM =2, adot (.)

¢ NUM = 3, filesize in seconds.

* NUM =4, sound abell.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Display on-line help message.

i-time only. Allocate and initiaize all instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus
no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SSDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In the first case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The audio coming in using -i can be received using opcodes like

10

The Csound Command

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_scopyright=integer

: "All rights reserved" (default)

NoO O, WNEO

: "Licenced under BSD"

-+id_date=string

-+id_software=string

-+id_title=string

-+ignore_csopts=integer

-+input_stream=string

-J, --ircam, --format=ircam

- NUM

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

inch.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(Since version 6.05) Simple copyright/licence encoded as an in-
teger. Coding is:

: "Creative Commons Attribution-NonCommercia -NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

. "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

.(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile
(no spaces)

(max. length = 200 characters) Title tag in output soundfile (no
spaces)

If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

Pulseaudio input stream name.
Write an IRCAM format soundfile.

Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is the
same or more that the number of requested processes. It also may
slow rendering down if ksmpsistoo small.

The client name used by Csound, defaults to 'csounds'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel number
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nputl (record left)

11

The Csound Command

-K, --nopeaks
-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

-1, --format=long

-M DEVICE, -
-midi-device=DEVICE

-m NUM, --messagelevel=NUM

csound5: i nput 2 (record right)
csound5: out put 1 (pl ayback left)
csound5: out put 2 (pl ayback right)

Do not generate any PEAK chunks.
Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only valid on *NIX systems which
have pipes. It doesn't work on Windows.

Use long integer audio samples.

Read MIDI events from device DEVICE. If using ALSA MIDI
(-+rtmidi=alsa), devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed.When using PortMidi, you can use '-
Ma to enable al devices. Thisis also convenient when you don't
have devices as it will not generate an error.

Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 =warning messages

e 128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0= raw amplitudes, no colours
e 32=dB, no colors

« 64 =dB, out of range highlighted with red

96 = dB, dl colors

e 256 = raw, out of range highlighted with red

12

The Csound Command

e 512 =raw, al colours
The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04.

--m-amps=NUM Message level for amplitudes on standard (terminal) output.
¢ 0= no note amplitude messages
¢ 1= note amplitude messages

--m-range=NUM Message level for out of range messages on standard (terminal)
output.

« 0= no samples out of range message
¢ 1=samples out of range message
--m-warnings=NUM Message level for warnings on standard (terminal) output.
« 0= no warning messages
e 1 =warning messages
--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1 =dB amplitude messages
--m-colours=NUM Message level for amplitude format on standard (terminal) output.
* 0= no colouring of amplitude messages
« 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1= print benchnark numbers
-+max_str_len=integer (min: 10, max: 10000) Maximum length of string variables + 1,

defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

--midi-deviceg[=X] list midi devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

--midi-key=N Route MIDI note on message key number to pfield N as MIDI
value [0-127].

--midi-key-cps=N Route MIDI note on message key number to pfield N as cycles
per second.

--midi-key-oct=N Route MIDI note on message key number to pfield N as linear
octave.

13

The Csound Command

--midi-key-pch=N Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

--midi-velocity=N Route MIDI note on message velocity number to pfield N as
MIDI value[0-127].

--midi-velocity-amp=N Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

--midioutfile=FILENAME Save MIDI output to afile (Csound 5.00 and later only).

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled

on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-+mute_tracks=string (max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

-N, --notify Notify (ring the bell) when score or MIDI track is done.
-n, --nosound No sound. Do all processing, but bypass writing of sound to disk.

This flag does not change the execution in any other way.

--num-threads=NUM Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is more
that the number of requested processes. It also may slow render-
ing down if ksmpsistoo small.

--no-default-paths Disables adding of directory of CSD/ORC/SCO to search paths.
--no-expression-opt Disables expression optimization.
-O FILE, --logfile=FILE Log output to file FILE. If FILE is null (i.e. -O null or -
-logfile=null) all printing of messages to the console is disabled.
Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

-0 FILE, --output=FILE Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable SF-
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name devaudio or dac (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or adevice name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

14

The Csound Command

--0g9
--omacro:XXX=YYY

--opcode-lib=LIBNAME

--0rc orchame

--ksmps=N
-+output_stream=string

--port=N

-Q DEVICE

-R, --rewrite

-r NUM, --sample-rate=NUM

-+raw_controller_mode=boolean

--reatime

-+rtaudio=string

-+rtmidi=string

Set output file format to ogg. (csound 5.18 and later)
Set orchestramacro XXX tovalue YYY
Load plugin library LIBNAME.

Set the argument as the orchestrra file. Used when not scoreis re-
quired>. (Csound 5.18 and later).

Set ksmps override to N (6.05 and later).
Pulseaudio output stream name.

Set UDP port on which to listen instruments/orchestra code
(implies --daemon)

Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Override the sampling rate (SR) supplied by the orchestra.

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of al the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchron-
ously by a separate thread.

2. al init-pass operations are also performed asynchronously.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio. Also available, depending on platform and
build options: Linux: alsa, jack; Windows: mme; Mac OS X: Cor-
eAudio. In addition, null can be used on al platforms, to disable
the use of any real time audio plugin.

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: asa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

15

The Csound Command

-s, --format=short

--sample-accurate

--sched

--sched=N

-+server=string

-+skip_seconds=float
--smacro:XXX=YYY

--strset

--syntax-check-only

-T, --terminate-on-midi

-t0, --keep-sorted-score

-t NUM, --tempo=NUM

-U UTILITY, --utility=UTILITY

-u, --format=ulaw

--vbr-quality=X

ALSA MIDI devices are selected by name and not number. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Use short integer audio samples.

Start and stop instances of instruments at the nearest sample to the
requested time. This is in contrast to traditional Csound which
rounds the times to the nearest k-cycle. Note that this does not
work with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use
of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Pulseaudio server name.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Set score macro XXX tovalueYYY

Csound 5. The --strset option allows setting strset string values
from the command line, in the format "--strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and | ater).

Terminate the performance when the end of MIDI fileis reached.

Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Use u-law audio samples.

Set variable bit-rate quality for output to ogg. (Csound 6.03 and

16

The Csound Command

|ater).

-v, --verbose Verbose trandate and run. Prints details of orch translation and
performance, enabling errors to be more clearly located.

--version Exits after printing version information.

-W, --wave, --format=wave WriteaWAYV format soundfile.

-X FILE, --extract-score=FILE Extract a portion of the sorted score, score.sit, using the extract
file FILE (see Extract).

-Z, --dither Switch on dithering of audio conversion from interna floating
point to 32, 16 and 8-bit formats. The default form of the dither is
triangular.

-Z, --dither--triangular, - Switch on dithering of audio conversion from internal floating

-dither--uniform point to 32, 16 and 8-bit formats. In the case of -Z the next digit

should be a1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

-z NUM, --list-opcodesNUM List opcodesin this version:
* no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

« NUM = 2, show names including deprecated ones

*« NUM = 3, show arguments to each opcode, including deprec-
ated ones, using the format <opname> <outargs> <inargs>

Command-line Flags (by Category)

Listed below are the command line available in Csound5 organized by categories. Various platform im-
plementations may not react the same way to different flags!

Y ou can view the command line flags organized alphabetically in Command-line Flags (Alphabetically).
The format of acommand is either:

csound [f 1 ags] [orchname] [scorename]
or

csound [f1 ags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a“-",“--" or “-+"), and name argu-
ments (such as filenames). Certain flag arguments take a following name or numeric argument. Flags

that start with “--" and “-+" usually take an argument themselves using “=".

Audio File Ouput

17

The Csound Command

-3, --format=24bit

-8, --format=uchar

-A, --aiff, --format=aiff
-a, --format=alaw

-c, --format=schar

-f, --format=float

--format=type

-h, --noheader

-i FILE, --input=FILE

-J, --ircam, --format=ircam

-K, --nopeaks
-1, --format=long
-n, --nosound

-0 FILE, --output=FILE

Use 24-bit audio samples.

Use 8-bit unsigned character audio samples.

Write an AIFF format soundfile. Use with the -c, -s, -1, or -f flags.
Use a-law audio samples.

Use 8-hit signed character audio samples.

Use single-format float audio samples (not playable on some sys-
tems, but can be read by -i, soundin and GENO1

Set the audio file output format to one of the formats available in
libsndfile. At present the list is aiff, au, avr, caf, flac, htk, ircam,
mat4, mat5, nis, paf, pvf, raw, sd2, sds, svx, voc, w64, wav,
wavex and xi. Can aso be used as --format=type:format or -
-format=format:type to set both the file type (wav, aff, etc.) and
sample format (short, long, float, etc.) at the same time.

No header on output soundfile. Don't write a file header, just bin-
ary samples.

Input soundfile name. If not a full pathname, the file will be
sought first in the current directory, then in that given by the en-
vironment variable SDIR (if defined), then by SFDIR. The name
stdin will cause audio to be read from standard input.

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character. It depends on the host audio interface wheth-
er a device number or a name should be used. In the first case, an
out of range number usually resultsin an error and listing the val-
id device numbers.

The audio coming in using -i can be received using opcodes like
inch.

Write an IRCAM format soundfile.
Do not generate any PEAK chunks.
Use long integer audio samples.

No sound. Do all processing, but bypass writing of sound to disk.
This flag does not change the execution in any other way.

Output soundfile name. If not a full pathname, the soundfile will
be placed in the directory given by the environment variable S--
DIR (if defined), else in the current directory. The name stdout
will cause audio to be written to standard output, while null res-
ults in no sound output similarly to the -n flag. If no name is giv-
en, the default name will be test.

The name dac or devaudio (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range O to 1023, or a device name separated by a : character. It

18

The Csound Command

--099

--vbr-quality=X

-R, --rewrite

-s, --format=short

-u, --format=ulaw

-W, --wave, --format=wave

-Z, --dither

-Z, --dither--triangular, -
-dither--uniform

Output Fileld tags

-+id_artist=string

-+id_comment=string

-+id_copyright=string

-+id_scopyright=integer

NoO O, WNEO

: "All rights reserved" (default)
: "Creative Commons Attribution-NonCommercia -NoDerivatives (CC BY-NC-ND)"
: "Creative Commons Attribution-NonCommercial -ShareAlike (CC BY-NC-SA)"

: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

: "Creative Commons Attribution-ShareAlike (CC BY)"

: "Licenced under BSD"

-+id_date=string

-+id_software=string

depends on the host audio interface whether a device number or a
name should be used. In the first case, an out of range number
usually resultsin an error and listing the valid device numbers.

Set output file format to ogg. (Csound 5.18 and later).

Set variable bit-rate quality for output to ogg. (Csound 6.03 and
|ater).

Continually rewrite the header while writing the soundfile
(WAV/AIFF).

Use short integer audio samples.

Use u-law audio samples.

WriteaWAYV format soundfile.

Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. The default form of the dither is

triangular.

Switch on dithering of audio conversion from internal floating
point to 32, 16 and 8-bit formats. In the case of -Z the next digit
should be a1 (for trangular) or a2 (for uniform). The exact inter-
pretation depends on the output system.

(max. length = 200 characters) Artist tag in output soundfile (no
spaces)

(max. length = 200 characters) Comment tag in output soundfile
(no spaces)

(max. length = 200 characters) Copyright tag in output soundfile
(no spaces)

(Sincle version 6.05) Simple copyright/licence encoded as an in-
teger. Coding is:

(max. length = 200 characters) Date tag in output soundfile (no
spaces)

(max. length = 200 characters) Software tag in output soundfile (no
spaces)

19

The Csound Command

-+id_title=string (max. length = 200 characters) Title tag in output soundfile (no

spaces)

Realtime Audio I nput/Output

-i adc[DEVICE], -
-input=adc[DEVICE]

-0 dac[DEVICE], -
-output=dac[DEVICE]

-+rtaudio=string

--reatime

-+server=string
-+output_stream=string
-+input_stream=string

-+jack_client=[client_name]

-+jack_inportname=[input port
name prefix], -
+jack_outportname=[output port
name prefix]

The name devaudio or adc will request sound from the host audio
input device. It is possible to select a device number by appending
an integer value in the range 0 to 1023, or a device name separ-
ated by a: character (e.g. -iadc3, -iadc:hw:1,1). It depends on the
host audio interface whether a device number or a name should be
used. In thefirst case, an out of range number usualy resultsin an
error and listing the valid device numbers.

The name dac or devaudio (you can use -odac or -o dac) will re-
quest writing sound to the host audio output device. It is possible
to select a device number by appending an integer value in the
range 0 to 1023, or a device name separated by a: character (e.g. -
odac3, -odac:hw:1,1). It depends on the host audio interface
whether a device number or a name should be used. In the first
case, an out of range number usually resultsin an error and listing
the valid device numbers.

(max. length = 20 characters) Real time audio module name. The
default is PortAudio (all platforms). Also available, depending on
platform and build options. Linux: asa, jack; Windows. mme;
Mac OS X: CoreAudio. In addition, null can be used on all plat-
forms, to disable the use of any real time audio plugin.

realtime priority mode is switched on which the following effects:

1. al opcode audio file reading/writing is handled asynchron-
ously by a separate thread.

2. al init-pass operations are also performed asynchronously.
Pulseaudio server name.

Pulseaudio output stream name.

Pulseaudio input stream name.

The client name used by Csound, defaults to 'csounds'. If multiple
instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts. (Linux and Mac
OS X only)

Name prefix of Csound JACK input/output ports; the default is
‘input’ and 'output’. The actual port name is the channel number
appended to the name prefix. (Linux and Mac OS X only)

Example: with the above default settings, a stereo orchestra will
create these portsin full duplex operation:

csound5: i nput 1
csound5: i nput 2
csound5: out put 1

(record left)
(record right)
(pl ayback left)

20

The Csound Command

MIDI File Input/Ouput

--deviceg[=X]

-F FILE, --midifile=FILE

--midioutfile=FILENAME

-+mute_tracks=string

-+raw_controller_mode=boolean

-+skip_seconds=float
-T, --terminate-on-midi

MIDI Realtime Input/OQuput

-M DEVICE, -
-midi-device=DEVICE

--midi-key=N

--midi-key-cps=N
--midi-key-oct=N
--midi-key-pch=N

--midi-velocity=N

csound5: out put 2 (pl ayback right)

list audio devices (x=out, output devices only; x=in, input; elsein-
put and output) and exit.

Read MIDI events from MIDI file FILE. The file should have
only one track in Csound versions 4.xx and earlier; this limitation
isremoved in Csound 5.00.

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 255 characters) Ignore events (other than tempo
changes) in MIDI file tracks defined by pattern (for example, -
+mute_tracks=00101 will mute the third and fifth tracks).

Disable specia handling of MIDI controllers like sustain pedal,
al notes off etc., alowing the use of all the 128 controllers for
any purpose. Thiswill also set theinitia value of al controllersto
zero. Default: no.

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Terminate the performance when the end of MIDI fileis reached.

Read MIDI events from device DEVICE. If using ALSA MIDI (-
+rtmidi=alsa), devices are selected by name and not humber. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0). In the case of PortMidi and MME, DEVICE should be a
number, and if it is out of range, an error occurs and the valid
device numbers are printed. When using PortMidi, you can use '-
Ma to enable all devices. Thisis also convenient when you don't
have devices asit will not generate an error.

Route MIDI note on message key number to pfield N as MIDI
value [0-127].

Route MIDI note on message key number to pfield N as cycles
per second.

Route MIDI note on message key number to pfield N as linear
octave.

Route MIDI note on message key number to pfield N as oct.pch
(pitch class).

Route MIDI note on message velocity number to pfield N as

21

The Csound Command

--midi-velocity-amp=N

--midioutfile=FILENAME

-+rtmidi=string

-Q DEVICE

Display

--csd-line-nums=NUM

-d, --nodisplays

--displays

MIDI value [0-127].

Route MIDI note on message velocity number to pfield N as amp-
litude [0-OdbFS].

Save MIDI output to afile (Csound 5.00 and later only).

(max. length = 20 characters) Real time MIDI module name. De-
faults to PortMidi, other options (depending on build options):
Linux: alsa; Windows: mme, winmm. In addition, null can be
used on all platforms, to disable the use of any real time MIDI

plugin.

ALSA MIDI devices are selected by name and not humber. So,
you need to use an option like -M hw:CARD,DEVICE where
CARD and DEVICE are the card and device numbers (e.g. -M
hw:1,0).

Enables MIDI OUT operationsto device id DEVICE. Thisflag al-
lows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely man-
aged by DAC buffer sample flow. So MIDI OUT operations can
present some time irregularities. These irregularities can be re-
duced by using alower value for the -b flag.

If using ALSA MIDI (-+rtmidi=alsa), devices are selected by
name and not number. So, you need to use an option like -Q
hw:CARD,DEVICE where CARD and DEVICE are the card and
device numbers (e.g. -Q hw:1,0). In the case of PortMidi and
MME, DEVICE should be a number, and if it is out of range, an
error occurs and the valid device numbers are printed.

Determines how line numbers are counted and displayed for error
messages when processing a Csound Unified Document file
(.csd). This flag has no effect if separate orchestra and score files
are used. (Csound 5.08 and later).

¢ 0 = line numbers are relative to the beginning of the orchestra
or score sections of the CSD

< 1 = line numbers are relative to the beginning of the CSD file.
Thisisthe default as of Csound 5.08.

Suppress all displays. See -O if you want to save the log to afile.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Enables displays, reverting the effect of any previous -d flag.

22

The Csound Command

-G, --postscriptdisplay
-g, --asciidisplay
-H#, --heartbeat=NUM

-m NUM, --messagelevel=NUM

--m-amps=NUM

--m-range=NUM

--m-warnings=NUM

Suppress graphics, use PostScript displays instead.
Suppress graphics, use ASCII displays instead.
Print a heartbeat after each soundfile buffer write:
¢ no NUM, arotating bar.

« NUM =1, arotating bar.

e NUM =2, adot ()

* NUM = 3, filesize in seconds.

* NUM =4, sound a bell.

Message level for standard (terminal) output. Takes the sum of
any of the following values:

¢ 1= note amplitude messages
e 2 =samples out of range message
e 4 = warning messages

128 = print benchmark information
And exactly one of these to select note amplitude format:

¢ 0=raw amplitudes, no colours
¢ 32=dB, no colors

e 64 =dB, out of range highlighted with red

96 = dB, al colors

e 256 = raw, out of range highlighted with red

e 512 =raw, al colours

The default is 135 (128+4+2+1), which means all messages, raw
amplitude values, and printing elapsed time at the end of perform-
ance. The coloring of raw amplitudes was introduced in version
5.04

Message level for amplitudes on standard (terminal) output.

< 0= no note amplitude messages

¢ 1= note amplitude messages

Message level for out of range messages on standard (terminal)
output.

« 0= no samples out of range message
¢ 1=samples out of range message
Message level for warnings on standard (terminal) output.

0= no warning messages

23

The Csound Command

¢ 1 =warning messages

--m-dB=NUM Message level for amplitude format on standard (terminal) output.
« 0 = absolute amplitude messages
¢ 1=dB amplitude messages

--m-colours=NUM Message level for amplitude format on standard (terminal) output.
¢ 0=no colouring of amplitude messages
¢ 1= colouring of amplitude messages

--m-benchmarks=NUM Message level for benchmark information on standard (terminal)
output.

¢ 0= no benchnark numbers
¢ 1 = print benchnark numbers

-+msg_color=boolean Enable message attributes (colors etc.); might need to be disabled
on some terminals which print strange characters instead of modi-
fying text attributes. default: true.

-v, --verbose Verbose trandate and run. Prints details of orch translation and
performance, enabling errorsto be more clearly located.

-z NUM, --list-opcodesNUM List opcodesin thisversion:
¢ no NUM, just show names
¢ NUM =0, just show names

« NUM = 1, show arguments to each opcode using the format
<opname> <outargs> <inargs>

* NUM = 2, show names including deprecated ones

« NUM = 3, show arguments to each opcode, including deprec-
ated ones, using the format <opname> <outargs> <inargs>

Performance Configuration and Control

-B NUM, - Number of audio sample-frames held in the DAC hardware buf-

-hardwarebuf samps=NUM fer. Thisis athreshold on which software audio 1/0 (above) will
wait before returning. A small nhumber reduces audio I/O delay;
but the value is often hardware limited, and small values will risk
data lates. In the case of portaudio output (the default real-time
output), the -B parameter (more precisely, -B / sr) is passed as the
"suggested latency" value. Other than that, Csound has no control
over how PortAudio interprets the parameter. The default is 1024
on Linux, 4096 on Mac OS X and 16384 on Windows.

-b NUM, --iobufsamps=NUM Number of audio sample-frames per sound i/o software buffer.

24

The Csound Command

-d

-k NUM, --control-rate=NUM

-L DEVICE, --score-in=DEVICE

--omacro:XXX=YYY

--port=N

-r NUM, --sample-rate=NUM

--sample-accurate

--sched

--sched=N

Large is efficient, but small will reduce audio 1/0O delay and im-
prove the accuracy of the timing of real time events. The default
is 256 on Linux, 1024 on MacOS X, and 4096 on Windows. In
real-time performance, Csound waits on audio 1/0 on NUM
boundaries. It also processes audio (and polls for other input like
MIDI) on orchestra ksmps boundaries. The two can be made syn-
chronous. For convenience, if NUM is negative, the effective
value is ksmps * -NUM (audio synchronous with k-period bound-
aries). With NUM small (e.g. 1) polling is then frequent and also
locked to fixed DAC sample boundaries.

Note: if both -iadc and -odac are used at the same time (full du-
plex real time audio), the -b option should be set to an integer
multiple of ksmps.

Run in daemon mode: do not exit if CSD/orchestrais not given, is
empty or does not compile.

Override the control rate (KR) supplied by the orchestra.

Read line-oriented real-time score events from device DEVICE.
The name stdin will permit score events to be typed at your ter-
minal, or piped from another process. Each line-event is termin-
ated by a carriage-return. Events are coded just like those in a
standard numeric score, except that an event with p2=0 will be
performed immediately, and an event with p2=T will be per-
formed T seconds after arrival. Events can arrive at any time, and
in any order. The score carry feature is legal here, as are held
notes (p3 negative) and string arguments, but ramps and pp or np
references are not.

Note

The -L flag is only valid on *NIX systems which
have pipes. It doesn't work on Windows.

Set orchestramacro XXX tovalueYYY

Set UDP port on which to listen instruments/orchestra code
(implies --daemon)

Override the sampling rate (SR) supplied by the orchestra.

Start and stop instances of instruments at the nearest sample to the
requested time. This is in contrast to traditional Csound which
rounds the times to the nearest k-cycle. Note that this does not
work with tied notes.

Linux only. Use real-time scheduling and lock memory. (Also re-
quires -d and either -0 dac or -0 devaudio). See also --sched=N
below.

Linux only. Same as --sched, but alows specifying a priority
value: if N is positive (in the range 1 to 99) the scheduling policy
SCHED_RR will be used with a priority of N; otherwise,
SCHED_OTHER is used with the nice level set to N. Can also be
used in the format --sched=N,MAXCPU,TIME to enable the use

25

The Csound Command

--smacro: XXX=YYY

--strset

-+skip_seconds=float

-t NUM, --tempo=NUM

-j NUM, --num-threads=NUM

Miscellaneous

-@ FILE
-C, --cscore

--default-paths

-D, --defer-genl

--env:NAME=VALUE

--env:NAME+=VALUE

--expression-opt

of a"watchdog" thread that terminates Csound if the average CPU
usage exceeds MAXCPU percents over a peroid of TIME seconds
(new in Csound 5.00).

Set score macro XXX tovalueYYY

Csound 5. The --strset option allows setting strset string values
from the command line, in the format --strsetN=VALUE'. It is
useful for passing parameters to the orchestra (e.g. file names).

(min: 0) Start playback at the specified time (in seconds), skip-
ping earlier eventsin the score and MIDI file.

Use the uninterpreted beats of score.srt for this performance, and
set the initial tempo at NUM beats per minute. When this flag is
set, the tempo of score performance is aso controllable from
within the orchestra. WARNING: this mode of operation is exper-
imental and may be unreliable.

Make NUM processes available for rendering. This is only ad-
vantageous if the number of processors on the computer is the
same or more that the number of requested processes. It al'so may
slow rendering down if ksmpsistoo small.

Provide an extended command-linein file“FILE”
Use Cscore processing of the scorefile.

Reenables adding of directory of CSD/ORC/SCO to search paths,
if it has been disabled by a previous --no-default-paths (e.g. in
.csoundrc).

Defer GENOL soundfile loads until performance time.

Set environment variable NAME to VALUE. Note: not al envir-
onment variables can be set this way, because some are read be-
fore parsing the command line. INCDIR, SADIR, SFDIR, and S&
DIR are known to work.

Append VALUE to ;' separated list of search paths in environ-
ment variable NAME (should be INCDIR, SADIR, SFDIR, or SS&
DIR). If afile is found in multiple directories, the last will be
used.

Note that this option has no affect in csound6. In Csound 5 only.
Turns on some optimizations in expressions:

» Redundant assignment operations are eliminated whenever pos-
sible. This means that for example this line al = a2 + a3 will
compile as al Add a2, a3 instead of #a0 Add a2, a3 al = #a0
saving a temporary variable and an opcode call. Less opcode
calls result in reduced CPU usage (an average orchestra may
compile about 10% faster with --expression-opt, but it depends
largely on how many expressions are used, what the control

26

The Csound Command

--version
--get-system-sr
--help
--devices

-I, --i-only

rate is (see also below), etc.; thus, the difference may be less,
but also much more).

e number of a and k-rate temporary variables is significantly re-
duced. This expression

(al + a2 + a3 + a4)

will compile as

#a0 Add al, a2
#a0 Add #a0, a3
#a0 Add #a0, a4 ; (the result is in #a0)

instead of

#a0 Add al, a2
#al Add #a0, a3
#a2 Add #al, a4 ; (the result is in #a2)

The advantages of |ess temporary variables are:

* less cache memory is used, which may improve performance
of orchestras with many a-rate expressions and a low control
rate (e.g. ksmps = 100)

* large orchestras may load faster due to less different identifi-
er names

* index overflow errors (i.e. when messages like this Case2:
indx=-56004 (ffff253c); (short)indx = 9532 (253c) are prin-
ted and odd behavior or a Csound crash occurs) may be
fixed, because such errors are triggered by too many differ-
ent (especially a-rate) variable names in a single instrument.

Note that this optimization (due to technical reasons) is not per-
formed on i-rate temporary variables.

. Warning

When --expression-opt isturned on, it is not allowed
to use the i() function with an expression argument,
and relying on the value of k-rate expressions at i-
time is unsafe.

Exits after printing version information.

PObtain the machine's sample rate.

Display on-line help message.

Givesalist of available audio devices and then exits.

i-time only. Allocate and initialize al instruments as per the score,
but skip all p-time processing (no k-signals or a-signals, and thus

27

The Csound Command

-+ignore_csopts=integer

--ksmps=N

-+max_str_len=integer

-N, --notify
--no-default-paths
--no-expression-opt

-O FILE, --logfile=FILE

--opcode-lib=LIBNAME

--0rc orchame

--syntax-check-only

-t0, --keep-sorted-score

-U UTILITY, --utility=UTILITY

-X FILE, --extract-score=FILE

no amplitudes and no sound). Provides a fast validity check of the
score pfields and orchestra i-variables. This option is exclusive of
the --syntax-check-only flag.

If set to 1, Csound will ignore al options specified in the csd file's
CsOptions section. See Unified File Format for Orchestras and
Scores.

Set ksmps override to N (6.05 and later).

(min: 10, max: 10000) Maximum length of string variables + 1;
defaults to 256 allowing a length of 255 characters. The length of
string constants is not limited by this parameter.

Notify (ring the bell) when score or MIDI track is done.
Disables adding of directory of CSD/ORC/SCO to search paths.
Disables expression optimization.

Log output to file FILE. If FILE is null (i.e. -O null or -
-logfile=null) all printing of messages to the console is disabled.

Note

This option only works from the command line and
not from .csoundérc or a CsOptions section of a csd
file. It needs to be acted upon before sound proper
starts. It isignored in .csoundrc and CsOptions.

Load plugin library LIBNAME.

Set the argument as the orchestra file. Used when not score is re-
quired>. (Csound 5.18 and later).

Causes Csound to exit immediately after the orchestra and score
parsers finish checking the syntax of the input files and before the
orchestra performs the score. This option is exclusive of the -
-i-only flag. (Csound 5.08 and | ater).

Prevents Csound from deleting the sorted score file, score.srt,
upon exit.

Invoke the utility program UTILITY. Use any invalid name to list
the available utilities.

Extract a portion of the sorted score, score.srit, using the extract
file FILE (see Extract).

Csound Environment Variables

The following environment variables can be used by Csound:

» SFDIR: Default directory for sound files. Used if no full path is given for sound files.

» SSDIR: Default directory for input (source) audio and MIDI files. Used if no full path is given for

28

The Csound Command

sound files. May be used in conjunction with SFDIR to set separate input and output directories.
Please note that MIDI files as well as audio files are also sought inside SSDIR.

SADIR: Default directory for analysisfiles. Used if no full path is given for analysisfiles.

SFOUTYP: Sets the default output file type. Currently only 'WAV', 'AIFF and 'IRCAM" are valid.
Thisflag is checked by the csound executable and the utilities and is used if no file output type is spe-
cified.

INCDIR: Include directory. Specifiesthe location of files used by #include statements.

OPCODES6DIR: Defines the location of csound opcode plugins for the single precision float (32-bit)
version.

OPCODES6DIR64: Defines the location of csound opcode plugins for the double precision float
(64-bit) version.

SNAPDIR: Is used by the FLTK widget opcodes when loading and saving snapshots.

CSOUNDRC: Defines the csound resource (or configuration) file. A full path and filename containing
csound flags must be specified. This variable defaults to .csoundrc if not present.

CSSTRNGS: In Csound 5.00 and later versions, the localisation of messages is controlled by two en-
vironment variables CSSTRNGS and CS_LANG, both of which are optional. CSSTRNGS pointsto a
directory containing .xmg files.

CS LANG: Selects alanguage for csound messages.

RAWWAVE _PATH: Isused by the STK opcodes to find the raw wave files. Only relevant if you are
using STK wrapper opcodes like STKBowed or STKBrass.

CSNOSTORP: If this environment variable is set to "yes', then any graph displays are closed automat-
icaly at the end of performance (meaning that you possibly will not see much of them in the case of a
short non-realtime render). Otherwise, you need to click "Quit" in the FLTK display window to exit,
alowing for viewing the graphs even after the end of score is reached.

MFDIR: Default directory for MIDI files. Used if no full path is given for MIDI files. Please note that
MIDI filesare sought in SSDIR and SFDIR as well.

CS OMIT_LIBS: Allows defining a list of plugin libraries that should be skipped. Libraries can be
separated with commas, and don't require the "lib" prefix.

For more information about SFDIR, SSDIR, SADIR, MFDIR and INCDIR see Directories and files.

The only mandatory environment variables are OPCODEGDIR and OPCODEG6DIR64. It is very import-

ant to set them correctly, otherwise most of the opcodes will not be available. Make sure you set the path
correctly depending on the precision of your binary. if you run csound on a command line without any
arguments you should see some text like : Csound version 6.03.1 (double samples) May 10 2014. This

text refersto the double precision version.

CSSTRNGS and CS_LANG currently have very limited use since Csound has not yet been completely

trandlated into other languages.

Other environment variables which are not exclusive to Csound but which might be of importance are:

» PATH: Thedirectory containing csound executables should be listed in this variable.

* PYTHONPATH: If you intend to use CsoundVST and python, the directory containing the

29

The Csound Command

_CsoundV ST shared library and the CsoundV ST .py file must be in your PYTHONPATH environment
variable (or the default path python searches in), so that the Python runtime knows how to load these
files.

» LADSPA PATH and DSS_PATH: These environment variables are required if you are using the
dssi4cs (LADSPA and DSSI host) plug-in opcodes.

* CDOCDIR: Specifies the directory where the html help files are located. Though not used by
Csound directly, this environment variable can help front-ends and editors (which implement it) to
find the csound manual.

Setting environment variables

On the command line

You can set environment variables on the command line or the configuration file .csoundrc by using the
command line flag --env:NAME=VALUE or --env:.NAME+=VALUE, where NAME is the environ-
ment variable name, and VALUE isits value. See Command-line Flags

Note

Please note that this method of setting environment variables will not work for variables
which are parsed before the command line arguments. SADIR, SSDIR, SFDIR, INCDIR,
SNAPDIR, RAWWAVE_PATH, CSNOSTOP, SFOUTY P should work, but the following
environment variables must be set on the system prior to running csound: OPCODEGDIR,
OPCODE6DIR64, CSSTRINGS, and CS_LANG. CSOUNDRC can currently (v. 5.02) be
set using --env, but this behavior is not guaranteed for future versions.

Windows

Linux

Mac

To set a csound environment on Windows XP and 2000 go to Control Panel->System->Advanced and
click on the button 'Environment Variables. On other versions of Windows earlier than Windows XP
and Windows 2000 you set environment variables in the autoexec.bat file. Go to 'My Computer', select
C: drive, right click on autoexec.bat, and select 'Edit'. The statement format is: SET NAME=VALUE .

You can set environment variables on Linux in many ways. You can set them using the export shell
command, by setting them on .bashrc or similar files or by adding them to the /etc/profile file.

~$ export OPCODE6DI R64=/ User s/ you/ your/ Csound6é/ bui | d

in addition if the bash shell isthe default, then it is usually easier to edit your .bashrc or /etc/profile.

Note that if users choose one of the above methods, ie editing the .bashrc file then the environment vari-
ables are executed when anew shell is created. This can be problematic if your application implements a
Quartz or Aquainterface and does not use the commandline.

If thisisthe case, then the standard solution (up to OS 10.3.9 and unless the application uses the csound-
API and sets the environ variables directly) is to create an XML property list file (called a .plist file by
the OS). This file should nominally be located at ~/.MacOSX/Environment.plist. This has been a solu-
tion specifically for the [csoundapi~] object for Pd on OS X. Since Pd uses an OS X native .app style

30

The Csound Command

packaging, and runs off of the Aqua interface, the standard means of supplying environment variables to
Csound do not work. The solution isto set Csound's environment variables for the Aqua environment.

Likely, most users will not have the hidden folder .MacOSX located in their SHOME directory (aka ~/)
This folder must first be created and the Environment.plist added to this folder. The contents of the En-
vironment.plist file should be something like:

<?xm version="1.0" encodi ng=" UTF- 8" ?>

<! DOCTYPE plist PUBLIC "-//Apple Conputer//DTD PLIST 1.0//EN'
"http://ww. appl e. com DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct >

<key>OPCODEDI R</ key>

<string>/Li brary/ Framewor ks/ CsoundLi b. f ramewor k/ Ver si ons/ 5. 1/ Resour ces/ Opcodes</ stri ng>

<key>OPCODEDI R64</ key>

<string>/ Vol unes/ Ext er nal HDY devel / csound5/ | i b64</string>

<key>| NCDI R</ key>

<string>/ Vol umes/ Ext er nal HOY CSOUNDY i ncl ude</ stri ng>

<key>SFDI R</ key>

<string>/ Vol unes/ Ext er nal HOY i Tunes/ csoundaudi o</ stri ng>

</dict>

</plist>

and so on, using the XML <key> tag for each environment variable required by the API and the <string>
tag for it's corresponding path on the system.

Please note that you must login out and login in for these changes to take effect.

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as
well as command line flags, to be combined in one file. The file has the extension .csd. This format was
originally introduced by Michagl Goginsin AXCsound.

Thefileisastructured datafile which uses markup language, similar to any SGML such asHTML. Start
tags (<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text
file.

Structured Data File Format

Mandatory Elements

The first tag in the file must be the start tag <CsoundSynthesizer>. The last tag in the file must be the
end tag </CsoundSynthesizer>. This element is used to alert the csound compiler to the .csd format. All
text before the start tag and after the end tag is ignored by Csound. The tag may also be spelled
<CsoundSynthesiser>.

Options (<CsOptions>)

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Orchestra (<CsInstruments>)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax
in this section are identical to the Csound orchestra file, and have the same requirements, including the

31

The Csound Command

header statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < Cslnstruments>
and the end tag </Cslnstruments>.

Score (<CsScore>)

Csound score statements are put in the Score Element. The statements and syntax in this section are
identical to the Csound score file, and have the same requirements. The Score Element is delimited by
the start tag <CsScore> and the end tag </CsScore>.

As an adternative Csound score statements can also be generated by an external program using the
CsScore scheme with an attribute bin. The lines upto the closing tag </CsScore> are copied to afile and
the external program named is called with that file name and the destination score file. The external pro-
gram should create a standard Csound score.

Optional Elements

Included Base64 Files (<CsFileB>)

Base64-encoded files may be included with the tag <CsFileB filename=filename>, where filename is
the name of the file to be included. The Base64-encoded data should be terminated with a </CsFileB>
tag. For encoding files, the csh64enc and makecsd utilities (included with Csound 5.00 and newer) can
be used. The file will be extracted to the current directory, and deleted at end of performance. If thereis
an aready existing file with the same name, it is not overwritten, but an error will occur instead.

Base64-encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where file-
name is the name of the file containing the MIDI information. There is no matching end tag. This was
added in Csound version 4.07. Note: using thistag is not recommended; use <CsFileB> instead.

Base64-encoded sample files may be included with the tag < CsSampleB filename=filename>, where fi-

lename is the name of the file containing the sample. There is ho matching end tag. This was added in
Csound version 4.07. Note: using this tag is not recommended; use <CsFileB> instead.

Included Unencoded Files (<CsFile>)

Unencoded files may be included with the tag < CsFile filename=filename>, where filename is the name
of the file to be included. The data should be terminated with a </CsFile> tag alone on aline. The file
will be extracted to the current directory, and deleted at end of performance. If there is an already exist-
ing file with the same name, it is not overwritten, but an error will occur instead.

Version Blocking (<CsVersion>)

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #. #

or

After #. #

where #.# is the requested Csound version number. The second statement may be written simply as.

#.#

32

The Csound Command

This was added in Csound version 4.09.

Licence Information (<CsLicence> or <CsLicense>)
Licencing details can be included in between the start tag <CsLicence> and the end tag </CsLicence>.

Thereis no format for thisinformation, any text is acceptable. This text will be printed by Csound to the
console when the CSD is run.

Licence Information (<CsShortLicence> or <CsShortLicense>)

From version 6.05 licencing details can be also included in between the start tag <CsShortLicence> and
the end tag </CsShortLicence>. This offers seven well-known licences, coded as as an integer.

o

: "All rights reserved" (default)

1: "Creative Commons Attribution-NonCommercia-NoDerivatives (CC BY-NC-ND)"
2: "Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)"

3: "Creative Commons Attribution-NonCommercial (CC BY-NC)"

4: "Creative Commons Attribution-NoDerivatives (CC BY-ND)"

5: "Creative Commons Attribution-ShareAlike (CC BY-SA)"

6: "Creative Commons Attribution-ShareAlike (CC BY)"

7: "Licenced under BSD"

Embedded HTML (<html>)

Any valid HTML code can be embedded in the CSD file. This code should be structured exactly like an
ordinary Web page. This code can contain any valid HTML, JavaScript, Cascading Style Shest,
WebGL, etc., etc. code.

In some Csound front ends and programming environments, including at least CsoundQt or Csound for
Android, this page will be parsed, executed, and displayed by a Web browser embedded in the environ-
ment. JavaScript code in this page will have accessto aglobal csound object that implements the follow-
ing functions, which are a selected subset of the Csound API. The names, data types, and uses of these
functions are exactly the same as detailed in the Csound API Reference Manual.

[int] getVersion ();

conpi l eOrc (orchestra_text);

[doubl e] eval Code (orchestra_expression);
readScore (score_text);

set Control Channel (channel _nane, nuneric_val ue);
[doubl e] get Control Channel (channel _nane);
message (message_string);

[int] getSr ();

[int] getKsnps ();

[int] getNchnls ();

/1 Not a part of the Csound APl -- called by the environnent to detect whether Csound is running.
[int] isPlaying ();

The HTML element of the CSD file can be used to create custom user interfaces for the piece, to gener-
ate score events and even orchestra code using JavaSscript, to store presets for widgets, and for many
other purposes. The GameOfLife3D.csd [examples/GameOfLife3D.csd] and LindenmayerCanvas.csd
[examples/LindenmayerCanvas.csd] examples demonstrate these uses (tested in CsoundQt; running
these examples requires additional resources found in the Csound examples directory in GIT).

Example

Below is asample file, test.csd, which renders a.wav file at 44.1 kHz sample rate containing one second
of a 1 kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and

33

examples/GameOfLife3D.csd
examples/GameOfLife3D.csd
examples/LindenmayerCanvas.csd
examples/LindenmayerCanvas.csd

The Csound Command

tone.sco, with the addition of command line flags.

<CsoundSynt hesi zer >
; test.csd - a Csound structured data file

<CsOpti ons>
-W-d -0 tone.wav

</ CsOpti ons>

<CsVer si on> ; optional section
Before 4.10 ; these two statenents check for
After 4.08 ; Csound version 4.09

</ CsVer si on>

<Csl nst rument s>
originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 1
al oscil p4, p5, 1 ; sinple oscillator
out al
endin
</ Csl nst runent s>

<CsScor e>
; originally tone.sco
f1 0 8192 10 1
il 0 1 20000 1000 ; play one second of one kHz tone
e
</ CsScor e>

</ CsoundSynt hesi zer >

Command Line Parameter File (.csoundrc)

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden.
Csound 5.00 and newer versions read this file from the HOME directory first (or the full path file name
defined by the CSOUNDRC environment variable), and then the current directory. If both exist, options
in the .csoundrc in the current directory will have higher precedence. It uses the same form as a.csd file,
but no tags are needed. Lines beginning with # or ; are treated as comments.

A .csoundrc file can contain something like this:

-+rtaudio=portaudio -odac2 -iadc2 -+rtmidi=winmme -M1 -Q1 -m0

In this case, csound will generate real-time output and take reatime input from device 2, using the
portaudio driver interface. It will input and output realtime MIDI on interface 1. It will print very few
messages (-m0). These options will be used by default when other options are not given inside the
<CsOptions> of the .csd file or the command line (See Order of precendence).

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

34

The Csound Command

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated asi, f and t. The time points denote the beginning and end of
the extract in terms of

[section no.] : [beat no.].

Each of the three parts of the argument is optional. The default values for missing i, f or t are:

al | instruments, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance
(it exists as soon as score preprocessing has completed), the user may sometimes want to run these
phases independently. The command

scot fil enane

will process the Scot formatted filename, and leave a standard numeric score result in afile named score
for perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in out-
file.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an aready sorted score. An unsorted score should first be sent through Scsort
then piped to the extract program:

scsort < scorefile | extract xfile > score.extract

35

Using Csound

Csound can be operated in a variety of modes and configurations. The original method for
running Csound was as a console program (DOS prompt for Windows, Terminal for Mac
OS X). This, of course, still works. Running csound without any arguments prints out a list
of command-line options, which are more fully explained in the Command Line Flags (by
Category) section. Normally, the user executes something like:

csound nyfile.csd
or separate orchestra (orc) and score (sco) files can be used:
csound mnyorchestra. orc nmyscore.sco

Y ou can find many .csd files in the examples folder. Most opcode entries in this manual also
include smple .csd files showing the usage of the opcode.

There are also many Front-Ends which can be used to run csound. A Front-End is agraphic-
al program that eases the process of running csound, and sometimes provides editing and
composing functions.

Csound also has several ways of producing output. It can:

» Read and write soundfiles (off-line rendering) - Using the -0 and -i flags specifying an
output filename.

» Read and write digital audio using a sound card (real-time rendering) - Using the -odac
and -iadc flags

* Read and write MIDI files (non-realtime) - Using the -F and --midioutfile flags.

» Read and write MIDI using aMIDI interface and controller (real-time control) - Using the
-M and -Q flags.

Csound's Console Output

When Csound runs, it prints atext output to the console, which shows data about the Csound
run. A Console output looks something like this:

time resolution is 0.455 ns
PortMDI real time MDl plugin for Csound
virtual _keyboard real time MD plugin for Csound
Port Audi o real -tine audi o nodul e for Csound
0dBFS | evel = 32768.0
Csound version 5.10 beta (float sanples) Apr 19 2009
libsndfile-1.0.17
Readi ng options from $HOVE/ . csoundrc
Uni fiedCSD: oscil.csd
STARTI NG FI LE
Creating options
Creating orchestra
Creating score
orchnane: /tnp/ csound- XYACV6. or ¢
scorenane: /tnp/csound-1YtLAJ. sco
rtaudi o: ALSA nodul e enabl ed
rtmdi: PortM DI nodul e enabl ed
orch conpiler
17 lines read

instr 1
El apsed tine at end of orchestra conpile: real: 0.129s, CPU. 0.020s
sorting scorg ..

. done

36

How

Using Csound

El apsed tine at end of score sort: real: 0.130s, CPU. 0.020s
Csound version 5.10 beta (float sanples) Apr 19 2009

di spl ays suppressed

0dBFS | evel = 32768.0

orch now | oaded

audi o buffered in 256 sanpl e-frame bl ocks

ALSA input: total buffer size: 1024, period size: 256
readi ng 1024-byte bl ks of shorts from adc (RAW

ALSA output: total buffer size: 1024, period size: 256
writing 1024-byte bl ks of shorts to dac

SECTION 1

ftable 1

new alloc for instr 1

B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Score finished in csoundPerforn()

inactive allocs returned to freespace

end of score. overall anps: 10000.0 10000.0
overal |l sanples out of range: 0 0

0 errors in performance

El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

345 1024-byte soundbl ks of shorts witten to dac

Renmovi ng tenmporary file /tnp/csound- CoVcrm srt

Renoving tenporary file /tnp/csound-1YtLAJ.sco ...

Renoving tenporary file /tnp/csound-XYACV6.orc ...

The console output of Csound is quite verbose, particularly before the actual performance (like version,
plugins loaded, etc.). Performance actually started when the console printed:

SECTI ON 1:
In this particular run, the lines:

new alloc for instr 1
B 0.000 .. 2.000 T 2.000 TT 2.000 M 10000.0 10000.0

Show that a single note for instrument 1, that lasted 2 seconds starting at time 0.000, was produced with
an amplitude of 10000 for both channel 1 and 2. An important section of the console output is:

end of score. overall anps: 10000.0 10000.0
overall sanples out of range: 0 0

Which shows the overall amplitude and the number of samples which were clipped because they were
out of range.

Theline:
El apsed time at end of performance: real: 2.341s, CPU:. 0.050s

Shows the clock time and the CPU time it takes for the processor to complete the task. If CPU time is
lower than clock time it means the csd can run in realtime (unless it has some sections which are ex-
tremely CPU intensive). The "real time" figure is the total running time and it is larger because it
acounts for disk access. module loading, etc. (CPU time is strictly number-crunching time). If you have
a sound that lasts for 100s and it takes 5s to generate it offline, it means that you are taking around 5%
of CPU, and that it runs on 0.05 of realtime.

Csound works

Csound processes and generates output using "unit generators" (ugens) called opcodes. These opcodes
are used to define instruments in the orchestra. When you run Csound, the engine loads the base Op-
codes, and the opcodes contained in separate |oadable "opcode libraries’ . It then interprets the orchestra
(through the orchestra reader). The engine sets up an instrument processing chain, which then receives
events from the score or in real-time. The processing chain uses the input/output modules to generate
output. There are modules that can write to file, or generate real-time audio output.

37

Using Csound

[Orchestra reader]

[Input/Output] N : J
" S SO
External libraries

*i Engine] ~Base upcudes]

L T -
=]_| Y Messages |

i

Loadble Ilbraries]dl'

o

The Csound Modular structure.

Csound's processing buffers

Csound processes audio in sample blocks called buffers. There are three separate buffer layers:

1. spout = Csound's innermost software buffer, contains ksmps sample frames. Csound processes real-
time control events once every ksmps sample frames.

2. -b = Csound's intermediate software buffer (the "software" buffer), in sample frames. Should be (but
does not need to be) an integral multiple of ksmps (can equal ksmps too). Once per ksmps sample
frames, Csound copies spout to the -b buffer. Once per -b sample frames, Csound copies the -b buffer
to the -B "hardware” buffer.

3. -B = The sound card's interna buffer (the "hardware" buffer), in sample frames. Should be (and may
need to be) an integral multiple of -b. If Csound misses delivering a -b one time, the extra -b sample
framesin -b are still there for the sound card to keep playing while Csound catches up. But they can
be the same size if you're willing to bet Csound can always keep up with the sound card.

Amplitude values in Csound

Amplitude values in Csound are always relative to a "0dbfs"' value representing the peak available amp-
litude before clipping, in either an AD/DA codec, or in a soundfile with a defined range (which both
WAVE and AIFF are). In the origina Csound, this value was always 32767, corresponding to the bi-
polar range of a 16bit soundfile or 16bit AD/DA codec, Csound's only possible output back then. This
remains the default peak amplitude for Csound, for backward compatibility and you will find some of
this manual's examples still use this value (hence you find large amplitude values like 10000).

The 0dbfs value enables Csound to produce appropriately scaled values to whatever output format is be-
ing used, whether 24bit integer, 32bit floats, or even 32bit integers. Put another way, the literal amp-

38

Using Csound

litude values you write in a Csound instrument only match those written literally to the file if the Odbfs
value in Csound corresponds exactly to that of the output sample format. The consequence of this ap-
proach is that you can write a piece with a certain amplitude and have it render correctly and identically
(setting aside of course the better dynamic range of the high-res formats) whether written to an integer
or floats file, or rendered in real-time.

Note

The one exception to thisis if you choose to write to a "raw" (headerless) file format. In
such cases the internal Odbfs value is meaningless, and whatever values you use are written
unmodified. This does enable arbitrary data to be generated or processed by Csound. Itisa
relatively exotic thing to do, but some users need it.

Y ou can choose to redefine the Odbfs value in the orchestra header, purely for your own convenience or
preference. Many people will choose 1.0 (the standard for SAOL, other software like Pure Data, and for
many plugin standards such as VST, LADSPA, CoreAudio AudioUnits, etc), but any valueis possible.

The common factor in defining amplitudes is the decibel (dB) scale, with OdBFS always understood as
digital peak; hence "0dbfs' means "0dB Full-Scale value". This measure is different to actual amplitude
values, since amplitude values are a linear scale which show the actual oscillation around 0, so they can
be positive or negative. Decibel values are an absolute logarithmic scale, but can be useful for most op-
codes as well. You can convert amplitude to and from decibels using the ampdb,ampdbfs, dbamp and
dbfsamp functions. This way, Csound enables the programmer to express al amplitudes in dB - lower
amplitudes will then be represented by negative dB values. This reflects industry practice (e.g. in level
meters in mixers, etc).

For example the same dB level of -6dB (half the amplitude) or -20dB are actually a different linear amp-
litude according to Odbfs like this:

Table 2. dBFSin relation to amplitude

dB_, 0dbfs = 32767 (default) [Odbfs= 1 0dbfs = 1000 (unusual)
0dB 32767 1 1000

-6dB 16384 05 500

-20dB 3276.7 0.1 100

Some Csound users might therefore be minded to express all levelsin dB_., and obviate any confusion
or ambiguity of level that may otherwise arise when using explicit amplitude values. The decibel scale
reflects the response of the ear pretty closely, and that when you want to express a really quiet level, it
might be easier and more expressive to write "-46dB" than "0.005" or "163.8".

The reason for using Odbfs is very ssimple: digital peak equates to maximum level regardless of sample
resolution. If you then define asignal at -110dB you will lose it if rendering to a 16bit file, but retain it
(audibly or not) if rendering to 24bit or better. In other words, there is a fixed ceiling, but a moveable
floor - you can define sounds as quietly as you like (e.g. envelope tails), in a predictable way,and pre-
serve them or not (without changing the orch code at all), depending on the resolution (file or audio i/0)
you render to.

A note on digital amplitude, decibels and dynamic range

A convenient aproximation of dynamic range for a certain digital precision isto calculate
the decibel interval between the minimum value and the maximum value for a sample. As
arule of thumb, 1 bit (doubling of level) is 6dB, so 16bits = 96dB.

39

Using Csound

This is not entirely accurate since audio sample values are represented on a bipolar scale
with positive and negative values, and 1 bit is used for the sign. Therefore, for 16bit integer
samples actually use 1 bit for the sign and 15 hits for the values, so the actual dynamic
range is 90dB.

Real-Time Audio

The following information applies mostly to csound being run directly from the command line. Front-
ends implement these featuresin different ways, but knowledge of them is necessary in some of them.

The -i and -o flags can are used to specify realtime output instead of the ordinary non-realtime file out-
put. You should use - o dac for reatime output and -i adc for realtime input. Naturally, you can use
either one or both if your hardware supports it. You can also specify the hardware you want to use by
appending a device number or name to the flag (See -i and -0).

Y ou might also need to use the -+rtaudio flag to specify the driver interface to be used. Csound defaults
to using Portaudio, which is cross-plaform and reliable, but for better performance, you might need to
use ALSA or JACK on linux, and CoreAudio on Mac. You can use ASIO on Windows if your version
of Portaudio has been compiled with ASIO support.

You can see alist of available devices by giving a device number which is out of range, for instance - o
dac99. Thiswill also reveal if you have ASIO available if you are using PortAudio.

Period & Buffer Sizes

Period and buffer sizes will vary greatly from one machine to another. Lower buffer sizes will result in
lower latency, but might cause breakups or clicks in the audio. The Csound flags which control period
and buffer sizes are -b and -B, respectively. Buffer size is hardware dependant, and some experimenta-
tion may be necessary to find the optimal balance between low latency performance and uninterrupted
audio output. The values given to -b and -B should be powers of two, and the value of -B should be at
least one power of two higher than that of -b.

Currently, with - B set to 512, audio output latency is about 12 milliseconds, fast enough for reasonably
responsive keyboad playing. Even shorter latencies, are feasible on some systems.

Control Rate

Low values for ksmps will in general give a higher quality of synthesis, but will consume more system
resources. There is no hard and fast rule for setting ksmps - different orchestras will require different
control rates. A waveguide instrument will need a ksmps of 1 (and may not be suitable for realtime use),
whereas a simple FM synth may be run with a higher ksmps without noticeable degradation of sound. If
the FM synth were to be used to play a monophonic bassline, a very low ksmps may be used, however
more complex note clusters will require a higher ksmps. A well-tuned Linux system should be capable
of running even complex polyphonic synths with ksmps values as low as 4 or 8. If full duplex audio is
required, -b must be an integer multiple of ksmps. Bearing thisin mind, arule of thumb might be to only
use powers of two for ksmps.

Some settings differ according to platform. See further below for information for each platform.

Realtime I/O on LinuXx

Under Linux, the default portaudio/portmidi settings will result in higher latency than that which can be
achieved using ALSA and/or JACK (see a separate manual section on this). The portaudio/portmidi plu-

40

Using Csound

gins are audio and MIDI servers, which provide an interface to the ALSA drivers, in a manner which is
in some respects similar but fundamentally different from that provided by JACK.

Using ALSA

The highest level of control and the lowest possible level of latency are to be achieved using the ALSA
plugins in combination with the --sched flag. Using --sched requires that Csound be run as the root user,
which may be impossible or undesirable in some circumstances.

The ALSA plugins require the "name" of a"card" and a "device". Unless you have named your "cards"
in ~/.asoundrc (or /etc/asound.conf), the "names" will actually be numbers. In order to obtain alist of the
possible configurations, use the command line utilities "aplay", "arecord" and "amidi". These utilities are
included with most Linux distros, or can be downloaded and built from source here:

ftp://ftp.alsa-project.org/pub/utils/
Note

On every boot, the soundcard may have a different hardware order number, especially
when there are more soundcards in the system. This can be awkward as every time you
have to set the right number again. You can assign a fixed order by adding some linesto /
etc/modprobe.d/al sa-base-conf, for example for a card with theicel712 chip :

ALSA module ordering for soundcard
options snd dots=snd icel712

Audio Output

Running the following command:
apl ay -

will give you alist of the audio playback devices available on your system. Typically this list will look
something like:

[...]
****x | ist of PLAYBACK Hardware Devices ****
card 0: A5451 [ALI 5451], device 0: ALI 5451 [ALI 5451]

[..]

If you have more than one card on your system, or if there is more than one device on your card, the list
will of course be more complicated, however in all cases the information that is pertinent is the number/
name of the card/device. In order to use the above soundcard for audio output, the following flag would
be added to the Csound command line, ~/.csoundrc, or the <CsOptions>section of a CSD:

-+rtaudi o=al sa -0 dac

Output with dmix

If you would like to use Csound with dmix and your soundcard does not support hardware mixing of au-

41

ftp://ftp.alsa-project.org/pub/utils/

Using Csound

dio streams, special care is needed in setting up of software (-b) and hardware (-B) buffers. If you get a
message from Csound's ALSA driver that looks like the following:

ALSA: -B 8192 not allowed on this device; use 7526 instead

there is a good chance that you may be using dmix. If you are using dmix, the -b and -B settings of
Csound must be synced the period_size and buffer_size of dmix respectively, using aratio of the sr for
the Csound project to the sample rate that dmix is set up to. The following formula will determine what
settings to use for Csound given the settings of dmix:

(csound_sr/dm x_sanpl e_rate) * dm x_peri od_size
(csound_sr/dmi x_sanple_rate) * dm x_buffer_size

-b
-B

For example, if dmix is set to 48000 sample rate, aperiod_size of 1024, and a buffer_size of 8192, when
running a Csound project with sr=48000, the settings for buffers should be "-b 1024 -B8192". If the
sr=24000, the settings for buffers should be "-b 512 -B4096".

Because of this relationship, if a Csound project's sr does not evenly divide into the sample_rate used by
dmix, then it may be difficult if not imposible to set the correct setting for -b and -B due to rounding er-
rors. It is suggested then that if you are using sample rates different than what your setting is for dmix,
then you may want to configure dmix to have a period_size and buffer_size that can be evenly divided
by the ratio between the csound sr and dmix sample_rate. For example, to run a project with sr=16000,
the following dmix setting:

pcm am x {

type dm x

i pc_key 50557

sl ave {
pcm "hw 0, O"
period_time O
#peri od_si ze 1024
#buf fer _si ze 8192
period_size 1536
buffer_size 12288

route ALSA software through pcm am x
pcm !default {

type plug
sl ave. pcm "am x"

with period_size 1536 and buffer_size 12288 will divide nicely by 3 (the ratio of the csound sr to the
dmix sample rate) to get "-b 512 -B4096" ((16000/48000) * 1536 = 512, (16000/48000) * 12288 =
4096).

Note

For most soundcards that this affects, the default sample rate for the card will be 48000 and
the defaults for dmix will be 1024 and 8192.

Audio Input

Typically the same card will be used for both input and output, so to continue using the foregoing ex-
ample, theflag:

42

MIDI

Using Csound

-i adc:hw 0,0

would be added for audio input from Card 0 Device 0. To use the default card employ one of the follow-
ing flags, with the forementioned warning that this will not necessarily work:

-i adc

If you wish to use a different card or device for input, running the following utility from the command
line will provide alist of input devices:

arecord -1

If, by way of an example, you wanted to use a USB audio interface, which is the second "card" in your
system, for output, but wanted to use your internal soundcard, the first card in your setup, for input, you
would put the following flags somewhere useful:

-+rtaudi o=al sa -i adc:hw. 0,0 -0 dac:hw 1,0

If you wanted to use the second device on your USB interface, to send audio to a specific channel, for
instance, you would use the following flags:

-+rtaudio=alsa -i adc:hw. 0,0 -0 dac:hw 1,1

2 Midi drivers are available:

* Raw Midi.

» Alsa Sequencer (since version 5.18).

MIDI Input (Raw Midi driver)

In order to enable your orchestra to receive MIDI input you can use VirMIDI or MIDIThru, whichever
you prefer. Setting up these virtual MIDI ports is a topic that has been covered extensively elsewhere,
see The Linux MIDI how-to [http://www.midi-howto.com/] or browse your distro's documentation or
the ALSA documentation for instructions on how to install and configure either VirMIDI or MIDIThru
(segdummy). Once you have done so run:

amdi -|

for alist of available devices. Typically thiswill look something like the following:

[..]

Device Name

hw:1,0 Virtual Raw MIDI (16 subdevices)
hw:1,1 Virtual Raw MIDI (16 subdevices)
hw:1,2 Virtual Raw MIDI (16 subdevices)

43

http://www.midi-howto.com/
http://www.midi-howto.com/

Using Csound

hw:1,3 Virtual Raw MIDI (16 subdevices)
hw:2,0,0 PCR MIDI
hw:2,0,1 PCR 1

In this example, Csound can connect to any of the four available Virtual Raw MIDI ports, where it will
listen for MIDI input. The following flag instructs Csound to listen on the first of these ports:

-+rtmdi=alsa -Mw 1,0

You will then need to connect your hardware or software controller to the port which is hosting your
Csound synthesizer. The simplest way to do thisis using the "aconnect" utility. Run:

aconnect -1li

for alist of available input devices, and:

aconnect -lo

for alist of available output devices (including the port to which Csound has been connected). These
should give something like the following:

#aconnect -li

client O: 'System' [type=kernel]
0 'Timer '
1'Announce

Connecting To: 15:0

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'VirMIDI 1-0 '

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirMIDI 1-1 '

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'VirMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'VirMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '
2'PCR2 '

#aconnect -lo

client 20: 'Virtual Raw MIDI 1-0' [type=kernel]
0'virMIDI 1-0

client 21: 'Virtual Raw MIDI 1-1' [type=kernel]
0'VirmiDI 1-1

client 22: 'Virtual Raw MIDI 1-2' [type=kernel]
0'virMIDI 1-2 '

client 23: 'Virtual Raw MIDI 1-3' [type=kernel]
0'virMIDI 1-3 '

client 24: 'PCR' [type=kernel]
0'PCR MIDI '
1'PCR1 '

Using Csound

In the following example, the USB keyboard which is listed above as client 24 will be connected to a
Csound synthesizer which is listening on the first VirMIDI port. The keyboard has three output ports.
The first (24:0) transmits messages received on the MIDI in port, the second (24:1) transmits keyboard
and controller messages, and the third (24:2) transmits system exclusive messages. The following com-
mand connects the second port of the keyboard to the Csound synthesizer:

aconnect 24:1 20:0

Remember that Csound acts asaraw MIDI device and is not an ALSA sequencer client. This means that
Csound will not appear in MIDI device listings and will not be available for use directly with aconnect,
S0 you must connect to a virtual device (like 'virtual raw MIDI' or 'MIDI through’) for persistent connec-
tions, or conect directly to the destination using command line flags.

MIDI Output (Raw Midi driver)

Csound can be connected to any device which shows up on the ALSA sequencer list of output ports, ob-
tained by "amidi -I" as above. In order to connect a Csound synthesizer to the MIDI out port of the key-
board listed above, the following flag would be used:

-Chw. 2, 0,0

MIDI Input and Output (Midi Sequencer driver)

Thisdriver isto be preferred over the Raw Midi driver. It has these advantages:

» Multiple concurrent access.
* Scheduled by priority queues.

» Real-time event dispatching i.e., the role of the Midi Sequencer is to deliver events at the right time
(sequence) to the right destination (device).

The following command will call the Midi Sequencer. Here it listens to midi port 20. The midi output
port is also 20:

-+rtm di =al saseq - M20 - Q0

Csound will automatically create its own ALSA sequencer port. For alist of available devices, use the
following command:

aconnect -i -0

Thiswill create output that will ook something like the following:

client O: 'System' [type=kerndl]
0 Timer '
1'Announce

client 14: 'Midi Through' [type=kernel]
0'Midi Through Port-0'

client 20: ‘M Audio Delta 1010’ [type=kernel]
0'M Audio Delta 1010 MIDI'

client 130: 'Csound' [type=user]

45

Using Csound

0 'Csound

The output of Csound will contain lineslike:

ALSASEQ: opened MIDI output sequencer
ALSASEQ: created output port 'Csound' 130:0
ALSASEQ: connected to 20:0

ALSASEQ: opened MIDI input sequencer
ALSASEQ: created input port ‘Csound' 130:0
ALSASEQ: connected from 20:0

Scheduling

If you are able to run Csound as the root user, using the "--sched" flag will dramatically improve real-
time performance, when using ALSA, however you may hang your system if you do something stupid.
DO NOT use "--sched" if you are using JACK for audio output. JACK controls scheduling for the audio
applications connected to it, and also tries to run at the highest possible priority. If the "--sched” flag is
used, Csound and JACK will be competing rather than cooperating, resulting in extremely poor perform-
ance.

Using Pulseaudio

Support for Pulseaudio [http://www.pulseaudio.org/] was added in Csound 5.09. You can specify the
following settings:

1. Sink names: it's possible to use a number instead of the full name, so -odac:1 would select your
second device (count starts at 0).

2. Server name: it's possible to connect to a specific server by using -+server=<server_string> where
server_string is a name of a server or a more complex server selection string (see pulseaudio.org [ht-
tp://www.pulseaudio.org/] on server strings). This should be network transparent and should allow
connections to remote machines.

3. Stream names:. it is possible to label the streams generated by csound, by using -
+output_stream=<stream-name> and -+input_stream=<stream-name>

Here's an example command line;

csound -odac:1 examples/trapped.csd -+rtaudi o=pul se -+server=unix:/tmp/pul se-victor/native -+output_stream=trapped

Mac OSX

Real-time Audio

OSX users can use either the PortAudio (default),auhal (or coreaudio), or the Jack realtime audio mod-

46

http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/
http://www.pulseaudio.org/

Using Csound

ules. The auhal module is a native OSX module which provides good latency, but it might not work with
some external hardware. The Jack module can be used for interconnecting with other applications, but
you will need to install the JackOSX software in order to use it. To activate a realtime module, you can
use the -+rtaudio flag with value of portaudio, auhal, or jack. The default value is portaudio, which is
activated by default without specifying it.

Y ou also need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -0 dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac?), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and Csound will report an error,
and list available devices. This numbering convention works for portaudio and auhal, but for Jack, you
will need to pass the name of the desired output device after a colon (e.g. -odac:system:playback).

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio in-
puts. Y ou can again select the device by its number (or name), and check for available devices using an
out of range number. Note that for input you use 'adc’ instead of 'dac’. Make sure you have the appropri-
ate input selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on OSX, you can use the -M flag for MIDI input and the -Q flag for MIDI
output. You might need to specify the device number after the flag (e.g. -M2), and again, you can find
the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's al'so a native coremidi module, which
can be activated with the flag:

-+rtmidi=cmidi

The coremidi module corrently only supports MIDI input.

A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=cmidi -M1 -+rtaudio=auhal -odac3 -iadc3

Windows

Real-time Audio

Windows users can use either the default PortAudio Realtime module, or the winmm Realtime Audio
Module. The winmm module is a native windows modul e which provides great stability, but latency will
usualy be too high for realtime interaction. To activate a realtime module, you can use the -+rtaudio
flag with value of portaudio or winmme. The default value is portaudio, which is activated by default
without specifying it.

You aso need to specify the sound device you want to use, and specify that you want to generate real-
time audio ouput instead of soundfile to disk output. To do this, you must use the -odac or -o dac flag,
which tells csound to output to the Digital-to-Analog converters instead of a file. By adding a number
after the flag (e.g. -odac2), you can choose the device number you want. To find out available devicesin
your system, you can use a large out of range number (e.g. -odac99), and csound will report an error,

47

Using Csound

and list available devices.

When choosing the device number under Portaudio, you are also choosing the driver interface, since
Portaudio supports WinMME, DirectX and ASIO. If you have an ASIO capable interface or an ASIO
driver emulator like ASIO4ALL [http://www.asiodall.com], the device will show multiple times, once
for each driver interface. ASIO will give you the best latency on your system, so if available it should be
your choice for realtime audio output.

Enabling realtime audio input is done using -iadc, which makes csound listen to the realtime audio out-
puts. You can again select the device by its number, and check for available devices using an out of
range number. Note that for input you use 'adc’ instead of 'dac’. Make sure you have the appropriate in-
put selected in your soundcard's control panel.

Real-time MIDI

To enable Real-time MIDI on Windows, you can use the -M flag for MIDI input and the -Q flag for
MIDI output. Y ou might need to specify the device number after the flag (e.g. -M2), and again, you can
find the available devices by giving an out of range number.

Csound will use PortMidi as the default MIDI module, but there's also a native winmme module, which
can be activated with the flag:

-+rtmidi=winmme

A typical set of flagsto enable Real-time Audio and MIDI 1/0O can look like:

-+rtmidi=winmme -M 1 -Q1 -+rtaudio=portaudio -odac3 -iadc3

Realtime I/0O with JACK Connection Kit

Under a number of systems the JACK connection kit can be used for both audio and MIDI input/output.
For more details on this, see

http://jackaudio.org/faq
Using JACK
The simplest way to use the JACK plugin enabling input and output is as follows:

-+rtaudi o=jack -i adc -o dac

Additionally, there are some command line options specific to JACK:
JACK Command-line Flags
-+jack_client=[client_name] The client name used by Csound, defaults to 'csound6'. If multiple

instances of Csound connect to the JACK server, different client
names need to be used to avoid name conflicts.

48

http://www.asio4all.com
http://www.asio4all.com
http://jackaudio.org/faq

Using Csound

-+jack_inportname=[input port Name prefix of Csound JACK input/output ports; the default is
name prefix], - ‘input’ and 'output’. The actual port name is the channel number
+jack_outportname=[output port appended to the name prefix. Example: with the above default set-
name prefix] tings, a stereo orchestra will create these portsin full duplex oper-

ation:

csound6: i nput 1 (record left)

csound6: i nput 2 (record right)

csound6: out put 1 (pl ayback left)

csound6: out put 2 (pl ayback right)

Connecting Csound to other JACK clients

By default, connections are made to the first ports on the jack port list (generally these default to system
physical ports).The plugin can connect to ports specified as names or numbers.

As names. the port name prefix is used, eg. "system:playback ", "system:capture ",
"alsa_pcm:playback " or "alsa pcm:capture ". For example: -odac:system:playback (for output), -
iadc:system:capture . The port name prefix excludes channel names.

As numbers: the base port number is given, where the connection is made to this and subsequent ports
up to the number of channels. For a base port number N we will have the connections as N+0, N+1, ...,
N-+nchnls-1. For instance -odac2 with nchnls=1 will connect outputs to ports 2 and 3. Ports are listed as
in other input/output backends.

Note that ports can be prevented from autoconnecting by passing -odac:null and -iadc:null, for output
and input, respectively. Connections can also be made manually using jack connection tools.

Notes on buffer sizes

Audio datais received from and sent to the JACK server by Csound using aring buffer that is controlled
by the -b and -B flags. -B isthe total size of the buffer, while -b is the size of asingle period. These val-
ues are rounded so that the total size is an integer multiple of, and greater than the period size. The dif-
ference of the Csound buffer and period size must be greater than or equal to the JACK period size.

If both -iadc and -odac are used at the same time, the -b option should be set to an integer multiple of ks-
mps.

An example of buffer settings for low latency on afast Linux system:

jackd -d alsa -P -r 48000 -p 64 -n 4 -zt &
csound -+rtaudio=jack -b 64 -B 256 [...]

with real time scheduling (as root):

jackd -R -P 90 -d alsa -P -r 48000 -p 64 -n 2 -zt &
csound --sched=80, 90,10 -d -+rtaudio=jack -b 64 -B 192 [...]

To improve performance, use ksmps values like 32 and 64.
The sample rate of the orchestra must be the same as that of the JACK server.

Jack can aso be used for MIDI 10. For this -+rtmidi=jack is needed. For input -M followed by the re-
guested jack MIDI port name is used to connect directly to an input stream. For output -Q followed by
the jack port name is used. The options -+jack_midi_inportname= and -+jack_midi_outportname= can
be used to rename Csound's MIDI 10O ports.

49

Using Csound

Optimizing Audio I/O Latency

To achieve the lowest latency possible without audio break ups, a combination of variables needs to be
tweaked. The final values will be platform and system dependent, and will also depend on the complex-
ity of the audio calculations performed. You need to adjust ksmps in the orchestra, as well as the soft-
ware (-b) and harware buffer (-B) sizes.

Usually the simplest solution is the following:

1. Set ksmps to a value with a good tradeoff between quality and performance, without adjusting -B at
all.

2. Set -b to anegative power of two of thisvalue.

To get the optimal values, start with something you think is going to be too low, ie -1, and then con-
tinue "upwards", -2, -4 and so on, until you stop getting x-runs (glitches). The real value of -b will be
the absolute value of -b * ksmps.

3. Reduce the hardware buffer (-B). Bring it down from the default (1024 on Linux, 4096 on Mac OS X,
16384 on Windows), halving it each time, until you start to get x-runs (glitches) again. Then take it
back up again until performance is continuous.

This process assumes you have a 16-bit soundcard. If you have a 24-bit soundcard, then -B should be
3/2, or 3 times -b, rather than 2 or 4 times. Csound works with 32-bit floats, or 64-bit doubles whereas
most soundcards are 16 or 24-bit integer. -b is the internal buffer, so it's dealing with the 32 or 64-bit
side of things, whereas -B is the hardware buffer, so it's dealing with the 16 or 24-bit side. The csound
default for floatsis-B = 4 * -b. Thisis a sane value for a 16 bit card. You can usualy get away with -B
= 2* -b, but thisis the absolute minimum. For example, if you set -b1024 -B2048, csound will tell you
that:

audi o buffered in 1024 sanpl e-frame bl ocks
writing 4096-byte blocks to dac

4096 bytesis 32768 bits. 32768/32 = 1024, our sample-frame size, 1024 * 32/16 = 2048, our buffer size.
Were we to reduce the value of -B, we would need to reduce the value of -b by a corresponding amount
in order to continue to write 16-bit integers to dac. The minimum size of -b is (-B * bitrate)/32. That is
to say that the minimum ratio of -b to -B should be:

e 16-bit: 1:2
o 24-hit: 2:3
e 32-bit: 1:1

While there is no theoretical maximum ratio, it makes no sense to have a very high ratio here, as the
software buffer has to fill the hardware buffer before returning. If the ratio is high, it will take a long
time, defeating the purpose of setting a small value for -b.

The value of -b is something that will need to be varied depending on the complexity of the instrument
you're working with, but because it's intimately related to the value of ksmps, it's better to synchronise it
with ksmps and go from there. One way to do it is to decide how long the release on your envelopes
might need to be at maximum (for desired effect), set the release on all envelopes to maximum, give
yourself a generous value for -b, and then play. If it breaks up, double ksmps, repeat until smooth, then
bring the value of -b down as far as possible.

50

Using Csound

The value of -B is primarily determined by operating system and soundcard. Figure out (using above
method) how low you can go, and use that value (or one higher for safety). If you have problems you'll

know that it's probably because of an inappropriate value for ksmps, too low avalue for -b, or denormals
(see denorm).

51

Configuring

Once you have either unpacked a binary distribution, or built Csound from sources, you will
need to configure Csound so that it will run properly on your system. Installers usually per-
form these steps for you automatically.

On all platforms, make sure the directory or directories containing Csound's plugin libraries
are in an OPCODE6DI R O OPCODEGDI R64 environment variable depending on the precision of
the compiled binary. (Note that for csound5 these environment variables were OPCODEDI R
and OPCODEDI R64.)

The Python opcodes currently require at least Python 2.4, which can be downloaded from
www.python.org [http://www.python.org] if it is not already on your system. Y ou can check
if it isavailable by typing 'python' on a command prompt or DOS window.

Windows

On Windows, make sure the directory or directories (normally the C:\Program
Fi | es\ Csound directory) containing the Csound executables directory are in your PATH vari-
able, or else copy all the executable files to your Windows syst en82 directory. Depending
on your installation method, you might also need to set the oPCODESDI R and OPCODE6DI R64
environment variables. Assuming that Csound is installed to the default location of
C:\ Program Fi | es\ Csound you can use (otherwise set the paths accordingly):

set OPCODE6DI R=C: \ Program Fi | es\ Csound\ pl ugi ns
set OPCODE6DI R64=C: \ Program Fi | es\ Csound\ pl ugi ns64
set PATH=%ATH% C. \ Program Fi | es\ Csound\ bi n

Missing python24.dll or python25.dll

If you get a pop-up about the missing Python library (python24.dIl or py-
thon25.dll) and don't need the python opcodes, just delete C:\Program

Fi | es\ Csound\ pl ugi ns\ py. dl | and C:.\ Program
Fi | es\ Csound\ pl ugi ns64\ py. dl | , and the pop-up about the missing Python
library should be gone.

Unix and Linux

On Unix and Linux, either install the Csound program in one of the system bi n directories,
typically /usr/1ocal /bin, and the Csound and plugin shared libraries in places like /
usr/local /1ib/csound/ plugins OF /usr/local/lib/csound/pluginse4 and make sure
that oPCODE6DI R and OPCODEGDI R64 environment variable are set correctly.

CsoundAC

CsoundAC requires some additional configuration. On all platforms, CsoundAC requires
that you have Python installed on your computer. The directory containing the _csoundAC
shared library and the CsoundAC. py file must be in your PYTHONPATH environment variable,
so that the Python runtime knows how to load these files.

52

http://www.python.org
http://www.python.org

Syntax of the Orchestra

The Csound orchestra (.orc) or the <Cslnstruments> section of acsd file, contains:

» A header section, which specifies global options for instrument performance

* A list of User defined opcodes and instrument blocks containing UDO and instrument
definitions.

The orchestra header, instrument blocks, and UDOs contain Orchestra statements. An or-
chestra statement in Csound has the format:

| abel : result opcode argunentl, argunent2, ... ;conments

The label is optional and identifies the basic statement that follows as the potential target of
a go-to operation (see Program Flow Control). A label has no effect on the statement per se.

Depending on their function, some opcodes produce no output, so they have no result value.
Others take no arguments and only produce a resullt.

Every orchestra statement must be on a single line, however long lines can be wrapped to a
new line using the '\' character. This character indicates that the next line is part of the cur-
rent one, thisway you can split aline for easier reading, like this:

a2 oscbnk kcps, 1.0, kfnmdl, 0.0, 40, 203, 0.1, 0.2, kanfr, kanfr2, 148, \
o, 00 0, 0, O, 0, -1, \
kfnum 3, 4

Comments are optional and are for the purpose of letting the user document his orchestra
code. Comments begin with a semicolon (;) or // and extend to the end of the line. Com-
ments can optionally be in C-style, spanning multiple lineslike this:

/* Anything in here --------
is a comrent which can span
several lines --------- */

The remainder (result, opcode, and arguments) form the basic statement. This also is option-
al, i.e. aline may have only alabel or comment or be entirely blank. If present, the basic
statement must be complete on one line, and is terminated by a carriage return and line feed.
The opcode determines the operation to be performed; it usually takes some number of input
values (or arguments, with a maximum value of about 800); and it usually has a result field
variable to which it sends output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

. once at the beginning of each note (at initialization (init) time: i-rate)

. once every performance-time control loop (perf-time control rate, or k-rate)

A W DN

. once each sound sample of every control loop (perf-time audio rate, or a-rate)

53

Syntax of the Orchestra

Orchestra Header Statements

The Orchestra Header contains global information that applies to all instruments and defines aspects of
Csound output. It is sometimes referred to asinstr 0, because it behaves as an instrument, but without k-
or a-rate processing (i.e. only opcodes and instructions that work at i-rate are allowed).

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an as-
signment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements
belong to a pseudo instrument 0O, an init pass of which is run prior to all other instruments at score time
0. Any ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09)
provided it is an init-time only operation. Statements that are normally placed in an orchestra header are:
 Odbfs

« A4

e ctrlinit

 ftgen

o kr

* ksmps

* massign

* nchnls

* pgmassign

° p%t

* seed

o S

o strset

For example, a Csound header may look like:

XXsr = 44100
kr = 4410
ksmps = 10
nchnls = 2
Odbfs =1

massign 1, 10

Instrument and Opcode Block Statements

An instrument block is comprised of ordinary statements that set values, control the logical flow, or in-
voke the various signal processing subroutines that lead to audio output. Statements that define an in-
strument block are:

e instr

Syntax of the Orchestra

e endin

An instrument block looks like this:

instr 1 ;A sinple sine wave oscill ator
aout oscils 10000, 440, O
out aout

endi n

Statements that define a user defined opcode (UDO) block are

» opcode
* endop

See the UDO section for more information.

Ordinary Statements

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for
k- and arate results), with the sole exception of the init opcode. Most generators and modifiers,
however, produce signals that depend not only on the instantaneous value of their arguments but also on
some preserved internal state. These performance-time units therefore have an implicit init-time com-
ponent to set up that state. The run time of an operation which produces no result is apparent in the op-
code.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and condi-
tional values.

Types, Constants and Variables

Constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and
do not change in value.

Variables are named cells containing numbers. They are available continuously and may be updated at
one of the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e.
they take on only one value at any given time) and are primarily used to store and recall controlling data,
that is, data that changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables).
i- and k-variables are therefore useful for storing note parameter values, pitches, durations, slow-moving
frequencies, vibratos, etc. arate variables, on the other hand, are arrays or vectors of information.
Though renewed on the same perf-time control pass as k-rate variables, these array cells represent a
finer resolution of time by dividing the control period into sample periods (see ksmps). arate variables
are used to store and recall data changing at the audio sampling rate (e.g. output signals of oscillators,
filters, etc.).

Some types of variables can be thought of as signals. For example a-rate and k-rate variables are signals
that have a constant update frequency (see kr and sr). This abstraction is generally quite useful, but be
aware that a-rate signals are actually vectors which are processed at k-rate, i.e. Csound works at k-rate
internally but processes ksmps number samples for each a-rate variable on every control pass.

There are other types of signals that require rates that don't match kr or sr. f-rate and w-rate signals are
used for spectral processing and their rate is determined by the window size and overlap factor.

55

Syntax of the Orchestra

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved,
and they may carry information from pass to pass (e.g. from initiaization time to performance time)
within a single instrument. Local variable names begin with the letter p, i, k, or a. The same local vari-
able name may appear in two or more different instrument blocks without conflict.

Global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are specia reserved symbols. Global variables are used for broadcasting gen-
eral values, for communicating between instruments (semaphores), or for sending sound from one in-
strument to another (e.g. mixing prior to reverberation).

Given these distinctions, there are nine forms of local and global variables:

Table 3. Typesof Variables

Type When Renewable Local Global

reserved symbols permanent -- rsymbol

score pfields i-time p number --

init variables i-time i name gi name

control signals p-time, k-rate k name gk name

audio signals p-time, k-rate (all audio|aname ganame
samplesin ak-pass)

spectral datatypes k-rate W name --

streaming spectral datalk-rate f name of name

types

string variables i-time and optionally k-|S name gS name
rate

vector variables k-rate t name

Where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score
pfield or sequence number, and name is a string of letters, the underscore character, and/or digits with
local or global meaning. As might be apparent, score parameters are local i-rate variables whose values
are copied from the invoking score statement just prior to the init pass through an instrument, while
MIDI controllers are variables which can be updated asynchronously from a MIDI file or MIDI device.

Variable Initialization
Opcodes that let oneinitialize variables are:
e assign
o divz
* init

* tival

Predefined Math Constant Macros

56

Syntax of the Orchestra

Csound defines several important math constants as Macros. Y ou can see the full list here.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper
rate. For instance, if the terms within a sub-expression all change at the control rate or slower, the sub-
expression will be evaluated only at the control rate; that result might then be used in an audio-rate eval-
uation. For example, in

k1l + abs(int(p5) + frac(p5) * 100/12 + sqgrt(kl))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the re-
mainder of the expression evaluated every k-period. The whole might occur in a unit generator argument
position, or be part of an assignment statement.

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These
are optionally full pathnames, whose target directory is fully specified. When not a full path, filenames
are sought in several directories in order, depending on their type and on the setting of certain environ-
ment variables. The latter are optional, but they can serve to partition and organize the directories so that
source files can be shared rather than duplicated in several user directories. The environment variables
can define directories for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include
filesfor orchestraand score files INCDIR.

In Csound version 5.00 and later, these environment variables can specify multiple directories as a ; sep-
arated list. If afileisfound in more than one location, the first one has the highest precedence.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfiles for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SSDIR and then
SFDIR.

3. Analysis control files for reading are sought in the current directory. If default paths are not disabled,
files will next be sought for relative to the CSD/ORC/SCO file. Finally they will be sought in SAD-
IR.

4. MIDI files for reading are sought in the current directory. If default paths are not disabled, files will
next be sought for relative to the CSD/ORC/SCO file. Finaly they will be sought in MFDIR, SDIR
and SFDIR.

5. Files of code to be included in orchestra and score files (with #include) are sought first in the current

directory, then in the same directory as the orchestra or score file (as appropriate), then finally IN-
CDIR.

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,

57

Syntax of the Orchestra

when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs),
and the result is usually denoted by the letter r. Both are preceded by a type qualifier i, k, a, or x (e.g.
kamp, iphs, ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control
(scalar) and audio (vector) values, modified and referenced continuously throughout performance (i.e. at
every control period while the instrument is active). Arguments are used at the prefix-listed times; res-
ults are created at their listed times, then remain available for use as inputs elsewhere. With few excep-
tions, argument rates may not exceed the rate of the result. The validity of inputs is defined by the fol-
lowing:

» arguments with prefix i must be valid at init time;

» arguments with prefix k can be either control or init values (which remain valid);

 arguments with prefix a must be vector inputs;

» arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most op-
codes (such as linen and oscil) can be used in more than one mode, which one being determined by the
prefix of the result symbol.

Thoughout this manual, the term "opcode” is used to indicate a command that usually produces an &, k-,

or i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as"+"
or"sin(x)" or,"(a>=b?c: d)" arecaled "operators.”

Macros

Orchestra macros work like C preprocessor macros, and replace the content of the macro in the orchestra
before it is compiled. The opcodes one can use to create, call, or undefine orchestra macros are:

* #define

* SNAME

o #Hifdef

o #Hifndef

 #end

o f#else

* #include

o #undef

Orchestra macros can also be defined using the command line flag --omacro:.
More information and examples on the usage of orchestra macros can be found in the entry for #define.

These opcodes refer to orchestra macros; for score macros, refer to Score Macros.

Named Instruments

58

Syntax of the Orchestra

As arecent addition to the orchestra syntax, instruments can be defined with string names. Such named
instruments are callable from the score, and are supported by a number of opcodes.

Syntax
A named instrument is declared as shown below:

instr Name[, Name2[, Name3[, ...]]]
[...]

endi n

A single instrument can have any number of names, and any of these names can be used to call the in-
strument. Additionally, it is possible to use numbers as name, denoting a standard numbered instrument,
so the following declaration isalso valid:

instr 100, Nanel, 99, Nane2, 1, 2, 3

An instrument name may consist of any number of letters, digits, and the underscore () character,
however, the first character must not be a digit. Optionally, the instrument name may be prefixed with
the'+' character (see below), for example:

instr +Reverb

For al instrument names, a number is automatically assigned (note: if the message level (-m) is not zero,
these numbers are printed to the console during orchestra compilation), following these rules:

 any unused instrument numbers are taken up in ascending order, starting from 1

* the numbers are assigned in the order of instrument name definition, so named instruments that are
defined later will always have ahigher number (except if the '+ modifier is used)

« if the instrument name was prefixed with '+, the assigned number will be higher than that of any of
the (both numbered and named) other instruments without '+'. If there are multiple '+' instruments, the
numbering of these will follow the order of definition, according to the above rule.

Using '+ ismainly useful for global output or effect instruments, that must be performed after the oth-
er instruments.

An example for instrument numbers:

instr 1, 2
endi n

instr Instrl

endi n

instr +Effectl, Instr2

endi n

instr 100, Instr3, +Effect2, Instr4, 5
endi n

In this example, the instrument numbers are assigned as follows:

59

Syntax of the Orchestra

Instrl: 3
Effectl: 101
Instr2:. 4
Instr3. 6
Ef fect2: 102
Instr4. 7

Using Named Instruments

Named instruments can be called by using the name in double quotes as the instrument number (note:
the '+' character should be omitted). Currently (as of Csound 4.22.4), named instruments are supported

by:
* 'I"and'q' score events

Notes

1. in score files, unmatched quotes, and spaces or other invalid characters in the strings
should be avoided, otherwise (at least with current version) unpredictable behavior
may occur (this problem does not exist for -L line events). However, there is check-
ing for undefined instruments, and in such cases, the event is simply ignored with a
warning.

2. Stand-alone utilities (score sort and extract) do not support named instruments. It is
still possible to sort such scores by using the -t0 option of the main Csound execut-
able)

* real-timeline events (-L)

* event, schedkwhen, subinstr, and subinstrinit opcodes

* massign, pgmassign, prealloc, and mute opcodes
Additionaly, there is a new opcode (nstrnum) that returns the number of a named instrument:
i nsno nstrnum "nane"

With the above example, nstrnum "Effect1" would return 101. If an instrument with the specified name
does not exist, aninit error occurs, and -1 is returned.

Example
- orchestra ----

Sr = 44100

ksnps = 10

nchnls = 1
preal | oc "Si neWave", 20
prealloc "M Dl Si neWave", 20
massign 1, "M DI Si neWave"

gaQut Send init 0

instr +Qutputlnstr

out gaCut Send

60

Syntax of the Orchestra

cl ear gaQut Send
endin
instr SineWave

al oscils p4, p5, 0
vincr gaQut Send, al

endin

instr M DI Si neWave

i anp vel oc
i note not num
icps = cpsoct(inote / 12 + 3)
al oscils ianmp * 100, icps, O
vi ncr gaCQut Send, al
endin
- score ----

i "SineWave" 0 2 12000 440
i "Qutputlnstr" 0 3
e

Author

Istvan Varga

2002

User Defined Opcodes (UDO)

Csound allows the definition of opcodes inside the orchestra header using the opcodes opcode and en-
dop. The defined opcode may run with a different number of control samples (ksmps) using setksmps.

To connect inputs and outputs for the UDO, use xin and xout.

An UDO lookslike this:

opcode Lowpass, a, akk

setksmps 1 ; need sr=kr
ain, kal, ka2 xin ; read input paraneters
aout init O ; initiallze output
aout = ain*kal + aout*ka2 ; sinple tone-like filter
xout aout ; write output
endop

This UDO called Lowpass takes 3 inputs (the first is a-rate, and the next two are k-rate), and delivers 1
a-rate output. Notice the use of xin to receive inputs and xout to deliver outputs. Also note the use of
setksmps, which is needed for the filter to work properly.

To use this UDO within an instrument, you would do something like:

afiltered Lowpass asource, kvaluel, kval ue2

See the entry for opcode for detailed information on UDO definition.

You can find many ready made UDO's (or contribute your own) a Csounds.com [ht-
tp://www.csounds.com/]'s User Defined Opcode Database [http://www.csounds.com/udo/].

61

http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/
http://www.csounds.com/udo/
http://www.csounds.com/udo/

Syntax of the Orchestra

K-Rate Vectors

Csound allows the declaration and deployment of one-dimensional vectors or tables. They arelocal to an
instrument, and need to be declared for size (with the init opcode. Individual elements are read as part of
any expression with square brackets to give an index at k-rate. Individual elements can be assigned, and
there are a number of opcodes to query and modify tables.

Function Syntax in Csound6

Csound 6 has introduced a new alternative syntax for orchestra code. This is initially an experimental
feature, which has some limitations, as explained below. It will aso alow the introduction of some non-
backwards-compatible language features.

Overview

The main aspect of the new syntax is that some opcodes can be called as functions, and inlined in or-
chestra code. The general form of thisis the expression:

var* = op(exprlist*)

where * indicates optional, var is asingle variable in one of Csound6 types, and exprlist is a comma sep-
arated list of expressions (or asingle expression or variable). These expressions can be placed anywhere
inside instrument or opcode blocks. I-time operations can aso be placed outside instrument blocks. The
functional syntax can be intermixed with standard Csound code.

Here are some examples of these expressions:

al = oscil(p4,p5)
out(vco2(p4*linen(1,0.1,p3,0.1),p5)
outs(oscili(in(),p5), in())

Limitations

The main limitation is that only opcodes with single outputs (or no outputs) are allowed. In addition, op-
codes with multiple optional outputs will not be parsed successfully in this form. An alternative to allow
for these is to wrap them in user-defined opcodes, or just to intermix standard Csound syntax with this
new style.

To resolve opcode ambiguities, we have introduced type annotations, in the form of op:type(exprlist).
For instance the code:

al = oscili(oscili:k(p4,p5), 440)

62

Syntax of the Orchestra

will choose a control-rate opcode to modulate the amplitude of the audio carrier, rather than an audio
rate one. There will be cases where the type annotation will be required, when the input arguments can-
not be used to determine the correct type of opcode to be applied.

63

The Standard Numeric Score

The score section contains events that instatiate instruments from the orchestra. There are
various score statements that enable complex score building within the csound language.

Currently, the maximum length of the score depends on the platform's architecture; on a
32bit system tisis 2311 control periods; so for example, with kr=1500, you can run a score
for a maximum of about 16.5 days before problems occur due to overflowing signed 32-bit
integer variables. On a 64bit machine the same condition would be just about 9 billion years.
Theinput token 'Z' is read as a number with the value of approximately 25367 years.

Note also that when using single precision floats (i.e. the 'f' installers rather than the 'd'
ones), the accuracy of timing becomes worse after performing for along time.

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s
statement. Before being read by the orchestra, a score is preprocessed one section at atime.
Each section is normally processed by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose pl whole numbers correspond, any pfield
left empty will take its value from the same pfield of the preceding statement. An empty
pfield can be denoted by a single point (.) delimited by spaces. No point is required after the
last nonempty pfield. The output of Carry preprocessing will show the carried values expli-
citly. The Carry Feature is not affected by intervening comments or blank lines; it is turned
off only by anon- i statement or by an i statement with unlike p1 whole number.

Three additional features are available for p2 alone: +, *+x, and *-x. The symbol + in p2 will
be given the value of p2 + p3 from the preceding i statement. This enables note action times
to be automatically determined from the sum of preceding durations. The + symbol can itself
be carried. Itislegal only in p2. E.g.: the statements

i1 o0 .5 100

1. +

|

will result in

i1 o0 .5 100
i1 .5 .5 100
i1 1 .5 100

The symbols *+x and ~-x determine the current p2 by adding or subtracting, respectively, the
value of x from the preceding p2. These may be used in p2 only and are not carried like the
+ symbol. Note also that there should be no spaces following the ~, the +, or the - parts of
these symbols -- the number must come directly after asin ~+2.3. If the example above had
been

The Standard Numeric Score

il 0 .5 100
[IEAT o §
i N+l

the result would instead be

i1 0 .5 100
il 1 .5 100
il 2 .5 100

The Carry feature should be used liberally. Its use, especialy in large scores, can greatly reduce input
typing and will simplify later changes.

There can sometimes be circumstances where you do not want "missing” pfields after the last one
entered to be implicitly carried. An example would be an instrument that is designed to take a variable
number of pfields. Beginning with Csound 5.08, you can prevent the implicit carrying of pfields at the
end of an i statement by using the symbol ! (called the "no-carry symbol™). The ! must appear at the end
of an i statement and it cannot be used in pl, p2, or p3, since these pfields are required. Here is an ex-
ample:

1 0 .5 100

This score would be interpreted as

.5 100
5 .5 100
.5 ; no p4
5 ; only pl to p3 are carried here

N
PR O

An dternative to using ! is to switch automatic carrying off apart from pl, p2 and p3. This can be done
with the score opcode statement "C 0", and can be restored with "C 1".

Tempo

Sort

This operation time warps a score section according to the information in at statement. The tempo oper-
ation converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the
units required by the orchestra. After time warping, score files will be seen to have orchestra-readable
format demonstrated by the following:

i pl p2beats p2seconds p3beats p3seconds p4 p5

This routine sorts al action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted
into ascending pl value order. If they also have the same pl value, they will be sorted into ascending p3
value order. Score sorting is done section by section (see s statement). Automatic sorting implies that

65

The Standard Numeric Score

score statements may appear in any order within a section.

Note

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score
file, to produce a new file in orchestra-readable format (see the Tempo example). Pro-
cessing can be invoked either explicitly by the Scsort command, or implicitly by Csound
which processes the score before calling the orchestra. Source-format files and orchestra-
readable files are both in ASCII character form, and may be either perused or further modi-
fied by standard text editors. User-written routines can be used to modify score files before
or after the above processes, provided the final orchestra-readable statement format is not
violated. Sections of different formats can be sequentially batched; and sections of like
format can be merged for automatic sorting.

Score Statements

The statements used in scores are;

» a- Advance score time by a specified amount

* b - Resetsthe clock

e C-Togglescarry facility

* e- Marksthe end of the last section of the score

« f- Causes a GEN subroutine to place valuesin a stored function table

i - Makesan instrument active at a specific time and for a certain duration
* m- Setsanamed mark in the score

* n - Repeats a section

e (- Used to quiet an instrument

* 1 - Starts arepeated section

* s- Marksthe end of a section

* t- Setsthetempo

e v- Providesfor locally variable time warping of score events

* Xx- Skip therest of the current section

* y - Set seed for random numbers, either from pl or, if omitted, the clock

» { - Begins anon-sectional, nestable loop.

} - Ends anon-sectional, nestable loop.

Comments are denoted by semicolon (;), double slash (//) or the character ¢ and last until a newline.
Also C-style comments /* ... */ are allowed.

66

The Standard Numeric Score

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are inter-
preted during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previousi statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played
by this instrument. np and pp symbols are recursive and can reference other np and pp symbols which
can reference others, etc. References must eventually terminate in a real number or a ramp symbol.
Closed loop references should be avoided. np and pp symbols are illegal in p1, p2 and p3 (although they
may reference these). np and pp symbols may be Carried. np and pp references cannot cross a Section
boundary. Any forward or backward reference to a non-existent note-statement will be given the value
zero.

E.g.: the statements

il 0 1 10 np4 pp5
i1 1 1 20

i1 1 1 30

will result in

i1 o0 1 10 20 O
i1 1 1 20 30 20
i1 2 1 30 0 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to glis-
sando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsor-
ted statements, the operation that interprets these symbolsis acting on afully sorted version of the score.
The tempo operation is applied after the pp and/or np processing.

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation
of atime-based ramp. Ramps are anchored at each end by the first real number found in the same pfield
of apreceding and following note played by the same instrument. E.g.: the statements

i1 o 1 100
il 1 1 <
il 2 1 <
i1 3 1 400
i1 4 1 <
i1 5 1 0
will result in

i1 o 1 100
i1 1 1 200
i1 2 1 300
i1 3 1 400
i1 4 1 200

67

The Standard Numeric Score

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (athough
they may be referenced by these). Ramp symbols are illegal in pl, p2 and p3. Ramp symbols may be
Carried. Note, however, that while the Carry feature will propagate ramp symbols through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted ver-
sion of the score. In fact, time-based linear interpolation is based on warped score-time, so that a ramp
which spans a group of accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation
ramp, similar to expon. Using the symbol ~ (a tilde) will result in uniform, random distribution between
the first and last values of the ramp. Use of these functions must follow the same rules asthe linear ramp
function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros.
This can can alow for simpler score writing, and provide an elementary alternative to full score genera-
tion systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a ssmple macro. The name of the macro must begin with aletter and can con-
sist of any combination of |etters and numbers. Case is significant. Thisform is limiting, in that the vari-
able names are fixed. More flexibility can be obtained by using a macro with arguments, described be-
low.

#define NAME(@' b' ¢') -- defines a macro with arguments. This can be used in more complex situations.
The name of the macro must begin with aletter and can consist of any combination of |etters and num-
bers. Within the replacement text, the arguments can be substituted by the form: $A. In fact, the imple-
mentation defines the arguments as simple macros. There may be up to 5 arguments, and the names may
be any choice of |etters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The nameis
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not
to terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with
#undef NAME.

Syntax

#define NAME # repl acement text #
#define NAME(a' b' c') # replacenent text #
SNAME.

#undef NAME

68

The Standard Numeric Score

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend
over mutliple lines. The replacement text is enclosed within the # characters, which ensure that addition-
al characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They
take no notice of any meaning, so spaces are significant. This is why, unlike the C programming lan-
guage, the definition has the replacement text surrounded by # characters. Used carefully, this smple
macro system is a powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what
the various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #il1#
#defi ne Whoop #i2#

$Flute. 0 10 4000 440
$Wioop. 5 1

Examples

Example 1. Smple Macro

A note-event has a set of p-fields which are repeated:

e ARGS # 1.01 2.33 138#
8.00 1000 $ARGS

8.01 1500 $ARGS

8.02 1200 $ARGS

8.03 1000 $ARGS

Thiswill get expanded before sorting into:

8.00 1000 1.01 2.33 138
8.01 1500 1.01 2.33 138
8.02 1200 1.01 2.33 138
8.03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a
second macro (thereisno real limit on the number of macros one can define).

#define ARGSL # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
.00 1000 $ARGS1

.01 1500 $ARGS2

.02 1200 $ARGS1

03 1000 $ARGS2

69

The Standard Numeric Score

Example 2. Macroswith arguments

ne ARG(A) # 2.345 1.03 $A 234.9#
1 8.00 1000 $ARE 2.0)
1 8.01 1200 $ARE 3.0)

which expandsto

0 .00 1000 2.345 1.03
+

1 2.
1 8.01 1200 2.345 1.03 3

0o 00

il
il

Credits

Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than onefile.

Syntax

#i nclude "fil enane”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#i nclude "fil enane”

where the character " can be replaced by any suitable character. For most uses the double quote symbol
will probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. Thereis cur-
rently alimit of 20 on the depth of included files and macros.

70

The Standard Numeric Score

A suggested use of #include would be to define a set of macros which are part of the composer's style. It
could also be used to provide repested sections.

S
#i ncl ude :sectionl:
; Repeat that

s
#i ncl ude :sectionl:

Alternative methods of doing repeats, use the r statement, m statement, and n statement.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions
when some simple evaluation would be easier. This need is increased when there are macros. To assist
in this area the syntax of arithmetic expressions within square brackets [] has been introduced. Expres-
sions built from the operations +, -, *, /, % ("modulo"), and ~ ("power of") are allowed, together with
grouping with (). Unary minus and plus are also supported. The expressions can include numbers, and
naturally macros whose values are numeric or arithmetic strings. All calculations are made in floating
point numbers. The usual precedence rules are followed when evauating: expressions within par-
antheses () are evaluated first and ” is evaluated before *, /, and % which are evaluated before + and -.

In addition to arithmetic operations, the following bitwise logical operators are also available: & (AND),
| (OR), and # (XOR, exclusive-OR). These operators round their operands to the nearest (long) integer
before evaluating. The logical operators have the same precedence as the *, /, and % arithmetic operat-
ors.

Finally, the tilde symbol ~ can be used in an expression wherever a number is permissible to use. Each ™
will evaluate to a random value between zero (0) and one (1).

Example
r3 CNT
il 0 [0.3*$CNT.]
il + [($CNT./3)%0.2]

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this ex-
pands to

71

The Standard Numeric Score

S

il 0 0.

il 0.3 0.533333
S

il 0 0.

il 0.6 0.866667
S

il 0 0.9

il 0.9 1.2

e

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are

subtly different.

Here are some simple examples of each operator:

1 110 + 220 |

. 330 - 55]
44 * 10]
1100 / 2]
547 4]

5660 % 1000]
110 & 220]
110 | 220]
110 # 220]

+++++++++++0

RPRR RPRRER RPRRERRRRRRRRRER
++ + +

+ +

The @ operator

. 440

; evaluates to 330

275

550

625

660

76

254

178

random bet ween 0-1
random bet ween 1-5
random bet ween 5-100

12
6

11
21

;4
;0

13

New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@Xx (next
power-of-two-plus-one greater than or equal to Xx).

[@11] will evaluate to 16
[@11'] to 17

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

72

The Standard Numeric Score

Strings in p-fields
You can pass astring as a p-field instead of a number, like this:

i 1010 "A4"

The string can be received by the instrument and further processed using the string opcodes.

Note

Currently only one p-field can contain a string (i.e. no more than one string per line is al-
lowed). Y ou can overcome this using strset and strget.

73

Front Ends

Front ends are programs that provide some form of user interface for Csound. Within these
programs, Csound is used to generate sound, and familiarity with Csound code is required in
order to use them. Front ends typically add helpful features, such as syntax coloring, graphic
widgets, or tools for algorithmic score generation, that are not part of Csound itself. Most of
these programs were created by a single person, so some of them are not being maintained.
Below is alist (certainly not complete, and perhaps not up to date) of front ends available
for Csound.

Most often, you'll want to download and install Csound itself before downloading and in-
stalling a front end. Some front ends require particular versions of Csound, so if you plan to
use afront end, it's recommended that you verify its compatibility before installing Csound.

CsoundQt

Blue

CsoundQt is a versatile, cross-platform GUI (graphical user interface) which is bundled with
the standard Csound distribution. Created and maintained by Andres Cabrera, QuteCsound
provides a multi-tabbed editor, graphic widgets for real-time sound control, and an opcode
help system that links to this manual. At this writing (2013) CsoundQt is in active develop-
ment, so the version installed in your system when you install Csound may not be the most
current. The most recent version can be found at http://qutecsound.sourceforge.net/.

A cross-platform composition-oriented front end written by Steven Yi in Java. The user in-
terface provides a timeline structured somewhat like a digital multitrack, but differsin that
timelines can be embedded within timelines (polyObjects). This allows for a compositional
organization in time that many users will find intuitive, informative, and flexible. Each in-
strument and score section in a blue project has its own editing window, which makes or-
ganizing large projects easier. Blue can be downloaded a Blue Home Page [ht-
tp://csounds.com/stevenyi/blue].

Cabbage

Cabbage is a Csound frontend that provides users with the means to develop audio plugins
and standalone software across the three major operating systems. While Cabbage makes
use of underlying plugin technologies such as Steinberg's VST SDK, ASIO, etc, Csound is
used to process all incoming and outgoing audio. Cabbage aso provides a growing collec-
tion of GUI widgets ranging from simple sliders to automatable XY -pads. All GUI widgets
in a Cabbage plugin can be controlled via host automation in a plugin host, thereby provid-
ing a quick and effective means of automating Csound instrument parameters in both com-
mercial and non-commercial DAWSs. Cabbage can be downloaded at Cabbage Home Page
[https://github.com/cabbageaudio/cabbage/rel eases).

WinXound

WinXound is a free and open-source Front-End GUI Editor with syntax highlighting for
CSound 6, CSoundAV, CSoundAC, with Python and Lua support, developed by Stefano
Bonetti. It runs on Microsoft Windows, Apple Mac OsX and Linux. You can get it at the
WinXsound Front Page [http://winxound.codeplex.com/].

Winsound

74

http://qutecsound.sourceforge.net/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
http://csounds.com/stevenyi/blue/
https://github.com/cabbageaudio/cabbage/releases
https://github.com/cabbageaudio/cabbage/releases
http://winxound.codeplex.com/
http://winxound.codeplex.com/

Front Ends

Winsound was formerly part of the main Csound tree. It is now available only as source code. Winsound
isacross-platform FLTK port of Barry Vercoe's original front-end for csound. Some partialy sighted or
unsighted users report success using Winsound with text-to-speech software.

CsoundAC
Python Scripting

Y ou can use CsoundAC as a Python extension module. Y ou can do thisin a standard Python interpreter,
such as Python command line or the Idle Python GUI.

To use CsoundAC in a standard Python interpreter, import CsoundAC.

i mport CsoundAC

The CsoundAC module automatically creates an instance of CppSound named csound, which provides
an object-oriented interface to the Csound API. In a standard Python interpreter, you can load a Csound
. csd fileand perform it like this:

C:\ Docunents and Settings\ nkg>python

Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on w n32
Type "hel p", "copyright", "credits" or "license" for nore information

>>> jnport CsoundAC

>>> csound. | oad("c:/ projects/csound5/ exanpl es/ trapped. csd")

1

>>> csound. export For Per f or mance()

1

>>> csound. perform()

BEGAN CppSound: : perform(5, 988ee0)...
BEGAN CppSound: : conpi |l e(5, 988ee0). ..
Usi ng default | anguage

0dBFS | evel = 32767.0

Csound version 5.00 beta (float sanples) Jun 7 2004
l'ibsndfile-1.0.10pre6

orchnanme: tenp.orc

scorenane: tenp.sco

orch conpiler

398 lines read

instr 1
instr 2
instr 3
instr 4
instr 5
instr 6
instr 7
instr 8
instr 9
instr 10
instr 11
instr 12
instr 13
instr 98
instr 99
sorting score ...
done

Csound version 5.00 beta (float sanples) Jun 6 2004
di spl ays suppressed

0dBFS | evel = 32767.0

orch now | oaded

audi o buffered in 16384 sanpl e-frame bl ocks
SFDI R undefined. wusing current directory
witing 131072-byte bl ks of shorts to test.wav
WAV

SECTI ON 1

ENDED CppSound: : conpi | e

ftable 1

ftable 2

ftable 3

ftable 4

75

Front Ends

ftable 5

ftable 6

ftable 7

ftable 8

ftable 9

ftable 10

ftable 11:

ftable 12:

ftable 13

ftable 14

ftable 15

ftabl e 16:

ftable 17:

ftable 18

ftable 19:

ftable 20

ftable 21:

ftable 22:

new alloc for instr 1
B 0.000 .. 1.000 T 1.000 TT 1.000 M 32.7 0.0
new alloc for instr 1
B 1.000 .. 3.600 T 3.600 TT 3.600 M 207.6 0.1

B 93.940 .. 94.418 T 98.799 TT281.799 M 477.6 85.0
B 94.418 ..100.000 T107.172 TT290.172 M 118.9 11.5
end of section 4 sect peak anps: 25950.8 26877.4
inactive allocs returned to freespace

end of score. overal |l anps: 32204.8 6
overal | sanples out of range: 0 0
0 errors in performance

782 131072-byte soundbl ks of shorts witten to test.wav WAV
El apsed tine = 13.469000 seconds

ENDED CppSound: : perform

1

31469.

>>>

The koch. py script shows how to use Python to do algorithmic composition for Csound. Y ou can use
Python triple-quoted string literals to hold your Csound files right in your script, and assign them to
Csound:

csound. setOrchestra('''sr = 44100

kr = 441

ksmps = 100
nchnls = 2
Odbfs = .1

instr 1,2,3,4,5; FluidSynth General MD
I'; | NITI ALI ZATI ON
; Channel, bank, and program deternmine the preset, that is, the actual sound

i channel pl

i program = p6

i key = p4

ivelocity = p5 + 12

i junk6 = p6

ijunk7 = p7

;. AUDI O

i status = 144

print i program istatus, ichannel, ikey, ivelocityaleft, aright
fluid "c:/ projects/csound5/ sanpl es/ Vi nt ageDr eansWaves-v2. sf 2", \\
i program istatus, ichannel, ikey, ivelocity, 1

outs aleft, arightendin''’

csound. set Command(" csound --opcode-1|ib=c:/projects/csound5/fluid.dl| \\
-RWifo ./koch.wav ./tenp.orc ./tenp.sco")

csound. export For Per f or mance()

csound. perform)

CsoundVST

CsoundV ST is a multi-function front end for Csound, based on the Csound API. CsoundV ST runs as a
stand-alone graphical user interface to Csound, and it aso runs as a VST instrument or effect plugin in

76

Front Ends

VST hosts such as Cubase with the same user interface. CsoundV ST is part of the main csound source
tree, but is not included in standard distributions, due to licensing limitations of Steinberg's VST SDK.

Standalone

To run CsoundV ST as a stand-alone front end to Csound, execute CsoundV ST. When the program has
loaded, you will see a graphical user interface with arow of buttons along the top. Click on the Open...
button to load a. csd file. You can also click on the Open... button and load a.. or ¢ file, then click on the
Import... button to add a. sco file. You can edit the Csound command, the orchestrafile, or the score file
in the respective tabs of the user interface. When all is satisfactory, click on the Perform button to run
Csound. Y ou can stop a performance at any time by clicking on the Stop button.

VST Plugin

The following instructions are for Cubase 4.0. Y ou would follow roughly similar procedures in other
hosts.

Use the Devices menu, Plug-1n Information dialog, VST Plug-Ins tab, VST 2.x Plug-in Paths dialog, Add
button to add your csound/ bi n directory to Cubase's plugin path. Y ou can have multiple directories sep-
arated by semicolons. Then select the CsoundV ST path and click on the Set as Shared Folder button.
Quit Cubase, and start it again.

Use the File menu, New Project dialog to create a new song.

Use the Project menu, Add Track submenu, to add anew MIDI track.

Use the pencil tool to draw a Part on the track a few measures long. Write some music in the Part using
the Event editor or the Score editor.

Use the Devices menu (or the F11 key) to open the VST Instruments dialog.
Click on one of the No VST Instrument labels, and select CsoundVST from the list that pops up.
Click on the e (for edit) button to open the CsoundVST dialog.

On the Settings page, check the Instrument box in the VST Plugin group, and the Classic box in the
Csound performance mode group. Then click on the Apply button.

Click on the Open button to bring up the file selector dialog. Navigate to a directory containing a
Csound csd file suitable for MIDI performance, such as csound/ exanpl es/ CsoundVsT. csd. Click on the
OK button to load the file. You can also open and import a suitable . orc and . sco file as described
above.

In any event, the command line in the Classic Csound command line text box must specify -
+rtmdi=null -M,and should read something like this:

csound -f -h -+rtmdi=null -M -d -n -n¥ --mdi-key-oct=4 --mdi-velocity=5 tenp.orc tenp.sco

Click on the VST Instruments dialog's on/off button to turn it on. This should compile the Csound or-
chestra.

In the Cubase Track Inspector, click on the out: Not Assigned label and select CsoundVST from the list
that pops up.

On the ruler at the top of the Arrangement window, select the loop end point and drag it to the end of
your part, then click on the loop button to enable looping.

77

Front Ends

Click on the play button on the Transport bar. Y ou should hear your music played by CsoundV ST.
Try assigning your track to different channels; a different Csound instrument will perform each channel.

When you save your song, your Csound orchestra will be saved as part of the song and re-loaded when
you re-load the song.

You can click on the Orchestra tab and edit your Csound instruments while CsoundV ST is playing. To
hear your changes, just click on the CsoundV ST Perform button to recompile the orchestra.

Y ou can assign up to 16 channels to a single CsoundV ST plugin.

78

Building Csound

Csound has become a complex project and can involve many dependencies. Unless you are
a Csound developer or need to develop Csound plugins, you should try to use one of the pre-
compiled distributions from http://www.sourceforge.net/projects/csound.

Detailed and up to date information about building Csound from source can be found in the
BUILD.md [https://github.com/csound/csound/blob/develop/BUILD.md] file in the
Csoundb6 sources.

79

http://www.sourceforge.net/projects/csound
https://github.com/csound/csound/blob/develop/BUILD.md
https://github.com/csound/csound/blob/develop/BUILD.md

Csound Links

Csound's "home page" can be found at http://csound.github.io.

Another Csound page, maintained by Richard Boulanger, can be found at ht-
tp://csounds.com.

The Csound source code is maintained by John ffitch and others a ht-
tps://github.com/csound. The most recent versions and precompiled packages for most plat-
forms also can be downloaded here [ht-
tp://sourceforge.net/proj ect/showfiles.php?group_id=81968].

A Csound mailing list exists to discuss Csound. It is run by John ffitch and Victor Lazzarini
of Maynooth University, Ireland. To have your name put on the mailing list send a message
to: listserv@heanet.ie [mailto:listserv@listserv.heanet.ie] with body "subscribe csound".
You can also subscribe to the digest (1 message per day) by sending an email to: list-
serv@listserv.heanet.ie [mailto:listserv@listserv.heanet.ig] with body "subscribe csound set
digest". Posts sent to csound@listserv.heanet.ie [mailto:csound@listserv.eanet.ie] go to all
subscribed members of the list.

Similarly, the Csound- devel mailing list exists to discuss Csound development. For more
information on this list, go to http://listserv.heanet.ie [http://listserv.heanet.ie/] and follow
the link to csound-dev. Posts sent to csound-dev@listserv.heanet.ie
[mailto:csound-dev@listserv.heanet.i€] go to al subscribed members of the list.

Suspected bugs in the code may be entered using the bug tracking system at the github [ht-
tps://github.com/csound/csound/issues].

80

http://csound.github.io
http://csounds.com
http://csounds.com
https://github.com/csound
https://github.com/csound
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
http://sourceforge.net/project/showfiles.php?group_id=81968
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:listserv@listserv.heanet.ie
mailto:csound@listserv.eanet.ie
mailto:csound@listserv.eanet.ie
http://listserv.heanet.ie/
http://listserv.heanet.ie/
mailto:csound-dev@listserv.heanet.ie
mailto:csound-dev@listserv.heanet.ie
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues
https://github.com/csound/csound/issues

Part Il. Opcodes Overview

Table of Contents

S o g TS 1 - o] £ T PP TUPPR 85
Additive SyntheSiS/RESYNtNESISiiiiii e 85
BaSiC OSCHIALOS .. .cceieeiie e 85
Dynamic Spectrum OSCIHIatorsovuiii e 85
S04 1= 86
Granular SYNNESISccuniie e e 86
Hyper Vectorial SYNtheSIScoouuiiiiiiiic e 87
Linear and Exponential GENEIratorscceuuurieiiiiiiieeeiiie et e e e 87
ENVEIOPE GENEIALONS ... ettt e e e e e e eaes 88
Models and EMUIBLIONSoiieniiiiiiii e 88
PRIASOIS ettt 90
RaNdom (NOISE) GENEYBIOISvvvueveiieei e e e e e e e e e e e e e e e e ean e eeees 90
Sample Playbackccooueiiii 91
SOUNAFONES ...ttt e e e e e et e e e e aeas 92
SCANNEA SYNENESIS ...t aaas 93
TADIE ACCESS ..o 94
Wave Terrain SYNthESISuuiii e e e e e e 95
Waveguide Physical MOEiNgccouuiiiiiiiiiiicci e e e 95

Signal INPUE N OULPULeeeeeie et e et e e e e e eeaans 97
File INPut @aNd OUEPULcovuieieiiie ettt e e e 97
SIGNAL TNPUL . e e et 97
IS o = I 1 o1 | 97
SOfIWEAIE BUS ...ttt et e e et e e et e eeenens 98
Printing and DiSplayuvevveiiii e 98
SOUNd Fil@ QUENTES ... et e e e e 98

SIgNal MOGITIEIS ..oeeeee ettt e e e e e e e 100
Amplitude Modifiers and DynamiC ProCeSSINGcevueerrnrieinaaeiaaeiiaeeaiaeennns 100
Convolution and MOrphingccoeeiiiiii e 100
5= - P 100
Panning and SpatialiZationcc.viiiiiiiiiie e 101
RS 1= - 1o o 103
SaMpPle LeVEl OPEIEIOISceieveieiiiiii et 103
SIgNAl LIMITEIS .ot e e e 104
SPECIAl EffECtS ..o 104
Standard FIIEErS ...oovviiiii e 104
SPECIAliZEA FilTEr'S .vvieee e 106
WEVEGUITES ...ttt et e 106
Waveshaping and Phase DiStOrtioncceuuieiiiiiiieiiiiineeen e 107

INSEFUMENT CONEIOL ...t e e e e e e e e eaas 108
ClOCK CONLIOL ... et 108
ConditioNal VEIUEScoveviieiiii e e 108
Duration Control StAatEMENESuiiiiiiiiieeeiii e 108
FLTK Widgetsand GUI CONtrollerscooouuiiiiiiiiieiiiii e 108
FLTK CONAINELS ...ietieeeieeeii ettt e e e et e et e et eeeaeeean e 111
FLTK VAIUBLOS ..ottt e e et e e e et eeeaaan e 111
Other FLTK WIAGELS ...oevvvieeiiiiie et et eeeeii e e e 112
Modifying FLTK Widget APPEAranCeccuuvevviieiiiieeiiieeeiieeeiieeeiaeeeieeaaaees 112
General FLTK Widget-related OpCOTEScvvvniveiiieiii v e 113
INSErUMENt INVOCATION ...veeieie e e 113
Program FIOW CONrOlooiiiiiiiiii e 114
Real-time Performance CONtrolviiuiiiiiiiiee e 115
Initialization and REINItializationc..oiiiiiiiiiii e, 115
Sensing and CONLIOLiiieiiii e e e e e e e e eaes 116

Opcodes Overview

SEACKS vttt ettt 117
SUb-iNStrUMENt CONLIOLeiiei e 118
TIMEREAAING ...oeeii e e 118
FUNCtion Table CONIOlo.u.iiee e e e 119
TaDIE QUENTES ..eeiei e 119
Read/WIte OPEralioNSccuuueiiiiiii et ea s 119
Table Reading with Dynamic SEleCtionccccuiviiiiiiiiiiicc e, 120
MathematiCal OPEIELIONScveuuieeiiiet et e e e e e e e e e e e e e et e e e e e e eeaeeaenaees 121
AMPLITUAE CONVEITEIS ...ttt 121
Arithmetic and LOgiC OPEratioNSc.uuuivieiiieeiiiie e 121
Comparators and ACCUMUIALONSiiuuniiii it 121
Mathematical FUNCLIONSoouuniiiiiiii e 122
Opcode Equivalents of FUNCLIONSocevuiiiiiiiiii e e 122
RaNdOM FUNCLIONSuiiiiiiiie e 123
TrigoONOMELNIC FUNCLIONScovviiiiiiiiie e 123
Linear AlgebraOpCodesccouuuiiiiiiiie e 124
ATTAY OPCOUES ...cenitieiit ettt et e e e e et e et e e e e eenn s 134
PIICN CONVEITENS ...ttt ettt et ettt e e e e ean e 141
FUNCEIONS L.ttt e et e e e aa s 141
LI 10110 @) 0o o L= 141
Real-tiMe MIDI SUPPOIT «....uieeeeii ettt e e 142
Virtual MIDI Keyboardooceeuuiiiiiiiiieeiiii e 143
MIDETNPUE <.t e e e et 146
MIDI MESSAE OULPUL ..eeneeteeteei ettt ettt e e e e e eenns 146
Generic INPUL and OULPULovvneiieeee e e e e e e e e e e e eees 147
CONVEITEIS ettt ettt et ettt e e et et e et e e e e e e enes 147
Y B A =0 (= £ 147
NOte-ON/NOE-OFf OULPUL ... eeierieeeeeii et 147
MIDI/Score Interoperability OPCOUEScevuiiiiiiiiiiiiii e 148
System RealtiMeMESSAGEScvuiiveii e 149
SHAEN BANKS ... 149
S0 1c ot = 005 o 151
Short-time Fourier Transform (STFT) Resynthesis ... 151
Linear Predictive Coding (LPC) ReSynthesiscooeeviiiiiiiiiiiiieeiiieeeeiie 152
Non-standard Spectral ProCESSINGcccvuiiiniiiiiiaiii e 152
Tools for Real-time Spectral Processing (pvS Opcodes)c.veevnvveiieeenneennnn. 152
ATS SPECHral PrOCESSING ...ucvvviieii e e e e e e e e e 153
[0 1@ oo 1= 154
Array-based SpPectral OPCOUESuiiiiiiiieiiii e 157
S L1010 TP UPPPTTRPPPIN 159
String Manipulation OPCOOESceuiiiiiiiieeii e 160
String CONVErSioN OPCOESc.uneeneiiiee ittt eees 161
VA= v (= @ oo o L= 162
Tables Of VECIOIrS OPEIaLOrSuiveeiieiieee e ee e e e e e e e e 162
Operations Between aVectorial and aScalar Signalcooevvvviiiiiiieiiiinnene, 162
Operations Between two Vectorial SIgnalsvveieiiiiiiiiiinieiiieceeieees 163
Vectorial ENVElOPe GENEIratorsSc.uiieuiiiiiieiee e 163
Limiting and wrapping of vectorial control Signalsccoooeeiiiiiiniiiiniinnes 164
Vectorial Control-rate Delay Pathsc.ccooviviiiiiiiiii e, 164
Vectorial Random Signal GENEratorsc..vveevveeiieeiieein e eeeieeraeeeannns 164
ZAK PalCN SYSLEIM ... 166
PLUGIN HOSHING ..ttt e e e e e 167
DSSI and LADSPA fOr CSOUNGuiieiiiiiiiiiiiii et 167
VST FOr CSOUNG ...t 167
OSC AN NEIWOTK ... ettt e et e e et e e eeta s aeaees 169
L0 1 PP 169
N 1= Y0 5 169
REMOLE OPCOUES ...ttt 169

Opcodes Overview

DS S oo o === 170
Signal FIow Graph OPCOOEScveeeiiiiei e e e e e eeees 171
JACKO OPCOUES ...ttt ettt eaaaas 174
LUB OPCOUES ...ttt ettt ettt e et e e et b e e et e e e e e e e 177
PYthoN OPCOOESceieeie ettt e et e e e e ea e 182

INEFOTUCTION ...ttt aaes 182

OFChESLFA SYNEAX ..evvveeii e e e e e e e e e e e e eees 182
IMage ProCeSSING OPCOUES ...vvvuuiieieiii i eeei e et e e e e e e e e e e e e e et e e et e e e e e et e e e e e e eeannas 184
ST OPCOUES ...ttt ettt ettt ettt e ettt e e ettt e e e e et e e e eete e e e eebaaeaees 185
MiSCElANEOUS OPCOTESvtieeiiii ettt ettt ettt e e e e e ne s 187

Signal Generators
Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are;

e adsyn
* adsynt
 adsynt2
* hsboscil

See the section Spectral processing for more information and further additive/resynthesis
opcodes.

Basic Oscillators

The basic oscillator opcodes are: (note that opcodes that end with ‘i* implement linear inter-
polation and those that end with '3' implement cubic interpol ation)

* Ogcillator Banks: oscbhnk

» Simpletable oscillators: oscil, oscil3 and oscili.

» Simple, fast sine oscilator: oscils

* Precision oscilators: poscil and poscil 3.

» Moreflexible oscillators: oscilikt, osciliktp, oscilikts and osciln (also called oscilx).

Oscillators can also be constructed from generic table read opcodes. See the Table Read/
Write operations section.

LFOs

* |fo
e Vibr
* vibrato

See the section Table access for other table reading opcodes that can be used as oscillators.
Also see the section Dynamic spectrum Oscillators.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are:

85

Signal Generators

* Harmonic spectra: buzz and gbuzz

* Impulse generator: mpulse

» Band limited oscillators (analog modelled): vco and vco2

The following opcodes can be used to generate band-limited waveforms for use with vco2 and other os-
cillators:

* vco2init

* vCo2ft

» vco2ift

FM Synthesis

The FM synthesis opcodes are:

 foscil
» foscili

e crossfm, crossfmi, crosspm, crosspmi, crossfmpm, and crossfmpmi.

FM instrument models

o fmb3
o fmbell
o fmmetal
o fmpercfl
 frmrhode
» fmvoice

e fmwurlie

Granular Synthesis

The granular synthesis opcodes are:

 diskgrain
* fof

86

Signal Generators

» fof2

» fog

e grain

e grain2

e grain3

e granule
* partikkel
* partikkelsync
e sndwarp
 sndwarpst
* syncgrain
* syncloop

e vosim

Hyper Vectorial Synthesis
* vphaseseg

* hvsl
e hvs2

* hvs3

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are:

* expon
* expcurve
* expseg
* expsega
* expsegr

87

Signal Generators

» gaindider
* jspline
* line

* linseg

* linsegr
 logcurve
* loopseg
* loopsegp
¢ Ipshold
* |psholdp
* rspline
» scale

* transeg

Envelope Generators

The following envel ope generators are available:

o adsr

* madsr
o mxadsr
* Xadsr
* linen
* linenr
e envipx
o envipxr
* lineto
* tlineto

Consult the Linear and exponential generators section for additional methods to create envelopes.

Models and Emulations

The following opcodes model or emulate the sounds of other instruments (some based on the STK
toolkit by Perry Cook):

88

Signal Generators

* bamboo

* barmodel
* cabasa

» crunch
 dripwater
* gogobel

* guiro

* mandol

* marimba

* moog

* sandpaper
» sekere

* shaker

* deighbells
o dtix
 tambourine
* vibes

* voice
Also, see the STK Opcodes section for information on the STK opcodes.

Other models and emulations

* lorenz

e planet

* prepiano

 Fractal Number (Mandelbrot set) generator: mandel
» chuap

* gendy

* gendyc

* gendyx

A section on physical modeling using the waveguide principles can be found here: Waveguide Physical
Modeling

89

Signal Generators

Phasors

The opcodes that generate a moving phase value:

* ephasor
* phasor
 phasorbnk

* syncphasor

These opcodes are useful in combination with the Table access opcodes.

Random (Noise) Generators

Opcodes that generate random numbers are:

* betarnd
* bexprnd
 cauchy
+ cuserrnd
* duserrnd
* dust

o dust2

» exprand
* fractalnoise
* gauss

* gausstrig
* linrand
* noise

* pcauchy
» pinkish
 pinker

* poisson
* rand

e randh

90

Signal Generators

* randi

* rnd31

* random

* randomh

* randomi

* trirand

* unirand

e urd

o weibull

o jitter

o jitter2

+ trandom

See seed which sets the global seed value for all x-class noise generators, as well as other opcodes that
use arandom call, such as grain. rand, randh, randi, rnd(x) and birnd(x) are not affected by seed.

See also functions which generate random numbers in the section Random Functions.

Sample Playback

Opcodes that implement sample playback and looping are:

* bbcutm
* bbcuts
* flooper
« flooper2
* loscil

* loscil3
* loscilx
* |phasor
* |poscil
* |poscil3
* |poscila

* |poscilsa

91

Signal Generators

* |poscilsa2
 sndloop
* waveset

See also the Sgnal Input section for other ways to input sound.

Soundfonts
Fluid Opcodes

The fluid family of opcodes wraps Peter Hannape's SoundFont 2 player, FluidSynth: fluidEngine for in-
stantiating a FluidSynth engine, fluidSetinterpMethod for setting interpolation method for a channel in a
FluidSynth engine, fluidLoad for loading SoundFonts, fluidProgramSelect for assigning presets from a
SoundFont to a FluidSynth engine's MIDI channel, fluidNote for playing a note on a FluidSynth engine's
MIDI channel, fluidCCi for sending a controller message at i-time to a FluidSynth engine's MIDI chan-
nel, fluidCCk for sending a controller message at k-rate to a FluidSynth engine's MIDI channel. fluid-
Contral for playing and controlling loaded Soundfonts (using ‘'raw' MIDI messages), fluidOut for receiv-
ing audio from a single FluidSynth engine, and fluidAlIOut for receiving audio from al FluidSynth en-
gines.

fluidAll Out

+ fluidCCi

o fluidCCk

+ fluidControl

* fluidEngine

* fluidLoad

* fluidNote

* fluidOut

* fluidProgramSelect
* fluidSetlnterpMethod

"Old" Soundfont opcodes
These opcodes can also use soundfonts to generate sound. sfplay etc. were created for one purpose -- to
use the samples in SoundFonts. The fluid opcodes were created for another purpose -- to use Sound-
Fonts more or less the way they were designed to be used, i.e. using keyboard mappings, layers, internal
processing, etc.
o ofilist
o sfinstr

o Sfinstr3

92

Signal Generators

o sfinstr3m
* sfinstrm
* Sfload

* sfpassign
o dfplay

» sfplay3
 sfplay3m
» sfplaym
* sflooper
» sfplist

» Sfpreset

Scanned Synthesis

Scanned synthesisis a variant of physical modeling, where a network of masses connected by springsis
used to generate a dynamic waveform. The opcode scanu defines the mass/spring network and setsit in
motion. The opcode scans follows a predefined path (trajectory) around the network and outputs the de-
tected waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio,
or as controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentialy, this offers the pos-
sihility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the ef-
fect of “molding” this surfaceinto aradically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the fol-
lowing grid describing the possible connections:

1 2 3 4

Al W|IN| P

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then
the point they define is 0. For example, a unidirectiona string has the following connections: (1,2),
(2,3), (3,4). If it is bidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectiona string, the matrix
appesars:

93

Signal Generators

2 0 0 1 0
3 0 0 0 1
4 0 0 0 0

The above table format of the connection matrix is for conceptual convenience only. The actual values
shown in te table are obtained by scans from an ASCI|I file using GEN23. The actual ASCII fileis cre-
ated from the table model row by row. Therefore the ASCII file for the example table shown above be-
COMES:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use
many more masses than four, so their matrices will be much larger and more complex. See the example
in the scans documentation.

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, center-
ing, and damping can cause the system to “blow up” and the most interesting sounds to emerge from
your loudspeakers!

The supplement to this manual contains atutorial on scanned synthesis. The tutorial, examples, and oth-
er information on scanned synthesisis available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research
between 1998 and 2000.

Opcodes that implement scanned synthesis are:

e scanhammer
e scans

» scantable

* Xscanmap

* XScans

* Xscansmap

* Xscanu

Table Access

The opcodes that access tables are:

» oscill

» 0oscilli

94

Signal Generators

osciln
0scilx
table
table3
tablei

Opcodes ending in 'i* implement linear interpolation and opcodes ending in ‘3" implement cubic interpol-
ation.

The following opcodes implement fast table reading/writing without boundary checks:

tab
tab_i
tabw
tabw _i

See the sections Table Queries, Read/Write Operationsand Table Reading with Dynamic Selection for
other table operations.

Note

Although tables with a size which is not a power of two can be created using a negative
size (see f score statement), some opcodes will not accept them.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesisis wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are:

pluck
repluck
wgbow
wgbowedbar
wgbrass
wgclar

wgflute

95

Signal Generators

wgpluck
wgpluck2
wguidel

wguide2

96

Signal Input and Output
File Input and Output

The opcodes for file input and output are;

* File open/close: fiopen and ficlose.

* File output: dumpk, dumpk2, dumpk3, dumpk4, fout, fouti, foutir foutk and hdfSwrite
 Fileinput: readk, readk2, readk3, readk4, fin, fini and fink

« Utilities for use with the fout opcodes: clear, vincr

 Printing to afile: fprints and fprintks

Signal Input

The opcodes that receive audio signals are:

» Synchronousinput: in, in32, inch, inh, ino, ing, inrg, ins and inx
* File streaming: diskin, diskin2 soundin and hdf5read

» User defined channel input: invalue

 Streaming input: soundin

» Webhsocket input: websocket

* Direct to zak input: inz

See the section Software Bus for input and output through the API.

The mp3in alows reading of mp3 files, which are currently not supported by ordinary read-
ing methods inside Csound.

Signal Output

The opcodes that write audio signals are;

» Synchronous output: out, out32, outc, outch, outh, outo, outrg, outq, outql, outq2, outg3,
outgd, outs,outsl, outs2 outx and hdf5Swrite

* Streaming output: soundout and soundouts

» User defined channel output: outvalue

« Direct from zak output: outz

97

Signal Input and Output

» Websocket output: websocket

The opcode monitor can be used for monitoring the complete output of csound (the output spout frame).

See the section Software Bus for input and output through the API.

Software Bus

Csound implements a software bus for internal routing or routing to external software calling the
Csound API.

The opcodes to use the software bus are;

e chn_k

» chn_a

e chn_S
 chnclear
* chnexport
o chnmix

» chnparams

Printing and Display

Opcodes for printing and displaying values are:

o dispfft
 display
« flashtxt
e print
o printf
e printf_i
o printk
e printk2
* printks

e prints

Sound File Queries

98

Signal Input and Output

The opcodes that query information about files are:

« filelen

filenchnls
« filepeak

o filesr

filevalid

99

Signal Modifiers

Amplitude Modifiers and Dynamic pro-
cessing

The opcodes that modify amplitude are:

 balance
s compress
* clip
» dam
e gain

The opcode 0dbfs facilitates the use of amplitude by removing the need to use of explicit
sample values.

Convolution and Morphing

The opcodes that convolve and morph signals are:

» convolve also caled convie
* Cross2
* dconv
* ftconv
 ftmorf

* pconvolve

Delay
Fixed delays

» delay
e delayl
o delayk

100

Signal Modifiers

Delay Lines

o delayr
e delayw
» deltap
 deltap3
* deltapi
 deltapn
 deltapx

 deltapxw

Variable delays

* vdelay

» vdelay3

* vdelayx

» vdelayxs
» vdelayxq
» vdelayxw
* vdelayxwq
 vdelayxws

Multitap delays

» multitap

Panning and Spatialization

Amplitude spatialization

* locsend
* locsig

.pan

101

Signal Modifiers

* pan2
¢ space
» spdist
* spsend

3D spatialization with simulation of room acoustics

» gpat3d
 gpat3di
* gpat3dt

Vector Base Amplitude Panning

* vbapl6

* vbapl6move
* vbap4

* vbapdmove
* vbap8

* vbap8move
* vbaplsinit

* Vbapz

* vbapzmove

Binaural spatialization

e hrtfer
e hrtfmove
e hrtfmove2

e hrtfstat

Ambisonics

» bformdec

102

Signal Modifiers

» bformenc

Reverberation

The opcodes one can use for reverberation are:

» alpass

» babo

+ comb

* freeverb

* nestedap

» nreverb (also called reverb?)
* reverb

* reverbsc

* valpass

* vcomb

Sample Level Operators

The opcodes one may use to modify signals are:

o ak)

* denorm
o diff

e downsamp
+ fold

* (k)

* integ

* interp
k(i)
 ntrpol

» samphold

* upsamp

103

Signal Modifiers

* vaget

* vaset

Signal Limiters

Opcodes that can be used to limit signals are:

o limit
e mirror

cWrap

Special Effects

Opcodes that generate special effects are:

* distort
* distortl
* exciter
« flanger
* harmon
e phaserl

» phaser2

Standard Filters

Resonant Low-pass filters

» areson
* lowpass?
* lowres
* lowresx
» |pfl8

» moogvcf

» moogladder

104

Signal Modifiers

o mvclpfl
e mvclpf2
» mvclpf3
* mvclpfd
e reson
* resonr
* resonx
* resony
e resonz
. rezzy

* statevar
o sVfilter
* thbvcf

» viowres

* barez

Standard filters

Hi-pass filters: atone, atonex, mvchpf
* Low-passfilters: tone, tonex
» Biquad filters: biquad and biquada.

» Butterworth filters: butterbp, butterbr, butterhp, butterlp (which are aso called butbp, butbr, buthp,
butlp)

» Generd filters: clfilt

Control signal filters

» aresonk
 atonek
* lineto
 port

* portk

105

Signal Modifiers

* resonk
e resonxk
* tlineto

* tonek

Specialized Filters
High pass filters

» dcblock
* dcblock2

Parametric EQ

* pareq
* rbjeq
« eqfil

Other filters

* nlifilt
o filter2
« fofilter
¢ hilbert
* mode

o Zilter2

Waveguides
The opcodes that use waveguides to modify asignal are:
* streson

* wguidel

* wguide2

106

Signal Modifiers

Waveshaping and Phase Distortion

These opcodes can perform dynamic waveshaping or phaseshaping (ak.a. phase distortion). They differ
from traditional table-based methods of waveshaping by directly calculating the transfer function with
one or more variable parameters for affecting the amount or results of the shaping. Most of these op-
codes could be used on either an audio signal (for waveshaping) or a phasor (for phaseshaping) but tend
to work best for one of these applications.

These opcodes are good for waveshaping:

* chebyshevpoly
e clip

* distort

* distortl

* polynomial

» powershape
These opcodes are good for phaseshaping:

* pdclip
» pdhalf

* pdhalfy

107

Instrument Control
Clock Control

The opcodes to start and stop internal clocks are:

* clockoff
» clockon
These clocks count CPU time. There are 32 independent clocks available. You can use the

opcode readclock to read current values of a clock. See Time Reading for other timing op-
codes.

Conditional Values

The opcodes for conditiona valuesare==,>=,>,<,<=,and !=.

Duration Control Statements

The opcodes one can use to manipulate a note's duration are:

* ihold

* turnoff
* turnoff2
e turnon

For other realtime instrument control see Real-time Performance Control and Instrument In-
vocation.

FLTK Widgets and GUI controllers

Widgets allow the design of a custom Graphical User Interface (GUI) to control an orchestra
in real-time. They are derived from the open-source library FLTK (Fast Light Tool Kit).
Thislibrary is one of the fastest graphic libraries available, supports OpenGL and should be
source compatible with different platforms (Windows, Linux, Unix and Mac OS). The sub-
set of FLTK implemented in Csound provides the following types of objects:

Containers FLTK Containers are widgets that contain other widgets such as pan-
els, windows, etc. Csound provides the following container objects:
e Panels
e Scroll areas

* Pack

108

Instrument Control

Tabs

Groups

Valuators The most useful objects are named FLTK Valuators. These objects alow the user
to vary synthesis parameter values in real-time. Csound provides the following
valuator objects:

Sliders
Knobs
Rollers
Text fields
Joysticks

Counters

Other widgets There are other FTLK widgets that are not valuators nor containers:

Buttons
Button banks
Labels

Keyboard and Mouse sensing

Also there are some other opcodes useful to modify the widget appearance:

» Updating widget value.

 Setting primary and selection colors of awidget.

 Setting font type, size and color of widgets.

* Resizing awidget.

 Hiding and showing awidget.

There are also these general opcodes that allow the following actions:

* Running the widget thread: FLrun

» Loading snapshots containing the status of all valuators of an orchestra: FLgetsnap and FLIoadsnap.

* Saving snapshots containing the status of all valuators of an orchestra: FLsavesnap and FLsetsnap

Setting the snapshot group of a declared valuator: FLsetShapGroup

Below is a simple example of Csound code to create a window. Notice that all opcodes are init-rate and
must be called only once per session. The best way to use them is to place them in the header section of

109

Instrument Control

an orchestra, before any instrument. Even though placing them inside an instrument is not prohibited,
unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and
the last indicating the end of that container block. Some container blocks can be nested but they must
not be crossed. After defining al containers, a widget thread must be run by using the special FLrun op-
code that takes no arguments.

<CsoundSynt hesi zer >

<CsOpti ons>
Sel ect audio/m di flags here according to platform
; Audi 0 out Audio in No messages
- odac -iadc -d ;3 RT audio 1/0
; For Non-realtinme ouput |eave only the line bel ow
; -0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>

<Csl nstrunent s>
chkkhkkkkhkhkhk Ak kA kA hkhkhkhkhkkkk ok ok ok k
sr=48000

kr =480

ksnps=100

nchnl s=1

;*** |t is recommended to put alnpst all GU code in the
;*** header section of an orchestra

FLpanel "Panel 1", 450, 550 ;***** start of contal ner
; some wi dgets shoul d contained here
FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required
instr 1
; put sone synthesis code here
endin
rhkkkkkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk
</ Csl nst runent s>
<CsScor e>
f 0 3600 ;dummy table for realtine input
e

</ CsScor e>
</ CsoundSynt hesi zer >

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a dider inside each of them:

<CsoundSynt hesi zer >

<CsOpti ons>

; Select audio/midi flags here according to platform

; Audi o out Audio in No nessages

- odac -iadc ; -d ;o RT audio 1/0

; For Non-realtime ouput |eave only the line bel ow
-0 linseg.wav -W;;; for file output any platform

</ CsOpti ons>
<Csl nstrunent s>

Pkkkkkhkkhkkhkhkhhkhhkhhkhhkhkhkkkk ok kK

Sr=48000
kr =480
ksmps=100
nchnl s=1
FLpanel "Panel 1", 450, 550, 100, 100 ; ***** start of contail ner
gkl,iha FLslider "FLslider 1", 500, 1000, O ,1, -1, 300,15, 20,50
FLpanel End ;****x end of container
FLpanel "Panel 2", 450, 550, 100, 100 ; ***** start of contal ner
gk2,i hb FLslider "FLslider 2", 100, 200, 0,1, -1, 300,15, 20,50

110

Instrument Control

FLpanel End ;***xx end of container
FLrun ;¥**** runs the widget thread, it is always required

instr 1

gkl and gk2 variables that contain the output of val uator
; Wi dgets previously defined, can be used inside any instrunent
printk2 gkl
printk2 gk2 ;print the values of the valuators whenever they change
endi n

Pkkkkkkkhkkhkkkhhkhhkhhkhhkhkhkkkk ok kK

</ Csl nst runent s>

<CsScor e>

f 0 3600 ;dummy table for realtinme input
e

</ CsScor e>
</ CsoundSynt hesi zer >

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because
an independent thread is run based on a callback mechanism. It consumes very few processing resources
since there is no need of polling. (This differs from other MIDI based controller opcodes.) So you can
use any number of windows and valuators without degrading the real-time performance.

FLTK Containers

The opcodes for FLTK containers are:

* FLgroup

» FLgroupEnd
* FLpack

» FLpackend
* FLpand

* FLpanelEnd
* FLscrall

* FLscrollEnd
» FLtabs

» FLtabsEnd
FLTK Valuators
The opcodes for FLTK valuators are:

* FLcount
* FLjoy
* FLknob

111

Instrument Control

e FLroller
» FLdlider

* FLtext

Other FLTK Widgets

Other FLTK widget opcodes are:

* FLbox

» FLbutBank

* FLbutton

» FLexecButton

* FLkeyln

» FLhvsBox

» FLhvsBoxSetValue
* FLmouse

* FLprintk

e FLprintk2

e FLdidBnk

» FLdidBnk2

* FLdidBnkGetHandle
» FLdlidBnkSet

e FLdidBnk2Set

* FLdidBnk2Setk

* FLvalue

» FLvkeybd

* FLvdlidBnk

» FLvslidBnk2

* FlLxyin

Modifying FLTK Widget Appearance

The following opcodes modify FLTK widget appearance:

112

Instrument Control

* FLcolor

* FLcolor2

* FLhide

* FLlabel

* FLsetAlign

* FLsetBox

* FLsetColor

* FLsetColor2
* FLsetFont

* FLsetPosition
* FlLsetSze

* FlLsetText

* FLsetTextColor
* FlLsetTextSze
* FlLsetTextType
o Flsetval_j

» FlLsetVval

e FLshow

General FLTK Widget-related Opcodes

The general FLTK widget-related opcodes are:

e FLgetsnap
» FLloadsnap
* FLrun
 FLsavesnap
e FLsetsnap
* FLupdate

e FLsetShapGroup

Instrument Invocation

113

Instrument Control

The opcodes one can use to create score events from within a orchestra are:

* event

e event |

e scoreline i

» scoreline

* schedule

¢ schedwhen

* schedkwhen

* schedkwhennamed

The mute opcode can be used to mute/unmute instruments during a performance.

Instruments definitions can be removed using the remove opcode.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are:

* cggoto
* cigoto
* ckgoto
* cngoto
» esaf
* ese

* endif
+ goto
o if

* igoto
» kgoto
* tigoto

o timout

Opcodes to create looping constructions are:

114

Instrument Control

» loop_ge
* loop_gt
* loop_le
* loop_It

* until

+ while

. Warning

Some of these opcodes work at i-rate even if they contain k- or a- rate comparisons. See
the Reinitialization section.

Real-time Performance Control

Opcodes that monitor and control real-time performance are:

e active
e cpuprc
» maxalloc
» prealloc

* jacktransport

The running csound process can be terminated using exitnow.

Initialization and Reinitialization

Opcodes used for the initialization of variables:

e init
* tival
e passign

. p%t
The opcodes that can generate another initialization pass are:

e reinit

115

Instrument Control

* rigoto

e rireturn

The opcode p can be used to find score p-fields at i- or k-rate.

nstrnum returns the instrument number for a named instrument.

Note

Note that a instrument may modify the p3 (duration) parameter at initialisation time. For
example statements like

iattack = 0.02

irelease = 0.04

isustain = p3

p3 = iattack + isustain + irel ease

arevalid.

Sensing and Control
TCL/TK widgets

 button
» checkbox
e control

o setctrl

Keyboard and mouse sensing

* sensekey (also called sense)

'Xyln

Envelope followers

» follow

follow2
. pea_k

* I'mS

116

Instrument Control

Tempo and Pitch estimation

* ptrack
e pitch
e pitchamdf

« tempest

Tempo and Sequencing

* tempo

» miditempo
* tempoval

* seqgtime

* seqgtime2

* trigger

* trigseq

* timedseq

 changed

System

* getcfg

Score control

* rewindscore

* setscorepos

Stacks

Csound implements a global stack that can be accessed with the following opcodes:

117

Instrument Control

o stack

* pop
* push

* pop_f
* push f

Sub-instrument Control
These opcodes | et one define and use a sub-instrument:

 subinstr

e subinstrinit

See also the UDO and Orchestra Macros Macros section for similar functionality.

Time Reading

Opcodes one can use to read time values are:

readclock
* rtclock
 timeinstk
* timeinsts
 times

o timek

Y ou can obtain the system date using:

» date - Returns the number seconds since 1 January 1970.

* dates- Returns as a string the date and time specified.

Y ou can also set up counters using clockoff and clockon.

118

Function Table Control

Refer to the f score statement, ftgen, ftgentmp, ftgenonce and the GEN Routines section for
information on creating tables.

Tables can be removed from memory using the ftfree opcode.

Tables by default, require a size which is a power of two. However tables with any size can
be generated by specifying the size as a hegative number (see f score statement).

Note

Not all opcodes accept tables whose size is not a power of two, as this may be
arequirement for internal processing.
For information on table access, consult the section Table Access.

Tables for use with the loscilx opcode can be loaded using sndload.

Table Queries

Opcodes the query tables for information are:

» For tables|loaded from a sound file (using GENO1): ftchnls, ftcps,ftlen, ftiptimand ftsr

 For any table: nsamp, ftlen, tableng

The opcode tabsum cal culates the sum of valuesin atable.

Read/Write Operations

Opcodes that read and write to atable are:

« ftloadk

* ftload

* ftsavek

* ftsave

* tablecopy
* tablegpw

* tableicopy
* tableigpw
* tableimix

o tableiw

119

Function Table Control

* tablemix
* tablera

* tablew

* tablewa

* tablewkt

* tabmorph
* tabmorpha
* tabmorphak
* tabmorphi
* tabrec

* tabplay

o ftmorf

Table values can be accessed within expressions using the tb family of opcodes.

Many oscillators are in fact specialized table readers. See the Basic oscillators section.

Table Reading with Dynamic Selection

Opcodes that let one dynamically (at k-rate) select tables are:
* tableikt

* tablekt
* tablexkt

120

Mathematical Operations
Amplitude Converters

Opcodes to convert between different amplitude measurements are:

e ampdb
o ampdbfs
o db

» dbamp
 dbfsamp

Use rms to find the rms value of a signal. See also Odbfs for another way to handle amp-
litudes in csound.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operationsare -, +, &&, ||, *, /, *, and %.

See the Conditional Values section and the if family of opcodes for usage of logical operat-
ors.

Comparators and Accumulators

The following opcodes perform comparisons between signals at a-rate or k-rate, find max-
ima or minima, or accumulate the results of several computations or comparisons:
* max

o max_k

* maxabs

* maxabsaccum

* maxaccum

* min

e minabs

* minabsaccum

e minaccum

* vincr

e clear

121

Mathematical Operations

Mathematical Functions

Opcodes that perform mathematical functions are:

+ abs

» cell

o exp

* floor

» frac

e int

* log

* logl0

* logbtwo
* pow

» powershape
* powoftwo

e round

* gort

Opcode Equivalents of Functions

Opcodes that perform the equivalent of mathematical functions are:

* chebyshevpoly
o divz

e mac

* maca
 polynomial

* pow
 product

s sum

e taninv2

122

Mathematical Operations

Random Functions

Opcodes that perform random functions are:

e birnd

e rnd

See the section Random (Noise) Generators for opcodes that generate random signals.

Trigonometric Functions

Opcodes that perform trigonometric functions are:

* cos, cosh and cosinv
* sin, sinh and sininv

 tan, tanh, taninv, and taninv2.

123

Mathematical Operations

Linear Algebra Opcodes

Linear Algebra Opcodes — Scalar, vector, and matrix arithmetic on real and complex values.

Description

These opcodes implement many linear algebra operations, from scalar, vector, and matrix arithmetic up
to and including QR based eigenvalue decompositions. The opcodes are designed for digital signal pro-
cessing, and of course other mathematical operations, in the Csound orchestra language.

The numerical implementation uses the gmm++ library from home.gna.org/getfenygmm intro [ht-
tp://home.gna.org/getfem/gmm_intro].

. Warning

For applications with f-sig variables, array arithmetic must be performed only when the f-
sig is "current," because f-rate is some fraction of k-rate; currency can be determined with
thela k_current_f opcode.

For applications using assignments between real vectors and a-rate variables, array arith-
metic must be performed only when the vectors are "current”, because the size of the vec-
tor may be some integral multiple of ksmps; currency can be determined by means of the
la_k_current_vr opcode.

Table4. Linear Algebra Data Types

Mathematical Type Code Corresponding Csound Type or
Types

real scalar r i-rate or k-rate variable

complex scalar C pair of i-rate or k-rate variables,
e.g. "kr, ki"

real vector vr i-rate variable holding address of
array

real vector a arate variable

real vector t function table number

complex vector vC i-rate variable holding address of
array

complex vector f fsig variable

real matrix mr i-rate variable holding address of
array

complex matrix mc i-rate variable holding address of
array

All arrays are O-based; the first index iterates rows to give columns, the second index iterates columns to
give elements.

All arrays are general and dense; banded, Hermitian, symmetric and sparse routines are not implemen-
ted.

124

http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro
http://home.gna.org/getfem/gmm_intro

Mathematical Operations

An array can be of type code vr, vc, mr, or mc and is stored in an i-rate object. In orchestra code, an ar-
ray is passed asa MYFLT i-rate variable that contains the address of the array object, which is actually
stored in the allocator opcode instance. Although array variables are i-rate, of course their values and
even shapes may change at i-rate or k-rate.

All operands must be pre-allocated; except for the creation opcodes, no opcode ever alocates any ar-
rays. Thisistrue even if the array appears on the | eft-hand side of an opcode! However, some operations
may reshape arrays to hold results.

Arrays are automatically deallocated when their instrument is deallocated.

Not only for more efficient performance, but also to make it easier to remember opcode names, the per-
formance rate, output value types, operation names, and input value types are deterministically encoded
into the opcode name:

1. "Ia" for "linear algebra opcode family".

2. "i" or "k" for performance rate.

3. Type code(s) (see above table) for output value(s), but only if the type is not implicit from the input
values.

4. Operation name: common mathematical name (preferred) or abbreviation.

5. Type code(s) for input values, if not implicit.

For additional details, see the gmm-++ documentation a ht-
tp://downl oad.gna.org/getfem/doc/gmmuser.pdf.

Syntax

Array Creation

ivr la_i_vr_create irows

Create areal vector with irows rows.

ive la_i_vc_create irows

Create a complex vector with irows rows.

i la_i_nr_create irows, icolums [, odiagonal]

Create areal matrix with irows rows and icolumns columns, with an optional value on the diagonal.

imc la_i_nt_create irows, icolums [, odiagonal _r, odiagonal _i]

Create a complex matrix with irows rows and icolumns columns, with an optional complex value on the
diagonal.

Array Introspection

i rows la_i_size_vr ivr

Return the number of rowsin real vector ivr.

125

Mathematical Operations

i rows la_i_size_vc ive

Return the number of rows in complex vector ivc.

irows, icolums la_i_size_nr i

Return the number of rows and columnsin real matrix imr.

irows, icolumms la_i_size_nt inmc

Return the number of rows and columns in complex matrix imc.

kfiscurrent la_k_current _f fsig

Return 1if fsig is current, that is, if the value of fsig will change on the next kperiod.

kvri scurrent la_k_current _vr ivr

Return 1 if the real vector ivr is current, that is, if Csound's current audio sample frame stands at index 0
of the vector.

la_i_print_vr ivr

Print the value of real vecto