Module Integer

module Integer: sig .. end
Extension of Big_int compatible with Zarith.
Since Nitrogen-20111001

type t = Z.t 
val equal : t -> t -> bool
val compare : t -> t -> int
val le : t -> t -> bool
val ge : t -> t -> bool
val lt : t -> t -> bool
val gt : t -> t -> bool
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val shift_left : t -> t -> t
Raises Invalid_argument if second argument (count) is negative
val shift_right : t -> t -> t
Raises Invalid_argument if second argument (count) is negative
val shift_right_logical : t -> t -> t
Raises Invalid_argument if any argument is negative
val logand : t -> t -> t
val logor : t -> t -> t
val logxor : t -> t -> t
val lognot : t -> t
val min : t -> t -> t
val max : t -> t -> t
val e_div : t -> t -> t
Euclidean division (that returns a positive rem). Implemented by Z.ediv

Equivalent to C division if both operands are positive. Equivalent to a floored division if b > 0 (rounds downwards), otherwise rounds upwards. Note: it is possible that e_div (-a) b <> e_div a (-b).

val e_rem : t -> t -> t
Remainder of the Euclidean division (always positive). Implemented by Z.erem
val e_div_rem : t -> t -> t * t
e_div_rem a b returns (e_div a b, e_rem a b). Implemented by Z.ediv_rem
val c_div : t -> t -> t
Truncated division towards 0 (like in C99). Implemented by Z.div
val c_rem : t -> t -> t
Remainder of the truncated division towards 0 (like in C99). Implemented by Z.rem
val c_div_rem : t -> t -> t * t
c_div_rem a b returns (c_div a b, c_rem a b). Implemented by Z.div_rem
val pgcd : t -> t -> t
pgcd v 0 == pgcd 0 v == abs v. Result is always positive
val ppcm : t -> t -> t
ppcm v 0 == ppcm 0 v == 0. Result is always positive
val cast : size:t -> signed:bool -> value:t -> t
val abs : t -> t
val neg : t -> t
val succ : t -> t
val pred : t -> t
val is_zero : t -> bool
val is_one : t -> bool
val is_even : t -> bool
val zero : t
val one : t
val two : t
val four : t
val eight : t
val sixteen : t
val thirtytwo : t
val onethousand : t
val billion_one : t
val minus_one : t
val max_int64 : t
val min_int64 : t
val two_power_32 : t
val two_power_64 : t
val length : t -> t -> t
b - a + 1
val of_int : int -> t
val of_int64 : Int64.t -> t
val of_int32 : Int32.t -> t
val to_int : t -> int
Raises Z.Overflow if too big
val to_int64 : t -> int64
Raises Z.Overflow if too big
val to_int32 : t -> int32
Raises Z.Overflow if too big
val to_float : t -> float
val of_float : float -> t
val round_up_to_r : min:t -> r:t -> modu:t -> t
round_up_to_r m r modu is the smallest number n such that n>=m and n = r modulo modu
val round_down_to_r : max:t -> r:t -> modu:t -> t
round_down_to_r m r modu is the largest number n such that n<=m and n = r modulo modu
val two_power : t -> t
Computes 2^n
Raises Z.Overflow for exponents greater than 1024
val two_power_of_int : int -> t
Computes 2^n
val power_int_positive_int : int -> int -> t
Exponentiation
val extract_bits : start:t -> stop:t -> t -> t
val popcount : t -> int
val hash : t -> int
val to_string : t -> string
val of_string : string -> t
Raises Invalid_argument when the string cannot be parsed.
val pretty : ?hexa:bool -> t Pretty_utils.formatter
val pp_bin : ?nbits:int -> ?sep:string -> t Pretty_utils.formatter
Print binary format. Digits are output by blocs of 4 bits separated by ~sep with at least ~nbits total bits. If nbits is non positive, it will be ignored.

Positive values are prefixed with "0b" and negative values are printed as their 2-complement (lnot) with prefix "1b".

val pp_hex : ?nbits:int -> ?sep:string -> t Pretty_utils.formatter
Print hexadecimal format. Digits are output by blocs of 16 bits (4 hex digits) separated by ~sep with at least ~nbits total bits. If nbits is non positive, it will be ignored.

Positive values are preffixed with "0x" and negative values are printed as their 2-complement (lnot) with prefix "1x".