AirRAC Reference Manual
1.00.1

Generated by Doxygen 1.4.7

Sun Jun 7 21:27:01 2015

CONTENTS 1
Contents

1 AirRAC Documentation 1
2 AirRAC Directory Hierarchy 2
3 AirRAC Namespace Index 3
4 AirRAC Hierarchical Index 3
5 AirRAC Class Index 6
6 AirRAC File Index 8
7 AirRAC Page Index 9
8 AirRAC Directory Documentation 10
9 AirRAC Namespace Documentation 11
10 AirRAC Class Documentation 15
11 AirRAC File Documentation 68
12 AirRAC Page Documentation 80

1 AirRAC Documentation

1.1 Getting Started

¢ Main features

* Installation

* Linking with AirRAC
» Users Guide

* Tutorials

* Copyright and License
* Make a Difference

* Make a new release

* People

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

1.2 AirRAC at SourceForge

1.2

1.3

14

1.5

1.6

AirRAC is a C++ library of airline revenue accounting classes and functions, mainly targeting simulation

AirRAC at SourceForge

Project page

Download AirRAC

Open a ticket for a bug or feature
Mailing lists

Forums

— Discuss about Development issues
— Ask for Help

— Discuss AirRAC

AirRAC Development

Git Repository (Subversion is deprecated)
Coding Rules
Documentation Rules

Test Rules

External Libraries

Boost (C++ STL extensions)
Python
MySQL client

SOCI (C++ DB API)

Support AirRAC

About AirRAC

purposes. N

AirRAC makes an extensive use of existing open-source libraries for increased functionality, speed and
accuracy. In particular the Boost (C++ Standard Extensions) library is used.

The AirRAC library originates from the department of Operational Research and Innovation at Amadeus,
Sophia Antipolis, France. AirRAC is released under the terms of the GNU Lesser General Public

License (LGPLv2.1) for you to enjoy.

AirRAC should work on GNU/Linux, Sun Solaris, Microsoft Windows (with Cygwin, Min—
GW/MSYS,or Microsoft Visual C++ .NET)andMac OS X operating systems.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://sourceforge.net/projects/airrac/
http://sourceforge.net/project/showfiles.php?group_id=317250
https://sourceforge.net/apps/trac/airrac/newticket
http://sourceforge.net/mail/?group_id=317250
https://sourceforge.net/apps/phpbb/airrac/
https://sourceforge.net/apps/phpbb/airrac/viewforum.php?f=1
https://sourceforge.net/apps/phpbb/airrac/viewforum.php?f=2
https://sourceforge.net/apps/phpbb/airrac/viewforum.php?f=3
http://airrac.git.sourceforge.net/git/gitweb.cgi?p=airrac/airrac;a=tree;h=refs/heads/trunk;hb=trunk
http://www.boost.org
http://www.python.org/
http://dev.mysql.com/
http://soci.sourceforge.net/
http://www.boost.org
http://www.amadeus.com
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://en.wikipedia.org/wiki/GNU/Linux
http://www.sun.com/software/solaris/
http://www.cygwin.com/
http://www.mingw.org/
http://www.mingw.org/
http://msdn.microsoft.com/visualc/
http://www.apple.com/macosx/

2 AirRAC Directory Hierarchy

Note:

(N) - The AirRAC library is NOT intended, in any way, to be used by airlines for production systems.
If you want to report issue, bug or feature request, or if you just want to give feedback, have a look on
the right-hand side of this page for the preferred reporting methods. In any case, please do not contact

Amadeus directly for any matter related to AirRAC.

2 AirRAC Directory Hierarchy

2.1 AirRAC Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:
airrac
basic
batches
bom
command
factory
service
test

airrac

3 AirRAC Namespace Index

3.1 AirRAC Namespace List

Here is a list of all namespaces with brief descriptions:
AIRRAC
AIRRAC::YieldParserHelper

stdair (Forward declarations)

4 AirRAC Hierarchical Index

4.1 AirRAC Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

10

10

10

10

11

11

11

11

10

11

13

15

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

4.1 AirRAC Class Hierarchy

AIRRAC::AIRRAC_Service
std::allocator< T >
std::auto_ptr< T >
std::basic_string< Char >
std::basic_string< char >
std::string
std::basic_string< wchar_t >
std::wstring
std::bitset< Bits >

grammar

AIRRAC::YieldParserHelper::YieldRuleParser

CmdAbstract
AIRRAC::YieldFileParser
AIRRAC::YieldParser

AIRRAC::YieldRuleGenerator
std::complex

TestFixture

YieldTestSuite

std::deque< T >
std::exception
std::bad_alloc
std::bad_cast
std::bad_exception
std::bad_typeid
std::i0s_base::failure
std::logic_error
std::domain_error
std::invalid_argument
std::length_error
std::out_of_range
std::runtime_error
std::overflow_error
std::range_error
std::underflow_error

FacServiceAbstract
AIRRAC::FacAirracServiceContext

FileNotFoundException

AIRRAC::YieldInputFileNotFoundException

InputFilePath

AIRRAC::YieldFilePath
std::ios_base

16

21

56

21

51

54

55

21

67

25

23

26

53

27

52

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

4.1 AirRAC Class Hierarchy

std::basic_ios
std::basic_istream
std::basic_ifstream
std::basic_iostream
std::basic_fstream
std::basic_stringstream
std::basic_istringstream
std::basic_ostream
std::basic_iostream
std::basic_ofstream
std::basic_ostringstream
std::basic_ios< char >
std::basic_istream< char >
std::basic_ifstream< char >
std::ifstream
std::basic_iostream< char >
std::basic_fstream< char >
std::fstream
std::basic_stringstream< char >
std::stringstream
std::basic_istringstream< char >
std::istringstream
std::istream
std::basic_ostream< char >
std::basic_iostream< char >
std::basic_ofstream< char >
std::ofstream
std::basic_ostringstream< char >
std::ostringstream
std::ostream
std::ios
std::basic_ios< wchar_t >
std::basic_istream< wchar_t >
std::basic_ifstream< wchar_t >
std::wifstream
std::basic_iostream< wchar_t >
std::basic_fstream< wchar_t >
std::wfstream
std::basic_stringstream< wchar_t >
std::wstringstream
std::basic_istringstream< wchar_t >
std::wistringstream
std::wistream
std::basic_ostream< wchar_t >
std::basic_iostream< wchar_t >
std::basic_ofstream< wchar_t >
std::wofstream
std::basic_ostringstream< wchar_t >
std::wostringstream
std::wostream
std::wios
std::list< T >
std::map< K, T >
std::multimap< K, T >

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

4.1 AirRAC Class Hierarchy 6

std::multiset< K >

ObjectNotFoundException 27
AIRRAC::AirlineNotFoundException 15
AIRRAC::AirportPairNotFoundException 16
AIRRAC::FeaturesNotFoundException 25
AIRRAC::FlightDateNotFoundException 26
AIRRAC::FlightTimeNotFoundException 27
AIRRAC::PosOrChannelNotFoundException 30

AIRRAC::YieldParserHelper::ParserSemanticAction 28
AIRRAC::YieldParserHelper::doEndYield 22
AIRRAC::YieldParserHelper::storeAirlineCode 31
AIRRAC::YieldParserHelper::storeCabinCode 32
AIRRAC::YieldParserHelper::storeChannel 34
AIRRAC::YieldParserHelper::storeClass 35
AIRRAC::YieldParserHelper::storeDateRangeEnd 37
AIRRAC::YieldParserHelper::storeDateRangeStart 38
AIRRAC::YieldParserHelper::storeDestination 39
AIRRAC::YieldParserHelper::storeEndRangeTime 41
AIRRAC::YieldParserHelper::storeOrigin 42
AIRRAC::YieldParserHelper::storePOS 44
AIRRAC::YieldParserHelper::storeStartRangeTime 45
AIRRAC::YieldParserHelper::storeTripType 46
AIRRAC::YieldParserHelper::storeYield 48
AIRRAC::YieldParserHelper::storeYieldId 49

ParsingFileFailedException 29
AIRRAC::YieldFileParsingFailedException 52

std::priority_queue< T >

std::queue< T >

RootException 31
AIRRAC::QuotingException 30

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

5 AirRAC Class Index 7
ServiceAbstract 31
AIRRAC::AIRRAC_ServiceContext 20
std::set< K >
std::stack< T >
StructAbstract 50
AIRRAC::YieldRuleStruct 60
std::valarray< T >
std::vector< T >
AIRRAC::YieldManager 54
S AirRAC Class Index
5.1 AirRAC Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
AIRRAC::AirlineNotFoundException 15
AIRRAC::AirportPairNotFoundException 16
AIRRAC::AIRRAC_Service (Interface for the AIRRAC Services) 16
AIRRAC::AIRRAC_ServiceContext (Inner class holding the context for the AIRRAC Service
object) 20
grammar 21
CmdAbstract 21
TestFixture 21
AIRRAC::YieldParserHelper::doEndYield 22
AIRRAC::FacAirracServiceContext (Factory for the service context) 23
FacServiceAbstract 25
AIRRAC::FeaturesNotFoundException 25
FileNotFoundException 26
AIRRAC::FlightDateNotFoundException 26
AIRRAC::FlightTimeNotFoundException 27
InputFilePath 27
ObjectNotFoundException 27
AIRRAC::YieldParserHelper::ParserSemanticAction 28

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

5.1 AirRAC Class List 8
ParsingFileFailedException 29
AIRRAC::PosOrChannelNotFoundException 30
AIRRAC::QuotingException 30
RootException 31
ServiceAbstract 31
AIRRAC::YieldParserHelper::storeAirlineCode 31
AIRRAC::YieldParserHelper::storeCabinCode 32
AIRRAC::YieldParserHelper::storeChannel 34
AIRRAC::YieldParserHelper::storeClass 35
AIRRAC::YieldParserHelper::storeDateRangeEnd 37
AIRRAC::YieldParserHelper::storeDateRangeStart 38
AIRRAC::YieldParserHelper::storeDestination 39
AIRRAC::YieldParserHelper::storeEndRangeTime 41
AIRRAC::YieldParserHelper::storeOrigin 42
AIRRAC::YieldParserHelper::storePOS 44
AIRRAC::YieldParserHelper::storeStartRangeTime 45
AIRRAC::YieldParserHelper::storeTripType 46
AIRRAC::YieldParserHelper::storeYield 48
AIRRAC::YieldParserHelper::storeYieldld 49
StructAbstract 50
AIRRAC::YieldFileParser 51
AIRRAC::YieldFileParsingFailedException 52
AIRRAC::YieldFilePath 52
AIRRAC::YieldInputFileNotFoundException 53
AIRRAC::YieldManager (Command wrapping the travel request process) 54
AIRRAC::YieldParser (Class wrapping the parser entry point) 54
AIRRAC::YieldRuleGenerator 55
AIRRAC::YieldParserHelper::YieldRuleParser 56
AIRRAC::YieldRuleStruct (Utility Structure for the parsing of Flight-Date structures) 60

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

6 AirRAC File Index 9
Yield TestSuite 67

6 AirRAC File Index

6.1 AirRAC File List

Here is a list of all files with brief descriptions:
airrac/AIRRAC_Service.hpp 68
airrac/AIRRAC_Types.hpp 69
airrac/basic/BasConst.cpp 70
airrac/basic/BasConst_AIRRAC_Service.hpp 70
airrac/basic/BasConst_General.hpp 70
airrac/batches/airrac.cpp 70
airrac/bom/YieldRuleStruct.cpp 72
airrac/bom/YieldRuleStruct.hpp 73
airrac/command/YieldManager.cpp 73
airrac/command/YieldManager.hpp 74
airrac/command/YieldParser.cpp 74
airrac/command/YieldParser.hpp 74
airrac/command/YieldParserHelper.cpp 75
airrac/command/YieldParserHelper.hpp 76
airrac/command/YieldRuleGenerator.cpp 76
airrac/command/YieldRuleGenerator.hpp 77
airrac/factory/FacAirracServiceContext.cpp 77
airrac/factory/FacAirracServiceContext.hpp 77
airrac/service/AIRRAC_Service.cpp 78
airrac/service/AIRRAC_ServiceContext.cpp 78
airrac/service/AIRRAC_ServiceContext.hpp 78
test/airrac/Yield TestSuite.cpp 79
test/airrac/Yield TestSuite.hpp 79

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

7 AirRAC Page Index

10

7 AirRAC Page Index

7.1 AirRAC Related Pages

Here is a list of all related documentation pages:
People
Coding Rules
Copyright and License
Documentation Rules
Main features
Make a Difference
Make a new release
Installation
Linking with AirRAC
Test Rules
Users Guide
Supported Systems
AirRAC Supported Systems (Previous Releases)
Tutorials

Command-Line Test to Demonstrate How To Test the AirRAC Project

8 AirRAC Directory Documentation

8.1 test/airrac/ Directory Reference

Files

* file YieldTestSuite.cpp
* file YieldTestSuite.hpp

8.2 airrac/ Directory Reference

Directories

* directory basic

* directory batches

* directory bom

e directory command

80

80

81

88

90

90

91

94

103

105

105

107

115

115

118

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

8.3 airrac/basic/ Directory Reference

11

8.3

Files

84

Files

8.5

Files

8.6

Files

8.7

Files

directory factory
directory service

file AIRRAC_Service.hpp

file AIRRAC_Types.hpp

airrac/basic/ Directory Reference

file BasConst.cpp
file BasConst_AIRRAC_Service.hpp
file BasConst_General.hpp

airrac/batches/ Directory Reference

file airrac.cpp

airrac/bom/ Directory Reference

file YieldRuleStruct.cpp
file YieldRuleStruct.hpp

airrac/command/ Directory Reference

file YieldManager.cpp

file YieldManager.hpp

file YieldParser.cpp

file YieldParser.hpp

file YieldParserHelper.cpp
file YieldParserHelper.hpp
file YieldRuleGenerator.cpp
file YieldRuleGenerator.hpp

airrac/factory/ Directory Reference

file FacAirracServiceContext.cpp
file FacAirracServiceContext.hpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

8.8 airrac/service/ Directory Reference

8.8 airrac/service/ Directory Reference

Files

* file AIRRAC_Service.cpp
* file AIRRAC_ServiceContext.cpp
« file AIRRAC_ServiceContext.hpp

8.9 test/ Directory Reference

Directories

e directory airrac

9 AirRAC Namespace Documentation

9.1 AIRRAC Namespace Reference

Classes

e class AIRRAC_Service
Interface for the AIRRAC Services.

* class AirportPairNotFoundException

¢ class PosOrChannelNotFoundException
* class FlightDateNotFoundException

* class FlightTimeNotFoundException

* class FeaturesNotFoundException

* class AirlineNotFoundException

¢ class YieldInputFileNotFoundException
¢ class YieldFileParsingFailedException
* class QuotingException

* class YieldFilePath

* struct YieldRuleStruct

Utility Structure for the parsing of Flight-Date structures.

* class YieldManager

Command wrapping the travel request process.

e class YieldParser

Class wrapping the parser entry point.

e class YieldFileParser
e class YieldRuleGenerator
e class FacAirracServiceContext

Factory for the service context.

e class AIRRAC_ServiceContext
Inner class holding the context for the AIRRAC Service object.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

9.2 AIRRAC::YieldParserHelper Namespace Reference

Namespaces

* namespace YieldParserHelper

Typedefs

¢ typedef boost::shared_ptr< AIRRAC_Service > AIRRAC_ServicePtr_T
¢ typedef unsigned int YieldID_T

Variables

* const std::string DEFAULT_AIRLINE_CODE = "BA"
¢ const std::string DEFAULT_AIRLINE_CODE

9.1.1 Typedef Documentation

9.1.1.1 typedef boost::shared_ptr<AIRRAC_Service> AIRRAC::AIRRAC_ServicePtr_T
Definition at line 95 of file AIRRAC_Types.hpp.

9.1.1.2 typedef unsigned int AIRRAC::YieldID_T
ID for the Yield Quote system.
Definition at line 102 of file AIRRAC_Types.hpp.

9.1.2 Variable Documentation

9.1.2.1 const std::string AIRRAC::DEFAULT_AIRLINE_CODE = "BA"
Default airline name for the AIRRAC_Service.

Definition at line 10 of file BasConst.cpp.

9.1.2.2 const std::string AIRRAC::DEFAULT_AIRLINE_CODE
Default airline name for the AIRRAC_Service.

Definition at line 10 of file BasConst.cpp.

9.2 AIRRAC::YieldParserHelper Namespace Reference

Classes

e struct YieldRuleParser

e struct ParserSemanticAction
e struct storeYieldld

* struct storeOrigin

e struct storeDestination

* struct storeTripType

* struct storeDateRangeStart
* struct storeDateRangeEnd

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

9.2 AIRRAC::YieldParserHelper Namespace Reference

14

* struct storeStartRangeTime
* struct storeEndRangeTime
e struct storePOS

e struct storeCabinCode

e struct storeChannel

e struct storeYield

e struct storeAirlineCode

e struct storeClass

e struct doEndYield

Variables

e stdair::intl _p_tintl_p

e stdair::uint2_p_t uint2_p

e stdair::uint4_p_t uint4_p

e stdair::uintl_4_p_tuintl_4_p
e stdair::hour_p_t hour_p

* stdair::minute_p_t minute_p
* stdair::second_p_t second_p
e stdair::year_p_t year_p

* stdair::month_p_t month_p

e stdair::day_p_t day_p

9.2.1 Variable Documentation

9.2.1.1 stdair::intl_p_t AIRRAC::YieldParserHelper::intl_p
1-digit-integer parser

Definition at line 341 of file YieldParserHelper.cpp.

9.2.1.2 stdair::uint2_p_t AIRRAC::YieldParserHelper::uint2_p
2-digit-integer parser

Definition at line 344 of file YieldParserHelper.cpp.

9.2.1.3 stdair::uintd4_p_t AIRRAC::YieldParserHelper::uint4_p
4-digit-integer parser

Definition at line 347 of file YieldParserHelper.cpp.

9.2.1.4 stdair::uintl_4_p_t AIRRAC::YieldParserHelper::uintl_4_p
Up-to-4-digit-integer parser
Definition at line 350 of file YieldParserHelper.cpp.

Referenced by AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

9.3 stdair Namespace Reference 15

9.2.1.5 stdair::hour_p_t AIRRAC::YieldParserHelper::hour_p

Time element parsers.

Definition at line 353 of file YieldParserHelper.cpp.

Referenced by AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

9.2.1.6 stdair::minute_p_t AIRRAC::YieldParserHelper::minute_p
Definition at line 354 of file YieldParserHelper.cpp.
Referenced by AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

9.2.1.7 stdair::second_p_t AIRRAC::YieldParserHelper::second_p
Definition at line 355 of file YieldParserHelper.cpp.
Referenced by AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

9.2.1.8 stdair::year_p_t AIRRAC::YieldParserHelper::year_p

Date element parsers.

Definition at line 358 of file YieldParserHelper.cpp.

Referenced by AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

9.2.1.9 stdair::month_p_t AIRRAC::YieldParserHelper::month_p
Definition at line 359 of file YieldParserHelper.cpp.
Referenced by AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

9.2.1.10 stdair::day_p_t AIRRAC::YieldParserHelper::day_p
Definition at line 360 of file YieldParserHelper.cpp.
Referenced by AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

9.3 stdair Namespace Reference

Forward declarations.

9.3.1 Detailed Description

Forward declarations.

10 AirRAC Class Documentation

10.1 AIRRAC::AirlineNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>

Inheritance diagram for AIRRAC::AirlineNotFoundException::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.2 AIRRAC::AirportPairNotFoundException Class Reference 16

‘ ObjectNotFoundException ‘

T

‘ AIRRAC::AirlineNotFoundException ‘

Public Member Functions

* AirlineNotFoundException (const std::string &iWhat)

10.1.1 Detailed Description

Definition at line 54 of file AIRRAC_Types.hpp.

10.1.2 Constructor & Destructor Documentation

10.1.2.1 AIRRAC::AirlineNotFoundException::AirlineNotFoundException (const std::string & i-
What) [inline]

Constructor.
Definition at line 57 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.2 AIRRAC::AirportPairNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>

Inheritance diagram for AIRRAC:: AirportPairNotFoundException::

‘ ObjectNotFoundException ‘

T

‘ AIRRAC::AirportPairNotFoundException ‘

Public Member Functions

¢ AirportPairNotFoundException (const std::string &iWhat)

10.2.1 Detailed Description

Definition at line 19 of file AIRRAC_Types.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.3 AIRRAC::AIRRAC_Service Class Reference

17

10.2.2 Constructor & Destructor Documentation

10.2.2.1 AIRRAC::AirportPairNotFoundException::AirportPairNotFoundException
std::string & iWhat) [inline]

Constructor.
Definition at line 22 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.3 AIRRAC::AIRRAC Service Class Reference

Interface for the AIRRAC Services.

#include <airrac/AIRRAC_Service.hpp>

Public Member Functions

* AIRRAC_Service (const stdair::BasLogParams &)

* AIRRAC_Service (const stdair::BasLogParams &, const stdair::BasDBParams &)
¢ AIRRAC_Service (stdair::STDAIR_ServicePtr_T ioSTDAIR_ServicePtr)
¢ void parseAndLoad (const YieldFilePath &iYieldFilename)

* ~AIRRAC_Service ()

* void calculateYields (stdair::TravelSolutionList_T &)

* void updateYields (stdair::BomRoot &)

¢ void buildSampleBom ()

¢ void clonePersistentBom ()

¢ void buildComplementaryLinks (stdair::BomRoot &)

¢ void buildSampleTravelSolutions (stdair::TravelSolutionList_T &)

* std::string csvDisplay () const

e std::string csvDisplay (const stdair:: TravelSolutionList_T &) const

10.3.1 Detailed Description

Interface for the AIRRAC Services.
Definition at line 30 of file AIRRAC_Service.hpp.

10.3.2 Constructor & Destructor Documentation

10.3.2.1 AIRRAC::AIRRAC_Service::AIRRAC_Service (const stdair::BasLogParams &)

Constructor.

The initAirracService() method is called; see the corresponding documentation for more details.

A reference on an output stream is given, so that log outputs can be directed onto that stream.

Parameters:

const stdair::BasLogParams& Parameters for the output log stream.

Definition at line 34 of file AIRRAC_Service.cpp.

(const

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.3 AIRRAC::AIRRAC_Service Class Reference 18

10.3.2.2 AIRRAC::AIRRAC_Service::AIRRAC_Service (const stdair::BasLogParams &, const
stdair::BasDBParams &)

Constructor.
The initAirracService() method is called; see the corresponding documentation for more details.

A reference on an output stream is given, so that log outputs can be directed onto that stream.

Parameters:

const stdair::BasLogParams& Parameters for the output log stream.
const stdair::BasDBParams& Parameters for the database access.

Definition at line 54 of file AIRRAC_Service.cpp.

10.3.2.3 AIRRAC::AIRRAC_Service::AIRRAC_Service (stdair::STDAIR_ServicePtr_T io-
STDAIR_ServicePtr)

Constructor.
The initAirracService() method is called; see the corresponding documentation for more details.

Moreover, as no reference on any output stream is given, it is assumed that the StdAir log service has
already been initialised with the proper log output stream by some other methods in the calling chain (for
instance, when the AIRRAC_Service is itself being initialised by another library service such as SIMCRS_-
Service).

Parameters:

stdair::STDAIR_ServicePtr_T Reference on the STDAIR service.

Definition at line 76 of file AIRRAC_Service.cpp.

10.3.2.4 AIRRAC::AIRRAC_Service::~AIRRAC_Service ()
Destructor.

Definition at line 92 of file AIRRAC_Service.cpp.

10.3.3 Member Function Documentation

10.3.3.1 void AIRRAC::AIRRAC_Service::parseAndLoad (const YieldFilePath & iYieldFilename)

Parse the yield input file, and load them into memory.

The CSV files, describing the airline schedule and the O&Ds for the simulator, are parsed and instantiated
in memory accordingly.

Parameters:

const YieldFilePath& Filename of the input yield file.

Definition at line 170 of file AIRRAC_Service.cpp.

References buildComplementaryLinks(), clonePersistentBom(), AIRRAC::YieldParser::generateYield-
Store(), AIRRAC::AIRRAC_ServiceContext::getOwnStdairServiceFlag(), and AIRRAC:AIRRAC._-
ServiceContext::getSTDAIR_Service().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.3 AIRRAC::AIRRAC_Service Class Reference 19

Referenced by main().

10.3.3.2 void AIRRAC::AIRRAC_Service::calculateYields (stdair::TravelSolutionList_T &)
Calculate/retrieve a yield.
Definition at line 402 of file AIRRAC_Service.cpp.

References AIRRAC::AIRRAC_ServiceContext::display(), and AIRRAC::AIRRAC_ServiceContext::get-
STDAIR_Service().

10.3.3.3 void AIRRAC::AIRRAC_Service::updateYields (stdair::BomRoot &)
Update the yields for booking classes and O&D.
Definition at line 433 of file AIRRAC_Service.cpp.

10.3.3.4 void AIRRAC::AIRRAC_Service::buildSampleBom ()

Build a sample BOM tree.

For now, no object is created: the BOM tree remains empty. In the future, it will hold a sample yield store.
Definition at line 223 of file AIRRAC_Service.cpp.

References buildComplementaryLinks(), clonePersistentBom(), AIRRAC::AIRRAC_ServiceContext::get-
OwnStdairServiceFlag(), and AIRRAC::AIRRAC_ServiceContext::getSTDAIR_Service().

Referenced by main().

10.3.3.5 void AIRRAC::AIRRAC_Service::clonePersistentBom ()
Clone the persistent sample BOM tree.
Definition at line 280 of file AIRRAC_Service.cpp.

References buildComplementaryLinks(), AIRRAC::AIRRAC_ServiceContext::getOwnStdairService-
Flag(), and AIRRAC::AIRRAC_ServiceContext::getSTDAIR_Service().

Referenced by buildSampleBom(), and parseAndLoad().

10.3.3.6 void AIRRAC::AIRRAC_Service::buildComplementaryLinks (stdair::BomRoot &)

Build all the complementary links in the given bom root object.

Note:

Do nothing for now.

Definition at line 326 of file AIRRAC_Service.cpp.
Referenced by buildSampleBom(), clonePersistentBom(), and parseAndLoad().

10.3.3.7 void AIRRAC::AIRRAC_Service::buildSampleTravelSolutions (stdair::TravelSolution-
List_T &)

Build a sample list of travel solutions.

As of now (March 2011), that list is made of the following travel solutions:

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.3 AIRRAC::AIRRAC_Service Class Reference 20

* BA9
* LHR-SYD

2011-06-10
*Q
WTP: 900

* Change fee: 20; Non refundable; Saturday night stay

Parameters:

TravelSolutionList_T& Sample list of travel solution structures. It should be given empty. It is altered
with the returned sample.

Definition at line 332 of file AIRRAC_Service.cpp.
References AIRRAC::AIRRAC_ServiceContext::getSTDAIR_Service().

Referenced by main().

10.3.3.8 std::string AIRRAC::AIRRAC_Service::csvDisplay () const
Recursively display (dump in the returned string) the objects of the BOM tree.

Returns:

std::string Output string in which the BOM tree is logged/dumped.

Definition at line 352 of file AIRRAC_Service.cpp.
References AIRRAC::AIRRAC_ServiceContext::getSTDAIR_Service().

Referenced by main().

10.3.3.9 std::string AIRRAC::AIRRAC_Service::csvDisplay (const stdair::TravelSolutionList_T
&) const

Display (dump in the returned string) the full list of travel solution structures.

Returns:

std::string Output string in which the list of travel solutions is logged/dumped.

Definition at line 380 of file AIRRAC_Service.cpp.
References AIRRAC::AIRRAC_ServiceContext::getSTDAIR_Service().
The documentation for this class was generated from the following files:

¢ airrac/AIRRAC_Service.hpp
* airrac/service/AIRRAC_Service.cpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.4 AIRRAC::AIRRAC_ServiceContext Class Reference 21

10.4 AIRRAC::AIRRAC ServiceContext Class Reference

Inner class holding the context for the AIRRAC Service object.
#include <airrac/service/AIRRAC_ServiceContext.hpp>
Inheritance diagram for AIRRAC::AIRRAC_ServiceContext::

‘ ServiceAbstract ‘

‘ AIRRAC::AIRRAC_ServiceContext \

Friends
¢ class AIRRAC_Service
e class FacAirracServiceContext

10.4.1 Detailed Description

Inner class holding the context for the AIRRAC Service object.
Definition at line 25 of file AIRRAC_ServiceContext.hpp.

10.4.2 Friends And Related Function Documentation

10.4.2.1 friend class AIRRAC_Service [friend]

The AIRRAC_Service class should be the sole class to get access to ServiceContext content: general users
do not want to bother with a context interface.

Definition at line 31 of file AIRRAC_ServiceContext.hpp.

10.4.2.2 friend class FacAirracServiceContext [friend]
Definition at line 32 of file AIRRAC_ServiceContext.hpp.

The documentation for this class was generated from the following files:

* airrac/service/ AIRRAC_ServiceContext.hpp
* airrac/service/ AIRRAC_ServiceContext.cpp

10.5 grammar Class Reference

Inheritance diagram for grammar::

‘ grammar ‘

T

‘ AIRRAC::YieldParserHelper::YieldRuleParser ‘

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.6 CmdAbstract Class Reference

The documentation for this class was generated from the following file:

¢ airrac/command/YieldParserHelper.cpp

10.6 CmdAbstract Class Reference

Inheritance diagram for CmdAbstract::

| CmdAbstract |

i
[N |

AIRRAC::YieldFileParser || AIRRAC::YieldParser ||AIRRAC::YieIdRuIeGenerator

The documentation for this class was generated from the following files:
* airrac/command/YieldParserHelper.hpp

* airrac/command/YieldRuleGenerator.hpp
* airrac/command/YieldParser.hpp

10.7 TestFixture Class Reference

Inheritance diagram for TestFixture::

TestFixture

YieldTestSuite

The documentation for this class was generated from the following file:

* test/airrac/YieldTestSuite.hpp

10.8 AIRRAC::YieldParserHelper::doEndYield Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::doEndYield::

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

\ AIRRAC::YieldParserHel per::doEndYield \

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.8 AIRRAC::YieldParserHelper::doEndYield Struct Reference 23

Public Member Functions

¢ doEndYield (stdair::BomRoot &, YieldRuleStruct &)
* void operator() (boost::spirit::qi::unused_type, boost::spirit::qi::unused_type,
boost::spirit::qi::unused_type) const

Public Attributes

¢ stdair::BomRoot & bomRoot
* YieldRuleStruct & _yieldRule

10.8.1 Detailed Description

Mark the end of the yield-rule parsing.
Definition at line 178 of file YieldParserHelper.hpp.

10.8.2 Constructor & Destructor Documentation

10.8.2.1 AIRRAC::YieldParserHelper::doEndYield::doEndYield (stdair::BomRoot &, YieldRule-
Struct &)

Actor Constructor.

Definition at line 314 of file YieldParserHelper.cpp.

10.8.3 Member Function Documentation

10.8.3.1 void AIRRAC::YieldParserHelper::doEndYield::operator() (boost::spirit::qi::unused_-
type, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).

Definition at line 321 of file YieldParserHelper.cpp.

References _bomRoot, AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and
AIRRAC::YieldRuleStruct::describe().

10.8.4 Member Data Documentation

10.8.4.1 stdair::BomRoot& AIRRAC::YieldParserHelper::doEndYield::_bomRoot
Actor Specific Context.

Definition at line 186 of file YieldParserHelper.hpp.

Referenced by operator()().

10.8.4.2 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.

Definition at line 34 of file YieldParserHelper.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.9 AIRRAC::FacAirracServiceContext Class Reference 24

Referenced by operator()(), AIRRAC::YieldParserHelper::storeClass::operator()(), AIRRAC::Yield-
ParserHelper::storeAirlineCode::operator()(), AIRRAC::YieldParserHelper::storeYield::operator()(),
AIRRAC::YieldParserHelper::storeChannel::operator()(), AIRRAC::YieldParserHelper::store-
CabinCode::operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(), AIRRAC::Yield-
ParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::storeStartRange-
Time::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), ~AIRRAC::Yield-
ParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTrip-
Type::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParser-
Helper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::store YieldId::operator()().

The documentation for this struct was generated from the following files:

¢ airrac/command/YieldParserHelper.hpp
¢ airrac/command/YieldParserHelper.cpp

10.9 AIRRAC::FacAirracServiceContext Class Reference

Factory for the service context.
#include <airrac/factory/FacAirracServiceContext.hpp>

Inheritance diagram for AIRRAC::FacAirracServiceContext::

‘ FacServiceAbstract ‘

T

‘ AIRRAC::FacAirracServiceContext \

Public Member Functions

¢ ~FacAirracServiceContext ()
¢ AIRRAC_ServiceContext & create ()

Static Public Member Functions

e static FacAirracServiceContext & instance ()

Protected Member Functions

¢ FacAirracServiceContext ()

10.9.1 Detailed Description

Factory for the service context.

Definition at line 21 of file FacAirracServiceContext.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.10 FacServiceAbstract Class Reference

25

10.9.2 Constructor & Destructor Documentation

10.9.2.1 AIRRAC::FacAirracServiceContext::~FacAirracServiceContext ()

Destructor.

The Destruction put the _instance to NULL in order to be clean for the next FacSimfqtService-

Context::instance().

Definition at line 17 of file FacAirracServiceContext.cpp.

10.9.2.2 AIRRAC::FacAirracServiceContext::FacAirracServiceContext 0
protected]

Default Constructor.
This constructor is protected in order to ensure the singleton pattern.
Definition at line 56 of file FacAirracServiceContext.hpp.

Referenced by instance().

10.9.3 Member Function Documentation

10.9.3.1 FacAirracServiceContext & AIRRAC::FacAirracServiceContext::instance ()

Provide the unique instance.

The singleton is instantiated when first used.

Returns:

FacServiceContext&

Definition at line 22 of file FacAirracServiceContext.cpp.

References FacAirracServiceContext().

10.9.3.2 AIRRAC_ServiceContext & AIRRAC::FacAirracServiceContext::create ()
Create a new ServiceContext object.

This new object is added to the list of instantiated objects.

Returns:

ServiceContext& The newly created object.

Definition at line 34 of file FacAirracServiceContext.cpp.

The documentation for this class was generated from the following files:

* airrac/factory/FacAirracServiceContext.hpp
» airrac/factory/FacAirracServiceContext.cpp

10.10 FacServiceAbstract Class Reference

Inheritance diagram for FacServiceAbstract::

[inline,

[static]

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.11 AIRRAC::FeaturesNotFoundException Class Reference 26

‘ FacServiceAbstract ‘

T

\ AIRRAC::FacAirracServiceContext \

The documentation for this class was generated from the following file:

* airrac/factory/FacAirracServiceContext.hpp

10.11 AIRRAC::FeaturesNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>

Inheritance diagram for AIRRAC::FeaturesNotFoundException::

‘ ObjectNotFoundException ‘

T

‘ AIRRAC::FeaturesNotFoundException ‘

Public Member Functions

* FeaturesNotFoundException (const std::string &iWhat)

10.11.1 Detailed Description

Definition at line 47 of file AIRRAC_Types.hpp.

10.11.2 Constructor & Destructor Documentation

10.11.2.1 AIRRAC::FeaturesNotFoundException::FeaturesNotFoundException (const std::string
& iWhat) [inline]

Constructor.
Definition at line 50 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

¢ airrac/AIRRAC_Types.hpp

10.12 FileNotFoundException Class Reference

Inheritance diagram for FileNotFoundException::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.13 AIRRAC::FlightDateNotFoundException Class Reference

27

‘ FileNotFoundException ‘

T

‘ AIRRAC::YieldInputFileNotFoundException ‘

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.13 AIRRAC::FlightDateNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::FlightDateNotFoundException::

‘ ObjectNotFoundException ‘

T

| AIRRAC::FlightDateNotFoundException |

Public Member Functions

¢ FlightDateNotFoundException (const std::string &iWhat)

10.13.1 Detailed Description

Definition at line 33 of file AIRRAC_Types.hpp.

10.13.2 Constructor & Destructor Documentation

10.13.2.1 AIRRAC::FlightDateNotFoundException::FlightDateNotFoundException
std::string & iWhat) [inline]

Constructor.
Definition at line 36 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

¢ airrac/AIRRAC_Types.hpp

10.14 AIRRAC::FlightTimeNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::FlightTimeNotFoundException::

(const

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.15 InputFilePath Class Reference

28

‘ ObjectNotFoundException ‘

T

\ AIRRAC::FlightTimeNotFoundException \

Public Member Functions

* FlightTimeNotFoundException (const std::string &iWhat)

10.14.1 Detailed Description

Definition at line 40 of file AIRRAC_Types.hpp.

10.14.2 Constructor & Destructor Documentation

10.14.2.1 AIRRAC::FlightTimeNotFoundException::FlightTimeNotFoundException
std::string & iWhat) [inline]

Constructor.
Definition at line 43 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

¢ airrac/AIRRAC_Types.hpp

10.15 InputFilePath Class Reference

Inheritance diagram for InputFilePath::

‘ InputFilePath ‘

T

\ AIRRAC::YieldFilePath \

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.16 ObjectNotFoundException Class Reference
Inheritance diagram for ObjectNotFoundException::

ObjectNotFoundException

(const

1
AIRRAC: \ \ AIRRAC::Airpor \ \ AIRRAC: \ \ "AIRRAC::FlightDateNotFoundException \ \ AIRRAC:FlightTi \ ‘AIRRAC PosOrCH

The documentation for this class was generated from the following file:

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.17 AIRRAC::YieldParserHelper::ParserSemanticAction Struct Reference

* airrac/AIRRAC_Types.hpp

10.17 AIRRAC::YieldParserHelper::ParserSemanticAction Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::ParserSemanticAction::

| AIRRAC::YieldParserHel per::ParserSemanticAction |

I AIRRAC::YieldParserHelper::doEndYield |

I AIRRAC::YieldParserHelper::storeAirlineCode |

I AIRRAC::YieldParserHel per::storeCabinCode |

H AIRRAC::YieldParserHel per::storeChannel |

} AIRRAC::YieldParserHel per::storeClass |

I AIRRAC::Y ieldParserHel per::storeDateRangeEnd |

} AIRRAC::YieldParserHel per::storeDateRangeStart |

I AIRRAC::YieldParserHel per::storeDestination |

I AIRRAC::YieldParserHel per::storeEndRangeTime |

I AIRRAC::YieldParserHel per::storeOrigin |

| AIRRAC::YieldParserHel per::storePOS |

} AIRRAC::Y ieldParserHel per::storeStartRangeTime |

H AIRRAC::YieldParserHelper::storeTripType |

} AIRRAC::YieldParserHel per::storeYield |

| AIRRAC::YieldParserHel per::storeYieldid |

Public Member Functions

¢ ParserSemanticAction (YieldRuleStruct &)

Public Attributes

* YieldRuleStruct & _yieldRule

10.17.1 Detailed Description

Generic Semantic Action (Actor / Functor) for the Yield Parser.

Definition at line 30 of file YieldParserHelper.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.18 ParsingFileFailedException Class Reference 30

10.17.2 Constructor & Destructor Documentation

10.17.2.1 AIRRAC::YieldParserHelper::ParserSemanticAction::ParserSemanticAction (Yield-
RuleStruct &)

Actor Constructor.

Definition at line 28 of file YieldParserHelper.cpp.

10.17.3 Member Data Documentation

10.17.3.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::store Yield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(),
AIRRAC::YieldParserHelper::storeTripType::operator()(), AIRRAC::YieldParserHelper::store-
Destination::operator()(), AIRRAC::YieldParserHelper::storeOrigin::operator()(), and AIRRAC::Yield-
ParserHelper::store YieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.18 ParsingFileFailedException Class Reference

Inheritance diagram for ParsingFileFailedException::

‘ ParsingFileFailedException ‘

T

\ AIRRAC::Y ieldFileParsingFail edException \

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.19 AIRRAC::PosOrChannelNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::PosOrChannelNotFoundException::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.20 AIRRAC::QuotingException Class Reference

31

‘ ObjectNotFoundException ‘

T

‘ AIRRAC::PosOrChannel NotFoundException ‘

Public Member Functions

* PosOrChannelNotFoundException (const std::string &iWhat)

10.19.1 Detailed Description

Definition at line 26 of file AIRRAC_Types.hpp.

10.19.2 Constructor & Destructor Documentation

10.19.2.1 AIRRAC::PosOrChannelNotFoundException::PosOrChannelNotFoundException
(const std::string & iWhat) [inline]

Constructor.
Definition at line 29 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.20 AIRRAC::QuotingException Class Reference

#include <airrac/AIRRAC_Types.hpp>

Inheritance diagram for AIRRAC::QuotingException::

‘ RootException ‘

T

‘ AIRRAC::QuotingException ‘

10.20.1 Detailed Description

Definition at line 75 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.21 RootException Class Reference

Inheritance diagram for RootException::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.22 ServiceAbstract Class Reference

32

‘ RootException ‘

| AIRRAC::QuotingException |

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

10.22 ServiceAbstract Class Reference

Inheritance diagram for ServiceAbstract::

‘ ServiceAbstract ‘

T

\ AIRRAC::AIRRAC_ServiceContext \

The documentation for this class was generated from the following file:

* airrac/service/ AIRRAC_ServiceContext.hpp

10.23 AIRRAC::YieldParserHelper::storeAirlineCode Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeAirlineCode::

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeAirlineCode ‘

Public Member Functions

e storeAirlineCode (YieldRuleStruct &)

* void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)

const

Public Attributes

* YieldRuleStruct & _yieldRule

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.24 AIRRAC::YieldParserHelper::storeCabinCode Struct Reference 33

10.23.1 Detailed Description

Store the parsed airline code.

Definition at line 158 of file YieldParserHelper.hpp.

10.23.2 Constructor & Destructor Documentation

10.23.2.1 AIRRAC::YieldParserHelper::storeAirlineCode::storeAirlineCode (YieldRuleStruct &)

Actor Constructor.

Definition at line 270 of file YieldParserHelper.cpp.

10.23.3 Member Function Documentation

10.23.3.1 void AIRRAC::YieldParserHelper::storeAirlineCode::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const
Actor Function (functor).

Definition at line 275 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, = AIRRAC::YieldRule-
Struct::addAirlineCode(), and AIRRAC::YieldRuleStruct::setAirlineCode().

10.23.4 Member Data Documentation

10.23.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), operator()(), AIRRAC::YieldParserHelper::storeYield::operator()(),
AIRRAC::YieldParserHelper::storeChannel::operator()(), AIRRAC::YieldParserHelper::store-
CabinCode::operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(), AIRRAC::Yield-
ParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::storeStartRange-
Time::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), AIRRAC::Yield-
ParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTrip-
Type::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParser-
Helper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldld::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.24 AIRRAC::YieldParserHelper::storeCabinCode Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeCabinCode::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.24 AIRRAC::YieldParserHelper::storeCabinCode Struct Reference 34

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeCabinCode ‘

Public Member Functions

¢ storeCabinCode (YieldRuleStruct &)
* void operator() (char, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Public Attributes

* YieldRuleStruct & _yieldRule

10.24.1 Detailed Description

Store the cabin code.

Definition at line 128 of file YieldParserHelper.hpp.

10.24.2 Constructor & Destructor Documentation

10.24.2.1 AIRRAC::YieldParserHelper::storeCabinCode::storeCabinCode (YieldRuleStruct &)

Actor Constructor.

Definition at line 212 of file YieldParserHelper.cpp.

10.24.3 Member Function Documentation

10.24.3.1 void AIRRAC::YieldParserHelper::storeCabinCode::operator() (char,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).

Definition at line 217 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::setCabinCode().

10.24.4 Member Data Documentation

10.24.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::storeAirlineCode::operator()(),

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.25 AIRRAC::YieldParserHelper::storeChannel Struct Reference 35

AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(),
AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
StartRangeTime::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(),
AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::store-
TripType::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::Yield-
ParserHelper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldld::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.25 AIRRAC::YieldParserHelper::storeChannel Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeChannel::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \

T

\ AIRRAC::Y ieldParserHel per::storeChannel \

Public Member Functions
¢ storeChannel (YieldRuleStruct &)
* void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Public Attributes

* YieldRuleStruct & _yieldRule

10.25.1 Detailed Description

Store the channel distribution.

Definition at line 138 of file YieldParserHelper.hpp.

10.25.2 Constructor & Destructor Documentation

10.25.2.1 AIRRAC::YieldParserHelper::storeChannel::storeChannel (YieldRuleStruct &)
Actor Constructor.

Definition at line 233 of file YieldParserHelper.cpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.26 AIRRAC::YieldParserHelper::storeClass Struct Reference 36

10.25.3 Member Function Documentation

10.25.3.1 void AIRRAC::YieldParserHelper::storeChannel::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 238 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::setChannel().

10.25.4 Member Data Documentation

10.25.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::store Yield::operator()(), operator()(), AIRRAC::YieldParser-
Helper::storeCabinCode::operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(),
AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
StartRangeTime::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(),
AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::store-
TripType::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::Yield-
ParserHelper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

¢ airrac/command/YieldParserHelper.hpp
¢ airrac/command/YieldParserHelper.cpp

10.26 AIRRAC::YieldParserHelper::storeClass Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeClass::

‘ AIRRAC::Y ieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::Y ieldParserHel per::storeClass ‘

Public Member Functions

¢ storeClass (YieldRuleStruct &)
¢ void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.26 AIRRAC::YieldParserHelper::storeClass Struct Reference 37

Public Attributes

* YieldRuleStruct & _yieldRule

10.26.1 Detailed Description

Store the parsed class.

Definition at line 168 of file YieldParserHelper.hpp.

10.26.2 Constructor & Destructor Documentation

10.26.2.1 AIRRAC::YieldParserHelper::storeClass::storeClass (YieldRuleStruct &)
Actor Constructor.

Definition at line 290 of file YieldParserHelper.cpp.

10.26.3 Member Function Documentation

10.26.3.1 void AIRRAC::YieldParserHelper::storeClass::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 295 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::addClassCode().

10.26.4 Member Data Documentation

10.26.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), operator()(), AIRRAC::Yield-
ParserHelper::storeAirlineCode::operator()(), AIRRAC::YieldParserHelper::storeYield::operator()(),
AIRRAC::YieldParserHelper::storeChannel::operator()(), AIRRAC::YieldParserHelper::store-
CabinCode::operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(), AIRRAC::Yield-
ParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::storeStartRange-
Time::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), ~AIRRAC::Yield-
ParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTrip-
Type::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParser-
Helper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::store YieldId::operator()().

The documentation for this struct was generated from the following files:

e airrac/command/YieldParserHelper.hpp
e airrac/command/YieldParserHelper.cpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.27 AIRRAC::YieldParserHelper::storeDateRangeEnd Struct Reference 38

10.27 AIRRAC::YieldParserHelper::storeDateRangeEnd Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeDateRangeEnd::

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeDateRangeEnd ‘

Public Member Functions

* storeDateRangeEnd (YieldRuleStruct &)
* void operator() (boost::spirit::qi::unused_type, boost::spirit::qi::unused_type,
boost::spirit::qi::unused_type) const

Public Attributes

* YieldRuleStruct & _yieldRule

10.27.1 Detailed Description

Store the parsed end of the date range.

Definition at line 88 of file YieldParserHelper.hpp.

10.27.2 Constructor & Destructor Documentation

10.27.2.1 AIRRAC::YieldParserHelper::storeDateRangeEnd::storeDateRangeEnd (YieldRule-
Struct &)

Actor Constructor.

Definition at line 129 of file YieldParserHelper.cpp.

10.27.3 Member Function Documentation

10.27.3.1 void AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()
(boost::spirit::qi::unused_type, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Actor Function (functor).
Definition at line 134 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, AIRRAC::YieldRule-
Struct::calculateDate(), and AIRRAC::YieldRuleStruct::setDateRangeEnd().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.28 AIRRAC::YieldParserHelper::storeDateRangeStart Struct Reference 39

10.27.4 Member Data Documentation

10.27.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), operator()(), AIRRAC::YieldParser-
Helper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTripType::operator()(),
AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParserHelper::store-
Origin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.28 AIRRAC::YieldParserHelper::storeDateRangeStart Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeDateRangeStart::

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

‘ AIRRAC::YieldParserHel per::storeDateRangeStart ‘

Public Member Functions
« storeDateRangeStart (YieldRuleStruct &)
* void operator() (boost::spirit::qi::unused_type, boost::spirit::qi::unused_type,
boost::spirit::qi::unused_type) const
Public Attributes

* YieldRuleStruct & _yieldRule

10.28.1 Detailed Description

Store the parsed start of the date range.

Definition at line 78 of file YieldParserHelper.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.29 AIRRAC::YieldParserHelper::storeDestination Struct Reference 40

10.28.2 Constructor & Destructor Documentation

10.28.2.1 AIRRAC::YieldParserHelper::storeDateRangeStart::storeDateRangeStart (YieldRule-
Struct &)

Actor Constructor.

Definition at line 113 of file YieldParserHelper.cpp.

10.28.3 Member Function Documentation

10.28.3.1 void AIRRAC::YieldParserHelper::storeDateRangeStart::operator()
(boost::spirit::qi::unused_type, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Actor Function (functor).
Definition at line 118 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, AIRRAC::YieldRule-
Struct::calculateDate(), and AIRRAC::YieldRuleStruct::setDateRangeStart().

10.28.4 Member Data Documentation

10.28.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), operator()(), AIRRAC::YieldParserHelper::storeTripType::operator()(),
AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParserHelper::store-
Origin::operator()(), and AIRRAC::YieldParserHelper::storeYieldld::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
¢ airrac/command/YieldParserHelper.cpp

10.29 AIRRAC::YieldParserHelper::storeDestination Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeDestination::

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.29 AIRRAC::YieldParserHelper::storeDestination Struct Reference 41

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeDestination ‘

Public Member Functions

¢ storeDestination (YieldRuleStruct &)
* void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Public Attributes

* YieldRuleStruct & _yieldRule

10.29.1 Detailed Description

Store the parsed destination.

Definition at line 58 of file YieldParserHelper.hpp.

10.29.2 Constructor & Destructor Documentation

10.29.2.1 AIRRAC::YieldParserHelper::storeDestination::storeDestination (YieldRuleStruct &)

Actor Constructor.

Definition at line 75 of file YieldParserHelper.cpp.

10.29.3 Member Function Documentation

10.29.3.1 void AIRRAC::YieldParserHelper::storeDestination::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 80 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::setDestination().

10.29.4 Member Data Documentation

10.29.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.

Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.30 AIRRAC::YieldParserHelper::storeEndRangeTime Struct Reference 42

AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), = AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(),
AIRRAC::YieldParserHelper::storeTripType::operator()(), operator()(), AIRRAC::YieldParser-
Helper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.30 AIRRAC::YieldParserHelper::storeEndRangeTime Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeEndRangeTime::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \

‘ AIRRAC::YieldParserHel per::storeEndRangeTime ‘

Public Member Functions
* storeEndRangeTime (YieldRuleStruct &)
* void operator() (boost::spirit::qi::unused_type, boost::spirit::qi::unused_type,
boost::spirit::qi::unused_type) const
Public Attributes

* YieldRuleStruct & _yieldRule

10.30.1 Detailed Description

Store the parsed end start range time.

Definition at line 108 of file YieldParserHelper.hpp.

10.30.2 Constructor & Destructor Documentation

10.30.2.1 AIRRAC::YieldParserHelper::storeEndRangeTime::storeEndRangeTime (YieldRule-
Struct &)

Actor Constructor.

Definition at line 168 of file YieldParserHelper.cpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.31 AIRRAC::YieldParserHelper::storeOrigin Struct Reference 43

10.30.3 Member Function Documentation

10.30.3.1 void AIRRAC::YieldParserHelper::storeEndRangeTime::operator()
(boost::spirit::qi::unused_type, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Actor Function (functor).
Definition at line 173 of file YieldParserHelper.cpp.

References AIRRAC::YieldRuleStruct::_itSeconds, AIRRAC::YieldParserHelper::ParserSemantic-
Action::_yieldRule, AIRRAC::YieldRuleStruct::calculateTime(), and AIRRAC::YieldRuleStruct::set-
TimeRangeEnd().

10.30.4 Member Data Documentation

10.30.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::store Yield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), operator()(), AIRRAC::YieldParserHelper::storeStartRange-
Time::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), ~AIRRAC::Yield-
ParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTrip-
Type::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParser-
Helper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::store YieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.31 AIRRAC::YieldParserHelper::storeOrigin Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeOrigin::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \

T

‘ AIRRAC::YieldParserHel per::storeQrigin ‘

Public Member Functions

* storeOrigin (YieldRuleStruct &)
* void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.31 AIRRAC::YieldParserHelper::storeOrigin Struct Reference 44

Public Attributes

* YieldRuleStruct & _yieldRule

10.31.1 Detailed Description

Store the parsed origin.

Definition at line 48 of file YieldParserHelper.hpp.

10.31.2 Constructor & Destructor Documentation

10.31.2.1 AIRRAC::YieldParserHelper::storeOrigin::storeOrigin (YieldRuleStruct &)
Actor Constructor.

Definition at line 59 of file YieldParserHelper.cpp.

10.31.3 Member Function Documentation

10.31.3.1 void AIRRAC::YieldParserHelper::storeOrigin::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 64 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::setOrigin().

10.31.4 Member Data Documentation

10.31.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(),
AIRRAC::YieldParserHelper::storeTripType::operator()(), AIRRAC::YieldParserHelper::store-
Destination::operator()(), operator()(), and AIRRAC::YieldParserHelper::store YieldId::operator()().

The documentation for this struct was generated from the following files:

e airrac/command/YieldParserHelper.hpp
e airrac/command/YieldParserHelper.cpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.32 AIRRAC::YieldParserHelper::storePOS Struct Reference 45

10.32 AIRRAC::YieldParserHelper::storePOS Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storePOS::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \

T

\ AIRRAC::YieldParserHel per::storePOS \

Public Member Functions

¢ storePOS (YieldRuleStruct &)
¢ void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Public Attributes

* YieldRuleStruct & _yieldRule

10.32.1 Detailed Description

Store the parsed customer point_of_sale.

Definition at line 118 of file YieldParserHelper.hpp.

10.32.2 Constructor & Destructor Documentation

10.32.2.1 AIRRAC::YieldParserHelper::storePOS::storePOS (YieldRuleStruct &)
Actor Constructor.

Definition at line 186 of file YieldParserHelper.cpp.

10.32.3 Member Function Documentation

10.32.3.1 void AIRRAC::YieldParserHelper::storePOS::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).

Definition at line 191 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, AIRRAC::YieldRule-
Struct::getDestination(), AIRRAC::YieldRuleStruct::getOrigin(), and AIRRAC::YieldRuleStruct::set-
POS0).

10.32.4 Member Data Documentation

10.32.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.33 AIRRAC::YieldParserHelper::storeStartRangeTime Struct Reference 46

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::storeAirlineCode::operator()(),
AIRRAC::YieldParserHelper::store Yield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), operator()(),
AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
StartRangeTime::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(),
AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::store-
TripType::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), ~AIRRAC::Yield-
ParserHelper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.33 AIRRAC::YieldParserHelper::storeStartRangeTime Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeStartRangeTime::

‘ AIRRAC::Y ieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeStartRangeTime ‘

Public Member Functions
* storeStartRangeTime (YieldRuleStruct &)
* void operator() (boost::spirit::qi::unused_type, boost::spirit::qi::unused_type,
boost::spirit::qi::unused_type) const
Public Attributes

* YieldRuleStruct & _yieldRule

10.33.1 Detailed Description

Store the parsed start range time.

Definition at line 98 of file YieldParserHelper.hpp.
10.33.2 Constructor & Destructor Documentation

10.33.2.1 AIRRAC::YieldParserHelper::storeStartRangeTime::storeStartRangeTime (YieldRule-
Struct &)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.34 AIRRAC::YieldParserHelper::storeTripType Struct Reference 47

Actor Constructor.

Definition at line 150 of file YieldParserHelper.cpp.

10.33.3 Member Function Documentation

10.33.3.1 void AIRRAC::YieldParserHelper::storeStartRangeTime::operator()
(boost::spirit::qi::unused_type, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Actor Function (functor).
Definition at line 155 of file YieldParserHelper.cpp.

References = AIRRAC::YieldRuleStruct::_itSeconds, AIRRAC::YieldParserHelper::ParserSemantic-
Action::_yieldRule, AIRRAC::YieldRuleStruct::calculateTime(), and AIRRAC::YieldRuleStruct::set-
TimeRangeStart().

10.33.4 Member Data Documentation

10.33.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), AIRRAC::YieldParser-
Helper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::storeTripType::operator()(),
AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParserHelper::store-
Origin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.34 AIRRAC::YieldParserHelper::storeTripType Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeTripType::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \

T

‘ AIRRAC::YieldParserHel per::storeTripType ‘

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.34 AIRRAC::YieldParserHelper::storeTripType Struct Reference 48

Public Member Functions

* storeTripType (YieldRuleStruct &)
* void operator() (std::vector< char >, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type)
const

Public Attributes

* YieldRuleStruct & _yieldRule

10.34.1 Detailed Description

Store the parsed customer trip type.

Definition at line 68 of file YieldParserHelper.hpp.

10.34.2 Constructor & Destructor Documentation

10.34.2.1 AIRRAC::YieldParserHelper::storeTripType::storeTripType (YieldRuleStruct &)
Actor Constructor.

Definition at line 91 of file YieldParserHelper.cpp.

10.34.3 Member Function Documentation

10.34.3.1 void AIRRAC::YieldParserHelper::storeTripType::operator() (std::vector< char >,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 96 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-
Struct::setTripType().

10.34.4 Member Data Documentation

10.34.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(), opera-
tor()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::YieldParserHelper::store-
Origin::operator()(), and AIRRAC::YieldParserHelper::storeYieldld::operator()().

The documentation for this struct was generated from the following files:

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.35 AIRRAC::YieldParserHelper::storeYield Struct Reference 49

* airrac/command/YieldParserHelper.hpp

* airrac/command/YieldParserHelper.cpp
10.35 AIRRAC::YieldParserHelper::storeYield Struct Reference
#include <airrac/command/YieldParserHelper.hpp>
Inheritance diagram for AIRRAC::YieldParserHelper::storeYield::

\ AIRRAC::Y ieldParserHel per::ParserSemanticAction \
\ AIRRAC::YieldParserHelper::storeYield \

Public Member Functions

¢ storeYield (YieldRuleStruct &)

¢ void operator() (double, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const
Public Attributes

* YieldRuleStruct & _yieldRule
10.35.1 Detailed Description
Store the parsed yield value.
Definition at line 148 of file YieldParserHelper.hpp.
10.35.2 Constructor & Destructor Documentation
10.35.2.1 AIRRAC::YieldParserHelper::storeYield::storeYield (YieldRuleStruct &)
Actor Constructor.
Definition at line 254 of file YieldParserHelper.cpp.
10.35.3 Member Function Documentation
10.35.3.1 void AIRRAC::YieldParserHelper::storeYield::operator() (double,

boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const
Actor Function (functor).

Definition at line 259 of file YieldParserHelper.cpp.

References AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule, and AIRRAC::YieldRule-

Struct::setYield().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.36 AIRRAC::YieldParserHelper::storeYieldld Struct Reference 50

10.35.4 Member Data Documentation

10.35.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
operator()(), AIRRAC::YieldParserHelper::storeChannel::operator()(), AIRRAC::YieldParser-
Helper::storeCabinCode::operator()(), AIRRAC::YieldParserHelper::storePOS::operator()(),
AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
StartRangeTime::operator()(), AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(),
AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(), AIRRAC::YieldParserHelper::store-
TripType::operator()(), AIRRAC::YieldParserHelper::storeDestination::operator()(), AIRRAC::Yield-
ParserHelper::storeOrigin::operator()(), and AIRRAC::YieldParserHelper::storeYieldId::operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

10.36 AIRRAC::YieldParserHelper::storeYieldld Struct Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldParserHelper::storeYieldId::

‘ AIRRAC::YieldParserHel per::ParserSemanticAction ‘

T

‘ AIRRAC::YieldParserHel per::storeYieldld ‘

Public Member Functions

 storeYieldld (YieldRuleStruct &)
* void operator() (unsigned int, boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Public Attributes

* YieldRuleStruct & _yieldRule

10.36.1 Detailed Description

Store the parsed yield Id.
Definition at line 38 of file YieldParserHelper.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.37 StructAbstract Class Reference 51

10.36.2 Constructor & Destructor Documentation

10.36.2.1 AIRRAC::YieldParserHelper::storeYieldld::storeYieldld (YieldRuleStruct &)
Actor Constructor.

Definition at line 34 of file YieldParserHelper.cpp.

10.36.3 Member Function Documentation

10.36.3.1 void AIRRAC::YieldParserHelper::storeYieldld::operator() (unsigned int,
boost::spirit::qi::unused_type, boost::spirit::qi::unused_type) const

Actor Function (functor).
Definition at line 39 of file YieldParserHelper.cpp.

References AIRRAC::YieldRuleStruct::_itSeconds, AIRRAC::YieldParserHelper::ParserSemantic-
Action::_yieldRule, AIRRAC::YieldRuleStruct::clearAirlineCodeList(), AIRRAC::YieldRule-
Struct::clearClassCodeList(), AIRRAC::YieldRuleStruct::setAirlineCode(), AIRRAC::YieldRule-
Struct::setClassCode(), and AIRRAC::YieldRuleStruct::setYieldID().

10.36.4 Member Data Documentation

10.36.4.1 YieldRuleStruct& AIRRAC::YieldParserHelper::ParserSemanticAction::_yieldRule
[inherited]

Actor Context.
Definition at line 34 of file YieldParserHelper.hpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()(), AIRRAC::YieldParser-
Helper::storeClass::operator()(), AIRRAC::YieldParserHelper::store AirlineCode::operator()(),
AIRRAC::YieldParserHelper::storeYield::operator()(), AIRRAC::YieldParserHelper::store-
Channel::operator()(), AIRRAC::YieldParserHelper::storeCabinCode::operator()(), = AIRRAC::Yield-
ParserHelper::storePOS::operator()(), = AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
DateRangeEnd::operator()(), AIRRAC::YieldParserHelper::storeDateRangeStart::operator()(),
AIRRAC::YieldParserHelper::storeTripType::operator()(), AIRRAC::YieldParserHelper::store-
Destination::operator()(), AIRRAC::YieldParserHelper::storeOrigin::operator()(), and operator()().

The documentation for this struct was generated from the following files:

* airrac/command/YieldParserHelper.hpp
¢ airrac/command/YieldParserHelper.cpp

10.37 StructAbstract Class Reference

Inheritance diagram for StructAbstract::

‘ StructAbstract ‘

T

‘ AIRRAC::YieldRuleStruct \

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.38 AIRRAC::YieldFileParser Class Reference 52

The documentation for this class was generated from the following file:

* airrac/bom/YieldRuleStruct.hpp

10.38 AIRRAC::YieldFileParser Class Reference

#include <airrac/command/YieldParserHelper.hpp>

Inheritance diagram for AIRRAC::YieldFileParser::

‘ CmdAbstract ‘

\ AIRRAC::YieldFileParser \

Public Member Functions

* YieldFileParser (stdair::BomRoot &, const stdair::Filename_T &iYieldInputFilename)
* void generateYieldStore ()

10.38.1 Detailed Description

Class wrapping the initialisation and entry point of the parser.

The seemingly redundancy is used to force the instantiation of the actual parser, which is a templatised
Boost Spirit grammar. Hence, the actual parser is instantiated within that class object code.

Definition at line 202 of file YieldParserHelper.hpp.

10.38.2 Constructor & Destructor Documentation
10.38.2.1 AIRRAC::YieldFileParser::YieldFileParser (stdair::BomRoot &, const
stdair::Filename_T & iYieldInputFilename)

Constructor.

10.38.3 Member Function Documentation

10.38.3.1 void AIRRAC::YieldFileParser::generateYieldStore ()
Parse the yield store input file.

Definition at line 529 of file YieldParserHelper.cpp.

Referenced by AIRRAC::YieldParser::generateYieldStore().

The documentation for this class was generated from the following files:

* airrac/command/YieldParserHelper.hpp
* airrac/command/YieldParserHelper.cpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.39 AIRRAC::YieldFileParsingFailedException Class Reference

53

10.39 AIRRAC::YieldFileParsingFailedException Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::YieldFileParsingFailedException::

‘ ParsingFileFailedException ‘

\ AIRRAC::Y ieldFileParsingFail edException \

Public Member Functions

* YieldFileParsingFailedException (const std::string &iWhat)

10.39.1 Detailed Description

Definition at line 68 of file AIRRAC_Types.hpp.

10.39.2 Constructor & Destructor Documentation

10.39.2.1 AIRRAC::YieldFileParsingFailedException::YieldFileParsingFailedException
std::string & iWhat) [inline]

Constructor.
Definition at line 71 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

¢ airrac/AIRRAC_Types.hpp

10.40 AIRRAC::YieldFilePath Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::YieldFilePath::

‘ InputFilePath ‘

T

\ AIRRAC::YieldFilePath \

Public Member Functions

¢ YieldFilePath (const stdair::Filename_T &iFilename)

(const

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.41 AIRRAC::YieldInputFileNotFoundException Class Reference 54

10.40.1 Detailed Description

Yield input file.
Definition at line 82 of file AIRRAC_Types.hpp.

10.40.2 Constructor & Destructor Documentation

10.40.2.1 AIRRAC::YieldFilePath::YieldFilePath (const stdair::Filename_T & iFilename)
[inline, explicit]
Constructor.

Definition at line 87 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

¢ airrac/AIRRAC_Types.hpp

10.41 AIRRAC::YieldInputFileNotFoundException Class Reference

#include <airrac/AIRRAC_Types.hpp>
Inheritance diagram for AIRRAC::YieldInputFileNotFoundException::

FileNotFoundException

T

‘ AIRRAC::YieldInputFileNotFoundException ‘

Public Member Functions

* YieldInputFileNotFoundException (const std::string &iWhat)

10.41.1 Detailed Description

Definition at line 61 of file AIRRAC_Types.hpp.

10.41.2 Constructor & Destructor Documentation

10.41.2.1 AIRRAC::YieldInputFileNotFoundException::YieldInputFileNotFoundException (const
std::string & iWhat) [inline]
Constructor.

Definition at line 64 of file AIRRAC_Types.hpp.

The documentation for this class was generated from the following file:

* airrac/AIRRAC_Types.hpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.42 AIRRAC::YieldManager Class Reference

55

10.42 AIRRAC::YieldManager Class Reference
Command wrapping the travel request process.

#include <airrac/command/YieldManager.hpp>

Friends

¢ class AIRRAC_Service

10.42.1 Detailed Description

Command wrapping the travel request process.

Definition at line 23 of file YieldManager.hpp.

10.42.2 Friends And Related Function Documentation

10.42.2.1 friend class AIRRAC_Service [friend]
Only the AIRRAC_Service may access to the methods of that class.
Definition at line 27 of file YieldManager.hpp.

The documentation for this class was generated from the following files:

* airrac/command/YieldManager.hpp
* airrac/command/YieldManager.cpp

10.43 AIRRAC::YieldParser Class Reference

Class wrapping the parser entry point.
#include <airrac/command/YieldParser.hpp>

Inheritance diagram for AIRRAC::YieldParser::

‘ CmdAbstract ‘

T

\ AIRRAC::YieldParser \

Static Public Member Functions

* static void generateYieldStore (const YieldFilePath &, stdair::BomRoot &)

10.43.1 Detailed Description

Class wrapping the parser entry point.

Definition at line 25 of file YieldParser.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.44 AIRRAC::YieldRuleGenerator Class Reference 56

10.43.2 Member Function Documentation
10.43.2.1 void AIRRAC::YieldParser::generateYieldStore (const YieldFilePath &, stdair::Bom-
Root &) [static]

Parse the CSV file describing an airline yield store, and generates the corresponding data model in memory.
It can then be used, for instance in a simulator.

Parameters:

const YieldFilePath& The file-name of the CSV-formatted yield input file.
stdair::BomRoot& Root of the BOM tree.

Definition at line 16 of file YieldParser.cpp.
References AIRRAC::YieldFileParser::generateYieldStore().
Referenced by AIRRAC::AIRRAC_Service::parseAndLoad().

The documentation for this class was generated from the following files:

* airrac/command/YieldParser.hpp
* airrac/command/YieldParser.cpp

10.44 AIRRAC::YieldRuleGenerator Class Reference

#include <airrac/command/YieldRuleGenerator.hpp>

Inheritance diagram for AIRRAC::YieldRuleGenerator::

‘ CmdAbstract ‘

‘ AIRRAC::YieldRuleGenerator ‘

Friends

e class YieldFileParser
* struct YieldParserHelper::doEndYield
¢ class YieldParser

10.44.1 Detailed Description

Class handling the generation / instantiation of the Yield BOM.
Definition at line 32 of file YieldRuleGenerator.hpp.

10.44.2 Friends And Related Function Documentation

10.44.2.1 friend class YieldFileParser [friend]
Definition at line 36 of file YieldRuleGenerator.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.45 AIRRAC::YieldParserHelper::YieldRuleParser Struct Reference 57

10.44.2.2 friend struct YieldParserHelper::doEndYield [friend]
Definition at line 37 of file YieldRuleGenerator.hpp.

10.44.2.3 friend class YieldParser [friend]
Definition at line 38 of file YieldRuleGenerator.hpp.

The documentation for this class was generated from the following files:

* airrac/command/YieldRuleGenerator.hpp
e airrac/command/YieldRuleGenerator.cpp

10.45 AIRRAC::YieldParserHelper::YieldRuleParser Struct Reference

Inheritance diagram for AIRRAC::YieldParserHelper:: YieldRuleParser::

‘ grammar< stdair::iterator_t, boost::spirit::ascii::space _type > ‘

T

\ AIRRAC::YieldParserHel per::YieldRul eParser \

Public Member Functions

¢ YieldRuleParser (stdair::BomRoot &ioBomRoot, YieldRuleStruct &ioYieldRule)

Public Attributes

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > start

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > comments

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > yield_rule

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > yield_id

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > origin

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > destination

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > tripType

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > dateRangeStart
* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > dateRangeEnd
* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > date

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > timeRangeStart
* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > timeRangeEnd
* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > time

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > point_of_sale
* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > cabinCode

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > channel

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > yield

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > segment

* boost::spirit::qi::rule< stdair::iterator_t, boost::spirit::ascii::space_type > yield_rule_end
¢ stdair::BomRoot & _bomRoot

* YieldRuleStruct & _yieldRule

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.45 AIRRAC::YieldParserHelper::YieldRuleParser Struct Reference 58

10.45.1 Detailed Description

Grammar for the Yield-Rule parser.

Definition at line 387 of file YieldParserHelper.cpp.

10.45.2 Constructor & Destructor Documentation

10.45.2.1 AIRRAC::YieldParserHelper::YieldRuleParser::YieldRuleParser (stdair::BomRoot &
ioBomRoot, YieldRuleStruct & ioYieldRule) [inline]

Definition at line 391 of file YieldParserHelper.cpp.

References _bomRoot, AIRRAC::YieldRuleStruct::_itDay, = AIRRAC::YieldRuleStruct::_itHours,
AIRRAC::YieldRuleStruct::_itMinutes, = AIRRAC::YieldRuleStruct::_itMonth, = AIRRAC::YieldRule-
Struct::_itSeconds, AIRRAC::YieldRuleStruct::_itYear, _yieldRule, cabinCode, channel, comments, date,
dateRangeEnd, dateRangeStart, AIRRAC::YieldParserHelper::day_p, destination, AIRRAC::YieldParser-
Helper::hour_p, AIRRAC::YieldParserHelper::minute_p, AIRRAC::YieldParserHelper::month_p, origin,
point_of_sale, AIRRAC::YieldParserHelper::second_p, segment, start, time, timeRangeEnd, timeRange-
Start, tripType, AIRRAC::YieldParserHelper::uintl_4_p, AIRRAC::YieldParserHelper::year_p, yield,
yield_id, yield_rule, and yield_rule_end.

10.45.3 Member Data Documentation

10.45.3.1 boost::spirit::qi::rule<stdair::iterator_t, boost::spirit::ascii::space_type>
AIRRAC::YieldParserHelper::YieldRuleParser::start

Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.2 boost::spirit::qi::rule<stdair::iterator_t, boost::spirit::ascii::space_type>
AIRRAC::YieldParserHelper::YieldRuleParser::comments

Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.3 boost::spirit::qi::rule<stdair::iterator._t, boost::spirit::ascii::space_type>
AIRRAC::YieldParserHelper::YieldRuleParser::yield_rule

Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.4 boost::spirit::qi::rule<stdair::iterator_t, boost::spirit::ascii::space_type>
AIRRAC::YieldParserHelper::YieldRuleParser::yield_id

Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.5 boost::spirit::qi::rule<stdair::iterator._t, boost::spirit::ascii::space_type>
AIRRAC::YieldParserHelper::YieldRuleParser::origin

Definition at line 487 of file YieldParserHelper.cpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.45 AIRRAC::YieldParserHelper::YieldRuleParser Struct Reference

59

Referenced by YieldRuleParser().

10.45.3.6 boost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::destination
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.7 boost::spirit::qi::rule<stdair::iterator._t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::tripType

Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.8 boost::spirit::qi::rule<stdair::iterator._t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::dateRangeStart
Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.9 boost::spirit::qi::rule<stdair::iterator._t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::dateRangeEnd
Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.10 boost::spirit::qi::rule<stdair::iterator_t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::date

Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.11 boost::spirit::qi::rule<stdair::iterator_t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::timeRangeStart
Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.12 boost::spirit::qi::rule<stdair::iterator_t, boost:
AIRRAC::YieldParserHelper::YieldRuleParser::timeRangeEnd
Definition at line 487 of file YieldParserHelper.cpp.

Referenced by YieldRuleParser().

10.45.3.13 boost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::time
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

:spirit:

:spirit:

:spirit:

:spirit:

:spirit:

:spirit:

:spirit:

:spirit:

sascii:

sascii:

sascii:

:ascii:

:ascii:

:ascii:

:ascii:

:ascii:

:Space_type>

:space_type>

:space_type>

:space_type>

:space_type>

:space_type>

:space_type>

:space_type>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.45 AIRRAC::YieldParserHelper::YieldRuleParser Struct Reference

60

10.45.3.14 boost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::point_of_sale
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.15 boost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::cabinCode
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.16 boost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::channel
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.17 Dboost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::yield
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.18 Dboost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::segment
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

10.45.3.19 Dboost::spirit::qi::rule<stdair::iterator_t, boost:

AIRRAC::YieldParserHelper::YieldRuleParser::yield_rule_end
Definition at line 487 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

:spirit:

:spirit::

:spirit:

:spirit::

:spirit:

:spirit:

10.45.3.20 stdair::BomRoot& AIRRAC::YieldParserHelper::YieldRuleParser

Definition at line 493 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

:ascii:

:ascii:

ascii:

ascii:

:ascii:

:ascii:

:Space_type>

:space_type>

‘Space_type>

:space_type>

:space_type>

:Space_type>

::_bomRoot

10.45.3.21 YieldRuleStruct& AIRRAC::YieldParserHelper::YieldRuleParser::_yieldRule

Definition at line 494 of file YieldParserHelper.cpp.
Referenced by YieldRuleParser().

The documentation for this struct was generated from the following file:

* airrac/command/YieldParserHelper.cpp

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference

10.46 AIRRAC::YieldRuleStruct Struct Reference

Utility Structure for the parsing of Flight-Date structures.
#include <airrac/bom/YieldRuleStruct.hpp>
Inheritance diagram for AIRRAC::YieldRuleStruct::

‘ StructAbstract ‘

T

\ AIRRAC::YieldRuleStruct \

Public Member Functions

¢ YieldRuleStruct ()

¢ ~YieldRuleStruct ()

e AIRRAC::YieldID_T getYieldID () const

e stdair:: AirportCode_T getOrigin () const

* stdair::AirportCode_T getDestination () const

o stdair:: TripType_T getTripType () const

o stdair::Date_T getDateRangeStart () const

* stdair::Date_T getDateRangeEnd () const

* stdair::Duration_T getTimeRangeStart () const

e stdair::Duration_T getTimeRangeEnd () const

¢ stdair::CabinCode_T getCabinCode () const

* const stdair::CityCode_T getPOS () const

e stdair::ChannelLabel_T getChannel () const

* stdair::YieldValue_T getYield () const

¢ stdair::AirlineCode_T getAirlineCode () const

* stdair::ClassCode_T getClassCode () const

* const unsigned int getAirlineListSize () const

* const unsigned int getClassCodeListSize () const

* stdair:: AirlineCodeList_T getAirlineList () const

* stdair::ClassList_StringList_T getClassCodeList () const

e stdair::Date_T calculateDate () const

e stdair::Duration_T calculateTime () const

* const std::string describe () const

 void setYieldID (const AIRRAC::YieldID_T iYieldID)

¢ void setOrigin (const stdair::AirportCode_T &iOrigin)

* void setDestination (const stdair:: AirportCode_T &iDestination)
* void setTripType (const stdair::TripType_T &iTripType)

* void setDateRangeStart (const stdair::Date_T &iDateRangeStart)
¢ void setDateRangeEnd (const stdair::Date_T &iDateRangeEnd)
* void setTimeRangeStart (const stdair::Duration_T &iTimeRangeStart)
¢ void setTimeRangeEnd (const stdair::Duration_T &iTimeRangeEnd)
¢ void setCabinCode (const stdair::CabinCode_T &iCabinCode)

* void setPOS (const stdair::CityCode_T &iPOS)

¢ void setChannel (const stdair::ChannelLabel_T &iChannel)

¢ void setYield (const stdair::YieldValue_T &iYield)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference

62

¢ void setAirlineCode (const stdair::AirlineCode_T &iAirlineCode)
¢ void setClassCode (const stdair::ClassCode_T &iClassCode)

¢ void clearAirlineCodeList ()

* void clearClassCodeList ()

* void addAirlineCode (const stdair::AirlineCode_T &iAirlineCode)
* void addClassCode (const stdair::ClassCode_T &iClassCode)

Public Attributes

e stdair::year_t _itYear

¢ stdair::month_t _itMonth

* stdair::day_t _itDay

e stdair::hour_t _itHours

e stdair::minute_t _itMinutes
e stdair::second_t _itSeconds

10.46.1 Detailed Description

Utility Structure for the parsing of Flight-Date structures.
Definition at line 24 of file YieldRuleStruct.hpp.

10.46.2 Constructor & Destructor Documentation

10.46.2.1 AIRRAC::YieldRuleStruct::YieldRuleStruct ()
Constructor.

Definition at line 17 of file YieldRuleStruct.cpp.

10.46.2.2 AIRRAC::YieldRuleStruct::~YieldRuleStruct ()
Destructor.

Definition at line 34 of file YieldRuleStruct.cpp.

10.46.3 Member Function Documentation

10.46.3.1 AIRRAC::YieldID_T AIRRAC::YieldRuleStruct::getYieldID () const [inline]
Get the yield ID.
Definition at line 40 of file YieldRuleStruct.hpp.

10.46.3.2 stdair::AirportCode_T AIRRAC::YieldRuleStruct::getOrigin () const [inline]
Get the origin.

Definition at line 45 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storePOS::operator()().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference 63

10.46.3.3 stdair::AirportCode_T AIRRAC::YieldRuleStruct::getDestination () const [inline]

Get the destination.
Definition at line 50 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storePOS::operator()().

10.46.3.4 stdair::TripType_T AIRRAC::YieldRuleStruct::getTripType () const [inline]
Get the trip type.
Definition at line 55 of file YieldRuleStruct.hpp.

10.46.3.5 stdair::Date_T AIRRAC::YieldRuleStruct::getDateRangeStart () const [inline]
Get the date range start.
Definition at line 60 of file YieldRuleStruct.hpp.

10.46.3.6 stdair::Date_T AIRRAC::YieldRuleStruct::getDateRangeEnd () const [inline]
Get the date range end.
Definition at line 65 of file YieldRuleStruct.hpp.

10.46.3.7 stdair::Duration_T AIRRAC::YieldRuleStruct::getTimeRangeStart 0 const
[inline]

Get the time range start.

Definition at line 70 of file YieldRuleStruct.hpp.

10.46.3.8 stdair::Duration_T AIRRAC::YieldRuleStruct::getTimeRangeEnd () const [inline]

Get the time range end.

Definition at line 75 of file YieldRuleStruct.hpp.

10.46.3.9 stdair::CabinCode_T AIRRAC::YieldRuleStruct::getCabinCode () const [inline]

Get the cabin code.
Definition at line 80 of file YieldRuleStruct.hpp.

10.46.3.10 const stdair::CityCode_T AIRRAC::YieldRuleStruct::getPOS () const [inline]
Get the point-of-sale.
Definition at line 85 of file YieldRuleStruct.hpp.

10.46.3.11 stdair::ChannelLabel_T AIRRAC::YieldRuleStruct::getChannel () const [inline]

Get the channel.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference 64

Definition at line 90 of file YieldRuleStruct.hpp.

10.46.3.12 stdair::YieldValue_T AIRRAC::YieldRuleStruct::getYield () const [inline]
Get the yield.
Definition at line 95 of file YieldRuleStruct.hpp.

10.46.3.13 stdair::AirlineCode_T AIRRAC::YieldRuleStruct::getAirlineCode 0O const
[inline]

Get the airline code.

Definition at line 100 of file YieldRuleStruct.hpp.

10.46.3.14 stdair::ClassCode_T AIRRAC::YieldRuleStruct::getClassCode () const [inline]
Get the class code.

Definition at line 105 of file YieldRuleStruct.hpp.

10.46.3.15 const unsigned int AIRRAC::YieldRuleStruct::getAirlineListSize () const [inline]

Get the size of the airline code list.

Definition at line 110 of file YieldRuleStruct.hpp.

10.46.3.16 const unsigned int AIRRAC::YieldRuleStruct::getClassCodeListSize () const
[inline]

Get the size of the class code list.

Definition at line 115 of file YieldRuleStruct.hpp.

10.46.3.17 stdair::AirlineCodeList. T AIRRAC::YieldRuleStruct::getAirlineList 0 const
[inline]

Get the airline code list.

Definition at line 120 of file YieldRuleStruct.hpp.

10.46.3.18 stdair::ClassList_StringList T AIRRAC::YieldRuleStruct::getClassCodeList () const

[inline]
Get the class code list.

Definition at line 125 of file YieldRuleStruct.hpp.

10.46.3.19 stdair::Date_T AIRRAC::YieldRuleStruct::calculateDate () const
Calculate the date from the staging details.
Definition at line 38 of file YieldRuleStruct.cpp.

References _itDay, _itMonth, and _itYear.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference 65

Referenced by AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()(), and AIRRAC::Yield-
ParserHelper::storeDateRangeStart::operator()().

10.46.3.20 stdair::Duration_T AIRRAC::YieldRuleStruct::calculateTime () const
Calculate the time from the staging details.

Definition at line 44 of file YieldRuleStruct.cpp.

References _itHours, _itMinutes, and _itSeconds.

Referenced by AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(), and AIRRAC::Yield-
ParserHelper::storeStartRangeTime::operator()().

10.46.3.21 const std::string AIRRAC::YieldRuleStruct::describe () const
Give a description of the structure (for display purposes).

Definition at line 52 of file YieldRuleStruct.cpp.

Referenced by AIRRAC::YieldParserHelper::doEndYield::operator()().

10.46.3.22 void AIRRAC::YieldRuleStruct::setYieldID (const AIRRAC::YieldID_T iYieldID)
[inline]

Set the yield ID.
Definition at line 143 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeYieldId::operator()().

10.46.3.23 void AIRRAC::YieldRuleStruct::setOrigin (const stdair::AirportCode_T & iOrigin)

[inline]

Set the origin.

Definition at line 148 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storeOrigin::operator()().

10.46.3.24 void AIRRAC::YieldRuleStruct::setDestination (const stdair::AirportCode T & i-
Destination) [inline]

Set the destination.
Definition at line 153 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeDestination::operator()().

10.46.3.25 void AIRRAC::YieldRuleStruct::setTripType (const stdair::TripType_T & iTripType)

[inline]

Set the trip type.

Definition at line 158 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storeTripType::operator()().

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference 66

10.46.3.26 void AIRRAC::YieldRuleStruct::setDateRangeStart (const stdair::Date_T & iDate-
RangeStart) [inline]

Set the date range start.
Definition at line 163 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeDateRangeStart::operator()().

10.46.3.27 void AIRRAC::YieldRuleStruct::setDateRangeEnd (const stdair::Date_T & iDate-
RangeEnd) [inline]

Set the date range end.
Definition at line 168 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeDateRangeEnd::operator()().

10.46.3.28 void AIRRAC::YieldRuleStruct::setTimeRangeStart (const stdair::Duration_ T & i-
TimeRangeStart) [inline]

Set the time range start.
Definition at line 173 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeStartRangeTime::operator()().

10.46.3.29 void AIRRAC::YieldRuleStruct::setTimeRangeEnd (const stdair::Duration_T & iTime-
RangeEnd) [inline]

Set the time range end.
Definition at line 178 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeEndRangeTime::operator()().

10.46.3.30 void AIRRAC::YieldRuleStruct::setCabinCode (const stdair::CabinCode_T & iCabin-
Code) [inline]

Set the cabin code.
Definition at line 183 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeCabinCode::operator()().

10.46.3.31 void AIRRAC::YieldRuleStruct::setPOS (const stdair::CityCode_ T & iPOS)

[inline]

Set the point-of-sale.

Definition at line 188 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storePOS::operator()().

10.46.3.32 void AIRRAC::YieldRuleStruct::setChannel (const stdair::ChannelLabel T & i-
Channel) [inline]

Set the channel.

Definition at line 193 of file YieldRuleStruct.hpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.46 AIRRAC::YieldRuleStruct Struct Reference 67

Referenced by AIRRAC::YieldParserHelper::storeChannel::operator()().

10.46.3.33 void AIRRAC::YieldRuleStruct::setYield (const stdair::YieldValue T & iYield)
[inline]

Set the yield.
Definition at line 198 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeYield::operator()().

10.46.3.34 void AIRRAC::YieldRuleStruct::setAirlineCode (const stdair::AirlineCode_T & i-
AirlineCode) [inline]

Set the airline code.
Definition at line 203 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storeAirlineCode::operator()(), and AIRRAC::YieldParser-
Helper::storeYieldId::operator()().

10.46.3.35 void AIRRAC::YieldRuleStruct::setClassCode (const stdair::ClassCode_T & iClass-
Code) [inline]

Set the class code.
Definition at line 208 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeYieldld::operator()().

10.46.3.36 void AIRRAC::YieldRuleStruct::clearAirlineCodeList () [inline]
Empty the airline code list.

Definition at line 213 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storeYieldId::operator()().

10.46.3.37 void AIRRAC::YieldRuleStruct::clearClassCodeList () [inline]
Empty the class code list.

Definition at line 218 of file YieldRuleStruct.hpp.

Referenced by AIRRAC::YieldParserHelper::storeYieldld::operator()().

10.46.3.38 void AIRRAC::YieldRuleStruct::addAirlineCode (const stdair::AirlineCode_T & i-
AirlineCode) [inline]

Add an airline code to the list.
Definition at line 223 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeAirlineCode::operator()().

10.46.3.39 void AIRRAC::YieldRuleStruct::addClassCode (const stdair::ClassCode_T & iClass-
Code) [inline]

Add a class code to the list.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

10.47 YieldTestSuite Class Reference 68

Definition at line 228 of file YieldRuleStruct.hpp.
Referenced by AIRRAC::YieldParserHelper::storeClass::operator()().

10.46.4 Member Data Documentation

10.46.4.1 stdair::year_t AIRRAC::YieldRuleStruct::_itYear

Staging Date.

Definition at line 235 of file YieldRuleStruct.hpp.

Referenced by calculateDate(), and AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

10.46.4.2 stdair::month_t AIRRAC::YieldRuleStruct::_itMonth
Definition at line 236 of file YieldRuleStruct.hpp.
Referenced by calculateDate(), and AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

10.46.4.3 stdair::day_t AIRRAC::YieldRuleStruct::_itDay
Definition at line 237 of file YieldRuleStruct.hpp.
Referenced by calculateDate(), and AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

10.46.4.4 stdair::hour_t AIRRAC::YieldRuleStruct::_itHours

Staging Time.

Definition at line 241 of file YieldRuleStruct.hpp.

Referenced by calculateTime(), and AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

10.46.4.5 stdair::minute_t AIRRAC::YieldRuleStruct::_itMinutes
Definition at line 242 of file YieldRuleStruct.hpp.
Referenced by calculateTime(), and AIRRAC::YieldParserHelper::YieldRuleParser:: YieldRuleParser().

10.46.4.6 stdair::second_t AIRRAC::YieldRuleStruct::_itSeconds
Definition at line 243 of file YieldRuleStruct.hpp.

Referenced by calculateTime(), AIRRAC::YieldParserHelper::storeEndRangeTime::operator()(),
AIRRAC::YieldParserHelper::storeStartRangeTime::operator()(), AIRRAC::YieldParserHelper::store-
Yieldld::operator()(), and AIRRAC::YieldParserHelper:: YieldRuleParser:: YieldRuleParser().

The documentation for this struct was generated from the following files:

* airrac/bom/YieldRuleStruct.hpp
* airrac/bom/YieldRuleStruct.cpp

10.47 YieldTestSuite Class Reference

#include <test/airrac/YieldTestSuite.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11 AirRAC File Documentation

Inheritance diagram for YieldTestSuite::

TestFixture

YieldTestSuite

H

Public Member Functions

* void simpleYield ()
¢ YieldTestSuite ()

Protected Attributes

e std::stringstream _describeKey

10.47.1 Detailed Description

Utility class for CPPUnit-based testing.

Definition at line 7 of file YieldTestSuite.hpp.

10.47.2 Constructor & Destructor Documentation
10.47.2.1 YieldTestSuite::YieldTestSuite ()
Constructor.

10.47.3 Member Function Documentation
10.47.3.1 void YieldTestSuite::simpleYield ()

Test a simple yield functionality.

10.47.4 Member Data Documentation

10.47.4.1 std::stringstream YieldTestSuite::_describeKey [protected]
Definition at line 28 of file YieldTestSuite.hpp.

The documentation for this class was generated from the following file:

* test/airrac/YieldTestSuite.hpp

11 AirRAC File Documentation

11.1 airrac/AIRRAC_Service.hpp File Reference

#include <stdair/stdair_basic_types.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.2 airrac/AIRRAC_Types.hpp File Reference 70

#include <stdair/stdair_service_types.hpp>
#include <stdair/bom/TravelSolutionTypes.hpp>

#include <airrac/AIRRAC_Types.hpp>

Namespaces

* namespace stdair
* namespace AIRRAC

Classes

* class AIRRAC::AIRRAC_Service
Interface for the AIRRAC Services.

11.2 airrac/AIRRAC_Types.hpp File Reference

#include <vector>

#include <string>

#include <boost/shared_ptr.hpp>
#include <stdair/stdair_exceptions.hpp>
#include <stdair/stdair_file.hpp>

Namespaces

* namespace AIRRAC

Classes

¢ class AIRRAC:: AirportPairNotFoundException

¢ class AIRRAC::PosOrChannelNotFoundException
¢ class AIRRAC::FlightDateNotFoundException

¢ class AIRRAC::FlightTimeNotFoundException

¢ class AIRRAC::FeaturesNotFoundException

¢ class AIRRAC::AirlineNotFoundException

¢ class AIRRAC::YieldInputFileNotFoundException
¢ class AIRRAC::YieldFileParsingFailedException

¢ class AIRRAC::QuotingException

* class AIRRAC::YieldFilePath

Typedefs

* typedef boost::shared_ptr< AIRRAC_Service > AIRRAC::AIRRAC_ServicePtr_T
* typedef unsigned int AIRRAC::YieldID_T

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.3 airrac/basic/BasConst.cpp File Reference

71

11.3 airrac/basic/BasConst.cpp File Reference

#include <airrac/basic/BasConst_General.hpp>

#include <airrac/basic/BasConst_AIRRAC_Service.hpp>

Namespaces

* namespace AIRRAC

Variables

* const std::string AIRRAC::DEFAULT_AIRLINE_CODE = "BA"

11.4 airrac/basic/BasConst_AIRRAC_Service.hpp File Reference

#include <string>

Namespaces

* namespace AIRRAC

Variables

* const std::string AIRRAC::DEFAULT_AIRLINE_CODE

11.5 airrac/basic/BasConst_General.hpp File Reference

Namespaces

* namespace AIRRAC

11.6 airrac/batches/airrac.cpp File Reference

#include <cassert>

#include <iostream>

#include <sstream>

#include <fstream>

#include <vector>

#include <list>

#include <string>

#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/tokenizer.hpp>

#include <boost/program_options.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.6 airrac/batches/airrac.cpp File Reference 72

#include <stdair/STDAIR_Service.hpp>
#include <stdair/bom/TravelSolutionStruct.hpp>
#include <stdair/service/Logger.hpp>
#include <airrac/AIRRAC_Service.hpp>

#include <airrac/config/airrac-paths.hpp>

Typedefs

* typedef std::vector< std::string > WordList_T

Functions

¢ const std::string K_AIRRAC_DEFAULT_LOG_FILENAME ("airrac.log")

e const std::string K_AIRRAC_DEFAULT_YIELD_INPUT_FILENAME (STDAIR_SAMPLE_-
DIR"/yieldstore01.csv")

* template<class T> std::ostream & operator< < (std::ostream &os, const std::vector< T > &v)

« int readConfiguration (int argc, char sargv[|, bool &iolsBuiltin, stdair::Filename_T &ioYieldInput-
Filename, std::string &ioLogFilename)

* int main (int argc, char xargv[])

Variables

e const bool K_AIRRAC_DEFAULT_BUILT_IN_INPUT = false
e const int K_AIRRAC_EARLY_RETURN_STATUS =99

11.6.1 Typedef Documentation

11.6.1.1 typedef std::vector<std::string> WordList_T

Definition at line 23 of file airrac.cpp.

11.6.2 Function Documentation

11.6.2.1 const std::string K_AIRRAC_DEFAULT_LOG_FILENAME (''airrac.log')
Default name and location for the log file.

Referenced by readConfiguration().

11.6.2.2 const std::string K_AIRRAC_DEFAULT_YIELD_INPUT_FILENAME (STDAIR_-
SAMPLE_DIR'"/yieldstore01.csv'')

Default name and location for the (CSV) input file.

Referenced by readConfiguration().

11.6.2.3 template<class T> std::ostream& operator<< (std::ostream & os, const std::vector< T
> &v)

Definition at line 43 of file airrac.cpp.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.7 airrac/bom/YieldRuleStruct.cpp File Reference 73

11.6.2.4 int readConfiguration (int argc, char * argv[], bool & ioIsBuiltin, stdair::Filename_T &
ioYieldInputFilename, std::string & ioLogFilename)

Read and parse the command line options.
Definition at line 50 of file airrac.cpp.

References K_AIRRAC_DEFAULT_BUILT_IN_INPUT, K_AIRRAC_DEFAULT_LOG_FILENAME(),
K_AIRRAC_DEFAULT_YIELD_INPUT_FILENAME(), and K_AIRRAC_EARLY_RETURN._-
STATUS.

Referenced by main().

11.6.2.5 int main (int argc, char * argv[])
Definition at line 153 of file airrac.cpp.

References ~ AIRRAC::AIRRAC_Service::buildSampleBom(), AIRRAC::AIRRAC_Service::build-
SampleTravelSolutions(), AIRRAC::AIRRAC_Service::csvDisplay(), K_AIRRAC_EARLY_RETURN_-
STATUS, AIRRAC::AIRRAC_Service::parseAndLoad(), and readConfiguration().

11.6.3 Variable Documentation

11.6.3.1 const bool K_ AIRRAC_DEFAULT _BUILT_IN_INPUT = false

Default for the input type. It can be either built-in or provided by an input file. That latter must then be
given with the -i option.

Definition at line 36 of file airrac.cpp.

Referenced by readConfiguration().

11.6.3.2 const int K_AIRRAC_EARLY_RETURN_STATUS =99
Early return status (so that it can be differentiated from an error).
Definition at line 39 of file airrac.cpp.

Referenced by main(), and readConfiguration().

11.7 airrac/bom/YieldRuleStruct.cpp File Reference

#include <cassert>

#include <sstream>

#include <stdair/basic/BasConst_General.hpp>
#include <stdair/service/Logger.hpp>
#include <airrac/AIRRAC_Types.hpp>

#include <airrac/bom/YieldRuleStruct.hpp>

Namespaces

* namespace AIRRAC

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.8 airrac/bom/YieldRuleStruct.hpp File Reference 74

11.8 airrac/bom/YieldRuleStruct.hpp File Reference

#include <string>

#include <stdair/stdair_basic_types.hpp>
#include <stdair/stdair_date_time_types.hpp>
#include <stdair/stdair_demand_types.hpp>
#include <stdair/stdair_inventory_types.hpp>
#include <stdair/basic/StructAbstract.hpp>
#include <stdair/basic/BasParserHelperTypes.hpp>
#include <airrac/AIRRAC_Types.hpp>

Namespaces

* namespace AIRRAC

Classes

¢ struct AIRRAC::YieldRuleStruct

Utility Structure for the parsing of Flight-Date structures.

11.9 airrac/command/YieldManager.cpp File Reference

#include <cassert>

#include <stdair/basic/BasConst_Request.hpp>
#include <stdair/bom/BomManager.hpp>
#include <stdair/bom/BomRoot.hpp>

#include <stdair/bom/Inventory.hpp>

#include <stdair/bom/FlightDate.hpp>
#include <stdair/bom/SegmentDate.hpp>
#include <stdair/bom/SegmentCabin.hpp>
#include <stdair/bom/FareFamily.hpp>
#include <stdair/bom/BookingClass.hpp>
#include <stdair/bom/TravelSolutionStruct.hpp>
#include <stdair/bom/AirportPair.hpp>
#include <stdair/bom/PosChannel.hpp>
#include <stdair/bom/DatePeriod.hpp>
#include <stdair/bom/TimePeriod.hpp>
#include <stdair/bom/YieldFeatures.hpp>

#include <stdair/bom/AirlineClassList.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.10 airrac/command/YieldManager.hpp File Reference

75

#include <stdair/factory/FacBomManager.hpp>
#include <stdair/service/Logger.hpp>
#include <airrac/AIRRAC_Types.hpp>

#include <airrac/command/YieldManager.hpp>

Namespaces

* namespace AIRRAC

11.10 airrac/command/YieldManager.hpp File Reference

#include <stdair/stdair_basic_types.hpp>

#include <stdair/bom/TravelSolutionTypes.hpp>

Namespaces

* namespace stdair
* namespace AIRRAC

Classes

¢ class AIRRAC::YieldManager

Command wrapping the travel request process.

11.11 airrac/command/YieldParser.cpp File Reference

#include <cassert>

#include <string>

#include <stdair/basic/BasFileMgr.hpp>
#include <airrac/command/YieldParserHelper.hpp>

#include <airrac/command/YieldParser.hpp>

Namespaces

* namespace AIRRAC

11.12 airrac/command/YieldParser.hpp File Reference

#include <string>
#include <stdair/stdair_basic_types.hpp>
#include <stdair/command/CmdAbstract.hpp>

#include <airrac/AIRRAC_Types.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.13 airrac/command/YieldParserHelper.cpp File Reference

Namespaces

* namespace stdair
* namespace AIRRAC

Classes

e class AIRRAC::YieldParser

Class wrapping the parser entry point.

11.13 airrac/command/YieldParserHelper.cpp File Reference

#include <cassert>

#finclude <fstream>

#include <vector>

#include <stdair/basic/BasFileMgr.hpp>

#include <stdair/basic/BasConst_Request.hpp>
#include <stdair/bom/BomRoot.hpp>

#include <stdair/service/Logger.hpp>

#include <stdair/basic/BasParserTypes.hpp>
#include <airrac/command/YieldParserHelper.hpp>

#include <airrac/command/YieldRuleGenerator.hpp>

Namespaces

* namespace AIRRAC
* namespace AIRRAC::YieldParserHelper

Classes

« struct AIRRAC::YieldParserHelper:: YieldRuleParser

Variables

¢ stdair::intl_p_t AIRRAC::YieldParserHelper::intl_p

e stdair::uint2_p_t AIRRAC::YieldParserHelper::uint2_p

e stdair::uint4_p_t AIRRAC::YieldParserHelper::uint4_p

* stdair::uintl_4_p_t AIRRAC::YieldParserHelper::uintl_4_p
e stdair::hour_p_t AIRRAC::YieldParserHelper::hour_p

e stdair::minute_p_t AIRRAC::YieldParserHelper::minute_p

e stdair::second_p_t AIRRAC::YieldParserHelper::second_p

* stdair::year_p_t AIRRAC::YieldParserHelper::year_p

e stdair::month_p_t AIRRAC::YieldParserHelper::month_p

e stdair::day_p_t AIRRAC::YieldParserHelper::day_p

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.14 airrac/command/YieldParserHelper.hpp File Reference

11.14 airrac/command/YieldParserHelper.hpp File Reference

#include <string>

#include <boost/spirit/include/qgi.hpp>
#include <stdair/command/CmdAbstract.hpp>
#include <airrac/AIRRAC_Types.hpp>

#include <airrac/bom/YieldRuleStruct.hpp>

Namespaces

* namespace stdair
* namespace AIRRAC
* namespace AIRRAC::YieldParserHelper

Classes

* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
e struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
¢ struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
e struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::
¢ struct AIRRAC::YieldParserHelper::
* struct AIRRAC::YieldParserHelper::

¢ class AIRRAC::YieldFileParser

ParserSemanticAction
storeYieldld
storeOrigin
storeDestination
storeTripType
storeDateRangeStart
storeDateRangeEnd
storeStartRangeTime
storeEndRangeTime
storePOS
storeCabinCode
storeChannel
storeYield
storeAirlineCode
storeClass
doEndYield

11.15 airrac/command/YieldRuleGenerator.cpp File Reference

#include <cassert>

#include <stdair/bom/BomManager.hpp>
#include <stdair/bom/BomRoot.hpp>
#include <stdair/bom/AirportPair.hpp>
#include <stdair/bom/PosChannel.hpp>
#include <stdair/bom/DatePeriod.hpp>
#include <stdair/bom/TimePeriod.hpp>
#include <stdair/bom/YieldFeatures.hpp>

#include <stdair/bom/AirlineClassList.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.16 airrac/command/YieldRuleGenerator.hpp File Reference

78

#include <stdair/factory/FacBomManager.hpp>
#include <stdair/service/Logger.hpp>
#include <airrac/bom/YieldRuleStruct.hpp>

#include <airrac/command/YieldRuleGenerator.hpp>

Namespaces

* namespace AIRRAC

11.16 airrac/command/YieldRuleGenerator.hpp File Reference

#include <stdair/command/CmdAbstract.hpp>

#include <airrac/AIRRAC_Types.hpp>

Namespaces

* namespace stdair
* namespace AIRRAC
* namespace AIRRAC::YieldParserHelper

Classes

¢ class AIRRAC::YieldRuleGenerator

11.17 airrac/factory/FacAirracServiceContext.cpp File Reference

#include <cassert>
#include <stdair/service/FacSupervisor.hpp>
#include <airrac/factory/FacAirracServiceContext.hpp>

#include <airrac/service/AIRRAC_ServiceContext.hpp>

Namespaces

* namespace AIRRAC

11.18 airrac/factory/FacAirracServiceContext.hpp File Reference

#include <string>
#include <stdair/stdair_basic_types.hpp>

#include <stdair/service/FacServiceAbstract.hpp>

Namespaces

* namespace AIRRAC

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.19 airrac/service/AIRRAC_Service.cpp File Reference

79

Classes

¢ class AIRRAC::FacAirracServiceContext

Factory for the service context.

11.19 airrac/service/AIRRAC_Service.cpp File Reference

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

Namespaces

<cassert>

<boost/make_shared.hpp>
<stdair/basic/BasChronometer.hpp>
<stdair/bom/BomDisplay.hpp>
<stdair/service/Logger.hpp>
<stdair/STDAIR_Service.hpp>
<airrac/basic/BasConst_AIRRAC_Service.hpp>
<airrac/factory/FacAirracServiceContext.hpp>
<airrac/command/YieldParser.hpp>
<airrac/command/YieldManager.hpp>
<airrac/service/AIRRAC_ServiceContext.hpp>

<airrac/AIRRAC_Service.hpp>

* namespace AIRRAC

11.20 airrac/service/AIRRAC_ServiceContext.cpp File Reference

#include
#include
#include

#include

Namespaces

<cassert>
<sstream>
<airrac/basic/BasConst_ATIRRAC_Service.hpp>

<airrac/service/AIRRAC_ServiceContext.hpp>

* namespace AIRRAC

11.21 airrac/service/AIRRAC_ServiceContext.hpp File Reference

#include
#include
#include

#include

<string>
<stdair/stdair_service_types.hpp>
<stdair/service/ServiceAbstract.hpp>

<airrac/AIRRAC_Types.hpp>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

11.22 doc/local/authors.doc File Reference 80

Namespaces

* namespace stdair
* namespace AIRRAC

Classes

e class AIRRAC::AIRRAC_ServiceContext

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

11.31

11.32

11.33

11.34

11.35

11.36

11.37

Inner class holding the context for the AIRRAC Service object.

doc/local/authors.doc File Reference
doc/local/codingrules.doc File Reference
doc/local/copyright.doc File Reference
doc/local/documentation.doc File Reference
doc/local/features.doc File Reference
doc/local/help_wanted.doc File Reference
doc/local/howto_release.doc File Reference
doc/local/index.doc File Reference
doc/local/installation.doc File Reference
doc/local/linking.doc File Reference
doc/local/test.doc File Reference
doc/local/users_guide.doc File Reference
doc/local/verification.doc File Reference
doc/tutorial/tutorial.doc File Reference
test/airrac/YieldTestSuite.cpp File Reference

test/airrac/Yield TestSuite.hpp File Reference

#include <iosfwd>

#include <cppunit/extensions/HelperMacros.h>

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12 AirRAC Page Documentation

81

Classes

e class YieldTestSuite

Functions

* CPPUNIT_TEST_SUITE_REGISTRATION (YieldTestSuite)

11.37.1 Function Documentation

11.37.1.1 CPPUNIT_TEST_SUITE_REGISTRATION (YieldTestSuite)

12 AirRAC Page Documentation

12.1 People
12.1.1 Project Admins (and Developers)

* Gabrielle Sabatier <gsabatier @users.sourceforge.net> (N)
* Anh Quan Nguyen <quannaus@users.sourceforge.net> (N)

* Denis Arnaud <denis_arnaud @users.sourceforge.net> (N)

12.1.2 Retired Developers
* Mehdi Ayouni <mehdi.ayouni @gmail.com>

* Son Nguyen Kim <snguyenkim@users.sourceforge.net> (N)

12.1.3 Contributors

* Emmanuel Bastien <ebastien @users.sourceforge.net> (N)

12.1.4 Distribution Maintainers

* Fedora/RedHat: Denis Arnaud <denis_arnaud @users.sourceforge.net> (N)

* Debian: Emmanuel Bastien <ebastien @users.sourceforge.net> (N)

Note:

(N) - Amadeus employees.

12.2 Coding Rules

In the following sections we describe the naming conventions which are used for files, classes, structures,

local variables, and global variables.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

mailto:gsabatier@users.sourceforge.net
mailto:quannaus@users.sourceforge.net
mailto:denis_arnaud@users.sourceforge.net
mailto:mehdi.ayouni@gmail.com
mailto:snguyenkim@users.sourceforge.net
mailto:ebastien@users.sourceforge.net
http://fedoraproject.org
http://www.redhat.com
mailto:denis_arnaud@users.sourceforge.net
http://www.debian.org
mailto:ebastien@users.sourceforge.net
http://www.amadeus.com

12.3 Copyright and License 82

12.2.1 Default Naming Rules for Variables
Variables names follow Java naming conventions. Examples:

* INumberOfPassengers

* 1SeatAvailability

12.2.2 Default Naming Rules for Functions
Function names follow Java naming conventions. Example:

e int myFunctionName (const int& a, int b)

12.2.3 Default Naming Rules for Classes and Structures

Each new word in a class or structure name should always start with a capital letter and the words should
be separated with an under-score. Abbreviations are written with capital letters. Examples:

e MyClassName

e MyStructName

12.2.4 Default Naming Rules for Files

Files are named after the C++ class names.

Source files are named using . cpp suffix, whereas header files end with . hpp extension. Examples:

* FlightDate.hpp

* SegmentDate.cpp

12.2.5 Default Functionality of Classes
All classes that are configured by input parameters should include:

¢ default empty constructor
* one or more additional constructor(s) that takes input parameters and initializes the class instance

* setup function, preferably named ‘setup’ or ‘set_parameters’

Explicit destructor functions are not required, unless they are needed. It shall not be possible to use any of
the other member functions unless the class has been properly initiated with the input parameters.

12.3 Copyright and License

12.3.1 GNU LESSER GENERAL PUBLIC LICENSE

12.3.1.1 Version 2.1, February 1999

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 83

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 TUSA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

12.3.2 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages—
typically libraries—of the Free Software Foundation and other authors who decide to use it. You can use
it too, but we suggest you first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish); that you receive source code or can get it if you want it; that you can change the
software and use pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients
all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If
you link other code with the library, you must provide complete object files to the recipients, so that they
can relink them with the library after making changes to the library and recompiling it. And you must show
them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also,
if the library is modified by someone else and passed on, the recipients should know that what they have is
not the original version, so that the original author’s reputation will not be affected by problems that might
be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure
that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from
a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the
two is legally speaking a combined work, a derivative of the original library. The ordinary General Public
License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser
General Public License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user’s free-

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 84

dom than the ordinary General Public License. It also provides other free software developers Less of
an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed
to use the library. A more frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the
Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in non-free
programs enables many more people to use the whole GNU operating system, as well as its variant, the
GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that the
user of a program that is linked with the Library has the freedom and the wherewithal to run that program
using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention
to the difference between a "work based on the library" and a "work that uses the library". The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

12.3.3 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser
General Public License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation
in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library (independent of the use of the Library
in a tool for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 85

on the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of
this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does not supply such function or table,
the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to
a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 86

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library"
with the Library to produce a work containing portions of the Library, and distribute that work under terms
of your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them,
as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
"work that uses the Library", as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile
the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(1) uses at run time a copy of the library already present on the user’s computer system, rather than copying
library functions into the executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with the version that the work
was made with.

¢) Accompany the work with a written offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this user
a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials to
be distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and
the Library together in an executable that you distribute.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 87

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.3 Copyright and License 88

Each version is given a distinguishing version number. If the Library specifies a version number of this Li-
cense which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions
are incompatible with these, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

12.3.3.1 NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVIC-
ING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFT-
WARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

12.3.3.2 END OF TERMS AND CONDITIONS

12.3.4 How to Apply These Terms to Your New Programs

If you develop a new library, and you want it to be of the greatest possible use to the public, we recom-
mend making it free software that everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.4 Documentation Rules 89

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

Source

12.4 Documentation Rules
12.4.1 General Rules

All classes in AirRAC should be properly documented with Doxygen comments in include (. hpp) files.
Source (. cpp) files should be documented according to a normal standard for well documented C++ code.

An example of how the interface of a class shall be documented in AirRAC is shown here:

/%!
* \brief Brief description of MyClass here
*
* Detailed description of MyClass here. With example code if needed.
*/
class MyClass {
public:
//! Default constructor
MyClass (void) { setup_done = false; }
/x!
* \brief Constructor that initializes the class with parameters
*
* Detailed description of the constructor here if needed
*
* \param[in] paraml Description of \a paraml here
* \param[in] param?2 Description of \a param2 here

M;élass(TYPEl paraml, TYPE2 param2) { setup(paraml, param2); }
/%!

x \brief Setup function for MyClass

: Detailed description of the setup function here if needed

: \param[in] paraml Description of \a paraml here

* \param[in] param2 Description of \a param2 here
*/
void setup (TYPEl paraml, TYPE2 param2);

/!
* \brief Brief description of memberFunctionl

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

12.4 Documentation Rules 90

*

* Detailed description of memberFunctionl here if needed
*

* \param[in] paraml Description of \a paraml here

* \param[in] param2 Description of \a param2 here

*

\param[in, out] param3 Description of \a param3 here
* \return Description of the return value here
*/
TYPE4 memberFunctionl (TYPEl paraml, TYPE2 param2, TYPE3 ¶m3);

private:

bool _setupDone; /*1< Variable that checks if the class is properly
initialized with parameters =/
TYPE1l _privateVariablel; //!< Short description of _privateVariablel here
TYPE2 _privateVariable2; //!< Short description of _privateVariable2 here
bi

12.4.2 File Header

All files should start with the following header, which include Doxygen’s \file, \brief and \author
tags, $SDate$ and $SRevisions$ CVS tags, and a common copyright note:

/%!

* \file

* \brief Brief description of the file here

* \author Names of the authors who contributed to this code

+ \date Date

*

* Detailed description of the file here if needed.

*

K
*

* AL1rRAC - C++ Simulated Revenue Accounting (RAC) System Library

*

* Copyright (C) 2009-2011 (\see authors file for a list of contributors)

*

* \see copyright file for license information

*

K
*/

12.4.3 Grouping Various Parts

All functions must be added to a Doxygen group in order to appear in the documentation. The following
code example defines the group ‘my_group’:

/!

* \defgroup my_group Brief description of the group here
*

* Detailed description of the group here

*/

The following example shows how to document the function myFunction and how to add it to the group
my_group:

/!

* \brief Brief description of myFunction here
* \lngroup my_group

*

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.5 Main features

91

Detailed description of myFunction here

\param[in] paraml Description of \a paraml here
\param[in] param2 Description of \a param2 here
* \return Description of the return value here
*/
TYPE3 myFunction (TYPEl paraml, TYPE2 ¶m?2);

*
*
*
*

12.5 Main features

A short list of the main features of AirRAC is given below sorted in different categories.

features and functions exist and for these we refer to the reference documentation.

12.5.1 Yield calculation

* Calculation of yields from statistics on tickets/coupons

12.5.2 Yield rule engine

* Yield rules: storage, engine, management

12.5.3 Yield retrieval

» Retrieval of yields for specific booking requests or product assesment

12.5.4 Other features

e CSV input file parsing
¢ Memory handling

12.6 Make a Difference

Do not ask what AirRAC can do for you. Ask what you can do for AirRAC.

You can help us to develop the AirRAC library. There are always a lot of things you can do:

* Start using AirRAC

* Tell your friends about AirRAC and help them to get started using it

Many more

* If you find a bug, report it to us. Without your help we can never hope to produce a bug free code.

* Help us to improve the documentation by providing information about documentation bugs

* Answer support requests in the AirRAC discussion forums on SourceForge. If you know the answer

to a question, help others to overcome their AirRAC problems.

* Help us to improve our algorithms. If you know of a better way (e.g. that is faster or requires less

memory) to implement some of our algorithms, then let us know.

* Help us to port AirRAC to new platforms. If you manage to compile AirRAC on a new platform,

then tell us how you did it.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.7 Make a new release 92

* Send us your code. If you have a good AirRAC compatible code, which you can release under the
LGPL, and you think it should be included in AirRAC, then send it to us.

* Become an AirRAC developer. Send us an e-mail and tell what you can do for AirRAC.

12.7 Make a new release
12.7.1 Introduction

This document describes briefly the recommended procedure of releasing a new version of AirRAC using
a Linux development machine and the SourceForge project site.

The following steps are required to make a release of the distribution package.
12.7.2 Initialisation
Clone locally the full Git project:

cd ~

mkdir -p dev/sim

cd ~/dev/sim

git clone git://airrac.git.sourceforge.net/gitroot/airrac/airrac airracgit
cd airracgit

git checkout trunk

12.7.3 Branch creation
Create the branch, on your local clone, corresponding to the new release (say, 0.5.0):

cd ~/dev/sim/airracgit
git checkout trunk
git checkout -b 0.5.0

Update the version in the various build system files, replacing 99.99.99 by the correct version number:

vi CMakeLists.txt
vi autogen.sh

Update the version and add a change-log in the Changelog and in the RPM specification files:

vi ChangeLog
vi airrac.spec

12.7.4 Commit and publish the release branch
Commit the new release:

cd ~/dev/sim/airracgit

git add -A

git commit -m "[Release 0.5.0] Release of version 0.5.0."
git push

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://airrac.git.sourceforge.net/git/gitweb.cgi?p=airrac/airrac;a=tree;h=refs/heads/trunk;hb=trunk

12.7 Make a new release 93

12.7.5 Update the change-log in the trunk as well
Update the change-log in the Changel.og and RPM specification files:

cd ~/dev/sim/airracgit
git checkout trunk

vi ChangeLog

vi airrac.spec

Commit the change-logs and publish the trunk (main development branch):

git commit -m "[Doc] Integrated the change-log of the release 0.5.0."
git push

12.7.6 Create distribution packages
Create the distribution packages using the following command:

cd ~/dev/sim/airracgit

git checkout 0.5.0

rm —-rf build && mkdir -p build

cd build

cmake -DCMAKE_INSTALL_PREFIX=/home/user/dev/deliveries/airrac-0.5.0 \
—-DCMAKE_BUILD_TYPE:STRING=Debug -DINSTALL_DOC:BOOL=0N

make check && make dist

This will configure, compile and check the package. The output packages will be named, for instance,
airrac-0.5.0.tar.gzand airrac-0.5.0.tar.bz2.

12.7.7 Generation the RPM packages
Optionally, generate the RPM package (for instance, for Fedora/RedHat):

cd ~/dev/sim/airracgit

git checkout 0.5.0

rm -rf build && mkdir -p build

cd build

cmake -DCMAKE_INSTALL_PREFIX=/home/user/dev/deliveries/airrac-0.5.0 \
-DCMAKE_BUILD_TYPE:STRING=Debug -DINSTALL_DOC:BOOL=0ON

make dist

To perform this step, rpm-build, rpmlint and rpmdevtools have to be available on the system.

cp airrac.spec ~/dev/packages/SPECS \
&& cp airrac-0.5.0.tar.bz2 ~/dev/packages/SOURCES

cd ~/dev/packages/SPECS

rpmbuild -ba airrac.spec

rpmlint -i ../SPECS/airrac.spec ../SRPMS/airrac-0.5.0-1.fcl5.src.rpm \
../RPMS/noarch/airrac—+ ../RPMS/i686/airrac—+

12.7.8 Update distributed change log

Update the NEWS and ChangeLog files with appropriate information, including what has changed since
the previous release. Then commit and push the changes into the A1 rRAC’ s Git repository.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://fedoraproject.org
http://www.redhat.com
http://airrac.git.sourceforge.net/git/gitweb.cgi?p=airrac/airrac;a=summary

12.7 Make a new release 94

12.7.9 Create the binary package, including the documentation
Create the binary package, which includes HTML and PDF documentation, using the following command:

make package

The output binary package will be named, for instance, airrac-0.5.0-Linux.tar.bz2. That pack-
age contains both the HTML and PDF documentation. The binary package contains also the executables
and shared libraries, as well as C++ header files, but all of those do not interest us for now.

12.7.10 Upload the files to SourceForge

Upload the distribution and documentation packages to the SourceForge server. Check SourceForge
help page on uploading software.

12.7.11 Upload the documentation to SourceForge
In order to update the Web site files, either:

e synchronise them with rsync and SSH:

cd ~/dev/sim/airracgit
git checkout 0.5.0
rsync -aiv doc/html/ doc/latex/refman.pdf joe,airrac@web.sourceforge.net:htdocs/

where —aiv options mean:

— —a: archive/mirror mode; equals —r1ptgoD (no —H, -A, —X)
— —v: increase verbosity
— —1i: output a change-summary for all updates

— Note the trailing slashes (/) at the end of both the source and target directories. It means that the
content of the source directory (doc/html), rather than the directory itself, has to be copied
into the content of the target directory.

e oruse the SourceForge Shell service.

12.7.12 Make a new post

* submit a new entry in the SourceForge project-related news feed
* make a new post on the SourceForge hosted WordPress blog

* and update, if necessary, Trac tickets.

12.7.13 Send an email on the announcement mailing-list

Finally, you should send an announcement to airrac-announce@lists.sourceforge.net
(see https://lists.sourceforge.net/lists/listinfo/airrac—announce for the
archives)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

https://sourceforge.net/apps/trac/sourceforge/wiki/Release%20files%20for%20download#SCP
https://sourceforge.net/apps/trac/sourceforge/wiki/Release%20files%20for%20download#SCP
https://sourceforge.net/apps/trac/sourceforge/wiki/Shell%20service#Accessingyourfileswithothertools
https://sourceforge.net/apps/trac/sourceforge/wiki/Shell%20service
https://sourceforge.net/news/submit.php?group_id=317250
https://sourceforge.net/apps/wordpress/airrac/wp-admin/
https://sourceforge.net/apps/trac/airrac/report
mailto:airrac-announce@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/airrac-announce

12.8 Installation 95

12.8 Installation
12.8.1 Table of Contents

* Fedora/RedHat Linux distributions
* AirRAC Requirements

* Basic Installation

» Compilers and Options

* Compiling For Multiple Architectures
* Installation Names

* Optional Features

e Particular systems

* Specifying the System Type
 Sharing Defaults

* Defining Variables

¢ ‘cmake’ Invocation

12.8.2 Fedora/RedHat Linux distributions

Note that on Fedora/RedHat Linux distributions, RPM packages are available and can be installed with
your usual package manager. For instance:

yum -y install airrac-devel airrac-doc

RPM packages can also be available on the SourceForge download site.

12.8.3 AirRAC Requirements

AirRAC should compile without errors or warnings on most GNU/Linux systems, on UNIX systems like
Solaris SunOS, and on POSIX based environments for Microsoft Windows like Cygwin or MinGW with
MSYS. It can be also built on Microsoft Windows NT/2000/XP/Vista/7 using Microsoft’s Visual C++
.NET, but our support for this compiler is limited. For GNU/Linux, SunOS, Cygwin and MinGW we
assume that you have at least the following GNU software installed on your computer:

¢ GNU Autotools:

autoconf,

automake,
- libtool,
— make, version 3.72.1 or later (check version with ‘make —version’)

* GCC - GNU C++ Compiler (g++), version 4.3.x or later (check version with ‘*gcc —version’)

* Boost - C++ STL extensions, version 1.35 or later (check version with ‘grep "define BOOST_-
LIB_VERSION" /usr/include/boost/version.hpp’)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://fedoraproject.org
http://www.redhat.com
http://sourceforge.net/project/showfiles.php?group_id=282941
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/make/
http://gcc.gnu.org/
http://www.boost.org/

12.8 Installation 96

e MySQL - Database client libraries, version 5.0 or later (check version with *‘mysgl —version’)

e SOCI - C++ database client library wrapper, version 3.0.0 or later (check version with
‘soci-config —version’)

Optionally, you might need a few additional programs: Doxygen, LaTeX, Dvips and Ghostscript,
to generate the HTML and PDF documentation.

We strongly recommend that you use recent stable releases of the GCC, if possible. We do not actively
work on supporting older versions of the GCC, and they may therefore (without prior notice) become
unsupported in future releases of AirRAC.

12.8.4 Basic Installation

Briefly, the shell commands ‘. /cmake .. && make install’ should configure, build and install
this package. The following more-detailed instructions are generic; see the *README’ file for instructions
specific to this package. Some packages provide this *INSTALL’ file but do not implement all of the
features documented below. The lack of an optional feature in a given package is not necessarily a bug.
More recommendations for GNU packages can be found in the info page corresponding to "Makefile
Conventions: (standards)Makefile Conventions".

The ‘cmake’ shell script attempts to guess correct values for various system-dependent variables used
during compilation. It uses those values to create a ‘Makefile’ in each directory of the package. It may
also create one or more ‘.h’ files containing system-dependent definitions. Finally, it creates a ‘CMake—
Cache.txt’ cache file that you can refer to in the future to recreate the current configuration, and files
‘CMakeFiles’ containing compiler output (useful mainly for debugging ‘cmake’).

It can also use an optional file (typically called ‘config.cache’ and enabled with
‘~cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed up
reconfiguring. Caching is disabled by default to prevent problems with accidental use of stale cache files.

If you need to do unusual things to compile the package, please try to figure out how ‘configure’ could
check whether to do them, and mail diffs or instructions to the address given in the *README’ so they can
be considered for the next release. If you are using the cache, and at some point ‘config.cache’ contains
results you don’t want to keep, you may remove or edit it.

The file *CMakeLists.txt’ isused to create the ‘“Makefile’ files.

The simplest way to compile this package is:

1. “cd’ to the directory containing the package’s source code and type *./cmake ..’ toconfigure
the package for your system. Running ‘cmake’ is generally fast. While running, it prints some
messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’to run any self-tests that come with the
package, generally using the just-built uninstalled binaries.

4. Type ‘make install’ to install the programs and any data files
and documentation. When installing into a prefix owned by root,
it is recommended that the package be configured and built as a
regular user, and only the ‘make install’ phase executed with root
privileges.

5. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

http://dev.mysql.com/
http://soci.sourceforge.net/
http://www.doxygen.org/
http://www.latex-project.org/
http://www.radicaleye.com/dvips.html
http://www.cs.wisc.edu/~ghost/

12.8 Installation 97

a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

6. Often, you can also type ‘make uninstall’ to remove the installed
files again. In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

12.8.5 Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘cmake’ script does not know about. Run ‘./cmake -help’ for
details on some of the pertinent environment variables.

You can give ‘cmake’ initial values for configuration parameters by
setting variables in the command line or in the environment. Here is
an example:

./cmake CC=c99 CFLAGS=-g LIBS=-1lposix

See also:

Defining Variables for more details.

12.8.6 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at

the same time, by placing the object files for each architecture in
their own directory. To do this, you can use GNU ‘make’. ‘cd’ to the
directory where you want the object files and executables to go and
run the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’
before reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types-known as "fat" or
"universal" binaries-by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc —-arch 1386 —-arch x86_64 —-arch ppc —-arch ppc64" \
CXX="g++ —arch 1386 —-arch x86_64 —-arch ppc -arch ppc64" \
CPP="gcc -E" CXXCPP="g++ -E"

This is not guaranteed to produce working output in all cases, you may
have to build one architecture at a time and combine the results using
the ‘lipo’ tool if you have problems.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation

12.8.7 Installation Names

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘-prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If
you pass the option ‘-exec-prefix=PREFIX’ to ‘configure’, the package
uses PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, 1if you use an unusual directory layout you can give
options like ‘-bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure -help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so
that specifying just ‘-prefix’ will affect all of the other directory
specifications that were not explicitly provided.

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one
or both of the following shortcuts of passing variable assignments

to the ‘make install’ command line to change installation locations
without having to reconfigure or recompile.

The first method involves providing an override variable

for each affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for
all directory configuration variables that were expressed in terms of
‘S{prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required
by the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend
‘/alternate/directory’ before all installation names. The approach
of '‘DESTDIR’ overrides is not required by the GNU Coding Standards,
and does not work on platforms that have drive letters. On the other
hand, it does better at avoiding recompilation issues, and works

well even when some directory options were not specified in terms of
‘S{prefix}’ at ‘configure’ time.

12.8.8 Optional Features

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘cmake’ the
option ‘-program-prefix=PREFIX’ or ‘-program-suffix=SUFFIX’.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation 99

Some packages pay attention to ‘-enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ‘-with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘-enable-’ and ‘-with-’ options that the
package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it
doesn’t, you can use the ‘configure’ options ‘-x-includes=DIR’ and
‘-x—libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the execution
of ‘make’ will be. For these packages, running ‘./configure
—enable-silent-rules’ sets the default to minimal output, which

can be overridden with ‘make V=1’; while running ‘./configure
—disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0'.

12.8.9 Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. If GNU CC
is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:

./configure CC="cc -Ae —-D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"

and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This directory
contains several dysfunctional programs; working variants of these
programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’ in
your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’, not
‘/usr/local’. It is recommended to use the following options:

./cmake -DCMAKE_INSTALL_PREFIX=/boot/common

12.8.10 Specifying the System Type

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation 100

package will run on. Usually, assuming the package is built to be
run on the _same_ architectures, ‘configure’ can figure that out, but
if it prints a message saying it cannot guess the machine type, give
it the ‘-build=TYPE’ option. TYPE can either be a short name for the
system type, such as ‘sun4’, or a canonical name which has the form
CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

« OS

« KERNEL-0S

See the file ‘config.sub’ for the possible values of each field. 1If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

If you are _building_compiler tools for cross—-compiling, you should
use the option ‘-target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘-host=TYPE'.

12.8.11 Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the ‘CONFIG_-
SITE’ environment variable to the location of the site script. A
warning: not all ‘configure’ scripts look for a site script.

12.8.12 Defining Variables

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation 101

12.8.13 ‘cmake’ Invocation
‘cmake’ recognizes the following options to control how it operates.

« ‘-~help’, ‘-h’ print a summary of all of the options to
‘configure’, and exit.

+ ‘~help=short’, ‘-help=recursive’ print a summary of the options
unique to this package’s ‘configure’, and exit. The ‘short’
variant lists options used only in the top level, while the
‘recursive’ variant lists options also present in any nested
packages.

« ‘-version’, ‘-V’ print the version of Autoconf used to generate
the ‘configure’ script, and exit.

« ‘—cache-file=FILE’ enable the cache: use and save the results of
the tests in FILE, traditionally ‘config.cache’. FILE defaults to
‘/dev/null’ to disable caching.

« ‘—config-cache’, '‘-C’ alias for ‘-cache-file=config.cache’.

« ‘—quiet’, ‘-silent’, ‘-g’ do not print messages saying which
checks are being made. To suppress all normal output, redirect
it to ‘/dev/null’ (any error messages will still be shown).

« ‘-srcdir=DIR’ look for the package’s source code in directory DIR.
Usually ‘configure’ can determine that directory automatically.

« ‘-prefix=DIR’ use DIR as the installation prefix.
See also:

Installation Names for more details, including other options
available for fine-tuning the installation locations.

« ‘-no-create’, ‘-n’ run the configure checks, but stop before
creating any output files.

‘cmake’ also accepts some other, not widely useful, options. Run
‘cmake —-help’ for more details.

The ‘cmake’ script produces an ouput like this:

cmake —-DCMAKE_INSTALL_PREFIX=/home/user/dev/deliveries/airrac-0.5.0 \
-DLIB_SUFFIX=64 -DCMAKE_BUILD_TYPE:STRING=Debug -DINSTALL_DOC:BOOL=0ON \
-DWITH_STDAIR_PREFIX=/home/user/dev/deliveries/stdair-stable

-— The C compiler identification is GNU

—— The CXX compiler identification is GNU

—-— Check for working C compiler: /usr/lib64/ccache/gcc

-— Check for working C compiler: /usr/lib64/ccache/gcc —— works

—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Check for working CXX compiler: /usr/lib64/ccache/c++

—— Check for working CXX compiler: /usr/lib64/ccache/c++ —— works

—— Detecting CXX compiler ABI info

-— Detecting CXX compiler ABI info - done

—— Requires Git without specifying any version

—— Current Git revision name: £d0a80b436abd00facc362505699501b2e7acf58 trunk
-— Requires Boost-1.41

—— Boost version: 1.46.0

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation 102

—-— Found the following Boost libraries:

- program_options

- date_time

- iostreams

- serialization

- filesystem

- unit_test_framework

-— Found Boost version: 1.46.0

-— Found BoostWrapper: /usr/include (found suitable version "1.46.0", required is "1.41")
-— Requires MySQL without specifying any version

-— Using mysgl-config: /usr/bin/mysqgl_config

—— Found MySQL: /usr/lib64/mysqgl/libmysglclient.so (found version "5.5.14")

-— Found MySQL version: 5.5.14

—— Requires SOCI-3.0

-— Using soci-config: /usr/bin/soci-config

—— SOCI headers are buried

—-— Found SOCI: /usr/lib64/libsoci_core.so (found suitable version "3.0.0", required is "3.0")
—— Found SOCIMySQL: /usr/lib64/libsoci_mysgl.so (found suitable version "3.0.0", required is "3.0")
—— Found SOCI with MySQL back-end support version: 3.0.0

-— Requires StdAir-0.35

—— Found StdAir version: 0.36.2

-—- Requires Doxygen without specifying any version

—— Found Doxygen: /usr/bin/doxygen

—-— Found DoxygenWrapper: /usr/bin/doxygen (found version "1.7.4")

—— Found Doxygen version: 1.7.4

—— Had to set the linker language for ’'airraclib’ to CXX

—-— Test ’YieldTestSuite’ to be built with ’'YieldTestSuite.cpp’

== PROJECT_NAMEiievniennennnnn ¢ airrac
—— PACKAGE_PRETTY_NAME : AirRAC
—— PACKAGE .+ttt iit ittt iiieeeenns : airrac
—— PACKAGE_NAME ...ttt ennn. : ATIRRAC
—— PACKAGE_VERSIONcciiuiinn.n : 0.5.0
—— GENERIC_LIB_VERSION : 0.5.0
—— GENERIC_LIB_SOVERSION : 99.99

—— Modules to build : airrac

-— Libraries to build : airraclib

—— Binaries to build : airrac

—— Modules to testo, : airrac

—— Binaries to test : YieldTestSuitetst

—— % Moduleiiiiiiiiiiiiinn. : airrac

—— + Layers to be built : .;basic;bom; factory; command; service

-— + Dependencies on other layers

- + Libraries to be built : airraclib

- + Executables to be built : airrac

- + Test to be checked : YieldTestSuitetst

—— BUILD_SHARED_LIBSccu... : ON

—— CMAKE_BUILD_TYPEc00u.. : Debug

—— CMAKE_MODULE_PATHvuvenenn.. : /home/user/dev/sim/airrac/airracgithub/config/
—— CMAKE_INSTALL_PREFIX : /home/user/dev/deliveries/airrac-0.5.0

—— x Doxygen:

- — DOXYGEN_VERSION ...vvvuennenenn. :1.7.4

—— — DOXYGEN_EXECUTABLE : /usr/bin/doxygen
— — DOXYGEN_DOT_EXECUTABLE : /usr/bin/dot

- — DOXYGEN_DOT_PATH . ..vuvewnnnnn : /usr/bin

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.8 Installation 103

—— INSTALL_LIB_DIR .. ivviennnnnnnn : /home/user/dev/deliveries/airrac-0.5.0/1ib64

—— INSTALL_BIN_DIR ®tiviiiieeeeennnn : /home/user/dev/deliveries/airrac—-0.5.0/bin

—— INSTALL_INCLUDE_DIRovuu... : /home/user/dev/deliveries/airrac-0.5.0/include

—— INSTALL_DATA_DIR i viiinnennn. : /home/user/dev/deliveries/airrac-0.5.0/share

—— INSTALL_SAMPLE_DIR : /home/user/dev/deliveries/airrac-0.5.0/share/airrac/samples
—— INSTALL_DOC ..ttt ittt tiieaennn : ON

—— CPACK_PACKAGE_CONTACTev... : Denis Arnaud <denis_arnaud - at - users dot sourceforge dot net>
—— CPACK_PACKAGE_VENDOR : Denis Arnaud

—— CPACK_PACKAGE_VERSION : 0.5.0

-— CPACK_PACKAGE_DESCRIPTION_FILE . : /home/user/dev/sim/airrac/airracgithub/README

—— CPACK_RESOURCE_FILE_LICENSE : /home/user/dev/sim/airrac/airracgithub/COPYING

—— CPACK_GENERATORc.oi.n : TBZ2

—— CPACK_DEBIAN_PACKAGE_DEPENDS

—— CPACK_SOURCE_GENERATOR : TBZ2;TGZ

—— CPACK_SOURCE_PACKAGE_FILE_NAME . : airrac-0.5.0

—— x Boost:

- — BoOst_VERSIONcccu... : 104600

—= — Boost_LIB_VERSION : 1_46

—-= — Boost_HUMAN_VERSION : 1.46.0

- - Boost_INCLUDE_DIRS : /usr/include

- - Boost required components .. : program_options;date_time;iostreams;serialization;filesystem;unit_te
- - Boost required libraries ... : optimized;/usr/lib64/libboost_iostreams-mt.so;debug;/usr/1ib64/1libbc
—— % MySQL:

—= — MYSQL_VERSION : 5.5.14

—— - MYSQL_INCLUDE_DIR : /usr/include/mysqgl

- - MYSQL_LIBRARIES : /usr/lib64/mysqgl/libmysglclient.so

—— % SOCI:

- — SOCI_VERSIONcvvveunn. : 3.0.0

- — SOCI_INCLUDE_DIR ...vueuvnnn.. : /usr/include/soci

—= — SOCIMYSQL_INCLUDE_DIR : /usr/include/soci

—— — SOCI_LIBRARIESveu... : /usr/1lib64/libsoci_core.so

—— — SOCIMYSQL_LIBRARIES : /usr/lib64/libsoci_mysgl.so

—— % StdAir:

—= — STDAIR_VERSION : 0.36.2

- — STDAIR_BINARY_DIRS : /home/user/dev/deliveries/stdair-0.36.2/bin

—= — STDAIR_EXECUTABLES : stdair

- — STDAIR_LIBRARY DIRS : /home/user/dev/deliveries/stdair-0.36.2/1ib64

—= — STDAIR_LIBRARIES : stdairlib;stdairuicllib

—— — STDAIR_INCLUDE_DIRS : /home/user/dev/deliveries/stdair-0.36.2/include

—— — STDAIR_SAMPLE_DIR : /home/user/dev/deliveries/stdair-0.36.2/share/stdair/samples

—— Change a value with: cmake -D<Variable>=<Value>

—— Configuring done
-- Generating done
—— Build files have been written to: /home/user/dev/sim/airrac/airracgithub/build

It is recommended that you check if your library has been compiled and
linked properly and works as expected. To do so, you should execute
the testing process ‘make check’. As a result, you should obtain a

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.9 Linking with AirRAC 104

similar report:

[0%] Built target hdr_cfg_airrac

[90%] Built target airraclib

[100%] Built target YieldTestSuitetst

Test project /home/user/dev/sim/airrac/airracgithub/build/test/airrac
Start 1: YieldTestSuitetst

1/1 Test #1: YieldTestSuitetst Passed 0.03 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.23 sec

[100%] Built target check_airractst
[100%] Built target check

Check if all the executed tests PASSED. If not, please contact us by
filling a bug-report.

Finally, you should install the compiled and linked library, include
files and (optionally) HTML and PDF documentation by typing:

make install

Depending on the PREFIX settings during configuration, you might need
the root (administrator) access to perform this step.

Eventually, you might invoke the following command

make clean

to remove all files created during compilation process, or even

cd ~/dev/sim/airracgit
rm -rf build && mkdir build
cd build

to remove everything.

12.9 Linking with AirRAC
12.9.1 Table of Contents

* Introduction

* Using the pkg-config command

¢ Using the airrac-config script

* M4 macro for the GNU Autotools

* Using AirRAC with dynamic linking

12.9.2 Introduction
There are two convenient methods of linking your programs with the AirRAC library. The first one em-

ploys the *‘pkg—config’ command (see http://pkgconfig. freedesktop.org/), whereas the
second one uses ‘airrac-config’ script. These methods are shortly described below.

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

https://sourceforge.net/apps/trac/airrac/newticket
http://pkgconfig.freedesktop.org/

12.9 Linking with AirRAC 105

12.9.3 Using the pkg-config command

‘pkg-config’ is a helper tool used when compiling applications and libraries. It helps you insert the
correct compiler and linker options. The syntax of the *pkg-config’ is as follows:

pkg-config <options> <library_ name>

For instance, assuming that you need to compile an AirRAC based program ‘my_prog.cpp’, you should
use the following command:

gt+ ‘pkg-config --cflags airrac' -o my_prog my_prog.cpp ‘pkg-config --libs airrac®

For more information see the ‘pkg-config’ man pages.

12.9.4 Using the airrac-config script

AIrRAC provides a shell script called ‘airrac-config®, which is installed by default in
‘Sprefix/bin’ (Y/usr/local/bin’)directory. It can be used to simplify compilation and linking
of AirRAC based programs. The usage of this script is quite similar to the usage of the ‘pkg-config’
command.

Assuming that you need to compile the program ‘my_prog.cpp’ you can now do that with the following
command:

g++ ‘airrac-config --cflags' -o my_prog_opt my_prog.cpp ‘airrac-config --libs®
Alistof ‘airrac-config’ options can be obtained by typing:

airrac-config —--help

If the ‘airrac-config’ command is not found by your shell, you should add its location
‘S$prefix/bin’ to the PATH environment variable, e.g.:

export PATH=/usr/local/bin:S$SPATH

12.9.5 M4 macro for the GNU Autotools

A M4 macro file is delivered with AirRAC, namely ‘airrac.m4’, which can be found in, e.g.,
‘fusr/share/aclocal’. When used by a ‘configure’ script, thanks to he *AM_PATH_AirRAC’ macro (spec-
ified in the M4 macro file), the following Makefile variables are then defined:

e ‘AirRAC_VERSION’ (e.g., defined to 0.23.0)
e ‘AirRAC_CFLAGS’ (e.g.,definedto ‘-I${prefix}/include’)

e ‘AirRAC_LIBS’ (e.g.,definedto ‘~LS${prefix}/1lib —-lairrac’)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.10 Test Rules 106

12.9.6 Using AirRAC with dynamic linking

When using static linking some of the library routines in AirRAC are copied into your executable program.
This can lead to unnecessary large executables. To avoid having too large executable files you may use
dynamic linking instead. Dynamic linking means that the actual linking is performed when the program
is executed. This requires that the system is able to locate the shared AirRAC library file during your
program execution. If you install the AirRAC library using a non-standard prefix, the *ILD_LIBRARY_ -
PATH'’ environment variable might be used to inform the linker of the dynamic library location, e.g.:

export LD_LIBRARY_PATH=<AirRAC installation prefix>/1ib:$LD_LIBRARY_PATH

12.10 Test Rules

This section describes how the functionality of the AirRAC library should be verified. 1In the
‘test/airrac’ subdirectory, test source files are provided. All functionality should be tested using
these test source files.

12.10.1 The Test Source Files

Each new AirRAC module/class should be accompanied with a test source file. The test source file is
an implementation in C++ that tests the functionality of a function/class or a group of functions/classes
called test suites. The test source file should test relevant parameter settings and input/output relations
to guarantee correct functionality of the corresponding classes/functions. The test source files should be
maintained using version control and updated whenever new functionality is added to the AirRAC library.

The test source file should print relevant data to a standard output that can be used to verify the functionality.
All relevant parameter settings should be tested.

The test source file should be placed in the *test /airrac’ subdirectory and should have a name ending
with *TestSuite.cpp’.

12.10.2 The Reference File
Consider a test source file named *YieldTestSuite.cpp’. A reference file named ‘YieldTest-
Suite.ref’ should accompany the test source file. The reference file contains a reference printout of the

standard output generated when running the test program. The reference file should be maintained using
version control and updated according to the test source file.

12.10.3 Testing AirRAC Library

One can compile and execute all test programs from the ‘test/airrac’ sub-directory by typing:

o

% make check

after successful compilation of the AirRAC library.

12.11 Users Guide
12.11.1 Table of Contents

¢ Introduction

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.11 Users Guide 107

¢ Get Started

Get the AirRAC library
Build the AirRAC project
Build and Run the Tests

Install the AirRAC Project (Binaries, Documentation)

* Exploring the Predefined BOM Tree
— Yield Rule Engine BOM Tree

* Extending the BOM Tree

12.11.2 Introduction

The AirRAC library contains classes for yield rule management. This document does not cover all the
aspects of the A1rRAC library. It does however explain the most important things you need to know in
order to start using A1 rRAC.

12.11.3 Get Started

12.11.3.1 Get the AirRAC library

12.11.3.2 Build the AirRAC project To run the configuration script the first time, go to the top direc-
tory (where the AirRAC package has been un-packed), and issue either of the following two commands,
depending on whether the AirRAC project has been checked out from the Subversion repository or down-
loaded as a tar-ball package from the Sourceforge Web site:

* ./autogen.sh

e ./configure

12.11.3.3 Build and Run the Tests

12.11.3.4 Install the AirRAC Project (Binaries, Documentation)

12.11.4 Exploring the Predefined BOM Tree

AirRAC predefines a BOM (Business Object Model) tree specific to the airline IT arena.

12.11.4.1 Yield Rule Engine BOM Tree

e ATRRAC::YieldRuleStruct

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 108

12.11.5 Extending the BOM Tree

12.12 Supported Systems
12.12.1 Table of Contents

¢ Introduction
¢ AirRAC 0.1.x

— Linux Systems

* Fedora Core 4 with ATLAS

* Gentoo Linux with ACML

Gentoo Linux with ATLAS

+ Gentoo Linux with MKL

+ Gentoo Linux with NetLib’s BLAS and LAPACK

* Red Hat Enterprise Linux with AirRAC External

% SUSE Linux 10.0 with NetLib’s BLAS and LAPACK
% SUSE Linux 10.0 with MKL

— Windows Systems

* Microsoft Windows XP with Cygwin

* Microsoft Windows XP with Cygwin and ATLAS

Microsoft Windows XP with Cygwin and ACML

Microsoft Windows XP with MinGW, MSYS and ACML
Microsoft Windows XP with MinGW, MSYS and AirRAC External
* Microsoft Windows XP with MS Visual C++ and Inte]l MKL

— Unix Systems
% SunOS 5.9 with AirRAC External

*

*

*

e AirRAC 3.9.1
* AirRAC 3.9.0
* AirRAC 3.8.1

12.12.2 Introduction

This page is intended to provide a list of AirRAC supported systems, i.e. the systems on which configura-
tion, installation and testing process of the AirRAC library has been sucessful. Results are grouped based
on minor release number. Therefore, only the latest tests for bug-fix releases are included. Besides, the
information on this page is divided into sections dependent on the operating system.

Where necessary, some extra information is given for each tested configuration, e.g. external libraries
installed, configuration commands used, etc.

If you manage to compile, install and test the AirRAC library on a system not mentioned below, please let
us know, so we could update this database.

12.12.3 AirRAC 0.1.x

12.12.3.1 Linux Systems

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 109

Fedora Core 4 with ATLAS

 Platform: Intel Pentium 4

¢ Operating System: Fedora Core 4 (x86)

e Compiler: g++ (GCC) 4.0.2 20051125

* AirRAC release: 0.1.0

¢ External Libraries: From FC4 distribution:

- fftw3.1386-3.0.1-3

- fftw3-devel.i386-3.0.1-3

— atlas—-sse2.1386-3.6.0-8.fc4

- atlas—-sseZ2-devel.i1386-3.6.0-8.fc4
- blas.i386-3.0-35.fc4

— lapack.i386-3.0-35.fc4

¢ Tests Status: All tests PASSED

* Comments: AirRAC configured with:
% CXXFLAGS="-03 -pipe -march=pentium4" ./configure

¢ Date: March 7, 2006

* Tester: Tony Ottosson

Gentoo Linux with ACML

e Platform: AMD Sempron 3000+

¢ Operating System: Gentoo Linux 2006.0 (x86 arch)

¢ Compiler(s): g++ (GCC) 3.4.5

¢ AirRAC release: 0.1.1

* External Libraries: Compiled and installed from portage tree:
— sci-libs/acml-3.0.0

* Tests Status: All tests PASSED

e Comments: BLAS and LAPACK libs set by using the following system commands:

% eselect blas set ACML
% eselect lapack set ACML

AirRAC configured with:

% export CPPFLAGS="-I/usr/include/acml"
% ./configure --with-blas="-1lblas"

¢ Date: March 31, 2006

* Tester: Adam Piatyszek (ediap)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 110

Gentoo Linux with ATLAS

 Platform: Intel Pentium M Centrino

¢ Operating System: Gentoo Linux 2006.0 (x86)

e Compiler: g++ (GCC) 3.4.5

* AirRAC release: 0.1.1

¢ External Libraries: Compiled and installed from portage tree:

- sci-libs/fftw-3.1
— sci-libs/blas-atlas-3.6.0-rl
— sci-libs/lapack—-atlas-3.6.0

¢ Tests Status: All tests PASSED

* Comments: BLAS and LAPACK libs set by using the following system commands:

% eselect blas set ATLAS
% eselect lapack set ATLAS

AirRAC configured with:

% ./configure --with-blas="-1lblas"

e Date: March 31, 2006

* Tester: Adam Piatyszek (ediap)

Gentoo Linux with MKL

¢ Platform: Intel Pentium M Centrino

¢ Operating System: Gentoo Linux 2006.0 (x86 arch)
¢ Compiler: g++ (GCC) 3.4.5

¢ AirRAC release: 0.1.0

* External Libraries: Intel Math Kernel Library (MKL) 8.0.1 installed manually in the following
directory: /opt/intel/mkl1/8.0.1

e Tests Status: All tests PASSED

e Comments: AirRAC configured using the following commands:

% export LDFLAGS="-L/opt/intel/mkl1/8.0.1/1ib/32"
% export CPPFLAGS="-I/opt/intel/mkl/8.0.1/include"
% ./configure

* Date: February 28, 2006

* Tester: Adam Piatyszek (ediap)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 111

Gentoo Linux with NetLib’s BLAS and LAPACK

 Platform: Intel Pentium M Centrino

¢ Operating System: Gentoo Linux 2006.0 (x86)

e Compiler: g++ (GCC) 3.4.5

* AirRAC release: 0.1.1

¢ External Libraries: Compiled and installed from portage tree:

sci-libs/fftw-3.1
sci-libs/blas-reference-19940131-r2
sci-libs/cblas-reference-20030223

sci-libs/lapack-reference-3.0-r2
¢ Tests Status: All tests PASSED

¢ Comments: BLAS and LAPACK libs set by using the following system commands:

% blas-config reference
% lapack-config reference

AirRAC configured with:

[

% ./configure --with-blas="-1lblas"

¢ Date: March 31, 2006

» Tester: Adam Piatyszek (ediap)

Red Hat Enterprise Linux with AirRAC External

* Platform: Intel Pentium 4

* Operating System: Red Hat Enterprise Linux AS release 4 (Nahant Update 2)
e Compiler: g++ (GCC) 3.4.4 20050721 (Red Hat 3.4.4-2)

* AirRAC release: 0.1.0

¢ External Libraries: BLAS, CBLAS, LAPACK and FFTW libraries from AirRAC External 2.1.1
package

¢ Tests Status: All tests PASSED
¢ Date: March 7, 2006

¢ Tester: Erik G. Larsson

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 112

SUSE Linux 10.0 with NetLib’s BLAS and LAPACK

¢ Platform: Intel Pentium 4 CPU 3.20GHz (64-bit)

¢ Operating System: SUSE Linux 10.0 (x86_64)

* Compiler(s): g++ (GCC) 4.0.2

¢ AirRAC release: 0.1.0

* External Libraries: BLAS, LAPACK and FFTW libraries installed from OpenSuse 10.0 RPM

repository:

- blas-3.0-926

- lapack-3.0-926
fftw3-3.0.1-114
fftw3-threads-3.0.1-114
fftw3-devel-3.0.1-114

* Tests Status: All tests PASSED
* Comments: AirRAC configured with:

[

% export CXXFLAGS="-m64 -march=nocona -03 -pipe"
% ./configure --with-lapack="/usr/lib64/liblapack.so.3"

¢ Date: March 1, 2006

» Tester: Adam Piatyszek (ediap)

SUSE Linux 10.0 with MKL

¢ Platform: Intel Pentium 4 CPU 3.20GHz (64-bit)
¢ Operating System: SUSE Linux 10.0 (x86_64)
¢ Compiler(s): g++ (GCC) 4.0.2

* AirRAC release: 0.1.0

e External Libraries: Intel Math Kernel Library (MKL) 8.0.1 installed manually in the following
directory: /opt/intel/mkl1/8.0.1

¢ Tests Status: All tests PASSED

e Comments: AirRAC configured with:

export CXXFLAGS="-m64 -march=nocona —-03 -pipe"
export LDFLAGS="-L/opt/intel/mkl/8.0.1/1lib/em64t"
export CPPFLAGS="-I/opt/intel/mkl/8.0.1/include"
./configure

o oo oo

o

¢ Date: March 1, 2006

* Tester: Adam Piatyszek (ediap)

12.12.3.2 Windows Systems

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 113

Microsoft Windows XP with Cygwin

 Platform: AMD Sempron 3000+

¢ Operating System: Microsoft Windows XP SP2, Cygwin 1.5.19-4
* Compiler(s): g++ (GCC) 3.4.4 (cygming special)

* AirRAC release: 0.1.1

* External Libraries: Installed from Cygwin’s repository:

- fftw-3.0.1-2
- fftw-dev-3.0.1-1
- lapack-3.0-4

¢ Tests Status: All tests PASSED

* Comments: Only static library can be built. AirRAC configured with:

% ./configure

e Date: March 31, 2006

e Tester: Adam Piatyszek (ediap)

Microsoft Windows XP with Cygwin and ATLAS

¢ Platform: AMD Sempron 3000+

* Operating System: Microsoft Windows XP SP2, Cygwin 1.5.19-4
¢ Compiler(s): g++ (GCC) 3.4.4 (cygming special)

* AirRAC release: 0.1.1

¢ External Libraries: Installed from Cygwin’s repository:

- fftw-3.0.1-2
— fftw-dev-3.0.1-1

ATLAS BLAS and LAPACK libraries from AirRAC External 2.1.1 package configured using:

% ./configure --enable-atlas —--disable-fftw
¢ Tests Status: All tests PASSED
¢ Comments: Only static library can be built. AirRAC configured with:

% export LDFLAGS="-L/usr/local/lib"
% ./configure

¢ Date: March 31, 2006

* Tester: Adam Piatyszek (ediap)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 114

Microsoft Windows XP with Cygwin and ACML

 Platform: AMD Sempron 3000+

¢ Operating System: Microsoft Windows XP SP2, Cygwin 1.5.19-4
* Compiler(s): g++ (GCC) 3.4.4 (cygming special)

¢ AirRAC release: 0.1.2

¢ External Libraries: ACML version 3.1.0 (acm13.1.0-32-win32-g77.exe) installed into a
default directory, i.e. "c:\Program Files\AMD\acml3.1.0"

e Tests Status: All tests PASSED

* Comments: Only static library can be built. AirRAC configured with:

% export LDFLAGS="-L/cygdrive/c/Progra~1/AMD/acml3.1.0/gnu32/1ib"
% export CPPFLAGS="-I/cygdrive/c/Progra~1/AMD/acml3.1.0/gnu32/include"
% ./configure --enable-debug

* Date: May 15, 2006

» Tester: Adam Piatyszek (ediap)

Microsoft Windows XP with MinGW, MSYS and ACML

¢ Platform: AMD Sempron 3000+

¢ Operating System: Microsoft Windows XP SP2, MinGW 5.0.2, MSYS 1.0.10
¢ Compiler(s): g++ (GCC) 3.4.4 (mingw special)

¢ AirRAC release: 0.1.2

¢ External Libraries: ACML version 3.1.0 (acm13.1.0-32-win32-g77.exe) installed into a
default directory, i.e. "c:\Program Files\AMD\acml3.1.0"

¢ Tests Status: All tests PASSED

* Comments: Only static library can be built. AirRAC configured with:

% export LDFLAGS="-L/c/Progra~1/AMD/acml3.1.0/gnu32/1ib"
% export CPPFLAGS="-I/c/Progra~l1/AMD/acml3.1.0/gnu32/include"
% ./configure --enable-debug

* Date: May 15, 2006

* Tester: Adam Piatyszek (ediap)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.12 Supported Systems 115

Microsoft Windows XP with MinGW, MSYS and AirRAC External

 Platform: AMD Sempron 3000+

¢ Operating System: Microsoft Windows XP SP2, MinGW 5.0.2, MSYS 1.0.10
e Compiler(s): g++ (GCC) 3.4.4 (mingw special)

¢ AirRAC release: 0.1.5

¢ External Libraries: BLAS, CBLAS, LAPACK and FFTW libraries from AirRAC External 2.2.0
package

e Tests Status: All tests PASSED

* Comments: Only static library can be built. AirRAC configured with:

% export LDFLAGS="-L/usr/local/lib"

export CPPFLAGS="-I/usr/local/include"

export CXXFLAGS="-Wall -03 -march=athlon-tbird -pipe"
./configure --disable-html-doc

o oo oo

* Date: August 11, 2006

 Tester: Adam Piatyszek (ediap)

Microsoft Windows XP with MS Visual C++ and Intel MKL

e Platform: AMD Sempron 3000+

* Operating System: Microsoft Windows XP SP2
e Compiler(s): Microsoft Visual C++ 2005 .NET
* AirRAC release: 0.1.5

* External Libraries: Intel Math Kernel Library (MKL) 8.1 installed manually in the following di-
rectory: "C:\Program Files\Intel\MKL\8.1"

¢ Tests Status: Not fully tested. Some AirRAC based programs compiled and run with success.

e Comments: Only static library can be built. AirRAC built by opening the
"win32\airrac.vcproj" project file in MSVC++ and executing "Build — Build
Solution" command from menu.

* Date: August 11, 2006

* Tester: Adam Piatyszek (ediap)

12.12.3.3 Unix Systems

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.13 AirRAC Supported Systems (Previous Releases) 116

SunOS 5.9 with AirRAC External

* Platform: SUNW, Sun-Blade-100 (SPARC)

¢ Operating System: SunOS 5.9 Generic_112233-10
e Compiler(s): g++ (GCC) 3.4.5

¢ AirRAC release: 0.1.2

¢ External Libraries: BLAS, CBLAS, LAPACK and FFTW libraries from AirRAC External 2.1.1
package. The following configuration command has been used:

% export CFLAGS="-mcpu=ultrasparc -02 -pipe —-funroll-all-loops"

3

¥ ./configure

¢ Tests Status: All tests PASSED

e Comments: AirRAC configured with:

% export LDFLAGS="-L/usr/local/lib"

% export CPPFLAGS="-I/usr/local/include"

% export CXXFLAGS="-mcpu=ultrasparc -02 -pipe"
% ./configure —--enable-debug

* Date: May 15, 2006

* Tester: Adam Piatyszek (ediap)

12.13 AirRAC Supported Systems (Previous Releases)
12.13.1 AirRAC 3.9.1

12.13.2 AirRAC 3.9.0

12.13.3 AirRAC 3.8.1

12.14 Tutorials

12.14.1 Table of Contents

* Introduction
— Preparing the AirRAC Project for Development
* Build a Predefined BOM Tree

Instanciate the BOM Root Object

Instanciate the (Airline) Inventory Object
Link the Inventory Object with the BOM Root
Build Another Airline Inventory

Dump The BOM Tree Content

Result of the Tutorial Program

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.14 Tutorials 117

12.14.2 Introduction

This page contains some tutorial examples that will help you getting started using AirRAC. Most examples
show how to construct some simple business objects, i.e., instances of the so-named Business Object Model
(BOM).

12.14.2.1 Preparing the AirRAC Project for Development The source code for these examples can
be found in the batches and test/airrac directories. They are compiled along with the rest of the
AirRAC project. See the User Guide (Users Guide) for more details on how to build the A1 rRAC project.

12.14.3 Build a Predefined BOM Tree
A few steps:

* Instanciate the BOM Root Object
* Instanciate the (Airline) Inventory Object

* Link the Inventory Object with the BOM Root

12.14.3.1 Instanciate the BOM Root Object First, a BOM root object (i.e., a root for all the classes
in the project) is instantiated by the airrac: :AIRRAC_ServiceContext context object, when
the airrac: :AIRRAC_Service is itself instantiated. The corresponding AirRAC type (class) is
airrac::BomRoot.

In the following sample, that object is named ioBomRoot, and is given as input/output parameter of the
airrac::CmdBomManager: :buildSampleBom () method:

12.14.3.2 Instanciate the (Airline) Inventory Object An airline inventory object can then be instanti-
ated. Let us give it the "BA" airline code (corresponding to British Airways) as the object key. That is, an
object (let us name it 1BAKey) of type (class) airrac: : InventoryKey has first to be instantiated.

Thanks to that key, an airline inventory object, i.e. of type (class) airrac: : Inventory, can be instan-
tiated. Let us name that airline inventory object 1BAInv.

12.14.3.3 Link the Inventory Object with the BOM Root Then, both objects have to be linked:
the airline inventory object (airrac: :Inventory) has to be linked with the root of the BOM tree
(airrac: :BomRoot). That operation is as simple as using the airrac: :FacBomManager: :add—
ToListAndMap () method:

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.14 Tutorials

118

12.14.3.4 Build Another Airline Inventory Another airline inventory object, corresponding to the Air

France (Air France) company, is instantiated the same way:

See the corresponding full program (cmd_bom_manager_cpp) for more details.

12.14.3.5 Dump The BOM Tree Content From the BomRoot (of type airrac: :BomRoot) object
instance, the list of airline inventories (of type airrac: : Inventory) can then be retrieved...

... and browsed:

See the corresponding full program (bom_display_cpp) for more details.

12.14.3.6 Result of the Tutorial Program When the airrac.cpp program is run (with the —b op-

tion), the output should look like:

[D] /home/user/dev/sim/airrac/airracgithub/airrac/batches/airrac.cpp:184: Welcome to
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.
[D] /home/user/dev/sim/airrac/airracgithub/airrac/command/YieldParserHelper.

cpp

Cpp:
Ccpp:
Cpp:
Ccpp:
Cpp:
Ccpp:
Cpp:

:493:
326:
326:
326:
326:
326:
326:
541:

[D] /home/user/dev/sim/airrac/airracgithub/airrac/batches/airrac.cpp:205: BOM tree:

BomRoot : -— ROOT —-—

e S L e o S S S e e e s o
AirportPair: SIN, BKK

e S e e o S o o o
DatePeriod: [2010-Jan-15/2011-Jan-01]

R R R R R R b 2 i S S S S
PosChannel: ALL, DC

R I S kR R R Rk b i I S S S S S

TimePeriod: 00:00:00-23:59:00

i i LA a0 o e

AirRAC

Parsing yield

YieldRule:
YieldRule:
YieldRule:
YieldRule:
YieldRule:
YieldRule:
Parsing of

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

1’
2/
3,
4/
S,
6

’

input fi
SIN-BKK
SIN-HND
SIN-NCE
SIN-BKK
SIN-HND
SIN-NCE

yield input

12.15 Command-Line Test to Demonstrate How To Test the AirRAC Project 119

AirportPair: SIN, HND

e S L e o e o
DatePeriod: [2010-Jan-15/2011-Jan-01]

R R R R R R R b i b S S S
PosChannel: ALL, DC

R S kR Rk kb i I S S S

TimePeriod: 00:00:00-23:59:00

o e ol o R o
AirportPair: SIN, NCE

B L o e o
DatePeriod: [2010-Jan-15/2011-Jan-01]

Ak hkhkhkkhkhkhhkhkhhkhkhkhkhkhkhkhhkhkhkhhkhkrhrhkhkkhkkhkhkhrhrhhkhkhhhxxx
PosChannel: ALL, DC
Ahkhkhkkhkhkkhkhhkhkrhkhhkkhkhhkhkhkhhhkhkrdrhkhkhrkhkhkhkhkrkhkhkkhxkx*x
TimePeriod: 00:00:00-23:59:00

AirlineClassList: SQ Y, AF YLMN

[D] /home/user/dev/sim/airrac/airracgithub/airrac/batches/airrac.cpp:210: Travel solutions:
[0] [0O] BA, 9, 2011-06-10, LHR, SYD, 21:45 -—— Q, 900, 1 1 1 --— [0] 0Q:8

See the corresponding full program (batch_airrac_cpp) for more details.

12.15 Command-Line Test to Demonstrate How To Test the AirRAC Project

*/

/] 117770707
// Import section

VA NN,
// STL

#include <sstream>

#include <fstream>

#include <string>

// Boost Unit Test Framework (UTF)

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.15 Command-Line Test to Demonstrate How To Test the AirRAC Project

120

#define BOOST_TEST_DYN_LINK

#define BOOST_TEST_MAIN

#define BOOST_TEST_MODULE YieldTestSuite
#include <boost/test/unit_test.hpp>

// StdAir

#include <stdair/basic/BasLogParams.hpp>
#include <stdair/basic/BasDBParams.hpp>
#include <stdair/basic/BasFileMgr.hpp>
#include <stdair/bom/TravelSolutionStruct.hpp>
#include <stdair/service/Logger.hpp>

// Airrac

#include <airrac/AIRRAC_Service.hpp>
#include <airrac/config/airrac-paths.hpp>

namespace boost_utf = boost::unit_test;

// (Boost) Unit Test XML Report
std::ofstream utfReportStream ("YieldTestSuite_utfresults.xml");

struct UnitTestConfig ({
UnitTestConfig () {
boost_utf::unit_test_log.set_stream (utfReportStream);
boost_utf::unit_test_log.set_format (boost_utf::XML);

boost_utf::unit_test_log.set_threshold_level (boost_utf::log_test_units);
//boost_utf::unit_test_log.set_threshold_level (boost_utf::log_successful_tests);

~UnitTestConfig() {
}
bi

L1170 7707707777777 77777777 7777777777777 7777777777177777777777717777

void testYieldQuoterHelper (const unsigned short iTestFlag,

const stdair::Filename_T iYieldInputFilename,

const bool isBuiltin) {

// Output log File

std::ostringstream oStr;

oStr << "FQTTestSuite_" << iTestFlag << ".log";
const stdair::Filename_T lLogFilename (oStr.str());

// Set the log parameters

std::ofstream logOutputFile;

// Open and clean the log outputfile
logOutputFile.open (lLogFilename.c_str());
logOutputFile.clear();

// Initialise the AirRAC service object
const stdair::BasLogParams lLogParams (stdair::LOG: :DEBUG,
logOutputFile);

// Initialise the AirRAC service object
ATIRRAC: :AIRRAC_Service airracService (lLogParams);

// Build a sample list of travel solutions
stdair::TravelSolutionList_T 1lTravelSolutionList;
airracService.buildSampleTravelSolutions (lTravelSolutionList);

// Check whether or not a (CSV) input file should be read
if (isBuiltin == true) {

// Build the default sample BOM tree (filled with yields) for AirRAC

airracService.buildSampleBom () ;

} else {

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

12.15 Command-Line Test to Demonstrate How To Test the AirRAC Project 121

// Build the BOM tree from parsing the yield input file
AIRRAC::YieldFilePath lYieldFilePath (iYieldInputFilename) ;
airracService.parseAndLoad (lYieldFilePath);

// Calculate the yields for the given travel solution
airracService.calculateYields (lTravelSolutionList);

// Close the log file
logOutputFile.close();

// /////////////// Main: Unit Test Suite //////////////

// Set the UTF configuration (re-direct the output to a specific file)
BOOST_GLOBAL_FIXTURE (UnitTestConfig);

// Start the test suite
BOOST_AUTO_TEST_SUITE (master_test_suite)
BOOST_AUTO_TEST_CASE (airrac_simple_yield) {

// Input file name
const stdair::Filename_T lYieldInputFilename (STDAIR_SAMPLE_DIR "/yieldstoreOl.csv");

// State whether the BOM tree should be built-in or parsed from an input file
const bool isBuiltin = false;

// Try to yieldQuote the sample default list of travel solutions
BOOST_CHECK_NO_THROW (testYieldQuoterHelper (0, lYieldInputFilename, isBuiltin));

BOOST_AUTO_TEST_CASE (airrac_error_parsing_input_file) {

// Input file name
const stdair::Filename_T lYieldInputFilename (STDAIR_SAMPLE_DIR "/yieldstoreErrorOl.csv");

// State whether the BOM tree should be built-in or parsed from an input file
const bool isBuiltin = false;

// Try to yield quote the sample default list of travel solutions
BOOST_CHECK_THROW (testYieldQuoterHelper (1, lYieldInputFilename, isBuiltin),
ATRRAC::YieldFileParsingFailedException) ;

BOOST_AUTO_TEST_CASE (airrac_error_missing_input_file) {

// Input file name
const stdair::Filename_T lYieldInputFilename (STDAIR_SAMPLE_DIR "/missingFile.csv");

// State whether the BOM tree should be built-in or parsed from an input file
const bool isBuiltin = false;

// Try to yield quote the sample default list of travel solutions
BOOST_CHECK_THROW (testYieldQuoterHelper (2, lYieldInputFilename, isBuiltin),
AIRRAC::YieldInputFileNotFoundException) ;

BOOST_AUTO_TEST_CASE (airrac_simple_yield_built_in) {

// State whether the BOM tree should be built-in or parsed from an input file
const bool isBuiltin = true;

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

122

12.15 Command-Line Test to Demonstrate How To Test the AirRAC Project

// Try to yield quote the sample default list of travel solutions
(testYieldQuoterHelper (3, " ", isBuiltin));

’

BOOST_CHECK_NO_THROW

}

// End the test suite
BOOST_AUTO_TEST_SUITE_END ()

/%!

Generated on Sun Jun 7 21:27:01 2015 for AirRAC by Doxygen

	AirRAC Documentation
	AirRAC Directory Hierarchy
	AirRAC Namespace Index
	AirRAC Hierarchical Index
	AirRAC Class Index
	AirRAC File Index
	AirRAC Page Index
	AirRAC Directory Documentation
	AirRAC Namespace Documentation
	AirRAC Class Documentation
	AirRAC File Documentation
	AirRAC Page Documentation

