
Network Working Group S. Bellovin, Ed.
Request for Comments: 3631 J. Schiller, Ed.
Category: Informational C. Kaufman, Ed.
 Internet Architecture Board
 December 2003

 Security Mechanisms for the Internet

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 Security must be built into Internet Protocols for those protocols to
 offer their services securely. Many security problems can be traced
 to improper implementations. However, even a proper implementation
 will have security problems if the fundamental protocol is itself
 exploitable. Exactly how security should be implemented in a
 protocol will vary, because of the structure of the protocol itself.
 However, there are many protocols for which standard Internet
 security mechanisms, already developed, may be applicable. The
 precise one that is appropriate in any given situation can vary. We
 review a number of different choices, explaining the properties of
 each.

1. Introduction

 Internet Security compromises can be divided into several classes,
 ranging from Denial of Service to Host Compromise. Denial of Service
 attacks based on sheer volume of traffic are beyond the scope of this
 document, though they are the subject of much ongoing discussion and
 research. It is important to note that many such attacks are made
 more difficult by good security practices. Host Compromise (most
 commonly caused by undetected Buffer Overflows) represent flaws in
 individual implementations rather than flaws in protocols.
 Nevertheless, carefully designed protocols can make such flaws less
 likely to occur and harder to exploit.

Bellovin, et al. Informational [Page 1]

RFC 3631 Security Mechanisms for the Internet December 2003

 However, there are security compromises that are facilitated by the
 very protocols that are in use on the Internet. If a security
 problem is inherent in a protocol, no manner of implementation will
 be able to prevent the problem.

 It is therefore vitally important that protocols developed for the
 Internet provide this fundamental security.

 Exactly how a protocol should be secured depends on the protocol
 itself as well as the security needs of the protocol. However, we
 have developed a number of standard security mechanisms in the IETF.
 In many cases appropriate application of these mechanisms can provide
 the necessary security for a protocol.

 A number of possible mechanisms can be used to provide security on
 the Internet. Which one should be selected depends on many different
 factors. We attempt here to provide guidance, spelling out the
 factors and the currently-standardized (or about-to-be-standardized)
 solutions, as discussed at the IAB Security Architecture Workshop
 [RFC2316].

 Security, however, is an art, not a science. Attempting to follow a
 recipe blindly can lead to disaster. As always, good taste in
 protocol design should be exercised.

 Finally, security mechanisms are not magic pixie dust that can be
 sprinkled over completed protocols. It is rare that security can be
 bolted on later. Good designs -- that is, secure, clean, and
 efficient designs -- occur when the security mechanisms are crafted
 along with the protocol. No conceivable exercise in cryptography can
 secure a protocol with flawed semantic assumptions.

2. Decision Factors

2.1. Threat Model

 The most important factor in choosing a security mechanism is the
 threat model. That is, who may be expected to attack what resource,
 using what sorts of mechanisms? A low-value target, such as a Web
 site that offers public information only, may not merit much
 protection. Conversely, a resource that if compromised could expose
 significant parts of the Internet infrastructure, say, a major
 backbone router or high-level Domain Name Server, should be protected
 by very strong mechanisms. The value of a target to an attacker
 depends on the purpose of the attack. If the purpose is to access
 sensitive information, all systems that handle this information or
 mediate access to it are valuable. If the purpose is to wreak havoc,
 systems on which large parts of the Internet depend are exceedingly

Bellovin, et al. Informational [Page 2]

RFC 3631 Security Mechanisms for the Internet December 2003

 valuable. Even if only public information is posted on a web site,
 changing its contents can cause embarrassment to its owner and could
 result in substantial damage. It is difficult when designing a
 protocol to predict what uses that protocol will someday have.

 All Internet connected systems require a minimum amount of
 protection. Starting in 2000 and continuing to the present, we have
 witnessed the advent of a new type of Internet security attack: an
 Internet "worm" program that seeks out and automatically attacks
 systems that are vulnerable to compromise via a number of attacks
 built into the worm program itself. These worm programs can
 compromise literally thousands of systems within a very short period
 of time. Note that the first Internet Worm was the "Morris" worm of
 1988. However, it was not followed up with similar programs for over
 12 years!

 As of the writing of this document, all of these worms have taken
 advantage of programming errors in the implementation of otherwise
 reasonably secure protocols. However, it is not hard to envision an
 attack that targets a fundamental security flaw in a widely deployed
 protocol. It is therefore imperative that we strive to minimize such
 flaws in the protocols we design.

 The value of a target to an attacker may depend on where it is
 located. A network monitoring station that is physically on a
 backbone cable is a major target, since it could easily be turned
 into an eavesdropping station. The same machine, if located on a
 stub net and used for word processing, would be of much less use to a
 sophisticated attacker, and hence would be at significantly less
 risk.

 One must also consider what sorts of attacks may be expected. At a
 minimum, eavesdropping must be seen as a serious threat; there have
 been very many such incidents since at least 1993. Often, active
 attacks, that is, attacks that involve insertion or deletion of
 packets by the attacker, are a risk as well. It is worth noting that
 such attacks can be launched with off-the-shelf tools, and have in
 fact been observed "in the wild". Of particular interest is a form
 of attack called "session hijacking", where someone on a link between
 the two communicating parties wait for authentication to complete and
 then impersonate one of the parties and continue the connection with
 the other.

 One of the most important tools available to us for securing
 protocols is cryptography. Cryptography permits us to apply various
 kinds of protection to data as it traverses the network, without
 having to depend on any particular security properties of the network
 itself. This is important because the Internet, by its distributed

Bellovin, et al. Informational [Page 3]

RFC 3631 Security Mechanisms for the Internet December 2003

 management and control, cannot be considered a trustworthy media in
 and of itself. Its security derives from the mechanisms that we
 build into the protocols themselves, independent of the underlying
 media or network operators.

 Finally, of course, there is the cost to the defender of using
 cryptography. This cost is dropping rapidly; Moore’s Law, plus the
 easy availability of cryptographic components and toolkits, makes it
 relatively easy to use strong protective techniques. Although there
 are exceptions, public key operations are still expensive, perhaps
 prohibitively so if the cost of each public-key operation is spread
 over too few transactions, careful engineering design can generally
 let us spread this cost over many transactions.

 In general, the default today should be to use the strongest
 cryptography available in any protocol. Strong cryptography often
 costs no more, and sometimes less, then weaker cryptography. The
 actual performance cost of an algorithm is often unrelated to the
 security it provides. Depending on the hardware available,
 cryptography can be performed at very high rates (1+Gbps), and even
 in software its performance impact is shrinking over time.

2.2. A Word about Mandatory Mechanisms

 We have evolved in the IETF the notion of "mandatory to implement"
 mechanisms. This philosophy evolves from our primary desire to
 ensure interoperability between different implementations of a
 protocol. If a protocol offers many options for how to perform a
 particular task, but fails to provide for at least one that all must
 implement, it may be possible that multiple, non-interoperable
 implementations may result. This is the consequence of the selection
 of non-overlapping mechanisms being deployed in the different
 implementations.

 Although a given protocol may make use of only one or a few security
 mechanisms, these mechanisms themselves often can make use of several
 cryptographic systems. The various cryptographic systems vary in
 strength and performance. However, in many protocols we need to
 specify a "mandatory to implement" to ensure that any two
 implementations will eventually be able to negotiate a common
 cryptographic system between them.

 There are some protocols that were originally designed to be run in a
 very limited domain. It is often argued that the domain of
 implementation for a particular protocol is sufficiently well defined
 and secure that the protocol itself need not provide any security
 mechanisms.

Bellovin, et al. Informational [Page 4]

RFC 3631 Security Mechanisms for the Internet December 2003

 History has shown this argument to be wrong. Inevitably, successful
 protocols - even if developed for limited use - wind up used in a
 broader environment, where the initial security assumptions do not
 hold.

 To solve this problem, the IETF requires that *ALL* protocols provide
 appropriate security mechanisms, even when their domain of
 application is at first believed to be very limited.

 It is important to understand that mandatory mechanisms are mandatory
 to *implement*. It is not necessarily mandatory that end-users
 actually use these mechanisms. If an end-user knows that they are
 deploying a protocol over a "secure" network, then they may choose to
 disable security mechanisms that they believe are adding insufficient
 value as compared to their performance cost. (We are generally
 skeptical of the wisdom of disabling strong security even then, but
 that is beyond the scope of this document.)

 Insisting that certain mechanisms are mandatory to implement means
 that those end-users who need the protocol provided by the security
 mechanism have it available when needed. Particularly with security
 mechanisms, just because a mechanism is mandatory to implement does
 not imply that it should be the default mechanism or that it may not
 be disabled by configuration. If a mandatory to implement algorithm
 is old and weak, it is better to disable it when a stronger algorithm
 is available.

2.3. Granularity of Protection

 Some security mechanisms can protect an entire network. While this
 economizes on hardware, it can leave the interior of such networks
 open to attacks from the inside. Other mechanisms can provide
 protection down to the individual user of a timeshared machine,
 though perhaps at risk of user impersonation if the machine has been
 compromised.

 When assessing the desired granularity of protection, protocol
 designers should take into account likely usage patterns,
 implementation layers (see below), and deployability. If a protocol
 is likely to be used only from within a secure cluster of machines
 (say, a Network Operations Center), subnet granularity may be
 appropriate. By contrast, a security mechanism peculiar to a single
 application is best embedded in that application, rather than inside
 TCP; otherwise, deployment will be very difficult.

Bellovin, et al. Informational [Page 5]

RFC 3631 Security Mechanisms for the Internet December 2003

2.4. Implementation Layer

 Security mechanisms can be located at any layer. In general, putting
 a mechanism at a lower layer protects a wider variety of higher-layer
 protocols, but may not be able to protect them as well. A link-layer
 encryptor can protect not just IP, but even ARP packets. However,
 its reach is just that one link. Conversely, a signed email message
 is protected even if sent through many store-and-forward mail
 gateways, can identify the actual sender, and the signature can be
 verified long after the message is delivered. However, only that one
 type of message is protected. Messages of similar formats, such as
 some Netnews postings, are not protected unless the mechanism is
 specifically adapted and then implemented in the news-handling
 programs.

3. Standard Security Mechanisms

3.1. One-Time Passwords

 One-time password schemes, such as that described in [RFC2289], are
 very much stronger than conventional passwords. The host need not
 store a copy of the user’s password, nor is it ever transmitted over
 the network. However, there are some risks. Since the transmitted
 string is derived from a user-typed password, guessing attacks may
 still be feasible. (Indeed, a program to launch just this attack is
 readily available.) Furthermore, the user’s ability to login
 necessarily expires after a predetermined number of uses. While in
 many cases this is a feature, an implementation most likely needs to
 provide a way to reinitialize the authentication database, without
 requiring that the new password be sent in the clear across the
 network.

 There are commercial hardware authentication tokens. Apart from the
 session hijacking issue, support for such tokens (especially
 challenge/response tokens, where the server sends a different random
 number for each authentication attempt) may require extra protocol
 messages.

3.2. HMAC

 HMAC [RFC2104] is the preferred shared-secret authentication
 technique. If both sides know the same secret key, HMAC can be used
 to authenticate any arbitrary message. This includes random
 challenges, which means that HMAC can be adapted to prevent replays
 of old sessions.

Bellovin, et al. Informational [Page 6]

RFC 3631 Security Mechanisms for the Internet December 2003

 An unfortunate disadvantage of using HMAC for connection
 authentication is that the secret must be known in the clear by both
 parties, making this undesirable when keys are long-lived.

 When suitable, HMAC should be used in preference to older techniques,
 notably keyed hash functions. Simple keyed hashes based on MD5
 [RFC1321], such as that used in the BGP session security mechanism
 [RFC2385], are especially to be avoided in new protocols, given the
 hints of weakness in MD5.

 HMAC can be implemented using any secure hash function, including MD5
 and SHA-1 [RFC3174]. SHA-1 is preferable for new protocols because
 it is more frequently used for this purpose and may be more secure.

 It is important to understand that an HMAC-based mechanism needs to
 be employed on every protocol data unit (aka packet). It is a
 mistake to use an HMAC-based system to authenticate the beginning of
 a TCP session and then send all remaining data without any
 protection.

 Attack programs exist that permit a TCP session to be stolen. An
 attacker merely needs to use such a tool to steal a session after the
 HMAC step is performed.

3.3. IPsec

 IPsec [RFC2401],[RFC2402],[RFC2406],[RFC2407],[RFC2411] is the
 generic IP-layer encryption and authentication protocol. As such, it
 protects all upper layers, including both TCP and UDP. Its normal
 granularity of protection is host-to-host, host-to-gateway, and
 gateway-to-gateway. The specification does permit user-granularity
 protection, but this is comparatively rare. As such, IPsec is
 currently inappropriate when host-granularity is too coarse.

 Because IPsec is installed at the IP layer, it is rather intrusive to
 the networking code. Implementing it generally requires either new
 hardware or a new protocol stack. On the other hand, it is fairly
 transparent to applications. Applications running over IPsec can
 have improved security without changing their protocols at all. But
 at least until IPsec is more widely deployed, most applications
 should not assume they are running atop IPsec as an alternative to
 specifying their own security mechanisms. Most modern operating
 systems have IPsec available; most routers do not, at least for the
 control path. An application using TLS is more likely to be able to
 assert application-specific to take advantage of its authentication.

Bellovin, et al. Informational [Page 7]

RFC 3631 Security Mechanisms for the Internet December 2003

 The key management for IPsec can use either certificates or shared
 secrets. For all the obvious reasons, certificates are preferred;
 however, they may present more of a headache for the system manager.

 There is strong potential for conflict between IPsec and NAT
 [RFC2993]. NAT does not easily coexist with any protocol containing
 embedded IP address; with IPsec, every packet, for every protocol,
 contains such addresses, if only in the headers. The conflict can
 sometimes be avoided by using tunnel mode, but that is not always an
 appropriate choice for other reasons. There is ongoing work to make
 IPsec pass through NAT more easily [NATIKE].

 Most current IPsec usage is for virtual private networks. Assuming
 that the other constraints are met, IPsec is the security protocol of
 choice for VPN-like situations, including the remote access scenario
 where a single machine tunnels back into its home network over the
 internet using IPsec.

3.4. TLS

 TLS [RFC2246] provides an encrypted, authenticated channel that runs
 on top of TCP. While TLS was originally designed for use by Web
 browsers, it is by no means restricted to such. In general, though,
 each application that wishes to use TLS will need to be converted
 individually.

 Generally, the server side is always authenticated by a certificate.
 Clients may possess certificates, too, providing mutual
 authentication, though this is rarely deployed. It’s an unfortunate
 reality that even server side authentication it not as secure in
 practice as the cryptography would imply because most implementations
 allow users to ignore authentication failures (by clicking OK to a
 warning) and most users routinely do so [Bell98]. Designers should
 thus be wary of demanding plaintext passwords, even over TLS-
 protected connections. (This requirement can be relaxed if it is
 likely that implementations will be able to verify the authenticity
 and authorization of the server’s certificate.)

 Although application modification is generally required to make use
 of TLS, there exist toolkits, both free and commercial, that provide
 implementations. These are designed to be incorporated into the
 application’s code. An application using TLS is more likely to be
 able to assert application specific certificate policies than one
 using IPsec.

Bellovin, et al. Informational [Page 8]

RFC 3631 Security Mechanisms for the Internet December 2003

3.5. SASL

 SASL [RFC2222] is a framework for negotiating an authentication and
 encryption mechanism to be used over a TCP stream. As such, its
 security properties are those of the negotiated mechanism.
 Specifically, unless the negotiated mechanism authenticates all of
 the subsequent messages or underlying protection protocol such as TLS
 is used, TCP connections are vulnerable to session stealing.

 If you need to use TLS (or IPSec) under SASL, why bother with SASL in
 the first place? Why not simply use the authentication facilities of
 TLS and be done with it?

 The answer here is subtle. TLS makes extensive use of certificates
 for authentication. As commonly deployed, only servers have
 certificates, whereas clients go unauthenticated (at least by the TLS
 processing itself).

 SASL permits the use of more traditional client authentication
 technologies, such as passwords (one-time or otherwise). A powerful
 combination is TLS for underlying protection and authentication of
 the server, and a SASL-based system for authenticating clients. Care
 must be taken to avoid man-in-the-middle vulnerabilities when
 different authentication techniques are used in different directions.

3.6. GSS-API

 GSS-API [RFC2744] provides a framework for applications to use when
 they require authentication, integrity, and/or confidentiality.
 Unlike SASL, GSS-API can be used easily with UDP-based applications.
 It provides for the creation of opaque authentication tokens (aka
 chunks of memory) which may be embedded in a protocol’s data units.
 Note that the security of GSS-API-protected protocols depends on the
 underlying security mechanism; this must be evaluated independently.
 Similar considerations apply to interoperability, of course.

3.7. DNSSEC

 DNSSEC [RFC2535] digitally signs DNS records. It is an essential
 tool for protecting against DNS cache contamination attacks [Bell95];
 these in turn can be used to defeat name-based authentication and to
 redirect traffic to or past an attacker. The latter makes DNSSEC an
 essential component of some other security mechanisms, notably IPsec.

 Although not widely deployed on the Internet at the time of the
 writing of this document, it offers the potential to provide a secure
 mechanism for mapping domain names to IP protocol addresses. It may
 also be used to securely associate other information with a DNS name.

Bellovin, et al. Informational [Page 9]

RFC 3631 Security Mechanisms for the Internet December 2003

 This information may be as simple as a service that is supported on a
 given node, or a key to be used with IPsec for negotiating a secure
 session. Note that the concept of storing general purpose
 application keys in the DNS has been deprecated [RFC3445], but
 standardization of storing keys for particular applications - in
 particular IPsec - is proceeding.

3.8. Security/Multipart

 Security/Multiparts [RFC1847] are the preferred mechanism for
 protecting email. More precisely, it is the MIME framework within
 which encryption and/or digital signatures are embedded. Both S/MIME
 and OpenPGP (see below) use Security/Multipart for their encoding.
 Conforming mail readers can easily recognize and process the
 cryptographic portions of the mail.

 Security/Multiparts represents one form of "object security", where
 the object of interest to the end user is protected, independent of
 transport mechanism, intermediate storage, etc. Currently, there is
 no general form of object protection available in the Internet.

 For a good example of using S/MIME outside the context of email, see
 Session Initiation Protocol [RFC 3261].

3.9. Digital Signatures

 One of the strongest forms of challenge/response authentication is
 based on digital signatures. Using public key cryptography is
 preferable to schemes based on secret key ciphers because no server
 needs a copy of the client’s secret. Rather, the client has a
 private key; servers have the corresponding public key.

 Using digital signatures properly is tricky. A client should never
 sign the exact challenge sent to it, since there are several subtle
 number-theoretic attacks that can be launched in such situations.

 The Digital Signature Standard [DSS] and RSA [RSA] are both good
 choices; each has its advantages. Signing with DSA requires the use
 of good random numbers [RFC1750]. If the enemy can recover the
 random number used for any given signature, or if you use the same
 random number for two different documents, your private key can be
 recovered. DSS has much better performance than RSA for generating
 new private keys, and somewhat better performance generating
 signatures, while RSA has much better performance for verifying
 signatures.

Bellovin, et al. Informational [Page 10]

RFC 3631 Security Mechanisms for the Internet December 2003

3.10. OpenPGP and S/MIME

 Digital signatures can be used to build "object security"
 applications which can be used to protect data in store and forward
 protocols such as electronic mail.

 At this writing, two different secure mail protocols, OpenPGP
 [OpenPGP] and S/MIME [S/MIME], have been proposed to replace PEM
 [PEM]. It is not clear which, if either, will succeed. While
 specified for use with secure mail, both can be adapted to protect
 data carried by other protocols. Both use certificates to identify
 users; both can provide secrecy and authentication of mail messages;
 however, the certificate formats are very different. Historically,
 the difference between PGP-based mail and S/MIME-based mail has been
 the style of certificate chaining. In S/MIME, users possess X.509
 certificates; the certification graph is a tree with a very small
 number of roots. By contrast, PGP uses the so-called "web of trust",
 where any user can sign anyone else’s certificate. This
 certification graph is really an arbitrary graph or set of graphs.

 With any certificate scheme, trust depends on two primary
 characteristics. First, it must start from a known-reliable source,
 either an X.509 root, or someone highly trusted by the verifier,
 often him or herself. Second, the chain of signatures must be
 reliable. That is, each node in the certification graph is crucial;
 if it is dishonest or has been compromised, any certificates it has
 vouched for cannot be trusted. All other factors being equal (and
 they rarely are), shorter chains are preferable.

 Some of the differences reflect a tension between two philosophical
 positions represented by these technologies. Others resulted from
 having separate design teams.

 S/MIME is designed to be "fool proof". That is, very little end-user
 configuration is required. Specifically, end-users do not need to be
 aware of trust relationships, etc. The idea is that if an S/MIME
 client says, "This signature is valid", the user should be able to
 "trust" that statement at face value without needing to understand
 the underlying implications.

 To achieve this, S/MIME is typically based on a limited number of
 "root" Certifying Authorities (CAs). The goal is to build a global
 trusted certificate infrastructure.

 The down side to this approach is that it requires a deployed public
 key infrastructure before it will work. Two end-users may not be
 able to simply obtain S/MIME-capable software and begin communicating
 securely. This is not a limitation of the protocol, but a typical

Bellovin, et al. Informational [Page 11]

RFC 3631 Security Mechanisms for the Internet December 2003

 configuration restriction for commonly available software. One or
 both of them may need to obtain a certificate from a mutually trusted
 CA; furthermore, that CA must already be trusted by their mail
 handling software. This process may involve cost and legal
 obligations. This ultimately results in the technology being harder
 to deploy, particularly in an environment where end-users do not
 necessarily appreciate the value received for the hassle incurred.

 The PGP "web of trust" approach has the advantage that two end-users
 can just obtain PGP software and immediately begin to communicate
 securely. No infrastructure is required and no fees and legal
 agreements need to be signed to proceed. As such PGP appeals to
 people who need to establish ad-hoc security associations.

 The down side to PGP is that it requires end-users to have an
 understanding of the underlying security technology in order to make
 effective use of it. Specifically it is fairly easy to fool a naive
 users to accept a "signed" message that is in fact a forgery.

 To date PGP has found great acceptance between security-aware
 individuals who have a need for secure e-mail in an environment
 devoid of the necessary global infrastructure.

 By contrast, S/MIME works well in a corporate setting where a secure
 internal CA system can be deployed. It does not require a lot of
 end-user security knowledge. S/MIME can be used between institutions
 by carefully setting up cross certification, but this is harder to do
 than it seems.

 As of this writing a global certificate infrastructure continues to
 elude us. Questions about a suitable business model, as well as
 privacy considerations, may prevent one from ever emerging.

3.11. Firewalls and Topology

 Firewalls are a topological defense mechanism. That is, they rely on
 a well-defined boundary between the good "inside" and the bad
 "outside" of some domain, with the firewall mediating the passage of
 information. While firewalls can be very valuable if employed
 properly, there are limits to their ability to protect a network.

 The first limitation, of course, is that firewalls cannot protect
 against inside attacks. While the actual incidence rate of such
 attacks is not known (and is probably unknowable), there is no doubt
 that it is substantial, and arguably constitutes a majority of
 security problems. More generally, given that firewalls require a
 well-delimited boundary, to the extent that such a boundary does not
 exist, firewalls do not help. Any external connections, whether they

Bellovin, et al. Informational [Page 12]

RFC 3631 Security Mechanisms for the Internet December 2003

 are protocols that are deliberately passed through the firewall,
 links that are tunneled through, unprotected wireless LANs, or direct
 external connections from nominally-inside hosts, weaken the
 protection. Firewalls tend to become less effective over time as
 users tunnel protocols through them and may have inadequate security
 on the tunnel endpoints. If the tunnels are encrypted, there is no
 way for the firewall to censor them. An oft-cited advantage of
 firewalls is that they hide the existence of internal hosts from
 outside eyes. Given the amount of leakage, however, the likelihood
 of successfully hiding machines is rather low.

 In a more subtle vein, firewalls hurt the end-to-end model of the
 Internet and its protocols. Indeed, not all protocols can be passed
 safely or easily through firewalls. Sites that rely on firewalls for
 security may find themselves cut off from new and useful aspects of
 the Internet.

 Firewalls work best when they are used as one element of a total
 security structure. For example, a strict firewall may be used to
 separate an exposed Web server from a back-end database, with the
 only opening the communication channel between the two. Similarly, a
 firewall that permitted only encrypted tunnel traffic could be used
 to secure a piece of a VPN. On the other hand, in that case the
 other end of the VPN would need to be equally secured.

3.12. Kerberos

 Kerberos [RFC1510] provides a mechanism for two entities to
 authenticate each other and exchange keying material. On the client
 side, an application obtains a Kerberos "ticket" and "authenticator".
 These items, which should be considered opaque data, are then
 communicated from client to server. The server can then verify their
 authenticity. Both sides may then ask the Kerberos software to
 provide them with a session key which can be used to protect or
 encrypt data.

 Kerberos may be used by itself in a protocol. However, it is also
 available as a mechanism under SASL and GSSAPI. It has some known
 vulnerabilities [KRBATTACK] [KRBLIM] [KRB4WEAK], but it can be used
 securely.

3.13. SSH

 SSH provides a secure connection between client and server. It
 operates very much like TLS; however, it is optimized as a protocol
 for remote connections on terminal-like devices. One of its more
 innovative features is its support for "tunneling" other protocols
 over the SSH-protected TCP connection. This feature has permitted

Bellovin, et al. Informational [Page 13]

RFC 3631 Security Mechanisms for the Internet December 2003

 knowledgeable security people to perform such actions as reading and
 sending e-mail or news via insecure servers over an insecure network.
 It is not a substitute for a true VPN, but it can often be used in
 place of one.

4. Insecurity Mechanisms

 Some common security mechanisms are part of the problem rather than
 part of the solution.

4.1. Plaintext Passwords

 Plaintext passwords are the most common security mechanism in use
 today. Unfortunately, they are also the weakest. When not protected
 by an encryption layer, they are completely unacceptable. Even when
 used with encryption, plaintext passwords are quite weak, since they
 must be transmitted to the remote system. If that system has been
 compromised or if the encryption layer does not include effective
 authentication of the server to the client, an enemy can collect the
 passwords and possibly use them against other targets.

 Another weakness arises because of common implementation techniques.
 It is considered good form [MT79] for the host to store a one-way
 hash of the users’ passwords, rather than their plaintext form.
 However, that may preclude migrating to stronger authentication
 mechanisms, such as HMAC-based challenge/response.

 The strongest attack against passwords, other than eavesdropping, is
 password-guessing. With a suitable program and dictionary (and these
 are widely available), 20-30% of passwords can be guessed in most
 environments [Klein90].

4.2. Address-Based Authentication

 Another common security mechanism is address-based authentication. At
 best, it can work in highly constrained environments. If your
 environment consists of a small number of machines, all tightly
 administered, secure systems run by trusted users, and if the network
 is guarded by a router that blocks source-routing and prevents
 spoofing of your source addresses, and you know there are no wireless
 bridges, and if you restrict address-based authentication to machines
 on that network, you are probably safe. But these conditions are
 rarely met.

Bellovin, et al. Informational [Page 14]

RFC 3631 Security Mechanisms for the Internet December 2003

 Among the threats are ARP-spoofing, abuse of local proxies,
 renumbering, routing table corruption or attacks, DHCP, IP address
 spoofing (a particular risk for UDP-based protocols), sequence number
 guessing, and source-routed packets. All of these can be quite
 potent.

4.3. Name-Based Authentication

 Name-based authentication has all of the problems of address-based
 authentication and adds new ones: attacks on the DNS [Bell95] and
 lack of a one to one mapping between addresses and names. At a
 minimum, a process that retrieves a host name from the DNS should
 retrieve the corresponding address records and cross-check.
 Techniques such as DNS cache contamination can often negate such
 checks.

 DNSSEC provides protection against this sort of attack. However, it
 does nothing to enhance the reliability of the underlying address.
 Further, the technique generates a lot of false alarms. These
 lookups do not provide reliable information to a machine, though they
 might be a useful debugging tool for humans and could be useful in
 logs when trying to reconstruct how and attack took place.

5. Security Considerations

 No security mechanisms are perfect. If nothing else, any network-
 based security mechanism can be thwarted by compromise of the
 endpoints. That said, each of the mechanisms described here has its
 own limitations. Any decision to adopt a given mechanism should
 weigh all of the possible failure modes. These in turn should be
 weighed against the risks to the endpoint of a security failure.

6. IANA Considerations

 There are no IANA considerations regarding this document.

7. Acknowledgements

 Brian Carpenter, Tony Hain, and Marcus Leech made a number of useful
 suggestions. Much of the substance comes from the participants in
 the IAB Security Architecture Workshop.

Bellovin, et al. Informational [Page 15]

RFC 3631 Security Mechanisms for the Internet December 2003

8. Informative References

 [Bell95] "Using the Domain Name System for System Break-Ins".
 Proc. Fifth Usenix Security Conference, 1995.

 [Bell98] "Cryptography and the Internet", S.M. Bellovin, in
 Proceedings of CRYPTO ’98, August 1998.

 [DSS] "Digital Signature Standard". NIST. May 1994. FIPS
 186.

 [Klein90] "Foiling the Cracker: A Survey of, and Implications to,
 Password Security". D. Klein. Usenix UNIX Security
 Workshop, August 1990.

 [KRBATTACK] "A Real-World Analysis of Kerberos Password Security".
 T. Wu. Network and Distributed System Security Symposium
 (NDSS ’99). January 1999.

 [KRBLIM] "Limitations of the Kerberos Authentication System".
 Proceedings of the 1991 Winter USENIX Conference, 1991.

 [KRB4WEAK] "Misplaced trust: Kerberos 4 session keys". Proceedings
 of the Internet Society Network and Distributed Systems
 Security Symposium, March 1997.

 [MT79] "UNIX Password Security", R.H. Morris and K. Thompson,
 Communications of the ACM. November 1979.

 [NATIKE] Kivinen, T., et al., "Negotiation of NAT-Traversal in the
 IKE", Work in Progress, June 2002.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC1510] Kohl, J. and C. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510, September 1993.

 [RFC1750] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [RFC1847] Galvin, J., Murphy, S., Crocker, S. and N. Freed,
 "Security Multiparts for MIME: Multipart/Signed and
 Multipart/Encrypted", RFC 1847, October 1995.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

Bellovin, et al. Informational [Page 16]

RFC 3631 Security Mechanisms for the Internet December 2003

 [RFC2222] Myers, J., "Simple Authentication and Security Layer
 (SASL)", RFC 2222, October 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [RFC2289] Haller, N., Metz, C., Nesser, P. and M. Straw, "A One-
 Time Password System", STD 61, RFC 2289, February 1998.

 [RFC2316] Bellovin, S., "Report of the IAB Security Architecture
 Workshop", RFC 2316, April 1998.

 [RFC2385] Hefferman, A., "Protection of BGP Sessions via the TCP
 MD5 Signature Option", RFC 2385, August 1998.

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
 2402, November 1998.

 [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

 [RFC2407] Piper, D., "The Internet IP Security Domain of
 Interpretation for ISAKMP", RFC 2407, November 1998.

 [RFC2411] Thayer, R., Doraswamy, N. and R. Glenn, "IP Security
 Document Roadmap", RFC 2411, November 1998.

 [RFC2535] Eastlake, D., "Domain Name System Security Extensions",
 RFC 2535, March 1999.

 [RFC2744] Wray, J., "Generic Security Service API Version 2: C-
 bindings", RFC 2744, January 2000.

 [RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993,
 November 2000.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, R., Johnston,
 A., Peterson, J., Sparks, R., Handley, M. and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

Bellovin, et al. Informational [Page 17]

RFC 3631 Security Mechanisms for the Internet December 2003

 [RFC3445] Massey, D. and S. Rose, "Limiting the Scope of the KEY
 Resource Record (RR)", RFC 3445, December 2002.

 [RSA] Rivest, R., Shamir, A. and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM, February 1978.

9. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Bellovin, et al. Informational [Page 18]

RFC 3631 Security Mechanisms for the Internet December 2003

10. Author Information

 This document is a publication of the Internet Architecture Board.
 Internet Architecture Board Members at the time this document was
 completed were:

 Bernard Aboba
 Harald Alvestrand
 Rob Austein
 Leslie Daigle, Chair
 Patrik Faltstrom
 Sally Floyd
 Jun-ichiro Itojun Hagino
 Mark Handley
 Geoff Huston
 Charlie Kaufman
 James Kempf
 Eric Rescorla
 Michael StJohns

 Internet Architecture Board
 EMail: iab@iab.org

 Steven M. Bellovin, Editor
 EMail: bellovin@acm.org

 Jeffrey I. Schiller, Editor
 EMail: jis@mit.edu

 Charlie Kaufman, Editor
 EMail: charliek@microsoft.com

Bellovin, et al. Informational [Page 19]

RFC 3631 Security Mechanisms for the Internet December 2003

11. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Bellovin, et al. Informational [Page 20]

