
Network Working Group P. Cameron
Request for Comments: 1692 Xylogics, International Ltd.
Category: Standards Track D. Crocker
 Silicon Graphics, Inc.
 D. Cohen
 Myricom
 J. Postel
 ISI
 August 1994

 Transport Multiplexing Protocol (TMux)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 One of the problems with the use of terminal servers is the large
 number of small packets they can generate. Frequently, most of these
 packets are destined for only one or two hosts. TMux is a protocol
 which allows multiple short transport segments, independent of
 application type, to be combined between a server and host pair.

Acknowledgments

 This specification is the result of the merger of two documents: the
 original TMux proposal which was the result of several discussions
 and related initiatives through IETF working groups; and IEN 90 [1]
 originally proposed by Danny Cohen and Jon Postel in May 1979.

Applicability Statement

 The TMux protocol is intended to optimize the transmission of large
 numbers of small data packets that are generated in situations where
 many interactive Telnet and Rlogin sessions are connected to a few
 hosts on the network. In these situations, TMux can improve both
 network and host performance. TMux is not intended for multiplexing
 long streams composed of large blocks of data that are typically
 transmitted by such applications as FTP.

 The TMux protocol may be applicable to other situations where small
 packets are generated, but this was not considered in the design.

Cameron, Crocker, Cohen & Postel [Page 1]

RFC 1692 TMux August 1994

 The use of the TMux protocol in any other situation may require some
 modification.

1. Introduction

 When network designers consider which protocols generate the most
 load, they naturally tend to consider protocols which transfer large
 blocks of data (e.g., FTP, NFS). What is often not considered is the
 load generated by Telnet and Rlogin because of the assumption that
 users type slowly and the packets are very small. This is a grave
 underestimation of the load on networks and hosts which have many
 Telnet and Rlogin ports on multiple terminal servers.

 The problem stems from the fact that the work a host must do to
 process a 1-octet packet is very nearly as much as the work it must
 do to process a 1500-octet packet. That is, it is the overhead of
 processing a packet which consumes a host’s resources, not the
 processing of the data.

 In particular, communication load is not measured only in bits per
 seconds but also in packets per seconds, and in many situation the
 latter is the true performance limit, not the former. The proposed
 multiplexing is aimed at alleviating this situation.

 If one assumes that most users connected to a terminal server will be
 connecting to only a few hosts, then it should be obvious that the
 network and host load could be greatly reduced if traffic from
 multiple users, destined for the same host, could be sent in the same
 packet.

 TMux is designed to improve network utilization and reduce the
 interrupt load on hosts which conduct multiple sessions involving
 many short packets. It does this by multiplexing transport traffic
 onto a single IP datagram [2], thereby resulting in fewer, larger
 packets. TMux is highly constrained in its method of accomplishing
 this task, seeking simplicity rather than sophistication.

2. Protocol Design

 IP hosts may engage in the use of TMux transparently, and may even
 switch back and forth between use of TMux and carriage of transport
 segments in the usual, independent IP datagrams.

 TMux operates by placing a set of transport segments into the same IP
 datagram. Each segment is preceded by a TMux mini-header which
 specifies the segment length and the actual segment transport
 protocol. The receiving host demultiplexes the individual transport
 segments and presents them to the transport layer as if they had been

Cameron, Crocker, Cohen & Postel [Page 2]

RFC 1692 TMux August 1994

 received in the usual IP/transport packaging. The transport layer
 is, therefore, unaware of the special encapsulation which was used.

 Hence, a TMux message appears as:

 | IP hdr | TM hdr | Tport segment | TM hdr | Tport segment| ...|

 Where:

 TM hdr is a TMux mini-header and specifies the following
 Tport segment.

 Tport segment refers to the entire transport segment, including
 transport headers.

 The TMux Protocol is defined to allow the combining of transmission
 units of different higher level protocols in one transmission unit of
 a lower level protocol. Only segments with the same Internet Protocol
 (IP) header, (with the possible exception of the protocol and check-
 sum fields) may be combined. For example, the segment (H1, B1) and
 the segment (H2, B2), where Hi and Bi are the headers and the bodies
 of the segment, respectively, may be combined (multiplexed) only if
 H=H1=H2. The combined TMux message is either (H, B1, B2) or (H, B2,
 B1).

 The receiver of this combined message should treat it as if the two
 original segments, (H,B1), and (H,B2), arrived separately. It is
 recommended, though not a requirement, that the segments in the TMux
 message should be processed in the same order that they are in the
 TMux message.

 The multiplexing is achieved by combining the individual segments,
 (H,B1) through (H,Bn), into a single message. This single message
 has an IP header which is equal to H, but having in the PROTOCOL
 field the value 18 which is the protocol number of the TMux protocol.
 This IP header is followed by all the segments, B1 through Bn. Each
 segment, Bi, is preceded by a 4 octet TMux mini header. This contains
 the number of the protocol to which this segment is addressed. It
 also contains the total length of this segment, including this mini
 header. Since this mini header is not otherwise protected by a check-
 sum, it also includes a checksum field which just covers this mini
 header.

Cameron, Crocker, Cohen & Postel [Page 3]

RFC 1692 TMux August 1994

2.1. IP Protocol field value

 TMux is indicated in an IP datagram by the Protocol (ID) value of 18
 (22 octal), see [3].

2.2. Header Format

 Each 4 octet TMux mini-header has the following general format:

 +-------------------------------+
 | Length high |
 +-------------------------------+
 | Length low |
 +-------------------------------+
 | Protocol ID |
 +-------------------------------+
 | Checksum |
 +-------------------------------+
 | Transport segment |
 | ... |
 | ... |

 The LENGTH field specifies the octet count for this mini header and
 the following transport segment, from 0-65535 octets. Hence, the
 length field has a minimum value of 4. For segments that are larger
 than the maximum allowed for TMux (see section 5.1), individual IP
 datagrams should be sent.

 The Protocol ID field contains the value that would normally have
 been placed in the IP header Protocol field.

 The ’Checksum’ field is the XOR of the first 3 octets.

 To ensure that TCP, UDP and other segments keep their 32 bit
 alignment, where the segments being multiplexed are not a multiple of
 32 bits long, extra octets will be added to re-align the end of the
 segment, and hence the next segment. These octets will be ignored on
 input. This padding will not affect the LENGTH field, it will still
 contain the real length of the segment.

2.3. Sending Data

 Host endpoints may choose to use TMux at any time and in either (or
 both) directions. They also may switch back and forth between use of
 TMux packaging and the usual individual IP datagrams for individual
 transport associations. The only barrier to the use of TMux is for
 the sender to know whether TMux is supported by the receiver. This
 is important, since early use of TMux is likely to be limited.

Cameron, Crocker, Cohen & Postel [Page 4]

RFC 1692 TMux August 1994

 The easiest way to detect TMUX support is to only send TMux messages
 to hosts from which a valid TMux message has already been received.
 This then leaves the problem of one host starting the TMux
 connection. This is most easily accomplished by the host sending an
 IP datagram with no data (i.e., with the IP total length field of
 20), but with an IP Protocol field value of 18 for TMux. This is
 referred to as a TMux ENQ (enquiry) message. The host receiving this
 message then knows that the originator supports TMux, and can start
 to send TMux messages. This will in turn cause the originator of the
 ENQ message to start to use TMux. If for any reason the receiver
 does not intend to send TMux messages to the originator, but is
 prepared to accept them, then it can reply with another ENQ message.

 If an ENQ message does not get a response, then it is reasonable to
 resend the ENQ a while later in case the original ENQ message was
 lost. If this again is lost, the ENQ may be repeated as often as
 needed, but the time between requests should increase exponentially
 up to a limit of about 1 hour. Suitable times between ENQs would be
 15 seconds, 30 seconds, 60 seconds, 120 seconds etc.

 Note that this checking process does not need to impede any of the
 transport (user) data, which may be sent as convenient, albeit in its
 less-efficient IP datagram form.

 The only problem with this scheme is that a host which supports TMux
 may stop supporting it, as might happen when the host is re-booted.
 Other hosts need to learn of this change. The solution to this is to
 maintain a Time To Live (TTL) value for hosts from which TMux
 messages have been received. This TTL is a timed TTL, rather than a
 count as used in the IP TTL field, and this time stamp is updated
 every time a TMux message is received. This can then be used to
 expire the information held by TMux on the host after a suitable
 time, e.g., 1 minute.

 This TTL time stamp is used as follows. When TMux is passed a segment
 to be sent to a host, a check is made to see if the time to live has
 expired. If the TTL has not expired, the segment is sent in a TMux
 message as normal. If the TTL has expired, the host is marked as
 being unable to TMux, but the segment is STILL sent as a TMux message
 (i.e., with the normal delay to allow other segments to be
 multiplexed). If the host is really unable to TMux anymore (a rare
 occurrence) then this segment will be timed out and retried by the
 transport provider i.e., TCP. Because the host was marked as not
 able to TMux, the retry will be sent as a normal IP datagram. If the
 remote host is still able to TMux then it should send back TMux
 traffic (even if it has been rebooted), typically a TCP window
 update, and the local host will mark it as able to TMux again. This
 way of operating removes any performance problem caused by

Cameron, Crocker, Cohen & Postel [Page 5]

RFC 1692 TMux August 1994

 continually dropping out of TMuxing and having to send probe
 messages. If the IP datagram to be sent is from UDP, then the remote
 host may not send anything in reply. So for UDP this scheme will not
 be any better than just stopping sending TMux messages to the host,
 but it is also no worse.

3. Protocol Behavior

3.1. Transport Flow Control

 TMux operates as an extension to the IP datagram protocol. Hence, it
 has no impact on most flow control mechanisms, since they operate at
 the transport layer -- above TMux.

3.2. Connection Management

 The concept of a connection pertains to certain transport protocols,
 but not to IP or to TMux. Hence, when connection management is
 required by a transport protocol using TMux, it occurs in the same
 fashion as it does for IP. In fact, the transport protocol is not to
 be aware that TMux is being used.

3.3 Multiplexed Message Construction

 When a transport provider (e.g., TCP or UDP) sends a segment, TMux
 first removes the IP header (if present) and adds a TMux mini-header
 and the segment to the Multiplexed Message under construction for the
 host specified by the destination address of the segment.

 When the first message to be transmitted is placed into the
 Multiplexed Message under construction, a timer is started. When the
 timer expires, the Multiplexed Message under construction is
 transmitted. This ensures that all segments available for sending
 before the timer expires are sent in a single Multiplexed Message.
 If, during construction of the Multiplexed Message, the buffer
 holding the message fills, the Multiplexed Message is transmitted
 immediately.

 The delay time should be user configurable; a reasonable time is 20
 to 30 milliseconds. The time period should be large enough to give a
 reasonable probability of sending multiple segments but not so large
 that the echo response time becomes a problem. This suggests that
 the upper limit for the timer is probably 1/10th second. As the cost
 of using timeouts on many systems is quite large, it is recommended
 that a single timer be used and that all TMux messages under
 construction are sent when the timer expires.

Cameron, Crocker, Cohen & Postel [Page 6]

RFC 1692 TMux August 1994

 Additionally, configuration options may limit the number of included
 data segments or the maximum size of the Multiplexed Message before
 it is transmitted. It is also suggested that larger segments (e.g.,
 those over 700 octets) should be sent as standard IP datagrams, and
 not multiplexed. This is to ensure that the delay caused by the TMux
 timer does not put a delay on those segments for which it is
 inadvisable. The size of the largest segments to be multiplexed
 should (if possible) be configurable.

4. Protocol Example

 This example shows a TMux message consisting of three multiplexed
 segments:

 A TCP segment consisting of a 20 octet TCP header, 5 octets of data
 and 3 octets of padding. Thus the length field is

 Mini header + TCP header + data
 = 4 + 20 + 5
 = 29

 The padding is NOT included in the length.

 A TCP segment consisting of a 20 octet TCP header, 4 octets of data.
 This segment does not require padding.

 A UDP segment consisting of a 4 octet UDP header, 41 octets of data
 and 3 octets of padding.

 +-------------------------------+
 | Length = 29 |
 | (2 octets) |
 +-------------------------------+
 | Protocol ID = 6 (TCP) |
 +-------------------------------+
 | Checksum |
 +-------------------------------+
 | TCP Header |
 | (20 octets) |
 +-------------------------------+
 | TCP data |
 | (5 octets) |
 +-------------------------------+
 | Padding |
 | (3 octets) |
 +-------------------------------+
 | Length = 28 |
 | (2 octets) |

Cameron, Crocker, Cohen & Postel [Page 7]

RFC 1692 TMux August 1994

 +-------------------------------+
 | Protocol ID = 6 (TCP) |
 +-------------------------------+
 | Checksum |
 +-------------------------------+
 | TCP Header |
 | (20 octets) |
 +-------------------------------+
 | TCP data |
 | (4 octets) |
 +-------------------------------+
 | Length = 49 |
 | (2 octets) |
 +-------------------------------+
 | Protocol ID = 17 (UDP) |
 +-------------------------------+
 | Checksum |
 +-------------------------------+
 | UDP Header |
 | (4 octets) |
 +-------------------------------+
 | UDP data |
 | (41 octets) |
 +-------------------------------+
 | Padding |
 | (3 octets) |
 +-------------------------------+

5. Implementation Suggestion

5.1 Maximum TMux Message Size

 In section 3.3, a note is made about sending messages immediately if
 the limit on TMux message size is reached. On systems where Path MTU
 Discovery (as per RFC 1191 [4]) has been implemented this should be
 used to discover the maximum message size that can be transmitted,
 and this should be used as the maximum TMux message size.

5.2 Deciding Which Segments to Multiplex

 It is the responsibility of the sender to decide which segments
 should be TMux’d and which should not. For example, segments sent by
 FTP should not normally be multiplexed. In many situations, it may
 be sensible to restrict the sessions that can be multiplexed to just
 those involved in interactive traffic (Telnet and Rlogin) by
 examining the source and destination TCP port numbers. However, if a
 segment that would not normally be multiplexed is to be sent and a
 TMux message is already under construction, then the extra segment

Cameron, Crocker, Cohen & Postel [Page 8]

RFC 1692 TMux August 1994

 can be added to the TMux message under construction, and this
 complete message should be sent immediately, rather than waiting for
 the timer to expire.

6. Implementation notes

 The following notes are the result of experience gained during the
 testing of early implementations of TMux. Whilst they do not form
 part of the actual standard, they should be followed if possible to
 ensure compatibility with other implementations.

 Because the TMux mini-header does not contain a TOS field, only
 segments with the same IP TOS field should be contained in a single
 TMux message. As most systems do not use the TOS feature, this is
 not a major restriction. Where the TOS field is used, it may be
 desirable to hold several messages under construction for a host, one
 for each TOS value.

 Segments containing IP options should not be multiplexed.

 Only unicast addresses should be considered for multiplexing.

 Segments addressed to the loopback address (127.0.0.1) are not
 candidates for multiplexing.

 Only segments with a source or destination port that is for an
 interactive session (i.e., Telnet and Rlogin) should be considered
 for multiplexing using TMux.

 If an error is discovered in a checksum of a TMux header, the rest of
 the message, starting there, is ignored. If an unknown PROTOCOL
 field is discovered in any TMux header, this segment, and only this
 one, is ignored.

 If the TMux implementation is continually sending TMux messages
 containing exactly one segment (because is there is little traffic to
 multiplex), then TMux may be turned off. This implies that TMux may
 be switched off when there is no congestion.

 To prevent intermediate nodes from fragmenting and reconstructing
 TMux frames, implementations may want to set the "do not fragment"
 flag in the IP datagram of TMux messages.

 If host B receives a TMux ENQ message from host A, but does not have
 any data for host A, then it may also send back an ENQ message.
 However, host A may send another ENQ message in response to this, so
 causing B to respond and so on. Thus if this facility is used, code
 must be included to prevent this looping behavior happening. Sending

Cameron, Crocker, Cohen & Postel [Page 9]

RFC 1692 TMux August 1994

 an ENQ in response to an ENQ is not recommended, except in special
 circumstances.

 It is recommended that the following aspects of the TMux protocol be
 user configurable:

 The maximum size of a segment that can be multiplexed by TMux.

 The delay between the first segment being placed into the message
 under construction and the message being sent.

7. Security Considerations

 Because TMux is effectively an extension to IP, it does not have any
 more impact on site security than does IP. Security should be dealt
 with by upper layer protocols.

 Because some routers filter packets on the TCP port numbers, any
 segments sent using TMux will not be subject to this filtering as it
 will obscure the TCP port number However, larger segments for the
 same TCP connection will still be sent as IP datagrams, and so will
 be subject to filtering, thus giving rise to a potential problem.
 For this reason, any routers that do not support TMux, but which do
 support this type of filtering should not allow TMux messages through
 (in either direction). This will cause both hosts to think the other
 does not support TMux, so all segments will be sent as IP datagrams,
 thus eliminating this problem.

 A better solution to this problem, is for routers to understand the
 TMux protocol, and to inspect each of the multiplexed segments and
 remove those segments that fail the filtering.

8. References

 [1] Cohen, D., and Postel, J., "Multiplexing Protocol", IEN 90,
 USC/Information Sciences Institute,, May 1979.

 [2] Postel, J., "Internet Protocol", STD 5, RFC 791, USC/Information
 Sciences Institute, September 1981.

 [3] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC 1340,
 USC/Information Sciences Institute, March 1990.

 [4] Mogul, J., and S. Deering, "Path MTU discovery", RFC 1191, DECWRL
 and Stanford University, November 1990.

Cameron, Crocker, Cohen & Postel [Page 10]

RFC 1692 TMux August 1994

9. Authors’ Addresses

 Peter Cameron
 Xylogics International, Ltd.
 Featherstone Rd.
 Wolverton Mill
 Milton Keynes
 MK12 5RD
 United Kingdom

 Phone: +44 908 222112
 Fax: +44 908 222115
 EMail: cameron@xylint.co.uk

 David Crocker
 Silicon Graphics, Inc.
 2011 N. Shoreline Blvd.
 P.O. Box 7311
 Mountain View, CA 94039-7311
 USA

 Phone: +1 415 390 1804
 Fax: +1 415 962 8404
 EMail: dcrocker@sgi.com

 Danny Cohen
 Myricom
 325 N. Santa Anita Ave.
 Arcadia, CA 91006
 USA

 Phone: +1 818 821 5555
 EMail: Cohen@myricom.com

 Jon Postel
 USC/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 USA

 Phone: +1 310 822 1511
 Fax: +1 310 823 6714
 EMail: Postel@ISI.EDU

Cameron, Crocker, Cohen & Postel [Page 11]

RFC 1692 TMux August 1994

10. Discussion List

 There is a discussion list for this protocol, which for
 historical reasons is called:

 cmp-id@xylint.co.uk

 Requests to join the list should be sent to:

 cmp-id-request@xylint.co.uk

Cameron, Crocker, Cohen & Postel [Page 12]

