
Network Working Group M. Rose
Request for Comments: 1187 Performance Systems International, Inc.
 K. McCloghrie
 Hughes LAN Systems
 J. Davin
 MIT Laboratory for Computer Science
 October 1990

 Bulk Table Retrieval with the SNMP

1. Status of this Memo

 This memo reports an interesting family of algorithms for bulk table
 retrieval using the Simple Network Management Protocol (SNMP). This
 memo describes an Experimental Protocol for the Internet community,
 and requests discussion and suggestions for improvements. This memo
 does not specify a standard for the Internet community. Please refer
 to the current edition of the "IAB Official Protocol Standards" for
 the standardization state and status of this protocol. Distribution
 of this memo is unlimited.

Table of Contents

 1. Status of this Memo 1
 2. Abstract ... 1
 3. Bulk Table Retrieval with the SNMP 2
 4. The Pipelined Algorithm 3
 4.1 The Maximum Number of Active Threads 4
 4.2 Retransmissions 4
 4.3 Some Definitions 4
 4.4 Top-Level ... 5
 4.5 Wait for Events 6
 4.6 Finding the Median between two OIDs 8
 4.7 Experience with the Pipelined Algorithm 10
 4.8 Dynamic Range of Timeout Values 10
 4.9 Incorrect Agent Implementations 10
 5. The Parallel Algorithm 11
 5.1 Experience with the Parallel Algorithm 11
 6. Acknowledgements 11
 7. References ... 12
 Security Considerations.................................. 12
 Authors’ Addresses....................................... 12

2. Abstract

 This memo reports an interesting family of algorithms for bulk table
 retrieval using the Simple Network Management Protocol (RFC 1157) [1].

Rose, McCloghrie & Davin [Page 1]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 The reader is expected to be familiar with both the Simple Network
 Management Protocol and SNMP’s powerful get-next operator. Please
 send comments to: Marshall T. Rose <mrose@psi.com>.

3. Bulk Table Retrieval with the SNMP

 Empirical evidence has shown that SNMP’s powerful get-next operator is
 effective for table traversal, particularly when the management
 station is interested in well-defined subsets of a particular table.
 There has been some concern that bulk table retrieval can not be
 efficiently accomplished using the powerful get-next operator. Recent
 experience suggests otherwise.

 In the simplest case, using the powerful get-next operator, one can
 traverse an entire table by retrieving one object at a time. For
 example, to traverse the entire ipRoutingTable, the management station
 starts with:

 get-next (ipRouteDest)

 which might return

 ipRouteDest.0.0.0.0

 The management station then continues invoking the powerful get-next
 operator, using the value provided by the previous response, e.g.,

 get-next (ipRouteDest.0.0.0.0)

 As this sequence continues, each column of the ipRoutingTable can be
 retrieved, e.g.,

 get-next (ipRouteDest.192.33.4.0)

 which might return

 ipRouteIfIndex.0.0.0.0

 Eventually, a response is returned which is outside the table, e.g.,

 get-next (ipRouteMask.192.33.4.0)

 which might return

 ipNetToMediaIfIndex.192.33.4.1

 So, using this scheme, O(rows x columns) management operations are
 required to retrieve the entire table.

Rose, McCloghrie & Davin [Page 2]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 This approach is obviously sub-optimal as the powerful get-next
 operator can be given several operands. Thus, the first step is to
 retrieve an entire row of the table with each operation, e.g.,

 get-next (ipRouteDest, ipRouteIfIndex, ..., ipRouteMask)

 which might return

 ipRouteDest.0.0.0.0
 ipRouteIfIndex.0.0.0.0
 ipRouteMask.0.0.0.0

 The management station can then continue invoking the powerful get-
 next operator, using the results of the previous operation as the
 operands to the next operation. Using this scheme O(rows) management
 operations are required to retrieve the entire table.

 Some have suggested that this is a weakness of the SNMP, in that
 O(rows) serial operations is time-expensive. The problem with such
 arguments however is that implicit emphasis on the word "serial". In
 fact, there is nothing to prevent a clever management station from
 invoking the powerful get-next operation several times, each with
 different operands, in order to achieve parallelism and pipelining in
 the network. Note that this approach requires no changes in the
 SNMP, nor does it add any significant burden to the agent.

4. The Pipelined Algorithm

 Let us now consider an algorithm for bulk table retrieval with the
 SNMP. In the interests of brevity, the "pipelined algorithm" will
 retrieve only a single column from the table; without loss of
 generality, the pipelined algorithm can be easily extended to
 retrieve all columns.

 The algorithm operates by adopting a multi-threaded approach: each
 thread generates its own stream of get-next requests and processes
 the resulting stream of responses. For a given thread, a request
 will correspond to a different row in the table.

 Overall retrieval efficiency is improved by being able to keep
 several transactions in transit, and by having the agent and
 management station process transactions simultaneously.

 The algorithm will adapt itself to varying network conditions and
 topologies as well as varying loads on the agent. It does this both
 by varying the number of threads that are active (i.e., the number of
 transactions that are being processed and in transit) and by varying
 the retransmission timeout. These parameters are varied based on the

Rose, McCloghrie & Davin [Page 3]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 transaction round-trip-time and on the loss/timeout of transactions.

4.1. The Maximum Number of Active Threads

 One part of the pipelined algorithm which must be dynamic to get best
 results is the determination of how many threads to have active at a
 time. With only one thread active, the pipelined algorithm
 degenerates to the serial algorithm mentioned earlier. With more
 threads than necessary, there is a danger of overrunning the agent,
 whose only recourse is to drop requests, which is wasteful. The
 ideal number is just enough to have the next request arrive at the
 agent, just as it finishes processing the previous request. This
 obviously depends on the round-trip time, which not only varies
 dynamically depending on network topology and traffic-load, but can
 also be different for different tables in the same agent.

 With too few threads active, the round-trip time barely increases
 with each increase in the number of active threads; with too many,
 the round-trip time increases by the amount of time taken by the
 agent to process one request. The number is dynamically estimated by
 calculating the round-trip-time divided by the number of active
 threads; whenever this value takes on a new minimum value, the limit
 on the number of threads is adjusted to be the number of threads
 active at the time the corresponding request was sent (plus one to
 allow for loss of requests).

4.2. Retransmissions

 When there are no gateways between the manager and agent, the
 likelihood of in-order arrival of requests and responses is quite
 high. At present, the decision to retransmit is based solely on the
 timeout. One possible optimization is for the manager to remember
 the order in which requests are sent, and correlate this to incoming
 responses. If one thread receives a response before another thread
 which sent an earlier request, then lossage could be assumed, and a
 retransmission made immediately.

4.3. Some Definitions

 To begin, let us define a "thread" as some state information kept in
 the management station which corresponds to a portion of the table to
 be retrieved. A thread has several bits of information associated
 with it:

 (1) the range of SNMP request-ids which this thread can use,
 along with the last request-id used;

 (2) last SNMP message sent, the number of times it has been

Rose, McCloghrie & Davin [Page 4]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 (re)sent, the time it was (re)sent;

 (3) the inclusive lower-bound and exclusive upper-bound of
 the object-instance for the portion of the table that
 this thread will retrieve, along with the current
 object-instance being used;

 (4) the number of threads which were active at the time it
 was last sent;

 When a thread is created, it automatically sends a get-next message
 using its inclusive lower-bound OID. Further, it is placed at the
 end of the "thread queue".

 Let us also define an OID as a concrete representation of an object
 identifier which contains two parts:

 (1) the number of sub-identifiers present, "nelem";

 (2) the sub-identifiers themselves in an array, "elems",
 indexed from 1 up to (and including) "nelem".

4.4. Top-Level

 The top-level consists of starting three threads, and then entering a
 loop. As long as there are existing threads, the top-level waits for
 events (described next), and then acts upon the incoming messages.
 For each thread which received a response, a check is made to see if
 the OID of the response is greater than or equal to the exclusive
 upper-bound of the thread. If so, the portion of the table
 corresponding to the thread has been completely retrieved, so the
 thread is destroyed.

 Otherwise, the variable bindings in the response are stored.
 Following this, if a new thread should be created, then the portion
 of the table corresponding to the thread is split accordingly.
 Regardless, another powerful get-next operator is issued on behalf of
 the thread.

 The initial starting positions (column, column.127, and column.192),
 were selected to form optimal partitions for tables which are indexed
 by IP addresses. The algorithm could easily be modified to choose
 other partitions; however, it must be stressed that the current
 choices work for any tabular object.

 pipelined_algorithm (column)
 OID column;
 {

Rose, McCloghrie & Davin [Page 5]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 timeout ::= some initial value;

 start new thread for [column, column.127);
 start new thread for [column.127, column.192);
 start new thread for [column.192, column+1);

 while (threads exist) {
 wait for events;
 foreach (thread that has an incoming message,
 examined in order from the thread queue) {
 OID a;

 if (message’s OID >= thread’s upper-bound) {
 destroy thread;
 continue;
 }

 store variable-bindings from message;

 if (number of simultaneous threads does NOT
 exceed a maximum number
 && NOT backoff
 && (a ::= oid_median (message’s OID,
 thread’s
 upper-bound))) {
 start new thread for [a, thread’s upper-bound);
 thread’s upper-bound ::= a;
 place thread at end of thread queue;
 backoff ::= TRUE;
 }
 do another get-next for thread;
 }
 }
 }

4.5. Wait for Events

 Waiting for events consists of waiting a small amount of time or
 until at least one message is received.

 Any messages encountered are then collated with the appropriate
 thread. In addition, the largest round-trip time for
 request/responses is measured, and the maximum number of active
 threads is calculated.

 Next, the timeout is adjusted: if no responses were received, then
 the timeout is doubled; otherwise, a timeout-adjustment is calculated

Rose, McCloghrie & Davin [Page 6]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 as 1.5 times the largest observed round-trip time. If the timeout-
 adjustment is greater than the current timeout, the current timeout
 is set to the timeout-adjustment. Otherwise, the current timeout is
 averaged with the timeout-adjustment.

 Finally, if at least one thread did not receive a response, then the
 thread is identified which has waited the longest. If the elapsed
 time (with noise factor) since the last request (or retransmission)
 is greater than the current timeout value, another retransmission is
 attempted.

 wait for events ()
 {
 backoff ::= TRUE, maxrtt ::= 0;
 find the thread which has been waiting the longest
 for a response;
 timedelta = timeout
 - time since request was sent for thread;
 wait up to timedelta seconds or until some messages arrive;

 if (least one message arrived) {
 discard any messages which aren’t responses;
 foreach (response which corresponds to a thread) {
 if (the response is a duplicate)
 drop it and continue;

 if (this response is for a message that was
 not retransmitted) {
 if (the round-trip time is larger than maxrtt)
 set maxrtt to the new round-trip time;
 if (round-trip time / number of active threads
 < minimum previous round-trip time / number
 of active threads) {
 set new minimum round-trip time per number of
 active threads
 set new maximum number of threads
 }
 backoff ::= FALSE;
 }
 }
 }
 if (backoff)
 double timeout;
 elsif (maxrtt > 0) {
 timeadjust ::= maxrtt * 3 / 2;
 if (timeadjust > timeout)
 timeout ::= timeadjust; backoff ::= TRUE;
 else

Rose, McCloghrie & Davin [Page 7]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 timeout ::= (timeout + timeadjust) / 2;
 }
 if (timeout exceeds some threshold)
 set timeout to that threshold;
 elsif (timeout is smaller than some threshold)
 set timeout to that threshold;

 if (at least one thread didn’t receive a response) {
 find the thread which has been waiting the longest
 for a response,
 and determine the elapsed time since a message
 was sent;
 if (the elapsed time with noise is greater than timeout) {
 if (the number of retransmissions for this thread
 exceeds a threshold)
 abort the algorithm;
 retransmit the request;
 backoff ::= TRUE;
 }
 }
 }

4.6. Finding the Median between two OIDs

 The object identifier space is neither uniform nor continuous. As
 such, it is not always possible to choose an object identifier which
 is lexicographically-between two arbitrary object identifiers. In
 view of this, the pipelined algorithm makes a best-effort attempt.

 Starting from the beginning, each sub-identifier of the two OIDs is
 scanned until a difference is encountered. At this point there are
 several possible conditions:

 (1) The upper OID has run out of sub-identifiers. In this
 case, either the two OIDs are are identical or the lower
 OID is greater than the upper OID (an interface error),
 so no OID is returned.

 (2) The lower OID has run out of sub-identifiers. In this
 case, the first subsequent non-zero sub-identifier from
 the upper OID is located. If no such sub-identifier is
 found, then no OID exists between the lower and upper
 OIDs, and no OID is returned. Otherwise, a copy of the
 upper OID is made, but truncated at this non-zero
 sub-identifier, which is subsequently halved, and the
 resulting OID is returned.

 (3) Otherwise, a copy of the lower OID is made, but truncated

Rose, McCloghrie & Davin [Page 8]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 at the point of difference. This last sub-identifier is
 then set to the arithmetic mean of the difference. In
 the case where the difference is only 1 (so the last
 sub-identifier remains the same) then a new sub-
 identifier is added, taking care to be larger than a
 possible sub-identifier present in the lower OID.
 Regardless, the resulting OID is returned.

 oid_median (lower, upper)
 OID lower,
 upper;
 {
 for (i ::= 1; i < upper:nelem; i++) {
 if (i > lower:nelem) {
 while (upper:elems[i] == 0)
 if (++i > upper:nelem)
 return NULL;
 median ::= copy of upper;
 median:nelem ::= i;
 median:elems[i] ::= upper:elems[i] / 2;

 return median;
 }

 if (lower:elems[i] == upper:elems[i])
 continue;

 median ::= copy of lower;
 median:nelem ::= i;
 median:elems[i] ::= (lower:elems[i]+upper:elems[i])/2;
 if (median:elems[i] == lower:elems[i]) {
 median:nelem ::= (i + 1);
 if (lower:nelem < i)
 median:elems[median:nelem] ::= 127;
 elsif ((x ::= lower:elems[i + 1]) >= 16383)
 median:elems[median:nelem] ::= x + 16383;
 elsif (x >= 4095)
 median:elems[median:nelem] ::= x + 4095;
 elsif (x >= 1023)
 median:elems[median:nelem] ::= x + 1023;
 elsif (x >= 255)
 median:elems[median:nelem] ::= x + 255;
 else median:elems[median:nelem] ::=
 (x / 2) + 128;
 }

 return median;
 }

Rose, McCloghrie & Davin [Page 9]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 return NULL;
 }

4.7. Experience with the Pipelined Algorithm

 This pipelined algorithm has been implemented and some
 experimentation has been performed. It would be premature to provide
 extensive performance figures at this time, as the pipelined
 algorithm is still being tuned, and is implemented only in a
 prototype setting. However, on tables of size O(2500), performance
 of 121 entries/second has been observed. In contrast, the serial
 algorithm has performance of roughly 56 entries/second for the same
 table.

4.8. Dynamic Range of Timeout Values

 It should be noted that the pipelined algorithm takes a simplistic
 approach with the timeout value: it does not maintain a history of
 the value and act accordingly.

 For example, if the timeout reaches the maximum timeout limit, and
 then latches for some period of time, this indicates a resource
 (either the network or the agent) is saturated. Unfortunately, a
 solution is difficult: an elegant approach would be to combine two
 threads (but it is quite possible that no two consecutive threads
 exist when this determination is made). Another approach might be to
 delay the transmission for threads which are ready to issue a new
 get-next operation.

 Similarly, if the timeout drops to the minimum value and subsequently
 latches, more threads should be started.

4.9. Incorrect Agent Implementations

 An interesting result is that many agents do not properly implement
 the powerful get-next operator. In particular, when a get-next
 request contains an operand with an arbitrarily-generated suffix,
 some agent implementations will handle this improperly, and
 ultimately return a result which is lexicographically less than the
 operand!

 A typical cause of this is when the instance-identifier for a
 columnar object is formed by a MAC or IP address, so each octet of
 the address forms a sub-identifier of the instance-identifier. In
 such circumstances, the incorrect agent implementations compare
 against only the least significant octet of the sub-identifiers in
 the operand, instead of the full value of the sub-identifiers.

Rose, McCloghrie & Davin [Page 10]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 Upon encountering such an interaction, the pipelined algorithm
 implementation declares the thread dead (noting a possible gap in the
 table), and continues.

5. The Parallel Algorithm

 One interesting optimization is to view the problem in two steps: in
 the first step, one column of the table is traversed to determine the
 full range of instances identifiers meaningful in the table.
 (Indeed, although as described above, the pipelined algorithm
 retrieves a single column, the prototype implementation can retrieve
 multiple columns). In the second step, additional columns can be
 retrieved using the SNMP get operation, since the instance
 identifiers are already known. Further, the manager can dynamically
 determine how many variables can be placed in a single SNMP get
 operation in order to minimize the number of requests. Of course,
 since the agent’s execution of the get operation is often less
 expensive than execution of the powerful get-next operation, when
 multiple columns are request, this two-step process requires less
 execution time on the agent.

 A second algorithm can be developed, the "parallel algorithm". At
 present, each thread is mapped onto a single SNMP operation. A
 powerful insight is to suggest mapping several threads onto a single
 SNMP operation: the manager must dynamically determine how many
 variables can be placed in a single powerful get-next operation.
 This has the advantage of reducing traffic, at the expense of
 requiring the agent to utilize more resources for each request.

 Earlier it was noted that the serial retrieval of objects could be
 viewed as a degenerate case of the pipelined algorithm, in which the
 number of active threads was one. Similarly, the pipelined algorithm
 is a special case of the parallel algorithm, in which the number of
 threads per SNMP operation is one.

5.1. Experience with the Parallel Algorithm

 The parallel algorithm has been implemented and some experimentation
 has been performed. It would be premature to provide extensive
 performance figures at this time, as the algorithm is still being
 tuned, and is implemented only in a prototype setting. However, on
 tables of size O(2500), performance of 320 entries/second has been
 observed, a performance improvement of 571% over the serial
 algorithm.

6. Acknowledgements

 A lot of the ideas on pipelining are motivated by Van Jacobson’s work

Rose, McCloghrie & Davin [Page 11]

RFC 1187 Bulk Table Retrieval with the SNMP October 1990

 on adaptive timers in TCP. The parallelization modifications were
 originally suggested by Jeffrey D. Case.

 Finally, the comments of the following individual is acknowledged:

 Frank Kastenholz, Racal-Interlan

7. References

 [1] Case, J., Fedor, M., Schoffstall, M., and J. Davin, Simple
 Network Management Protocol (SNMP), RFC 1157, SNMP Research,
 Performance Systems International, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

Security Considerations

 Security issues are not discussed in this memo.

Authors’ Addresses

 Marshall T. Rose
 PSI, Inc.
 PSI California Office
 P.O. Box 391776
 Mountain View, CA 94039

 Phone: (415) 961-3380
 EMail: mrose@PSI.COM

 Keith McCloghrie
 Hughes LAN Systems
 1225 Charleston Road
 Mountain View, CA 94043

 Phone: (415) 966-7934
 EMail: KZM@HLS.COM

 James R. Davin
 MIT Laboratory for Computer Science, NE43-507
 545 Technology Square
 Cambridge, MA 02139

 Phone: (617) 253-6020
 EMail: jrd@ptt.lcs.mit.edu

Rose, McCloghrie & Davin [Page 12]

